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Preface

This work has been organized in three parts. The first two ones contain the main results,
and the last one, which has been divided in several appendices, has complementary results.

The first part of the work (Chapters [1] to [f)) is dedicated to the development and
study of a procedure for the accurate computation of frequencies, as well as the related
Fourier coefficients, of a quasi-periodic function, using as only input input a equally—
spaced sampling of the function to be analyzed over a finite time interval.

The first technique for the accurate determination of frequencies has been introduced
by J. Laskar ([I7], [19], [18]). It is based on the maximization of the formula that gives
the Fourier coefficients of a function with respect to the harmonic index, but taking it as
a real number. This procedure has been applied to the study of the long—term dynamics
of the Solar System ([I7]), as well as to the study of chemistry and particle accelerator
models through the computation of frequency maps ([18]). Some methodology for fre-
quency determination has also been introduced in [12],[I3],[10],[IT]. In these works, the
determination of frequencies has been applied to development of semi—analytical models
for the motion in the Solar System.

Our procedure takes the methodology developed in [12],[13],[10][I1] as a starting point.
It is based in asking for equality between the Discrete Fourier Transform (DFT) of the
analyzed function and its quasi—periodic approximation. Error estimates are obtained
and illustrated with numerical examples. Also, in the line of the previously—mentioned
works, we apply our procedure to the development of simplified models for the motion in
the Solar System.

The second part of the work (Chapters |§] to|7)) is devoted to the study to the dynamics
in the vicinity of the collinear equilibrium points of the three-dimensional Restricted
Three-Body Problem (RTBP) for the Earth-Moon mass parameter.

The first systematic study of this vicinity has been done in [10] and [?], using as a tool
the reduction to the central manifold of the collinear equilibrium points. This is a semi—
analytical technique, which limits the region that can be explored by the convergence of
the expansions computed. The same methodology has also been applied to the study of
the collinear equilibrium points of a model for the Earth-Moon system, called the Quasi—
Bicircular Problem ([3]). In this last study, the convergence constraints are still more
severe.

In this work, we follow the families of periodic orbits and invariant 2D tori of the
center manifolds of the three collinear libration points using purely numerical procedures.
With this approach, we can extend the analysis of the phase space done in [10] and [?] to
a wider range of energy values, that now include several bifurcations, and also to the L3
libration point. The methodology used for the continuation of invariant tori is based in [7],
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with some modifications in order to account for variable excitations and some additional
parameters needed for our exploration. We have followed parallel strategies in order to
cope with the large amount of computations required. They have been carried out on
HIDRA, one of the Beowulf clusters of the Barcelona Dynamical Systems Group.

The third and last part of this report consists in several appendices, which give some
additional results that have been taken apart from the main text in order to improve its
readability.
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