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A classical necessary condition for an ordered set of n + 1 functions F to be an 
ECT-system in a closed interval is that all the Wronskians do not vanish. With 
this condition all the elements of Span(F) have at most n zeros taking into account 
the multiplicity. Here the problem of bounding the number of zeros of Span(F) is 
considered as well as the effectiveness of the upper bound when some Wronskians 
vanish. For this case we also study the possible configurations of zeros that can be 
realized by elements of Span(F). An application to count the number of isolated 
periodic orbits for a family of nonsmooth systems is performed.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction and statement of the main results

Let F = [u0, . . . , un] be an ordered set of functions of class Cr, r ≥ n, on the closed interval [a, b]. 
We denote by Z(F) the maximum number of zeros counting multiplicity that any nontrivial function 
v ∈ Span(F) can have. Here Span(F) is the set of functions generated by liner combinations of elements 
of F , that is v(s) = a0u0(s) + a1u1(s) + · · · + anun(s) where ai, for i = 0, 1, . . . , n, are real numbers.

The theory of Chebyshev systems is a classical tool to study the quantity Z(F). In this theory, when 
Z(F) ≤ n, the set F is called an extended Chebyshev system or ET-system on [a, b], see [7]. When the 
functions in F are linearly independent there always exists an element in Span(F) with n zeros, see [11]. 
From this property Z(F) = n for an ET-system, but in general we can not assure if they are simple or not. 
This problem will be addressed later. In [6], when Z(F) ≤ n +k, the set F is called an extended Chebyshev 
system with accuracy k on [a, b]. From this definition it is natural to consider the lowest possible k. Therefore 
there exists an element in Span(F) with n + k zeros and, consequently, Z(F) = n + k. Indeed, this is the 
definition used in [4] and it is the one that we shall use throughout the present work. In concrete problems 
this is not a useful definition in order to get if F is an ET-system, with accuracy or not.
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We recall the definition of the Wronskian of a set of functions:

Wk(t) = Wk(u0, . . . , uk)(t) = det
(
M(u0, . . . , uk)(t)

)
, (1)

where

M(u0, . . . , uk)(t) =

⎛⎜⎜⎜⎜⎝
u0(t) · · · uk(t)
u′

0(t) · · · u′
k(t)

...
. . .

...
u

(k)
0 (t) · · · u

(k)
k (t)

⎞⎟⎟⎟⎟⎠ .

We say that F is an Extended Complete Chebyshev system or an ECT-system on a closed interval [a, b] if 
and only if for any k, 0 ≤ k ≤ n, [u0, u1, . . . , uk] is an ET-system. In order to prove that F is an ECT-system 
on [a, b] it is sufficient and necessary to show that W (u0, u1, . . . , uk)(t) �= 0 on [a, b] for 0 ≤ k ≤ n, see [7]. 
Furthermore this property also provides that each configuration of m ≤ n zeros, taking into account their 
multiplicity, is realizable.

Initially Chebyshev systems were used in approximation theory, in the study of spline functions, and in 
the theory of fine moment, see [7] and [1] for more recent results on this field. Lately they where used in 
the theory of differential equations to study versal unfoldings of singularities of vector fields, see [13,18]. 
Recently it has also been used to study the period function of centers of potential systems, see [12]. In the 
qualitative theory of differential equations, ECT-systems are used to study the number of isolated periodic 
orbits (limit cycles) bifurcating from a period annulus, see also [18]. More concretely, this technique is useful 
to get upper bounds for the number of zeros of the Poincaré–Pontryaguin–Melnikov function. In fact these 
studies provided lower bounds for the so called weak Hilbert 16th problem, see [2,20].

In the context of Chebyshev systems, a possible issue to be considered consists in obtaining exactly the 
number Z(F). Since this problem is very difficult to be solved in general, it can be split in three distinct 
related problems: the first one consists in estimating lower and upper bounds for Z(F), the second one deals 
with the effectiveness of these bounds, and the third one studies the possible configurations of zeros that 
can be realized by the elements of Span(F). As we have commented above, these three problems are solved 
when the set of functions F is an ECT-system. Nevertheless when F is not an ECT-system, as far as we 
know, there are no well developed tools to deal with these problems. So, taking into account all the possible 
applications given above, our main goal in this paper consists in providing similar results for systems which 
are not ECT. Meaning, to give lower and upper bound for Z(F), or at least for the number of isolated zeros 
of the elements of Span(F), when some of the Wronskians of F vanish and to establish if these bounds are 
optimal. In particular Corollary 1.4 provides a complete answer for these problems when all the Wronskians 
are nonvanishing except the last one which has exactly one simple zero.

The upper bounds for the number of zeros of the elements in Span(F), either counting multiplicity or 
not, have been treated in several works. For instance in [17], for an ordered set F = [u0, u1, . . . , un] of 
sufficiently smooth functions, it was proved that the number of isolated zeros of any element of Span(F)
does not exceed

n + ν̂n + ν̂n−1 + 2ν̂n−2 + 2ν̂n−3 + 3ν̂n−4 + 4ν̂n−5 + · · · + (n− j − 1)νj + · · · + (n− 1)ν̂0, (2)

where ν̂i is the number of zeros of the Wronskian Wi, for i = 0, . . . , n. Later in [14], assuming the analyticity 
of the functions in F , it was proved that

Z(F) ≤ n + νn + 3νn−1 + 4(νn−2 + νn−3 + · · · + ν0), (3)

where νi is the number of zeros of the Wronskian Wi, for i = 0, . . . , n, taking into account the multiplicity. 
Even in the case that the zeros of the Wronskians are simple (ν̂i = νi) one cannot decide in general, between 
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(2) and (3), which is the best upper bound for the number of isolated zeros of elements of Span(F). Our 
first result provides a better estimation for it in this case.

Theorem 1.1. Let F = [u0, u1, . . . , un] be an ordered set of analytic functions on [a, b]. Assume that all the νi
zeros of the Wronskian Wi are simple for i = 0, . . . , n. Then the number of isolated zeros for every element 
of Span(F) does not exceed

n + νn + νn−1 + 2(νn−2 + · · · + ν0) + μn−1 + · · · + μ3, (4)

where μi = min(2νi, νi−3 + · · · + ν0), for i = 3, . . . , n − 1.

An improvement of both upper bounds is given, for example, when n = 4, ν0 �= 0, and 2ν3 < ν0, that 
is μ3 = 2ν3. In this case Theorem 1.1 provides the upper bound 4 + ν4 + 3ν3 + 2ν2 + 2ν1 + 2ν0, which is 
strictly less than the upper bounds given by (2) and (3). As a second example consider ν̂i = νi = 1, for 
i = 0, 1, . . . , n ≥ 3. In this case the upper bounds (2) and (3) are, respectively, (n2 + n + 6)/2 and 5n, and 
the upper bound provided by Theorem 1.1 is 4n − 3.

We remark that [14,17] also deal with sets of periodic functions. In this case the upper bounds given in 
(2), (3), and (4) are decreased by n. However in this paper we shall concentrate our attention only in the 
nonperiodic case.

In the next result we establish the optimality of Theorem 1.1 when all the Wronskians are nonvanishing 
except Wn−1(x) and Wn(x), which have νn−1 = k and νn = � zeros on (a, b), respectively.

Theorem 1.2. Let n, k, and � be nonnegative integers. There exists an ordered polynomial set, F =
[u0, u1, . . . , un], such that all the Wronskians are nonvanishing except Wn−1(x) and Wn(x), which have 
k and � zeros on (a, b), respectively, all simple and with an element in Span(F) having exactly n + k + �

simple zeros.

In [3] it is proved that for a family of n + 1 linearly independent analytical functions, such that at least 
one of that has constant sign in its domain, there exists a linear combination of these functions having at 
least n simple zeros. The next theorem extends this result providing lower bounds for Z(F). In what follows 
a configuration of m ≤ n zeros of a function u means a point (p1, p2, . . . , pm, z1, z2, . . . , zm) ∈ R

m × Z
m
+

such that 
∑m

i=1 zi = n where each pi is a zero of u with multiplicity zi, for i = 1, . . . , m.

Theorem 1.3. Let F = [u0, u1, . . . , un] be an ordered set of real C∞ functions on (a, b) such that there exists 
ξ ∈ (a, b) with Wn−1(ξ) �= 0. Then the next properties hold:

(a) If Wn(ξ) �= 0 then for each configuration of m ≤ n zeros, taking into account their multiplicity, there 
exists F ∈ Span(F) with this configuration of zeros.

(b) If Wn(ξ) = 0 and W ′
n(ξ) �= 0 then for each configuration of m ≤ n + 1 zeros, taking into account their 

multiplicity, there exists F ∈ Span(F) with this configuration of zeros.

In Section 6 we give some examples showing that the above lower bounds cannot be improved in general.
As an immediate consequence of Theorems 1.1 and 1.3 we have:

Corollary 1.4. Let F = [u0, u1, . . . , un] be an ordered set of C∞ functions on [a, b]. Assume that all the 
Wronskians are nonvanishing except Wn(x), which has exactly one zero on (a, b) and this zero is simple. 
Then Z(F) = n + 1 and for any configuration of m ≤ n + 1 zeros there exists an element in Span(F)
realizing it.
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In [4] it is proved that the set [1, x, 
√
x + 1, x

√
x + 1, 

√
x, x

√
x, x2√x] is an ET-system with accuracy 1 on 

(0, ∞). This fact can be obtained from Corollary 1.4, taking the interval of definition as being any bounded 
open interval in (0, ∞). Indeed all the ordered Wronskians are nonvanishing except the last one that has 
exactly one positive zero. Another set considered in [4] is F = [∪2k−1

i=0 {√x + ai} ∪2k−1
i=k {x√x + ai}]. In that 

paper, taking k = 3 for example, the authors prove that Z(F) ≤ 4k − 1 = 11. For the concrete values 
a0 = 0, a1 = 1, a2 = 3, a3 = 5, a4 = 2, a5 = 7, this upper bound can be decreased by one from Theorem 1.1
because all the Wronskians are nonvanishing except W7 and W8 that vanish exactly once. Moreover, with 
a new order (permuting the last two elements) only the last Wronskian vanishes exactly once. So, from 
Corollary 1.4, this family is an ET-system with accuracy 1, and therefore Z(F) = 9. Another application of 
Corollary 1.4 can be found in [9] where the considered set of functions is also an ET-system with accuracy 1.

This paper is organized as follows. In Section 2 we recall some useful definitions and results about 
Wronskians. In Section 3 we prove Theorem 1.1 which provides an upper bound for the number of isolated 
zeros of the elements of Span(F). The effectiveness of these upper bounds, see Theorem 1.2, are studied 
in Section 4. The lower bounds for Z(F) given by Theorem 1.3 are proved in Section 5. In Section 6 we 
study the optimality of the bounds given by Theorem 1.3. Finally in Section 7, as a nontrival application 
of the above results, we improve the results of [10] where the maximum number of limit cycles for a class 
of nonsmooth systems is studied. Here we prove that this maximum is three.

2. Preliminaries

In this section we recall some relations between a set of functions and their Wronskians (see [7, sec. 2 
chap. XI]). In particular, we link them with the Division–Derivation algorithm (see [18, p. 119]).

Let w0, w1, . . . , wn be nonidentically zero functions such that wi is of class Cn−i on [a, b]. If we define

u0(x) = w0(x),

u1(x) = w0(x)
x∫

a

w1(s1)ds1,

u2(x) = w0(x)
x∫

a

w1(s1)
s1∫
a

w2(s2)ds2ds1,

...

un(x) = w0(x)
x∫

a

w1(s1)
s1∫
a

w2(s2) · · ·wn−1(sn−1)
sn−1∫
a

wn(sn)dsn · · · ds1,

(5)

then straightforward calculations establishes a first relation between the ordered set F = [u0, u1, . . . , un]
with their Wronskians,

Wk(x) = W (u0, u1, . . . , uk)(x) = (w0(x))k+1(w1(x))k · · · (wk−1(x))2(wk(x)), (6)

for k = 0, 1, . . . , n. These expressions write, recurrently, as

w0(x) = W0(x), w1(x) = W1(x)
(W0(x))2 , and wk(x) = Wk−2(x)Wk(x)

(Wk−1(x))2 , (7)

for k = 2, 3, . . . , n. We remark that the functions {u0, u1, . . . , un} are linearly independent. By introducing 
the differential operators
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Djv = ∂
v

wj
, for j = 0, 1, . . . , n, (8)

the Division–Derivation algorithm for the functions ui, defined in (5), give us the following relation

wj+1 = DjDj−1 · · ·D0 uj+1, for j = 0, 1, . . . , n− 1. (9)

Here the operator ∂ denotes the derivative in the variable x. Furthermore for any set of Cn linearly inde-
pendent functions u0, u1, . . . , un, if we take (9) as the definition of the functions wi, for i = 0, 1, . . . , n, then 
the equality (6) holds.

We recall that when all the Wronskians Wk are nonvanishing the set F is an ECT-system. The proof 
follows because at each step of the Division–Derivation algorithm, see (9), we have j +1 derivatives. Hence, 
from Rolle’s Theorem, the function uj+1 have at most j zeros more than wj+1 for j = 0, 1, . . . , n − 1. When 
some of the Wronskians vanish this problem can be also studied with the same procedure but we need to 
take into account the appearance of vertical asymptotes in some of the steps.

3. Upper bounds of the number of zeros

This whole section is devoted to prove Theorem 1.1. The key point of the proof consists in mixing the 
ideas of the works [14,17] to obtain a best upper bound for the number of isolated zeros for every element 
of Span(F). The proofs of the upper bounds (2) and (3) are both based on the fact that each element 
f ∈ Span(F) satisfies the Frobenius formula (see [16] for a proof of it):

W 2
n−1

WnWn−2
· ∂ · · · ∂ · W 2

1
W2W0

· ∂ · W
2
0

W1
· ∂ · 1

W0
f = k,

which can be transformed (see again [17]) into

Δn−1 ·
1

Wn−3
· Δn−2 · · ·Δ2 ·

1
W0

· Δ1 · Δ0 · f = kWn−2Wn. (10)

Here k �= 0 is a real constant and Δj = W 2
j · ∂ · (Wj)−1, for i = 0, 1, . . . , n.

Following [17], we take F0 = f , F1 = Δ0F0, and F2 = Δ1F1, and then we define recurrently Fj =
Δj−1W

−1
j−3Fj−1, for j = 3, . . . , n. From (10) we have that Fn = kWn−2Wn. We note that the function Fj, 

for j ≥ 3, may admits poles, and that the number of poles does not exceed νn−3 + νn−4 + · · · + ν0. We 
recall that, as the functions are real, the poles are the vertical asymptotes. Let N(·) denote the sum of the 
number of zeros and poles of a function. An adaptation of the Holder inequality, in order to allow poles, 
has been stated in [17]. It says that, if g : I → R is smooth except for a finite number p of poles, then 
N(g) ≤ N(Δjg) + νj + p + 1. This result provides the following list of inequalities:

N(F1) ≥ N(F0) − 1 − ν0,

N(F2) ≥ N(F1) − 1 − ν1,

N(F3) ≥ N(F2) − 1 − ν2 − ν0,

N(Fj) ≥ N(Fj−1) − 1 − νj−1 − νj−3 − (νj−4 + · · · + ν0), for j = 4, . . . , n.

(11)

The upper bound (2) can be obtained by adding up all the above inequalities and using that N(Fn) =
N(WnWn−2) ≤ νn + νn−2.

In [14] it was used the Rolle–Voorhoeve inequalities in order to establish the upper bound (3). Given 
two functions g, h : I → R, which are analytic except for a finite number of poles, the Rolle–Voorhoeve
inequalities state that N(g) ≤ N(∂g) + 1, |N(g) − N(h)| ≤ N(g h) ≤ N(g) + N(h), and N(1/g) = N(g). 
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These properties were first studied by Voorhoeve in [19] for complex functions which are meromorphic on a 
real segment. In [8] the authors used the results from [19] to generalize the Rolle Theorem for complex and 
multivariable functions. We may use them to provide another list of inequalities, similar to (11):

N(F1) ≥ N(F0) − 1 − 3ν0,

N(F2) ≥ N(F1) − 1 − 3ν1,

N(F3) ≥ N(F2) − 1 − ν2 − ν0 − 2ν2,

N(Fj) ≥ N(Fj−1) − 1 − νj−1 − νj−3 − 2νj−1, for j = 4, . . . , n.

(12)

Analogously, the upper bound (3) can be obtained by adding up all the above inequalities and using again 
that N(Fn) = N(WnWn−2) ≤ νn + νn−2.

Joining the two lists, (11) and (12), we are able to produce a third list by taking the best lower bound 
of each one:

N(F1) ≥ N(F0) − 1 − ν0,

N(F2) ≥ N(F1) − 1 − ν1,

N(F3) ≥ N(F2) − 1 − ν2 − ν0,

N(Fj) ≥ N(Fj−1) − 1 − νj−1 − νj−3 − μj−1, for j = 4, . . . , n,

(13)

where μi = min(2νi, νi−3 + · · ·+ν0), for i = 3, . . . , n. The proof finishes adding up all the above inequalities 
and using that N(Fn) = N(WnWn−2) ≤ νn + νn−2.

4. Effectiveness of some upper bounds

In this section the proof of Theorem 1.2 will follow directly from Propositions 4.1, 4.2, and 4.3.

Proposition 4.1. Let n and � be nonnegative integers. There exists an ordered polynomial set, F =
[u0, u1, . . . , un], such that all the Wronskians are nonvanishing except Wn(x), which has exactly � simple 
zeros and with an element in Span(F) having exactly n + � simple zeros. In particular Z(F) = n + �.

Proof. Let αi, i = 0, . . . , � − 1, be real numbers and take wi(x) = 1 for i = 0, . . . , n − 1, and

wn(x) = x� +
�−1∑
i=0

αix
i.

Consequently, from (6) and (5) we get Wi(x) = wi(x), for i = 0, . . . , n, and

ui(x) = xi, for i = 0, . . . , n− 1, and un(x) =
�∑

i=0

i!
(n + i)!αix

i+n,

respectively. These functions define the ordered set F = [u0, u1, . . . , un]. Therefore, the function

v =
n−1∑
j=0

ajuj(x) + un(x) =
n+�∑
j=0

bj x
j , (14)

is in Span(F), where

bj =

⎧⎨⎩ aj , for j = 0, 1, . . . , n− 1,
(j − n)!

αj−n, for j = n, . . . , n + �.

j!
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We note that (14) is a full polynomial of degree n + � in x for which the parameters bj can be chosen in an 
arbitrary way. Clearly there exists a function v with exactly n + � simple zeros. It remains to prove that the 
function Wn has exactly � zeros. If Wn has less distinct zeros, κ < �, applying the upper bound (2) we have 
that the function v has at most n + κ < n + � isolated zeros, which contradicts the conclusion about the 
number of zeros of v. Therefore Wn has � distinct zeros, and from its degree we conclude that these zeros 
are simple. �
Proposition 4.2. Let n and k be nonnegative integers. There exists an ordered polynomial set, F =
[u0, u1, . . . , un], such that all the Wronskians are nonvanishing except Wn−1(x), which has exactly k simple 
zeros, and with an element in Span(F) having exactly n + k simple zeros.

Proof. The proofs follows by adding a new polynomial to the family given in Proposition 4.1 in such a way 
the last Wronskian is nonvanishing. Then we shall show that there is an element in the span of this family 
with the prescribed zeros of the statement.

Consider the ordered set of polynomials [u0, . . . , un−1] given in the proof of Proposition 4.1. So Wi(x) =
wi(x) = 1, for i = 0, . . . , n − 2, and

Wn−1(x) = wn−1(x) = xk +
k−1∑
i=0

αix
i =

k∏
j=1

(x− ξj), (15)

where ξj , for j = 1, . . . k, are the simple zeros of Wn−1. Now, we obtain the function un by taking the last 
nonvanishing Wronskian

Wn(x) =
k∏

j=1
(x− ξj)2

(
1 +

k∑
i=1

1
(x− ξi)2

)
=

k∏
j=1

(x− ξj)2 +
k∑

i=1

k∏
j �=i

(x− ξj)2. (16)

Then using (5) and (7), we compute

un(x) = (k + 1)!
(n + k)!x

n+k + αk−1
k!

(n + k − 1)!x
n+k−1 +

k−1∑
j=1

(αj−1 −Bj)xj+n−1 −B0x
n−1,

where Bj =
∑k

i=1 β
i
j and 

∏k
j �=i(x − ξj) =

∑k−1
j=0 βi

jx
j .

Let F = [u0, u1, . . . , un] and let vε ∈ Span(F) be given by

vε(x) = v0(x) − ε un(x), (17)

where v0 is a monic polynomial of degree n + k− 1 with n + k− 1 simple zeros provided by Proposition 4.1. 
Hence, for ε > 0 small enough, we conclude that vε has n + k − 1 simple zeros close to the zeros of v0
and, because of the degree of un and the sign of its coefficient, another zero which bifurcates from infinity. 
Moreover this zero is simple because the degree of vε coincides with the number of zeros. �
Proposition 4.3. Let n, k, and � be nonnegative integers. There exists an ordered polynomial set, F =
[u0, u1, . . . , un], such that all the Wronskians are nonvanishing except Wn−1(x) and Wn(x), which have k
and � simple zeros on (a, b), respectively, and with an element in Span(F) having exactly n + k + � simple 
zeros.

Proof. The proof follows by perturbing the family given in Proposition 4.2 in such a way the last Wronskian 
has � simple zeros. Then we shall show that there is an element in the span of this family with the prescribed 
zeros of the statement.
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Firstly, consider the ordered set of polynomials F0 = [u0, . . . , un] given in the proof of Proposition 4.2. 
Denote W 0

n the last Wronskian of the family F0 given in (16), which has 2k complex zeros away from the 
real line in the complex plane. Let ε > 0 small and u(x) a polynomial. Using (6), (8), and (9), the last 
Wronskian of Gε = [u0, . . . , un + εu], which is a perturbation of F0, writes

Wn(x) = W 0
n + ε

(
u(n)(x)wn−1(x) − u(n−1)(x)w′

n−1(x)
)
, (18)

where wn−1(x) is given in (15).
Now, let vε ∈ Span(F0) be the function (17) satisfying that for some fixed ε > 0 it has n + k simple 

zeros. We know that −ε(k + 1)!/(n + k)! < 0 is the coefficient of the leading term xn+k of vε. Now we 
define F1 = [u0, . . . , un − ε1x

n+k+1]. Clearly, v1
ε1 = vε + ε ε1 xn+k+1 ∈ Span(F1). Hence, analogously to the 

proof of Proposition 4.2, we conclude that, for ε1 > 0 small enough, v1
ε1 has n + k simple zeros close to 

the simple zeros of vε and another zero, which bifurcates from the infinity. Moreover this additional zero is 
simple because of the degree of v1

ε1 . Let us see that the last Wronskian Wn of F1 has exactly one simple 
zero. From (18) the Wronskian Wn reads

Wn(x) = W 0
n + ε1

(
−2(n + k + 1)!

(k + 2)! x2k+1 + P1(x)
)
,

where P1 is a polynomial of degree less than 2k + 1. Since 1 is the coefficient of leading term x2k of W 0
n

we conclude, just like before, that for ε1 > 0 small enough the Wronskian Wn has 2k complex zeros away 
from the real line and close to the complex zeros of W 0

n and another zero, which bifurcates from the infinity. 
Again this additional zero is simple, now because of the degree of Wn.

The above procedure can be repeated in order to construct the ordered set of polynomials

Fi = [u0, . . . , un − ε1x
n+k+1 + ε2x

n+k+2 − · · · + (−1)iεixn+k+i],

and an element viεi = vi−1
εi−1

− (−1)i ε εixn+k+i in Span(Fi), for i = 2, 3, . . . , �, having exactly n +k+ i simple 
zeros in such way that the last Wronskian Wn of Fi has exactly i simple zeros. This proof ends by taking 
F = F�. �
5. Lower bounds of the number of zeros

This section is completely devoted to prove Theorem 1.3. Firstly, we will look for an element in Span(F)
with a zero of the highest multiplicity. Secondly, we will perturb it inside Span(F) in order to have the 
prescribed configuration of zeros. We point out that the first part is common for both statements but the 
second is not.

As Wn−1(ξ) �= 0 there exists a unique function F0(x) =
∑n

i=0 aiui(x) in Span(F) such that F0(ξ) = 0, 
F

(i)
0 (ξ) = 0, for i = 1, . . . , n − 1, and an = 1. The coefficients ai’s can be obtained from the linear system 

of equations

⎛⎜⎜⎜⎜⎝
u0(ξ) · · · un−1(ξ)
u′

0(ξ) · · · u′
n−1(ξ)

...
. . .

...
u

(n−1)
0 (ξ) · · · u

(n−1)
n−1 (ξ)

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

a0
a1
...

an−1

⎞⎟⎟⎟⎟⎠ = −

⎛⎜⎜⎜⎜⎝
un(ξ)
u′
n(ξ)
...

u
(n−1)
n (ξ)

⎞⎟⎟⎟⎟⎠ .

Using the Cramer’s rule we get
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ai = −Wn−1(u0, . . . ,
(i)
un, . . . , un−1)(ξ)

Wn−1(ξ)

= (−1)n−iWn−1(u0, . . . , ûi, . . . , un)(ξ)
Wn−1(ξ)

.

(19)

The notation (u0, . . . , ûi, . . . , un) means that the element ui is removed. This concludes the first part of the 
proof.

From the Leibniz formula for determinants we can express the Wronskian Wn(ξ) and its derivative as

Wn(ξ) =
n∑

i=0
(−1)n−iu

(n)
i (ξ)Wn−1(u0, . . . , ûi, . . . , un)(ξ),

W ′
n(ξ) =

∣∣∣∣∣∣∣∣∣∣
u0(ξ) · · · un(ξ)

...
. . .

...
u

(n−1)
0 (ξ) · · · u

(n−1)
n (ξ)

u
(n+1)
0 (ξ) · · · u

(n+1)
n (ξ)

∣∣∣∣∣∣∣∣∣∣
=

n∑
i=0

(−1)n−iu
(n+1)
i (ξ)Wn−1(u0, . . . , ûi, . . . , un)(ξ).

(20)

More details on the derivatives of the Wronskians can be found in [5]. From (19) and (20) we write

F
(n+q)
0 (ξ) =

n−1∑
i=0

aiu
(n+q)
i (ξ) + u(n+q)

n (ξ)

= 1
Wn−1(ξ)

n∑
i=0

(−1)n−iu
(n+q)
i (ξ)Wn−1(u0, . . . , ûi, . . . , un)(ξ)

= W
(q)
n (ξ)

Wn−1(ξ)
,

(21)

where W (0)
n = Wn and q ∈ {0, 1}.

Now we prove statement (a), so q = 0 and Wn(ξ) �= 0. Consequently, from (21), the Taylor series of F0(x)
in x = ξ writes

F0(x) =
n∑

i=0

F
(i)
0 (ξ)
i! (x− ξ)i + On+1(x− ξ) = Wn(ξ)

n!Wn−1(ξ)
(x− ξ)n + On+1(x− ξ).

Consider the perturbation

F (x, ε) = Fε(x) =
n−1∑
i=0

(ai + εi)ui(x) + un(x), (22)

which is in Span(F). Here ε = (ε0, . . . , εn−1) ∈ R
n. Clearly n is the first positive integer such that

∂nF

∂xn
(ξ, 0) = F

(n)
0 (ξ) = Wn(ξ)

Wn−1(ξ)
�= 0. (23)

From Malgrange Preparation Theorem, see [15], there exists a C∞ function h(x, ε) defined in a neighborhood
of the origin of R × R

n such that
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F (x, ε) = Pε(x)h(x, ε) =
(

n−1∑
i=0

δi(ε)(x− ξ)i + (x− ξ)n
)
h(x, ε),

with h(ξ, 0) �= 0. The proof of this statement will follow by proving that the function Δ(ε) =(
δ0(ε), . . . , δn−1(ε)

)
is invertible in a neighborhood U ⊂ R

n of ε = 0, being V = Δ(U) ⊂ R
n also a 

neighborhood of 0. From (23) it is easy to see that

δi(ε) = 1
i!

∂i

∂xi

(
g(x, ε)F (x, ε)

)∣∣∣∣
x=ξ

, (24)

for i = 0, 1, . . . , n − 1, where g(x, ε) = 1/h(x, ε). We shall obtain that det(JΔ(0)) = g(ξ, 0)nWn−1(ξ) �= 0, 
being JΔ the Jacobian matrix of Δ. Consequently, the parameters δi will be chosen freely in V to give all the 
configurations of n zeros of the polynomial Pε(x). To do that, denote by πk∇δi(0) the (k+1)-th component 
of the vector ∇δi(0) ∈ R

n where ∇δi is the gradient of the function δi. Thus, for i = 0, 1, . . . , n − 1, (22), 
(23), and (24) implies that

πk∇δi(0) = ∂δi
∂εk

(0) = 1
i!

∂i

∂xi

(
∂

∂εk

(
g(x, ε)F (x, ε)

)∣∣∣∣
ε=0

) ∣∣∣∣
x=ξ

= 1
i!

∂i

∂xi

(
F0(x) ∂g

∂εk
(x, 0) + g(x, 0) ∂F

∂εk
(x, 0)

) ∣∣∣∣
x=ξ

= 1
i!

∂i

∂xi

(
g(x, 0)uk(x)

)∣∣
x=ξ

.

(25)

After straightforward computations, (25) leads to

πk∇δ0(0) = c0uk(ξ), and πk∇δi(0) = c0u
(i)
k (ξ) +

i−1∑
�=0

(
i

�

)
ci−�u

(�)
k (ξ), (26)

for i = 1, . . . , n − 1, where cj = ∂jg/∂xj(ξ, 0). Now for each i = 1, . . . , n − 1 we claim that there exists 
αi =

(
αi

0, α
i
1, . . . , α

i
i−1

)
∈ R

i such that

πk∇δi(0) = c0u
(i)
k (ξ) +

i−1∑
s=0

αi
sπk∇δs(0). (27)

Indeed, substituting (26) in both sides of the equality (27) and then comparing the coefficients of u(�)
k , for 

� = 0, 1, . . . , i − 1, we get

i−1∑
s=�

(
s

�

)
cs−�α

i
s =

(
i

�

)
ci−�.

Therefore we see that the vector αi is given as a solution of a linear system Ci · αi = bi, where Ci is an 
upper triangular i × i matrix having only c0 = g(ξ, 0) �= 0 in every entry of its diagonal, and bi ∈ R

i. Since 
det(Ci) �= 0 there exists such a vector αi, for each i = 0, 1, . . . , n − 1, and the claim is proved. Observe that (
πk∇δ0(0), . . . , πk∇δn−1(0)

)
is the (k + 1)-th column of the matrix JΔ(0). Therefore, by the n-linearity 

property of the determinant, it follows from (27) that det(JΔ(0)) = g(ξ, 0)nWn−1(ξ) �= 0. This completes 
the proof of statement (a).

Now we prove statement (b), so q = 1, Wn(ξ) = 0, and W ′
n(ξ) �= 0. Consequently, from (21), the Taylor 

series of F0(x) in x = ξ writes
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F0(x) =
n+1∑
i=0

F
(i)
0 (ξ)
i! (x− ξ)i + On+2(x− ξ)

= W ′
n(ξ)

(n + 1)!Wn−1(ξ)
(x− ξ)n+1 + On+2(x− ξ).

Consider a second perturbation F̃ (x, ̃ε) = Fε(x + εn), where ε̃ = (ε0, . . . , εn) ∈ R
n+1. Clearly n + 1 is the 

first positive integer such that

∂n+1F̃

∂xn+1 (ξ, 0) = Fn+1
0 (ξ) = W ′

n(ξ)
Wn−1(ξ)

�= 0.

From Malgrange Preparation Theorem there exists a C∞ function h̃(x, ε) defined in a neighborhood of the 
origin of R × R

n+1 such that

F̃ (x, ε̃) = P̃ε̃(x)h̃(x, ε̃) =
(

n∑
i=0

λi(ε)(x− ξ)i + (x− ξ)n+1

)
h̃(x, ε),

with h̃(ξ, 0) �= 0. Analogously to the previous case we shall prove that the function Λ(ε̃) =
(
λ0(ε̃), . . . , λn(ε̃)

)
is invertible in a neighborhood U ⊂ R

n+1 of ε̃ = 0 by showing that det(JΛ(0)) = g̃(ξ, 0)n+1W ′
n(ξ) �= 0, 

where g̃(x, ε) = 1/h̃(x, ε). So let c̃0 = g̃(ξ, 0) �= 0 and denote by πk∇λi(0) the (k + 1)-th component of the 
vector ∇λi(0) ∈ R

n+1. Proceeding as above, for each i = 1, . . . , n, straightforward computations lead to the 
existence of a vector α̃i =

(
α̃i

0, . . . , α̃
i
i−1) ∈ R

i such that

πk∇λ0(0) = c̃0uk(ξ), and πk∇λi(0) = c̃0u
(i)
k +

i−1∑
s=0

α̃i
sπk∇λs(0), (28)

for k = 0, . . . , n − 1, and for k = n

πn∇λi(0) =
{

0, i = 1, . . . , n− 1,
c̃0F

(n+1)(ξ), i = n.
(29)

Observe that 
(
πk∇λ0(0), . . . , πk∇λn(0)

)
is the (k + 1)-th column of the matrix JΛ(0). Therefore, by the 

(n + 1)-linearity property of determinant, it follows from (28) and (29) that

det(JΛ(0)) = g̃(ξ, 0)n+1F (n+1)(ξ)Wn−1(ξ)

= g̃(ξ, 0)n+1 W ′
n(ξ)

Wn−1(ξ)
Wn−1(ξ) = g̃(ξ, 0)n+1W ′

n(ξ) �= 0.

This completes the proof of statement (b).

6. Optimality of the lower bounds

The results of this section provide examples of families assuring the optimality of the lower bound given 
in Theorem 1.3. Indeed for these families Z(F) coincides with that.

Proposition 6.1. The ordered set of functions F = [1, t, cos t] is an ET-system with accuracy 1 in [−π, π].
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Proof. Let f(t) = a + b t + c cos t be an element of Span(F). Clearly, when b = 0, f(t) has at most 2 zeros 
in [−π, π]. For b �= 0, the derivative f ′(t) = b − c sin t has at most 2 zeros in [−π, π] which implies that f(t)
has at most 3 zeros in [−π, π]. Moreover, we can easily find an example in Span(F) having 3 zeros, so we 
conclude that Z(F) = 3. �

For the above family W0(t) = W1(t) = 1 and W2(t) = − cos t which has two zeros in the interval [−π, π]. 
We remark that for an arbitrary set of three functions (n = 2) such that all the Wronskians are nonvanishing 
except the last one (W2) which has exactly two zeros (k = 0 and � = 2), applying Theorems 1.1 and 1.3, 
we obtain that 3 ≤ Z(F) ≤ 4. But for the set given in the above proposition we have Z(F) = 3.

Proposition 6.2 (See [22]). The ordered set of functions F = [1, t cos t, t sin t] is an ET-system in [0, π]
which is not an ECT-system.

For the above family W0(t) = 1, W1(t) = cos t − t sin t, and W2(t) = t2 + 2 which W1 has one zero in the 
interval [0, π]. We note that for an arbitrary set of three functions (n = 2) such that all the Wronskians are 
nonvanishing except W1(t) which has exactly one zero (k = 1 and � = 0), applying Theorem 1.3 we obtain 
that Z(F) ≥ 2. But Zielke in [22] (example (3) of page 363) proves the last proposition, which implies 
Z(F) = 2.

7. Application to nonsmooth systems

In [10], the number of limit cycles bifurcating from a period annulus of some classes of nonsmooth systems 
is studied. Each of these classes has associated a Poincaré–Pontryaguin–Melnikov function. The simple zeros 
of each function provide limit cycles for the respective perturbed class. In two of that classes these functions 
define the sets Span(G1) and Span(G3), where Gi = {g1, g2, gi3} for i = 1, 3, being

g1(y) = 1,

g2(y) =
(
ay2 − b c2

)
y

log
(√

b c +
√
a y√

b c−√
a y

)
,

g1
3(y) =

(
d2 + y2)

y

(
3π + 2 arctan

(
d2 − y2

2dy

))
with d > 0,

g3
3(y) =

(
d2 + y2)

y

(
π + 2 arctan

(
d2 − y2

2dy

))
with d < 0,

(30)

for a, b, c > 0.
The initial problems are reduced to study the maximum number of zeros that the elements of Span(G1)

and Span(G3) can have in (0, 
√
bc/

√
a). We denote these maxima by Z(G1) and Z(G3), respectively. The 

authors show that Z(G1), Z(G3) ≥ 2. As an application of our theorems we shall prove that Z(G3) = 2, and 
Z(G1) = 2 or Z(G1) = 3 depending on the parameters a, b, c, and d.

We can unify the notation considering the functions

u0(t) = 1,

uα
1 (t) = −α2 − t2

t
log

(
α + t

α− t

)
,

uβ
2 (t) = t2 + 1

t

(
βπ − 2(β − 2) arctan

(
t2 − 1

2t

))
.

(31)

More concretely, we can embed the sets G1 and G3 in the ordered set of functions F(α, β) = [u0, uα
1 , u

β
2 ] for 

α > 0 and β > 0. In particular uα
1 (t) = g2(|d| t)/(a|d|) when α = |

√
bc/(

√
ad)|, u3

2(t) = g1
3(|d| t)/|d|, and 
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u1
2(t) = g3

3(|d| t)/|d|. So the numbers Z(G1) and Z(G3) are now equivalent to Z(F(α, 3)) and Z(F(α, 1)) in 
(0, α), respectively. The next result provides them.

Theorem 7.1. Let F(α, β) = [u0, uα
1 , u

β
2 ] be the ordered set of the functions (31). Then

Z (F(α, 1)) = 2 and Z (F(α, 3)) =
{

2 if 0 < α ≤ α∗,

3 if α > α∗,

where α∗ is the unique positive solution of 2(α2 −1) arctan
(
(α2 − 1)/(2α)

)
−3πα2 +3π+4α = 0. Moreover 

α∗ ≈ 1.24701.

Before proving the above theorem we shall see that, in general, Z (F(α, β)) ≤ 3. To do that we proceed 
with an easier approach which consist in an embedding of this set of three functions (31) into a set of four 
functions {u0, uα

1 , u2, u3}, where

u0(t) = 1,

uα
1 (t) = −α2 − t2

t
log

(
α + t

α− t

)
,

u2(t) = − t2 + 1
t

arctan
(
t2 − 1

2t

)
,

u3(t) = t2 + 1
t

.

(32)

This kind of approach has been used previously in [21].

Proposition 7.2. For α > 0, the ordered set of functions G(α) = [u0, u2, u3, uα
1 ] is an ECT-system in the 

interval (0, α). Consequently Z(G(α)) = 3.

Proof. Straightforward computations give us the Wronskians of the ordered set G(α):

W0(t) = 1,

W1(t) = −(t2 − 1)
t2

arctan
(
t2 − 1

2t

)
− 2

t
,

W2(t) = −8
t2(t2 + 1) ,

W3(t) = 16(α2 + 1)
t4(t2 + 1)2 log

(
α + t

α− t

)
− 32α(α2 + 1)(α2 + t2)

t3(α− t)2(α + t)2(t2 + 1)2 .

Clearly, W0(t) > 0, W1(t) < 0 because both summands are negative for t > 0, and W2(t) < 0 for t �= 0. 
Moreover W3(t) = P (t)Q(t) where

P (t) = −16(α2 − t2)2(α2 + 1)
t4(t2 + 1)2(α− t)2(α + t)2 and Q(t) = 2αt(α2 + t2)

(α2 − t2)2 − log
(
α + t

α− t

)
.

We note that P (t) < 0 and Q(t) > 0 for t ∈ (0, α), because Q′(t) = 16α2t2/(α2 − t2)3 > 0 and Q(0) = 0. 
Consequently, W3(t) < 0 in (0, α). Hence we conclude that G(α) is an ECT-system in (0, α). �

We stress that Proposition 7.2 represents, by itself, an improvement of the results obtained in [10] implying 
that Z(G1), Z(G3) ≤ 3. Nevertheless this approach do not use the new theorems developed in this paper. In 
what follows we show, by proving Theorem 7.1, how to use our main results to give still better estimations 
for these upper bounds.
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Proof of Theorem 7.1. Straightforward computations give us the Wronskians of the ordered set F(α, β):

W0(t) = 1,

W1(t) = α2 + t2

t2
log

(
α + t

α− t

)
− 2α

t
:= α2 + t2

t2
P (t),

W2(t) = Q(t)
t3

,

where

Q(t) = 4αt
(

4t(α2 + 1)(β − 2)
(t2 + 1)(α2 − t2) − βπ(α2 − 1)

α2 − t2

)
+ 8α(α2 − 1)(β − 2)t

α2 − t2
arctan

(
t2 − 1

2t

)
− 2

(
4t(α2 − 1)(β − 2)

t2 + 1 − βπ(α2 + 1)
)

log
(
α + t

α− t

)
− 4(α2 + 1)(β − 2) arctan

(
t2 − 1

2t

)
log

(
α + t

α− t

)
.

Clearly W0(t) > 0, and since P ′(t) = 8α3t2/((α2 − t2)(α2 + t2)2) > 0 and P (0) = 0, we get that W1(t)
has no zeros in (0, α).

The proof follows studying the zeros of W2(t), which coincide with the zeros of Q(t) for t ∈ (0, α). As we 
are interested only in the values β = 1 and β = 3, for both we analyze the limits of the function Q at the 
boundary of the interval (0, α) and its monotonicity properties in the full interval. The function Q close to 
the origin and close to α writes, respectively, as

Q(t) = 16 π (β − 1)
α

t−
16π

(
α2 − 2

)
(β − 1)

3α3 t3

−
16π

(
2α2 − 3

)
(β − 1)

5α5 t5 +
512

(
α2 + 1

)
(β − 2)

45α3 t6 + O
(
t7
) (33)

and

Q(t) = α(α2 − 1)L1(α, β)
α− t

+ (α2 + 1)L2(α, β) log(α− t) + O(1), (34)

where

L1(α, β) = 4(β − 2) arctan
(
α2 − 1

2α

)
− 2βπ + 8α(β − 2)

α2 − 1 ,

L2(α, β) = 4(β − 2) arctan
(
α2 − 1

2α

)
− 2βπ + 8α(α2 − 1)(β − 2)

(α2 + 1)2 .

For β = 1, we will show that Q, in (0, α), is a decreasing negative function. Applying Theorems 1.1
and 1.3 (ECT-system case) we have that Z (F(α, π)) = 2.

For β = 3, we will show that Q, in (0, α), is an increasing positive function for α < α∗ and a unimodal 
function for α ≥ α∗ with a simple zero. Moreover it is increasing and positive close to the origin, see 
(33). The graphs of Q for both cases are depicted in Fig. 1. Applying Theorem 1.3 and Proposition 7.2 we 
conclude that Z (F(α, 3π)) = 3 for α > α∗. Otherwise, applying Theorems 1.1 and 1.3 (ECT-system case), 
we obtain Z (F(α, 3π)) = 2.
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Fig. 1. Graphs of Q for β = 3 and for α ≤ α∗ and α > α∗, respectively.

In what follows we prove the properties of the function Q described above distinguishing the cases β = 1
and β = 3.

For simplicity we define A(t) = − arctan((t2 − 1)/(2t)) and L(t) = log((α+ t)/(α− t)). The derivative of 
Q is Q1 = q0(t) + q1(t)A(t) + q2(t)L(t), the derivative of Q1/q2 is Q2 = q̃0(t) + q̃1(t)A(t), and the derivative 
of Q2/q̃1 is

Q3 = − 32t2(α2 + t4)(α2 + t2)
(t2 + 1)2(t4 + 3(α2 − 1)t2 − α2)2 .

Here all the functions qi and q̃i, are rational, and

q2(t) = −16(β − 2)(α2 + t2)
(t2 + 1)2 ,

q̃1(t) = −2α3t(t2 + 1)(α2 + 1)(t4 + 3(α2 − 1)t2 − α2)
(α2 + t2)2(α2 − t2)3 .

The function t4 + 3(α2 − 1)t2 − α2, in (0, α) is negative when α ≤ 1 and has a unique zero at t∗ ∈ (1, α)
when α > 1. Consequently Q3 has an asymptote and q̃1 has a zero, both at t∗. Additionally, the limit of the 
functions Q1/q2 and Q2/q̃1 are −π(β − 1)/((β − 2)α3) and −π(β − 1)/(β − 2), respectively.

For β = 1 and α ≤ 1, the functions Q3, q2, and q̃1 in the interval (0, α) are negative, positive, and 
positive, respectively. Moreover the limit of the functions Q1, Q1/q2 and Q2/q̃1 vanish at t = 0. Going back 
through the derivation/division procedure detailed above we can conclude that the function Q is decreasing 
and, as it vanishes at t = 0, negative. The same argument can be done to prove that Q is increasing and 
positive for β = 3 and α ≤ 1.

Let β = 1 and α > 1. The function Q3 is negative and has an asymptote at t = t∗. The function q2 is 
positive and the function q̃1 is positive in (0, t∗) and negative in (t∗, α). As above, the limit of the functions 
Q1, Q1/q2 and Q2/q̃1 vanish at t = 0. Moreover, the limit of Q2/q̃1 at t = α is −L1(α, 1)/4 > 0 and Q2
is continuous in (0, α). Again going back through the derivation/division procedure detailed above we can 
conclude that the function Q is decreasing and negative.

Let β = 3 and α > 1. The differences between this case with the latter one are that now the function q2
is negative and the limit of Q2/q̃1 at t = α is L1(α, 3)/4 which has a unique zero at α∗ and it is positive in 
(0, α∗) and negative in α > α∗. This follows because the L1(α, 3) is decreasing, limα→1+ L1(α, 3) = ∞ and 
limα→∞ L1(α, 3) = −2π. Therefore, for α ≤ α∗, repeating the same argument of the latter case we prove 
that Q is increasing and positive. Finally, for α > α∗, going back through the derivation/division procedure 
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we can conclude that the function Q is unimodal and increasing close to the origin. From (34) the sign 
of the limit of Q(t) at t = α coincides with the sign of L1(α, 3) when α �= α∗. The proof follows because 
L1(α, 3) < 0 when α > α∗. �
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