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Abstract.

In the planar RTBP with mass ratio µ we regularise the singularity at one of the primaries by
means of Levi-Civita’s transformation in a rotating frame. We solve the variational equations in
a neighbourhood of the ejection/collision orbits, giving analytic expressions for the first terms in µ
of the convergent expansion for orbits with eccentricity e ' 1. For high enough values of the Jacobi
constant C we give analytic expressions for the coefficients of the above expansion in powers of the
small parameter 1/

√
C and we prove the existence of four families of the so called n-ejection-collision

(EC) orbits, that are orbits which eject from the primary and reach n relative maxima in the distance
with the primary before finally colliding with it. Moreover, massive numerical explorations extending
the analytical result for any value of the mass ratio and bigger ranges of C are also shown and
discussed.

1 Introduction

We recall that the planar restricted three-body problem (PRTBP) is the problem of the motion of
a massless particle in the gravitational field created by two bodies, the primaries, of mass µ (the
mass ratio) and 1− µ, which move around circular orbits around their centre of mass. Although this
problem has been studied by many different authors, the so called ejection-collision orbits remain to
be well understood.

In this paper we state and prove a theorem on the existence of only four families of n-ejection-
collision orbits, for any n ≥ 1, µ small enough and sufficiently large values of the Jacobi constant
C. The argument that guarantees the existence of exactly four families relies on the application of a
perturbative approach and the implicit function theorem as well. These families will be labelled by
αn, βn, δn and γn. The case n = 1 was already proved in [5] using McGehee’s regularisation, which
essentially consists of blowing up the singularity to an invariant manifold with two submanifolds of
unstable equilibrium points which have stable and unstable manifolds. Ejection-collision orbits are
then seen as heteroclinic connections between equilibrium points representing respectively the ejection
and the collision. For µ = 0, every ejection orbit is a collision orbit after reaching its apocentre. For
µ 6= 0 but small it was seen in [5] that only four of them survive. This approach, however, seems
difficult to generalise to a class of orbits which eject from the primary, have n ≥ 1 apocentres with n−1
close approaches to the primary with no collision and finally collide with it (the n-EC orbits). The
difficulty is due to the fact that it is not easy to follow, even numerically, an orbit which gets several
times very close to a hyperbolic equilibrium point as the interval of time becomes unbounded. The
way out has been to use Levi-Civita’s regularisation, which transforms the singularity at the primary
into a regular point of a differential system, halfway between reaching the singularity unbounded
velocity and completely stopping the motion there. The price to be paid is a double covering of the
phase space, actually not a great nuisance, and a far greater complexity of the equations of motion,
especially in a rotating frame. As far as we know, no analytical results are available regarding this
kind of solutions. For details of the Levi-Civita regularization in the RTBP, see for example [4], [24]
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and very recently [20] (the author uses singular collision orbits associated with the second primary to
find trajectories reaching the vicinity of the secondary, to low energies).

So a main contribution of this paper is the generalization of the existence of four families of n-EC
orbits for any n ≥ 1. The proof is based on considering Levi-Civita regularization and a perturbation
approach. We remark that the computation of closed expressions for the solution of the variational
equations for µ 6= 0 in a neighbourhood of the ejection-collision orbits is quite demanding and leads
of course to integrals not expressible in closed form with elementary functions. However, the integrals
depend on the Jacobi constant C and can be expanded in powers of the small parameter 1/

√
C,

now with coefficients given by closed form expressions. Sections 5 and 6 are devoted to the actual
computation of the expressions for the coefficients.

If general values of µ and C are to be considered, the problem can on only be tackled numerically.
This is done in section 7. Through numerical simulations, we have extended the previous analytical
results, valid only for sufficiently small µ and C big enough, to the case all µ ∈ (0, 1) and large ranges
of the Jacobi constant C (larger Hill’s regions). Given n ≥ 1, we show the existence of the four families
αn, βn, δn and γn of n-EC orbits, for any value of the mass parameter µ ∈ (0, 1) and big ranges of
values of C (we remove the restriction of C being necessarily large enough). We remark that besides
illustrating the existence of four families of n-EC orbits to the big primary (that is µ ∈ (0, 0.5]), we
also show the existence of four families of n-EC orbits to the small one (that is µ ∈ [0.5, 1)). Moreover,
according to the theorem, given n and µ > 0 there is a value of Ĉ for which there exist exactly four
families of n-EC orbits when C > Ĉ. We have computed this Ĉ value that provides a frontier between
the region where there are exactly four families of EC orbits and the region where bifurcations of EC
orbits take place and other families of EC orbits appear.

Previous analytical results related to n-EC orbits in the planar circular RTBP are available only for
the n = 1 case. We mention the paper by Llibre [13] where he proved the existence of at least two EC
orbits for µ > 0 small enough and the Jacobi constant C big enough. The extension to the existence of
four EC orbits for any µ ∈ (0, 0.5] and C big enough was done by Chenciner and Llibre [5]. Lacomba
and Llibre [12] proved that both Hill problem and the RTBP have no C1-extensible regular integrals
(taking into account EC orbits). Finally also some partial results related to the existence of 1-EC
orbits of the spatial RTBP are given in [14] and of the planar elliptic RTBP (for µ and the eccentricity
of the elliptical orbits of the primaries both positive and small enough) in [15] and [21]. We emphasize
that the procedures used in the mentioned papers are mainly based on blow-up techniques (we refer
to [7] and [16] for basic ideas) and the regularization of the equations of motion (see [23] and [24] for
general theory in celestial mechanics).

On the numerical side, we first mention Hénon’s paper [9], where the computation of EC orbits is done
along the continuation of some families of symmetric periodic, non collision, orbits in the Copenhagen
problem (that is µ = 0.5), in Hill’s problem (see [10]) and similarly in [2] the computation of 16
particular collision periodic orbits of the RTBP is done for various values of µ ∈ (0, 0.5].

As far as we know, the most complete papers about the numerical computation of n-EC orbits, for
n = 1, ...., 25, the continuation of families and appearance of bifurcation orbits in the RTBP are [18]
and [19]. We also mention the analysis of n-EC orbits in other contexts, for example see [17] in the
atomic physics or in [1] in the collinear four-body problem.

The paper is organized as follows: In Section 2, a short summary of the main properties of the RTBP
are recalled, and in particular the equations of motion in the usual synodical (rotating) coordinates
(with two singularities associated with collision with each primary) and in the rotating Levi-Civita
ones (where the collision with the big primary has been regularized) are provided. In Section 3,
the comparison between McGehee regularization and Levi-Civita one is shortly discussed (see more
details in [19]) and the main geometrical ideas involved in the proof of the existence of n-EC orbits are
presented. Section 4 contains the statement of the theorem and the core of the proof. Some detailed
computations of the proof are done in Section 5 for the non perturbed 2-body problem (µ = 0) and in

2



Analytical and numerical results on families of n-Ejection-collision orbits in the RTBP

Section 6 for the perturbed one (µ > 0 and small enough). We remark that our purpose has been to
provide all the proofs (some of them maybe easy) of the Lemmas used to ease the readability of the
paper and to make it self contained. Finally Section 7 is devoted to numerical simulations to extend
the analytical results of the main theorem. We remark that the numerical integrations of the systems
of ODE done along the paper use an own implemented Runge-Kutta (7)8 method with an adaptive
step size control described in [8] (and a Taylor method implemented on a robust, fast and accurate
software package by Jorba and Zou [11].)

2 The planar RTBP and the LC-transformation

In this Section we shortly recall the circular, restricted three-body problem (RTBP) as well as some
well known properties that will be used along the paper. In the RTBP we take two massive bodies P1

and P2, called primaries, that describe circular orbits around their common center of mass, located
at the origin. We consider a particle P with infinitesimal mass that moves on the same plane as the
primaries under their gravitational forces. It will be useful to consider a coordinate system (called
rotating or synodical system) of coordinates that rotates with the primaries, in such a way, that for
suitable units of length, mass and time, the primaries will have mass 1 − µ and µ, µ ∈ (0, 0.5], their
positions will be (µ, 0) and (µ− 1, 0) respectively, and the period of their motion will be 2π. In such
context, the equations of motion for the particle in the rotating system are given by

{
ẍ− 2ẏ = Ωx(x, y)

ÿ + 2ẋ = Ωy(x, y),
(1)

where ˙ = d/dt and

Ω(x, y) =
1

2
(x2 + y2) +

1− µ√
(x− µ)2 + y2

+
µ√

(x− µ+ 1)2 + y2
+

1

2
µ(1− µ)

=
1

2

[
(1− µ)r21 + µr22

]
+

1− µ
r1

+
µ

r2

(2)

with r1 =
√

(x− µ)2 + y2 and r2 =
√

(x− µ+ 1)2 + y2. So, the equations become singular when r1
or r2 → 0.

The main properties of this sytem used later on are the following (see [24] for details):

1. There exists a first integral, defined by

C = 2Ω(x, y)− ẋ2 − ẏ2 (3)

and known as Jacobi integral.

2. System (1) has the symmetry

(t, x, y, ẋ, ẏ)→ (−t, x,−y,−ẋ, ẏ). (4)

A geometrical interpretation of it is that given an orbit in the configuration space (x, y), the
symmetrical orbit with respect to the x axis will also exist.

3. The simplest solutions are 5 equilibrium points: the so called collinear ones Li, i = 1, 2, 3,
located on the x and the triangular ones Li, i = 4, 5. On the plane (x, y), L1,2,3 are located on
the x axis, with x(L2) < µ − 1 < x(L1) < µ < x(L3) and L4,5 forming an equilateral triangle
with the primaries. CLi will stand for the value of C at Li, i = 1, ..., 5.
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4. Depending on the value of the Jacobi constant C, the particle can move on specific regions of
the plane (x, y), called Hill regions and defined by

R(C) =
{

(x, y) ∈ R2 | 2Ω(x, y) ≥ C
}
. (5)

In order to deal with the singularity of the first primary (r1 = 0) we will consider the Levi-Civita
regularization (see [24]). The well known transformation of coordinates and time is given by:

x = µ+ u2 − v2

y = 2uv

dt

ds
= 4

(
u2 + v2

) (6)

and we recall that each point in (x, y) coordinates is mapped to two points in (u, v) coordinates (see
Figure 1). The system (1) becomes:

u′′ − 8(u2 + v2)v′ =
(
4U(u2 + v2)

)
u

= 4µu+ 16µu3 + 12(u2 + v2)2u+
8µu

r2
− 8µu(u2 + v2)(u2 + v2 + 1)

r32
− 4Cu

v′′ + 8(u2 + v2)u′ =
(
4U(u2 + v2)

)
v

= 4µv − 16µv3 + 12(u2 + v2)2v +
8µv

r2
− 8µv(u2 + v2)(u2 + v2 − 1)

r32
− 4Cv

C ′ = 0

(7)

where ′ = d/ds and

U =
1

2

[
(1− µ)

(
u2 + v2

)2
+ µ

(
(1 + u2 − v2)2 + 4u2v2

)]
+

1− µ
u2 + v2

+
µ

r2
− C

2
.

with r2 =
√

(1 + u2 − v2)2 + 4u2v2. The system of ODE (7) is now regular everywhere except at the
collision with the small primary (r2 = 0).

We remark that the system of ODE (7) makes sense for each value of a Jacobi constant C fixed.
So, in order to take an initial condition of this system, we will take (u(0), v(0), u′(0), v′(0), C(0)).
However, for all the coming computations we will actually consider system (7) removing the last
equation in C, and we will consider the corresponding solution for a fixed C and initial condition
simply (u(0), v(0), u′(0), v′(0)).

In this system of reference, the previous properties of the RTBP are written as:

1. Jacobi Integral:
u′2 + v′2 = 8

(
u2 + v2

)
U (8)

which is regular at the collision with the big primary. In particular (see [24]), the velocity at
the position of the first primary (u = 0, v = 0) is given by:

u′2 + v′2 = 8(1− µ) (9)

2. As the Levi-Civita transformation duplicates the configuration space (see Figure 1) the equations
of motion satisfy two symmetries, (10a) in consequence of the duplication of space and (10b)
due to (4):

(s, u, v, u′, v′)→ (s,−u,−v,−u′,−v′) (10a)
(s, u, v, u′, v′)→ (−s,−u, v, u′,−v′) (10b)

4



Analytical and numerical results on families of n-Ejection-collision orbits in the RTBP

Figure 1: Levi-Civita transformation. Hill’s region for µ = 0.2 and C = 3.53. Left. Synodic (x, y)
coordinates. Right. Levi-Civita ones (u, v). In grey the complementary of Hill’s region.

3. The equilibrium points are now duplicated and they are located on the plane (u, v). In particular,
the collinear points now are located in the u axis and in the v axis.

4. Similarly, given a value of the Jacobi constant C, the Hill’s region in variables (u, v) now becomes

R(C) =
{

(u, v) ∈ R2 | (u2 + v2)U ≥ 0
}
. (11)

In particular we will consider values of the Jacobi constant C ≥ CL1 , the value of the Jacobi
constant associated to the equilibrium point L1. In this way, it will be enough to regularize only
the position of P1 because the Hill’s region associated to these values of C avoids collisions with
the second primary (see Figure 2)

Figure 2: Hill regions associated to CL1 (Left) and to C < CL1 (Right) for µ = 0.2.
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3 n ejection-collision orbits. McGehee vs Levi-Civita

As stated in the Introduction, the main goal of this paper is to prove analytically the existence of
four families of n-EC orbits, for µ > 0 small enough and C big enough. We recall that an n-ejection-
collision orbit, simply noted by n-EC orbit, is an orbit that ejects from the big primary and reaches
n times a relative maximum in the distance to the big primary before colliding with it. Along this
Section we introduce the main geometrical ideas and definitions that we will need for the proof of this
result.

As a motivation, we start this Section considering McGehee regularization and shortly recalling some
results. We will also compare it with Levi-Civita one, and we explain why we will use Levi-Civita
coordinates throughout the paper.

Figure 3: (Left) Collision Manifold obtained with the McGehee regularization for any µ > 0. (Right)
Ejection orbits manifold (in red) and collision orbits manifold (in blue) for µ = 0 and C > 0, in this
case both manifolds are the same.

The McGehee regularization consists in a blow up of the collision. The variables used are polar
coordinates (r, θ) with respect to the primary to be regularized as the origin and the new variables
V = r1/2 drdt , U = r3/2 dθdt (not to be confused with potential U) and a change of time dt/dτ = r3/2 are
introduced.

The system of ODE in these variables is well defined at the origin (see [18]) and has an invariant
torus Λ defined by r = 0, called the collision manifold (see Figure 3). On Λ there exist two circles of
equilibrium points S+ and S− characterized as follows:

• Each equilibrium point P ∈ S+ has an associated 2-d unstable manifoldWu(P ) and a 1-d stable
one W s(P ).

• Each equilibrium point Q ∈ S− has an associated 2-d stable manifoldW s(Q) and a 1-d unstable
one Wu(Q).

The dynamics of the stable manifold of the points of S+ and the unstable manifold of the points of
S− corresponds to the internal dynamics on Λ due to the blow up of the collision that is made. The
dynamics of the other manifolds associated with these equilibrium points are those that will allow us
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to find the EC orbits. Actually, we will consider the ejection (collision) orbits for a fixed value of the
Jacobi constant C, so the manifolds Wu(P ) and W s(Q) are 1-d, and each ejection (collision) orbit
can be characterized by a point P ∈ S+ (Q ∈ S−) or an angle θ ∈ [0, 2π). Thus, fixed C we have:

• The ejection orbits manifold is the set of orbits on the unstable manifold Wu(P ), when varying
P ∈ S+. In this way, each ejection orbit corresponds to an orbit such that r > 0 for all finite
time τ and tends to an equilibrium point P ∈ S+ as τ → −∞.

• The collision orbits manifold is the set of orbits on the stable manifold W s(Q), when varying
Q ∈ S−. In this way, each collision orbit corresponds to an orbit such that r > 0 for all finite
time τ and tends to an equilibrium point Q ∈ S− as τ →∞.

Hence each EC orbit corresponds to an heteroclinic connection between a point P ∈ S+ and a point
Q ∈ S−. And if we want to compute the heteroclinic connections between S+ and S− we can do it
via the intersection of the associated manifolds (see [18] for details).

It should be noted that when the mass parameter µ is zero (and C > 0) the ejection orbits manifold
and the collision one coincide, i.e. all the orbits that eject from the primary collide with it and,
therefore, all the ejection orbits are 1-EC orbits. We show both manifolds in variables (V, r, θ) in
Figure 3 right, where each circle S+ and S− collapses to a point. But when µ 6= 0 both manifolds
are different and the existence and number of n-EC orbits is no longer evident. In [18] the numerical
computation and continuation (and bifurcation) of families of n-EC orbits were described and, since
the McGehee’s coordinates were used there, any n-EC orbit was regarded as an heteroclinic orbit.

At this point it is worthwhile comparing the two regularizations (McGehee and Levi-Civita) when
applied to the study of ejection/collision orbits as a motivation to use Levi-Civita one throughout
the paper. Ejection/collision orbits in the Levi-Civita regularization are simply orbits that leave
from/arrive at the origin, which is now a regular point, so it takes a finite range of time to describe an
EC orbit. By contrast, it takes an infinite time to describe an EC orbit in McGehee coordinates, since
they are asymptotic (heteroclinic) connections. From this point of view, although the system of ODE
in Levi-Civita variables is more intricated, the numerical computations are really faster. Moreover,
the initial conditions of an ejection orbit are on invariant manifolds of equilibrium points when using
McGehee variables, and (for numerical simulations) we take actually an approximation of such initial
conditions. Conversely, in Levi-Civita variables, we simply take initial conditions u = v = 0 and
velocity any vector with norm

√
8(1− µ) for a given C.

Thus, from now on, we will only use Levi-Civita coordinates and the following definition.

Definition 3.a. Given a value of the mass parameter µ, we define the ejection (collision) orbits
manifold of energy level C as the set of orbits that have initial conditions

(0, 0, 2
√

2(1− µ) cos (θ0) , 2
√

2(1− µ) sin (θ0)), θ0 ∈ [0, 2π)

integrated forward (backward) in time.

In order to obtain the n-EC orbits we will use an idea explained in [18] for their numerical computation.
Given a value of µ and C we compute the EC orbits as the intersection of the ejection orbits manifold
and the collision orbits one. To do so we define the Poincaré section:

Σ : {g(u) = uu′ + vv′ = 0, g′(u) < 0}. (12)

where u := (u, v, u′, v′). It should be noted that for every ejection or collision orbit, the crossing with
this section corresponds to a maximum in the distance to the first primary. In this way, we define D+

k

as the k-th intersection of the ejection orbits manifold with Σ and, similarly we define D−k as the k-th
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intersection of the collision orbits manifold with Σ. For µ > 0 small enough and C big enough, D+
k

and D−k will be closed curves parametrized by an angle θ0 ∈ [0, 2π).

In order to calculate the n-EC orbits we will use the following lemma:

Lemma 1. The number of intersections between D+
i and D−j corresponds to twice the number of

(i+ j − 1)-EC orbits.

Proof. If an orbit belongs to the ejection orbits manifold and the collision orbits manifold, it is an
ejection-collision orbit. In addition, the number of relative maxima in the distance to the first primary
of such EC orbit is equal to the number of times that the orbit will cross Σ and that is i (following
the ejection orbits manifold) plus j − 1 (following the collision orbits manifold). Finally, since the
Levi-Civita regularisation doubles the configuration space, we have that the cardinal |D+

i ∩ D
−
j | is

twice the number of (i+ j − 1)-EC orbits.

Before enunciating the main Theorem it is important to observe that we do not need to compute D−k ,
it can be obtained directly from D+

k via the symmetry (10a) and for this reason we only work from
now on with D+

k .

So a crutial point is to find the intersection points between the closed curves D+
i and D−j . Any

such intersection point gives rise forward (backward) in time to collision (ejection). Actually, for
C given, these are curves in R4. However, since by definition they are obtained as curves in Σ
(this means two restrictions on the variables), we can consider only their projection in the (u, v)
configuration space. In particular we can express D+

k in polar coordinates, i.e. we will write, abusing
notation, D+

k = (R+
k (θ), θ), as a curve in R2 where R+2

k = (u2 + v2)|sk , sk being the necessary time
to reach the k-intersection with Σ. Due to the expression that Rk has, we will work with the curve
D+2

k := (R2
k(θ), θ). Thus, the intersections of D+2

i and D−
2

j will be the same as the intersections of
D+
i and D−j .

4 Main Theorem

The existence, the number and the characteristics of the n-ejection-collision orbits for small enough
values of the mass parameter and for sufficiently restricted Hill regions can be summarized in the
following Theorem.

Theorem 1. For C big enough and for all n ∈ N there exists a µ̂(C, n) such that for µ ≤ µ̂(C, n)
there exist four n-EC orbits, which can be characterized by:

• Two n-EC orbits symmetric with respect to the x axis.

• Two n-EC orbits with symmetric trajectory one of the other with respect to the x axis.

The respective families (when varying C) are labelled by αn, γn, βn and δn.

Proof. The proof is based on a perturbative approach. First of all, we can rewrite the equations of
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motion (7) as:


u
v
u′

v′


′

=


u′

v′

8(u2 + v2)v′ + 12(u2 + v2)2u− 4Cu
−8(u2 + v2)u′ + 12(u2 + v2)2v − 4Cv

+ µ



0
0

4u+ 16u3 +
8u

r2
−

8u(u2 + v2)(u2 + v2 + 1)

r32

4v − 16v3 +
8v

r2
−

8v(u2 + v2)(u2 + v2 − 1)

r32


= F0(u, v, u′, v′) + µF1(u, v)

(13)

and we look for n-EC orbits expressed in a series expansion in µ:

u = u0 + µu1 +O(µ2)

where u = u(s), u0 = u0(s) and u1 = u1(s). Developing with respect to µ we have:

u′ =
(
u0 + µu1 +O(µ2)

)′
= F0

(
u0 + µu1 +O(µ2)

)
+ µF1

(
u0 +O(µ)

)
= F0(u0) + µDF0(u0)u1 + µF1(u0) +O(µ2)

(14)

Therefore, u0 and u1 must satisfy
u0′ = F0(u0) (15)

u1′ = DF0(u0)u1 + F1(u0) (16)

that is, u0 is a solution of the 2-body problem in Levi-Civita rotating coordinates with µ = 0 and
u1(s) is obtained as

u1(s) = X(s)u1
0 +X(s)

∫ s

0

X−1(s)F1(u0(s)) ds (17)

where X(s) :=
∂u0

∂u0
0

(s) and
∂

∂u0
0

=

(
∂

∂u00
,
∂

∂v00
,
∂

∂u
′0
0

,
∂

∂v
′0
0

)
, being u0

0 = u0(0) the initial conditions.

The explicit computation of u0(s) and u1(s) will be done in Sections 5 and 6.

Regarding the initial conditions, an ejection orbit will satisfy (u(0), v(0)) = (0, 0), and due to (9) the
velocity is a vector with norm 8(1− µ) and an initial angle θ0 ∈ [0, 2π) such that

u0 = u(0) = (0, 0, 2
√

2(1− µ) cos θ0, 2
√

2(1− µ) sin θ0) = u0(0)+µu1(0)+O(µ2) = u0
0+µu1

0+O(µ2)
(18)

with

u0
0 = (0, 0, 2

√
2 cos θ0, 2

√
2 sin θ0)

u1
0 = (0, 0,−

√
2 cos θ0,−

√
2 sin θ0).

(19)

As explained at the end of Section 3, in order to prove the theorem, we must compute the intersection
points between the curves D+2

i and D−
2

j in R2 with i+ j = n+ 1. The precise number of intersection
points corresponds to the precise number of n-EC orbits. Moreover, once D+2

k is obtained, for some
k, D−

2

k is obtained applying the symmetry (10a). So a main goal is to compute the curve D+
k , that

is, for every initial condition parametrized by θ0 we want to compute the time sk necessary for the
solution u with initial condition u0 to arrive at the k-th maximum distance (or the square of the
distance). To do so we consider

sk(θ0) = s0k + µs1k(θ0) +O(µ2) (20)
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where s0k (independent of θ0) is the known time for the 2-body solution u0 to reach the k-th maximum
distance (the k-th crossing with Σ).

In particular:

Lemma 2. s0k =
(2k − 1)π

4
√
C

Proof. The formula is obtained directly from solving the unperturbed system (15) and imposing a
maximum in the distance (see Section 5 for details).

Then, via the Implicit Function Theorem we have:

s1k(θ0) = −u
0u1
′
+ u0

′
u1 + v0v1

′
+ v0

′
v1

u0′2 + v0′2 + u0u0′′ + v0v0′′

∣∣∣∣∣
s0k

(21)

Therefore, the square of the k-th maximum distance is given by:

(
u2 + v2

) ∣∣
sk(θ0)

=
([
u0 + µu1 +O(µ2)

]2
+
[
v0 + µv1 +O(µ2)

]2) ∣∣∣∣
s0k+µs

1
k(θ0)+O(µ2)

=
(
u0

2
+ v0

2
) ∣∣

s0k
+ 2µ

[(
u0u1 + v0v1

) ∣∣
s0k

+ s1k(θ0)
(
u0u0

′
+ v0v0

′
) ∣∣∣∣

s0k

]
+O(µ2)

(22)

In consequence, we have the k-th maximum distance (or square distance) in terms of θ0 and then work
in polar coordinates, i.e. we can express D+

k in polar coordinates as (Rk(θ0), θk(θ0)) where Rk(θ0) is
given by:

Rk(θ0) =
√

(u2 + v2)
∣∣
sk(θ0)

=

√
R0
k
2
(θ0) + 2R1

k
2
(θ0)µ+O(µ2)

(23)

where

R0
k
2
(θ0) =

(
u0

2
+ v0

2
) ∣∣

s0k
(24a)

R1
k
2
(θ0) =

(
u0u1 + v0v1

) ∣∣
s0k

+ s1k(θ0)
(
u0u0

′
+ v0v0

′
) ∣∣∣∣

s0k

(24b)

and θk(θ0) = θ0k(θ0) + O(µ). Also, thanks to the Poincaré section Σ that we are considering, in
particular at the time s0k, we have (

u0u0
′
+ v0v0

′
) ∣∣∣∣

s0k

= 0

Therefore it is not necessary to calculate the time s1k and the expression (24b) becomes:

R1
k
2
(θ0) =

(
u0u1 + v0v1

) ∣∣
s0k
. (25)

The expressions of R0
k
2
(θ0) and R1

k
2
(θ0) are obtained in the following lemmas and the proofs of these

can be found in Sections 5 and 6.

10
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Lemma 3. R0
k
2

=
2

C

Proof. The formula is obtained from solving the unperturbed system (15) and evaluating this solution
at the time s0k (see Section 5 for details).

Lemma 4. R1
k
2
(θ0) =− 1

C
+

3

C2
+

2 (3 cos(4θ0) + 1)

C4
+

8 cos(2θ0)
(
3− 5 cos2(2θ0)

)
C5

+
2(2k − 1)π sin(4θ0)

C11/2
+O(C−13/2)

Proof. The formula is obtained from solving the perturbed system (16) (see Section 6 for details).

In addition, the expression of θk(θ0) is given by:

Lemma 5. θk(θ0) = θ0 −
(2k − 1)π

2C3/2
+O(µ)

Proof. The formula is obtained from the intrinsic rotation of the synodic system (see Section 6 for
details).

Hence, the expression of D+
k

2
(θ0) in polar coordinates is

D+
k

2
(θ0) =

(
R0
k
2

+ 2µR1
k
2
(θ0) +O(µ2) , θk(θ0)

)
(26)

and using the symmetry (10) we have:

D−k
2
(θ0) =

(
R0
k
2

+ 2µR1
k
2
(θ0) +O(µ2) , θ0 +

(2k − 1)π

2C3/2
+O(µ)

)
(27)

Finally, in order to compute the number of n-EC orbits it only remains to calculate the number of
intersections of D+

i

2 and D−j
2 with i+ j = n+ 1:

Lemma 6. For sufficiently small values of the mass parameter and n such that i + j = n + 1 there
exists a Ĉ(µ, n) such that for C ≥ Ĉ(µ, n) the curves D+

i

2 and D−j
2 intersect at the 8 points:

θ =
πk

4
+O(C−1, µ), k = 0, ..., 7 (28)

Proof. Parametrizing the curves D+
i

2 and D−j
2 with the same angle variable we have:

D+
i

2
=

(
R2
i

(
θ +

(2i− 1)π

2C3/2
+O(µ)

)
, θ

)
(29)

D−j
2

=

(
R2
j

(
θ −

(2j − 1)π

2C3/2
+O(µ)

)
θ

)
(30)

with

11
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R2
i

(
θ +

(2i− 1)π

2C3/2
+O(µ)

)
= R0

i
2

+ 2µR1
i
2

(
θ +

(2i− 1)π

2C3/2

)
+O(µ2)

R2
j

(
θ −

(2j − 1)π

2C3/2
+O(µ)

)
= R0

j
2

+ 2µR1
j
2

(
θ −

(2j − 1)π

2C3/2

)
+O(µ2)

In this way we can subtract the radii of D+
i

2 and D−j
2

R2
i

(
θ +

(2i− 1)π

2C3/2

)
−R2

j

(
θ −

(2j − 1)π

2C3/2

)

= 2µ

[
R1
i
2

(
θ +

(2i− 1)π

2C3/2

)
−R1

j
2

(
θ −

(2j − 1)π

2C3/2

)]
+O(µ2)

(31)

and we will look for the values of θ in which this difference is null. Dividing by µ we have:

2

[
R1
i
2

(
θ +

(2i− 1)π

2C3/2

)
−R1

j
2

(
θ −

(2j − 1)π

2C3/2

)]
+O(µ) = 0 (32)

Applying the Implicit Function Theorem for sufficiently small µ, we just have to find zeros (values of
θ as a function of C) of

0 = R1
i
2

(
θ +

(2i− 1)π

2C3/2

)
−R1

j
2

(
θ −

(2j − 1)π

2C3/2

)

=
6

C4

[
cos

(
4θ +

2(2i− 1)π

C3/2

)
− cos

(
4θ −

2(2j − 1)π

C3/2

)]

+
8

C5

[
cos

(
2θ +

(2i− 1)π

C3/2

)(
3− 5 cos2

(
2θ +

(2i− 1)π

C3/2

))

− cos

(
2θ −

(2j − 1)π

C3/2

)(
3− 5 cos2

(
2θ −

(2j − 1)π

C3/2

))]

+
2π

C11/2

[
(2i− 1) sin

(
4θ +

2(2i− 1)π

C3/2

)
− (2j − 1) sin

(
4θ −

2(2j − 1)π

C3/2

)]
+O(C−13/2)

(33)

Similarly, multiplying by C4, expanding in C−1/2 and applying again the Implicit Function Theorem
for sufficiently small C−1/2, we just have to find the zeros of

− 4π (5i+ 7j − 6)

C3/2
sin (4θ) +O(C−5/2) (34)

Therefore, the zeros of (32) are given by:

θ =
πk

4
+O(C−1, µ), k = 0, ..., 7 (35)

12
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Finally, it only remains to verify that the zeros are transversal in θ and this can be easily seen by
deriving the expression with respect to θ.

Hence, equation (34) has eight and only eight zeros in θ as a function of C−1/2, and by the Implicit
Function Theorem equation (32) has the same number of zeros as a function of C−1 and µ. We have
that D+

i

2 and D−j
2 intersect exactly at eight points. Using Lemma 1 we can conclude that there exist

four and only four n-EC orbits. In addition, using the two symmetries of the problem we can see that
those that have angle intersection θk with k = 0, 2 (4, 6) correspond to symmetric n-EC orbits (the
(x, y) projection with respect to the x axis), i.e. αn and γn and those that have angle intersection θk
with k = 1, 3 (5, 7) correspond to orbits with symmetric trajectory one with respect to the other (also
the (x, y) projection), i.e. βn and δn.

Thus, it only remains to prove Lemmas 2, 3 and 5 (in Section 5) and Lemma 4 (in Section 6). In
order to do it the first step is to solve the system (15). This will be done in the next Section.

Remark 1. Since the proof of Theorem 1 is based on the application of the Implicit Function
Theorem, the assertion states that given C big enough and any n, there exists a sufficient small value
of µ > 0 for which there exist four n-EC orbits. As a theoretical result it is difficult to find such
value of µ depending on C and n, and the value of µ must be small enough. But we are interested
in obtaining n-EC orbits for any value of µ ∈ (0, 1). Therefore we apply a numerical strategy that,
for any fixed value of µ ∈ (0, 1), enables us to show the existence of four n-EC orbits for big ranges
of C. This will be our numerical approach in Section 7 devoted to numerical simulations. We will
fix a value of µ and, given n, we will find a value Ĉ(µ, n) depending on µ and n such that for any
C ≥ Ĉ(µ, n) there exist four n-EC orbits.

5 Non perturbed case (µ = 0)

In order to find an explicit expression for the solution u0(s) of the non perturbed system (µ = 0)
(that is the 2-body problem) in rotating Levi-Civita (LC) coordinates, we will consider previously the
problem in sidereal (non-rotating) coordinates, since it is simpler to solve and will be useful to obtain
the first order of the perturbed solution u1(s).

In the next subsection we will prove Lemmas 2 and 3.

2-body problem in LC sidereal coordinates

It is well known that the problem of two bodies (P1 and P ), where (X,Y ) is the position of P in
sidereal coordinates is described by the system of ODE


d2X

dt2
= − X

R3

d2Y

dt2
= − Y

R3

(36)

where R =
√
X2 + Y 2 and with a singularity at the origin (collision) (X,Y ) = (0, 0). The Levi-Civita

transformation to new coordinates (û, v̂) and new time s defined by

13
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
X = û0

2

− v̂0
2

Y = 2û0v̂0

dt

ds
= 4

(
û0

2

+ v̂0
2
) (37)

regularizes the ODE giving rise to the new system (see [24] for details)

{
û0
′′

= −4Kû0

v̂0
′′

= −4Kv̂0
(38)

where ′ = d/ds, K = −2E and E is the energy integral. Taking into account the relationship between
E and the Jacobi constant C and the angular momentum M , E = −C2 + M and the fact that
M = XẎ − Y Ẋ becomes M = (û0v̂0

′ − v̂0û0′)/2, the previous system becomes

{
û0
′′

= −4(C − û0v̂0′ + v̂0û0
′
)û0

v̂0
′′

= −4(C − û0v̂0′ + v̂0û0
′
)v̂0

(39)

As it is well known the system (39) preserves the angular momentum, so we have:

Lemma 7. The quantity −û0v̂0′ + v̂0û0
′
is constant along the trajectories

Proof. Simply by deriving and replacing the values of û0
′′
and v̂0

′′
we have:

d

ds

(
− û0v̂0

′
+ v̂0û0

′)
= −û0v̂0

′′
+ v̂0û0

′′
= 4(C − û0v̂0

′
+ v̂0û0

′
)û0v̂0 − 4(C − û0v̂0

′
+ v̂0û0

′
)û0v̂0 = 0

Keeping that in mind, the solution of (39) with initial conditions û0(0) = û0
0 is given by:

û0(s) = û00 cos(2
√
Ks) +

û0
′

0

2
√
K

sin(2
√
Ks)

v̂0(s) = v̂00 cos(2
√
Ks) +

v̂0
′

0

2
√
K

sin(2
√
Ks)

(40)

where K = C − û00v̂0
′

0 + v̂00û
0′

0 and has derivatives:{
û0
′
(s) = −2

√
Kû00 sin(2

√
Ks) + û0

′

0 cos(2
√
Ks)

v̂0
′
(s) = −2

√
Kv̂00 sin(2

√
Ks) + v̂0

′

0 cos(2
√
Ks)

(41)

In particular, we are interested in ejection orbits, which have initial conditions (0, 0, 2
√

2 cos θ0, 2
√

2 sin θ0),
θ0 ∈ [0, 2π), i.e. 

û0(s) =

√
2 cos θ0√
C

sin(2
√
Cs)

v̂0(s) =

√
2 sin θ0√
C

sin(2
√
Cs).

(42)

With this equation it is immediate to see the following two results, because the maximum distance
does not vary with or without rotation:

• s0k =
(2k − 1)π

4
√
C

.

14
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• R0
k
2

=
(
û0

2

+ v̂0
2
)

(s0k) =
2

C
.

which are the statements of Lemma 2 and Lemma 3 respectively.

In order to prove Lemma 5, it is necessary to study the system in synodical coordinates with the
purpose of calculating the rotation consequences (in particular the θ0k value) and because we will also
need the 2-body solution in the synodical coordinates to calculate the first order solution u1.

2-body problem in LC synodical coordinates

In order to have the solution u0(s) in Levi-Civita rotating frame, we simply apply the rotation
transformation to the solution (40) in Levi-Civita sidereal coordinates. This is shown in the following
lemma.

Lemma 8. The solution of (15) is given by

u0(s) = û0 cos(−t/2)− v̂0 sin(−t/2)

v0(s) = û0 sin(−t/2) + v̂0 cos(−t/2)

u0
′
(s) =

(
û0
′
+ 2(û0

2

+ v̂0
2

)v̂0
)

cos(−t/2)−
(
v̂0
′
− 2(û0

2

+ v̂0
2

)û0
)

sin(−t/2)

v0
′
(s) =

(
û0
′
+ 2(û0

2

+ v̂0
2

)v̂0
)

sin(−t/2) +
(
v̂0
′
− 2(û0

2

+ v̂0
2

)û0
)

cos(−t/2)

(43)

where û0, v̂0, û0
′
, v̂′

0
and t stand for û0(s), v̂0(s), û0

′
(s), v̂0

′
(s) and t(s).

Proof. We simply make use of the change of variables (using complex notation)

• W = û+ iv̂ 7−→ Z = X + iY by Z = W 2, where (X,Y ) are the cartesian sidereal variables.

• Z 7−→ z = x+iy by z = e−itZ, i.e. the rotation to transform from sidereal to synodic coordinates
(x, y).

• z 7−→ w = u+ iv by z = w2, being (u, v) the synodical Levi-Civita variables.

So the relation w = e−
t
2 iW for the 2-body problem can be written as

u0(s) = û0 cos(−t/2)− v̂0 sin(−t/2)

v0(s) = û0 sin(−t/2) + v̂0 cos(−t/2)
(44)

On the other hand, u′(s) and v′(s) are obtained using
dt

ds
= 4(û2 + v̂2).

The relation between the sidereal initial conditions and the synodical ones can be obtained from the
previous lemma


u00 = û00

v00 = v̂00

u00
′

= û0
′

0 + 2(û0
2

0 + v̂0
2

0 )v̂00

v00
′

= v̂0
′

0 − 2(û0
2

0 + v̂0
2

0 )û00



û00 = u0

v̂00 = v0

û0
′

0 = u00
′ − 2(u00

2
+ v00

2
)v00

v̂0
′

0 = v00
′
+ 2(u00

2
+ v00

2
)u00

(45)
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Remarks:

1. In the particular case of ejection orbits, the initial conditions both in sidereal and synodical
coordinates are u0

0 = (0, 0, 2
√

2 cos θ0, 2
√

2 sin θ0), θ0 ∈ [0, 2π).

2. We also notice that if we express the position of the particle with Levi-Civita sidereal variables,
using polar complex notation, that is, W = Reiθsid , where θsid refers to the polar angle, then we
have the corresponding two points in Levi-Civita synodical variables; using polar complex notation
we obtain

w+ = Rei(θsid−
t
2 ) (46a)

w− = Rei(θsid+π−
t
2 ) (46b)

but we can omit expression (46b) due to the symmetry (10a).

Now let us obtain an explicit expression for t(s).

Lemma 9.

(a)
(
u0

2

+ v0
2
)

(s) =
(
û0

2

0 + v̂0
2

0

)
cos2(2

√
Ks) +

û00û
0′

0 + v̂00 v̂
0′

0√
K

cos(2
√
Ks) sin(2

√
Ks) (47)

+
û0
′2

0 + v̂0
′2

0

4K
sin2(2

√
Ks)

(b) t(s) =

(
2(û0

2

0 + v̂0
2

0 ) +
û0
′2

0 + v̂0
′2

0

2K

)
s+

(
4(û0

2

0 + v̂0
2

0 )− û0
′2

0 + v̂0
′2

0

K

)
sin(4

√
Ks)

8
√
K

(48)

+
û00û

0′

0 + v̂00 v̂
0′

0

K
sin2(2

√
Ks)

Proof. (a) It follows directly from (40).

(b) It follows directly from the integration

t(s) =

∫
4(û0

2

+ û0
2

) ds (49)

In particular we have for the ejection orbits

t(s) =
4

C
s− sin(4

√
Cs)

C3/2
. (50)

With this result and using (46), we can compute easily the term θ0k, i.e. the accumulated rotation
during the span of time of length s0k

θk(θ0) = θ0 −
t(s0k)

2
+O = θ0 −

(2k − 1)π

2C3/2
+O (51)

which is the statement of Lemma 5. It should be noted that to this rotation we should add an angle
of π for even orbits, or equivalently add (k− 1)π to θk(θ0) (see (42)), but we can omit this increment
thanks to the symmetry (10a) of the problem.
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6 Perturbed Problem

It only remains to prove Lemma 4. To do so, we need to compute u1(s) and R+2

k (θ0).

As previously mentioned, the solution of (16) is given by (17), therefore, the first step is compute X
in a cunning way. To do so we will use the relationship between sidereal and synodic coordinates, so
from (43) we have:

∂u0

∂u0
0

(s) = V1 cos(−t/2)− V2 sin(−t/2)

∂v0

∂u0
0

(s) = V1 sin(−t/2) + V2 cos(−t/2)

∂u0
′

∂u0
0

(s) = V3 cos(−t/2)− V4 sin(−t/2)

∂v0
′

∂u0
0

(s) = V3 sin(−t/2) + V4 cos(−t/2)

(52)

where:

V1 ≡ V1(s) =

[
∂û0

∂u0
0

+
v̂0

2

∂t

∂u0
0

]
(s)

V2 ≡ V2(s) =

[
∂v̂0

∂u0
0

− û0

2

dt

∂u0
0

]
(s)

V3 ≡ V3(s) =

[
∂û0

′

∂u0
0

+ 2
(
û0

2

+ 3v̂0
2
) ∂v̂0
∂u0

0

+ 4û0v̂0
∂û0

∂u0
0

+
v̂0
′ − 2(û0

2

+ v̂0
2

)û0

2

∂t

∂u0
0

]
(s)

V4 ≡ V4(s) =

[
∂v̂0

′

∂u0
0

− 2
(

3û0
2

+ v̂0
2
) ∂û0
∂u0

0

− 4û0v̂0
∂v̂0

∂u0
0

− û0
′
+ 2(û0

2

+ v̂0
2

)v̂0

2

∂t

∂u0
0

]
(s)

(53)

i.e.:

X = RV =


cos(−t/2) − sin(−t/2) 0 0
sin(−t/2) cos(−t/2) 0 0

0 0 cos(−t/2) − sin(−t/2)
0 0 sin(−t/2) cos(−t/2)



V1

V2

V3

V4

 (54)

where V is the matrix that has rows given by Vi, i = 1, ..., 4.

Thus, we only need to compute previously:

∂û0

∂u0
0

(s) =
∂û0

∂û0
0

(s)
∂û0

0

∂u0
0

∂t

∂u0
0

(s) =
∂t

∂û0
0

(s)
∂û0

0

∂u0
0

(55)

The computation of
∂û0

0

∂u0
0

is immediate from (45) and in the case of ejection orbits it is simply the

identity matrix Id since we just need to substitute in this matrix the values of the initial conditions
(0, 0, 2

√
2 cos θ0, 2

√
2 sin θ0) for an ejection orbit,
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∂û0
0

∂u0
0

(0, 0, 2
√

2 cos θ0, 2
√

2 sin θ0) =


1 0 0 0
0 1 0 0

−4u00v
0
0 −2u00

2 − 6v00
2

1 0

6u00
2

+ 2v00
2

4u00v
0
0 0 1


∣∣∣∣∣∣∣∣
(0,0,2

√
2 cos θ0,2

√
2 sin θ0)

= Id.

(56)

To facilitate the reading of this section, the values of
∂û0

∂û0
0

,
∂t

∂û0
0

and other values necessary for the

computation of V can be found in the Appendix A. Similarly, the complete expression of the matrix
V and V −1 can be found in it.

Once the matrix V −1 has been calculated, we can compute the product X−1F1 = V −1R−1F1 but the
resulting expression to be integrated is quite unwieldy. The first step to simplify the expression is to
introduce the variable τ = 2

√
Cs (see Appendix B). In this way we eliminate the terms related with

C from most trigonometric expressions, except those that have a direct relationship with the rotation
(i.e. with t(s))

sin(2
√
Cs) = sin(τ)

sin(−t/2) = sin

(
− 2

C
s+

sin(4
√
Cs)

2C3/2

)
= sin

(
1

C3/2

−2τ + sin(2τ)

2

)
and similarly with the cosine terms.

Despite this change, the resulting expression cannot be integrated in finite form with elementary
functions. To deal with this last expression we consider a series expansion in 1/

√
C. This expansion

can be done since

•
1

2
√
C
V −1 has a closed expression: constant terms and terms of higher order in 1/

√
C.

• R−1 is simply a rotation.

• F1 depends only on u and v, and the denominator r1 is of the form
√

1 +O(C−1), therefore it
can be expanded.

The computation details are given in Appendix B.

Thus, the integral in (17) becomes

∫ s

0

X−1(s)F1(u0(s))ds =

∫ τ

0

1

2
√
C
X−1

(
τ

2
√
C

)
F1

(
u0

(
τ

2
√
C

))
dτ. (57)

The expressions obtained after these considerations (simplifying the notation) are as follows, where(
X−1F1

)
i
is the i-th component of X−1F1

1

2
√
C

(
X−1F1

)
1

=− 3
√

2 cos θ0 sin2 τ

C3/2
−

24
√

2 cos θ0
(
2 cos4 θ0 − 1

)
sin6 τ

C7/2
+O(C−9/2)

1

2
√
C

(
X−1F1

)
2

=− 3
√

2 sin θ0 sin2 τ

C3/2
−

24
√

2 sin θ0
(
2 sin4 θ0 − 1

)
sin6 τ

C7/2
+O(C−9/2)
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1

2
√
C

(
X−1F1

)
3

=
6
√

2 cos θ0 cos τ sin τ

C
+

12
√

2 sin θ0 sin τ (sin τ − τ cos τ)

C5/2

+
48
√

2 cos θ0
(
2 cos4 θ0 − 1

)
cos τ sin5 τ

C3

− 128
√

2 sin7 τ cos τ cos θ0(5 cos6 θ0 − 6 cos2 θ0 + 2)

C4

+
384
√

2

C9/2
sin4 τ cos(τ/2) sin θ0

[
32 cos3(τ/2)

+ 52 cos3(τ/2) sin2 θ0 + 30 cos3(τ/2) sin4 θ0

+ (28− 64 sin2 θ0 + 32 sin4 θ0) cos5(τ/2)(cos2(τ/2)− 2)

+
(
−2 + 6 sin2 θ0 + sin4 θ0

)
(2 cos (τ/2)− τ sin (τ/2) cos τ)

]
+

320
√

2 sin9 τ cos τ cos θ0(14 cos8 θ0 − 30 cos4 θ0 + 20 cos2 θ0 − 3)

C5

+O(C−11/2)

1

2
√
C

(
X−1F1

)
4

=
6
√

2 sin θ0 cos τ sin τ

C
− 12

√
2 cos θ0 sin τ (sin τ − τ cos τ)

C5/2

+
48
√

2 sin θ0
(
2 sin4 θ0 − 1

)
cos τ sin5 τ

C3

− 128
√

2 sin7 τ cos τ sin θ0(5 sin6 θ0 − 6 sin2 θ0 + 2)

C4

− 384
√

2

C9/2
sin4 τ cos(τ/2) cos θ0

[
32 cos3(τ/2)

+ 52 cos3(τ/2) cos2 θ0 + 30 cos3(τ/2) cos4 θ0

+ (28− 64 cos2 θ0 + 32 cos4 θ0) cos5(τ/2)(cos2(τ/2)− 2)

+
(
−2 + 6 cos2 θ0 + cos4 θ0

)
(2 cos (τ/2)− τ sin (τ/2) cos τ)

]
+

320
√

2 sin9 τ cos τ sin θ0(14 sin8 θ0 − 30 sin4 θ0 + 20 sin2 θ0 − 3)

C5

+O(C−11/2)

(58)

Integrating these results with respect to s on the interval [0, s0k] (see Lemma 2) or [0, 2k−12 π] with
respect to τ (see Appendix B) and using (62) we obtain the following expression for u1(s0k)

u1(s0k) =
(−1)k

√
2 cos θ0

2
√
C

− 3(−1)k
√

2 cos θ0
2C3/2

+
3(−1)k(2k − 1)

√
2π sin θ0

4C2
− 3(−1)k(2k − 1)

√
2π sin θ0

2C3

− (−1)k
√

2 cos θ0(5π2(2k − 1)2 + 128 cos4 θ0 − 64)

16C7/2

+
(−1)k

√
2 cos θ0(27(2k − 1)2π2 + 1920 cos6 θ0 − 2304 cos2 θ0 + 768)

48C9/2
+O(C−6)
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v1(s0k) =
(−1)k

√
2 sin θ0

2
√
C

− 3(−1)k
√

2 sin θ0
2C3/2

− 3(−1)k(2k − 1)
√

2π cos θ0
4C2

+
3(−1)k(2k − 1)

√
2π cos θ0

2C3

− (−1)k
√

2 sin θ0(5π2(2k − 1)2 + 128 sin4 θ0 − 64)

16C7/2

− (−1)k
√

2 sin θ0(27(2k − 1)2π2 + 1920 sin6 θ0 − 2304 sin2 θ0 + 768)

48C9/2
+O(C−6)

(59)

Finally, from (25) we obtain the following expression for R1
k
2
(θ0)

R1
k
2
(θ0) =− 1

C
+

3

C2
+

2(3 cos(4θ0) + 1)

C4
+

8 cos(2θ0)
(
3− 5 cos2(2θ0)

)
C5

+
2(2k − 1)π sin(4θ0)

C11/2
+O(C−13/2),

(60)

which finishes the proof of Lemma 4.

7 Numerical results

Once we have proved analytically, by a perturbation approach, the existence of exactly four families
of n-EC orbits, for n given, µ small enough and for sufficiently large values of the Jacobi constant
C, that is, C ≥ Ĉ (Theorem 1), the present Section is devoted to the extension of this result from a
numerical point of view. More precisely, our purpose is twofold:

(i) We have extended the existence of four families of n-EC orbits in both µ and C. On the one hand,
we show that there exist exactly four families not only to the big primary, that is, for any µ ∈ (0, 0.5],
but also the existence of exactly four families of n-EC orbits to the small one, i. e., for any µ ∈ [0.5, 1).
Of course, from a perturbative point of view, µ must be small enough, but for numerical simulations,
any value of µ can be considered. On the other hand, we have taken less restrictive values of C (not
necessarily large enough), that is, bigger Hill’s regions.

(ii) We have computed the Ĉ value according to the Remark of Theorem 1 that provides a frontier
between the region where there are exactly four families of EC orbits and the region where bifurcations
of EC orbits take place and other families of EC orbits appear.

Figure 4: µ = 0.1, n = 2, C = 8. (Left) Curves D+
2 (in red) and D−1 (in blue) in the plane (θ,R).

(Right) The four 2-EC orbits plotted in the synodic coordinates (x, y).
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Concerning item (i), and recalling that a clue point for the existence of four n-EC orbits in the proof of
Theorem 1 is the intersection of curves D+

i and D−j (with i+ j = n+ 1) for µ ∈ (0, 1), n and C given,
we have done the following computations. First, we take a value of µ (not small enough) and n fixed.
We fix a big value of C and we have computed curves D+

i and D−j such that i+ j = n+ 1, integrating
the unstable ejection and stable collision manifolds, using the RTBP equations in Levi-Civita variables
(that is, system (7)), up to the Poincaré section Σ. We have checked that both curves intersect in
8 transversal points (in rotating Levi-Civita coordinates), which correspond to four n-EC orbits (in
cartesian rotating (x, y) ones). In Figure 4 left, curves D+

2 and D−1 (the projection in polar coordinates
(R, θ)) are plotted for µ = 0.1, n = 2 and C = 8. So, four 2-EC orbits are obtained and plotted in
Figure 4 right, in the synodical coordinates (x, y). Any such trajectory ejects from the big primary,
has a maximum passage to it, a minimum one (with non zero distance), another maximum passage
and finally collides with it. In Table 1 we provide the initial angle θ0 for each 2-EC orbit. So the
associated initial conditions (in Levi-Civita synodical coordinates) are (0, 0, 2

√
1.8 cos θ0, 2

√
1.8 sin θ0).

α2 β2 γ2 δ2
θ0 1.7037895180958 2.44063260106480 0.1327163661903 0.9650603806965

Table 1: µ = 0.1, C = 8. Values of θ0 for 2-EC orbits.

Figure 5: Curves D+
2 and D−1 for µ = 0.1 varying C.

Second, we want to show the evolution of curves D+
i and D−j , for µ (not small enough) and n given,

when varying C, for a range of C (C big). We provide in Figure 5, the 3D plot corresponding to
the (now) surfaces D+

2 and D−1 in the variables θ, R and C (for µ = 0.1). Therefore, for any C in a
(small) given range, there exist the 8 intersecting points (in Levi-Civita variables) corresponding to
the 4 n-EC orbits in synodical cartesian coordinates (x, y). So we can conclude, from our numerical
simulations, that the four families of n-EC orbits persist taking bigger values of µ > 0 (not necessarily
small enough) and a range of values of C (not necessarily big enough).

Third, we have extended the previous results for any value of the mass parameter µ ∈ (0, 1) and big
ranges of values of C. So, fixed any µ ∈ (0, 1) and for any n given, we have done the numerical
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continuation of the four families (labelled γn, δn, αn and βn) of n-EC orbits in a big range of C.
We plot in Figure 6 top left such families for µ = 0.1 and n = 1, 2, 5 (blue, green and purple colours
respectively) in the plane (θ0, C), where we recall that θ0 is the angle, in Levi-Civita polar coordinates,
for the velocity in the initial condition of an ejection or collision orbit (see Definition 3). In particular
for C = 5.5 we plot the corresponding n-EC orbits in Figure 6 top right in (x, y) variables.

We emphasize that taking values of µ in the whole interval (0, 1), we are covering also the existence
of four families of n-EC orbits with the small primary. As a particular example, we plot in Figure 6
middle left the four families of n-EC orbits, for n = 1, 2, 5 and µ = 0.9 in the (θ0, C) plane. In Figure
6 middle right we plot the corresponding EC orbits for C = 5.5 and in Figure 6 bottom, we show the
3-EC orbits corresponding to each primary for µ = 0.4 and the same value of C = 4.5 (together with
the Hill’s regions in (x, y) coordinates).

We also remark that not only any value of µ can be considered but, of course, any value of n. For
example we plot four n-EC orbits in Figure 7 top left, for n = 15, and top right for n = 25. It is
worth mentioning two specific effects. First, given an n-EC orbit, let us define the interval [θe, θc] that
covers the range angle between the velocity vector at ejection θe and the one at collision θc. As far
as n increases, since the required time to go from ejection to collision also does increase, for the same
value of C, the range [θe, θc] will also be larger for bigger n. This effect is clearly seen comparing
Figure 6 for n = 5 with Figure 7 for n = 15 and n = 25. A second effect is on the shape of the petals
of an n-EC orbit. It is clear that as far as µ increases and, more particularly, C decreases, the Hill’s
regions are larger and the influence of both the small primary and the invariant objects that exist in
such regions (and that did not exist for larger values of C, i.e. more restrictive Hill’s regions) is more
visible. This effect can be observed comparing Figure 6 top and middle, where the petals look the
same shape, versus the bottom Figure where we can appreciate a subtle difference in the shape of the
three petals (the one in the middle is either thinner or fatter). Also in the 3D plot of Figure 7 bottom,
we show the evolution of the 1-EC orbits (on the plane (x, y)) when varying C (on the vertical axis)
for µ = 0.1; we can appreciate how the size of the petals gets bigger for decreasing C. This effect is
shown for n = 1 for clearness but of course takes place for any value of n.

Finally, we show in Figure 8 a 3D plot with the continuation of the four families of n-EC orbits, for
n = 1, 2, 5, in the plane (θ0, C) (θ0 ∈ [0, π] and C ∈ [5, 20]) when varying µ ∈ (0, 1) (in the vertical
axis). From this plot it is worth making some remarks. When C is big enough, we see that the values
of θ0 tend to πk/4, for k = 0, 1, 2, 3 for any value of µ. This is true as proved from Theorem 1,
for small enough values of µ. A proof for any value of µ is left for a next future. At this point we
mention references [6] and [12] for the proof of 1-EC orbits in the Hill’s problem, as a model for the
motion close to the small primary. Another important comment is for small values of µ and when C
decreases. Let us focus on the curves in the (θ0, C) plane, for θ0 ∈ [0, π] and C ∈ [5, 20], and µ small
fixed. When n = 1, such four curves look like straight lines; however as n increases, such lines become
more curved when C decreases (that is when the Hill’s regions get bigger). If even smaller values of
C are considered, the merging of families takes place and bifurcations of new families appear. These
phenomena also happen for bigger values of µ. See [18] for details.

Focussing on item (ii) and according to Theorem 1, for C big enough and n given, there exist values
of µ small enough such that the existence of four n-EC orbits is proved. However, we want to consider
any value of µ ∈ (0, 1). So, as explained in Remark 1, we will take a fixed value of µ ∈ (0, 1) and,
given n, we will compute the value Ĉ(µ, n) such that for C ≥ Ĉ, there appear exactly four n-EC
orbits. So for C < Ĉ we expect a bigger number of EC orbits, that is, bifurcations of EC orbits turn
up. The numerical method to compute Ĉ, for a fixed µ ∈ (0, 1) and given n, is the following: we take
an interval I = [Ca, Cb] of values of C, and for each C ∈ I, (starting at Cb) we vary θ0 ∈ [0, π) (that
defines the initial conditions in synodical Levi-Civita variables) and find the four specific values of θ0
corresponding to four n-EC orbits. We say that we have four n-EC orbits for that C. So decreasing
C we obtain four families of n-EC orbits. See Figure 6 top and middle left. However as we decrease
C, we find a value of C ∈ I such that more than four n-EC orbits are found. This means that new
families have bifurcated. Next we refine the value of C such that it is the frontier before appearing
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Figure 6: Families γn, δn, αn and βn of n-EC orbits for n = 1, 2, 5 (blue, green and purple colours
respectively) in the plane (θ0, C): EC orbits to the big primary (top left) for µ = 0.1, and to the
small one (middle left) for µ = 0.9. The corresponding n-EC orbit in (x, y) variables for C = 8 (top
and middle right). (Bottom) 3-EC orbits to each primary for µ = 0.4 and the same value of C = 4.5
(together with the Hill’s regions).
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Figure 7: (Top) n-EC orbits to the big primary for µ = 0.1 in (x, y) coordinates. (Left) n = 15 and
C = 15. (Right) n = 25 and C = 20. (Bottom) Evolution of the 1-EC orbits in (x, y) coordinates,
varying C (the vertical axis).

new families of n-EC orbits. That is precisely the specific values of Ĉ. In Figure 9 we show this kind
of computation for µ = 0.1. We take the interval I = [CL1

, Cb], Cb big enough. The reason to take
Ca = CL1

is to guarantee that there is no possible path between P1 and P2, due to the topology of
the Hill region, so, roughly speaking, the dynamics in each bounded region around each primary is
the simplest possible. In the figure, the x axis corresponds to θ0 ∈ [0, π) and the y one to C. The blue
and red curves correspond to the families n = 2 and n = 3 EC orbits, respectively. We see on the plot
the specific values Ĉ(0.1, 2) = 3.72442505 and Ĉ(0.1, 3) = 3.80644009. Clearly, for C ≥ Ĉ there exist
four families of n-EC orbits whereas new families of n-EC orbits appear for C < Ĉ.

For the fixed value of µ = 0.1, we have computed the Ĉ(0.1, n) value for each value of n varying from
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Figure 8: Continuation of families γn, δn, αn and βn of n-EC orbits for n = 1, 2, 5 (blue, green and
purple colours respectively) in θ0 and C when varying µ ∈ (0, 1) (on the vertical axis).

2 to 20. In Figure 10 we can see the evolution of Ĉ(0.1, n) (on the vertical axis) increasing n from 2
to 20 (on the horizontal one). We observe that the Ĉ(0.1, 1) is not on the plot because bifurcations
appear when C < CL1 in this case. As expected, when n increases, a bigger value of Ĉ is obtained,
that is, bifurcations of EC orbits appear earlier, in the sense that Ĉ is bigger. On the contrary, for
smaller values of n, Ĉ is smaller; so we obtain larger ranges for C, meaning that for C ∈ (Ĉ,∞) there
exist four and only four families of n-EC orbits. We refer the interested reader to [18] for the details
related to the bifurcation of families of EC orbits.
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Figure 9: µ = 0.1, families of n-EC orbits in this range of values of C (vertical axis), blue curves for
n = 2 and red for n = 3. θ0 ∈ [0, π) is on the x axis. The specific values Ĉ(0.1, 2) and Ĉ(0.1, 3) as
frontier of bifurcation families is also shown.

Figure 10: For µ = 0.1, value of the frontier value Ĉ (on the y axis) versus n (on the x axis).
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Appendix A Computation of V and V −1

This appendix shows the computations needed to obtain V and V −1. According to (53) we need to

compute
∂û0

∂u0
0

and
∂t

∂u0
0

, which are expressions that depend on s and the initial values u0
0. Due to (55)

and (56) it suffices to compute
∂û0

∂û0
0

and
∂t

∂û0
0

. All these derivatives are evaluated on ejection orbits,

i.e. with initial conditions û0
0 = u0

0 = (0, 0, 2
√

2 cos θ0, 2
√

2 sin θ0), and they will be denoted with the
subscript e after a vertical bar or a square bracket. These expressions are functions of s, θ0 and C.

Computation of
∂û0
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•
∂v̂0
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∂v̂0

′

dv̂00

∣∣∣∣∣
e

= −

[
2
√
C +

8 cos θ0 sin θ0√
C

s

]
sin
(

2
√
Cs
)

•
∂v̂0

′

∂û0
′

0

∣∣∣∣∣
e

= 0

•
∂v̂0

′

∂v̂0
′

0

∣∣∣∣∣
e

= cos
(

2
√
Cs
)

•
∂t

∂û00

∣∣∣∣∣
e

=
8
√

2 sin θ0

C2
s+

4
√

2 sin θ0

C2
s cos

(
4
√
Cs
)
−

3
√

2 sin θ0

C5/2
sin
(

4
√
Cs
)

+
2
√

2 cos θ0

C
sin2

(
2
√
Cs
)

•
∂t

∂v̂00

∣∣∣∣∣
e

= −
8
√

2 cos θ0

C2
s−

4
√

2 cos θ0

C2
s cos

(
4
√
Cs
)

+
3
√

2 cos θ0

C5/2
sin
(

4
√
Cs
)

+
2
√

2 sin θ0

C
sin2

(
2
√
Cs
)

•
∂t

∂û0
′

0

∣∣∣∣∣
e

=
2
√

2 cos θ0

C
s−
√

2 cos θ0

2C3/2
sin
(

4
√
Cs
)

•
∂t

∂v̂0
′

0

∣∣∣∣∣
e

=
2
√

2 sin θ0

C
s−
√

2 sin θ0

2C3/2
sin
(

4
√
Cs
)

Computation of V = (Vij) , 1 ≤ i, j ≤ 4.

• V11 =

[
∂û0

∂u00
+
v̂0

2

∂t

∂u00

]
e

= cos
(

2
√
Cs
)
− 4

C
sin θ0 cos θ0 cos

(
2
√
Cs
)
s+

2

C3/2
sin θ0 cos θ0 sin3

(
2
√
Cs
)

+
4

C5/2
sin2 θ0

[
2 cos2

(
2
√
Cs
)

+ 1
]

sin
(

2
√
Cs
)
s− 6

C3
sin2 θ0 sin2

(
2
√
Cs
)

cos
(

2
√
Cs
)

• V12 =

[
∂û0

∂v00
+
v̂0

2

∂t

∂v0

]
e

=
4

C
cos2 θ0 cos

(
2
√
Cs
)
s− 2

C3/2

[
1− sin2 θ0 sin2

(
2
√
Cs
)]

sin
(

2
√
Cs
)

− 4

C5/2
cos θ0 sin θ0

[
1 + 2 cos2

(
2
√
Cs
)]

sin
(

2
√
Cs
)
s+

6

C3
cos θ0 sin θ0 sin2

(
2
√
Cs
)

cos
(

2
√
Cs
)

• V13 =

[
∂û0

∂u0
′

0

+
v̂0

2

∂t

∂u0
′

0

]
e

=
1

2
√
C

sin
(

2
√
Cs
)

+
2

C3/2
cos θ0 sin θ0 sin

(
2
√
Cs
)
s− 1

C2
cos θ0 sin θ0 cos

(
2
√
Cs
)

sin2
(

2
√
Cs
)

• V14 =

[
∂û0

∂v0
′

0

+
v̂0

2

∂t

∂v0
′

0

]
e

=
2

C3/2
sin2 θ0 sin

(
2
√
Cs
)
s− 1

C2
sin2 θ0 cos

(
2
√
Cs
)

sin2
(

2
√
Cs
)
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• V21 =

[
∂v̂0

∂u00
− û0

2

∂t

∂u00

]
e

= − 4

C
sin2 θ0 cos

(
2
√
Cs
)
s+

2

C3/2

[
1− cos2 θ0 sin2

(
2
√
Cs
)]

sin
(

2
√
Cs
)

− 4

C5/2
cos θ0 sin θ0

[
1 + 2 cos2

(
2
√
Cs
)]

sin
(

2
√
Cs
)
s+

6

C3
cos θ0 sin θ0 sin2

(
2
√
Cs
)

cos
(

2
√
Cs
)

• V22 =

[
∂v̂0

∂v00
− û0

2

∂t

∂v00

]
e

= cos
(

2
√
Cs
)

+
4

C
sin θ0 cos θ0 cos

(
2
√
Cs
)
s− 2

C3/2
sin θ0 cos θ0 sin3

(
2
√
Cs
)

+
4

C5/2
cos2 θ0

[
2 cos2

(
2
√
Cs
)

+ 1
]

sin
(

2
√
Cs
)
s− 6

C3
cos2 θ0 sin2

(
2
√
Cs
)

cos
(

2
√
Cs
)

• V23 =

[
∂v̂0

∂u0
′

0

− û0

2

∂t

∂u0
′

0

]
e

= − 2

C3/2
cos2 θ0 sin

(
2
√
Cs
)
s+

1

C2
cos2 θ0 cos

(
2
√
Cs
)

sin2
(

2
√
Cs
)

• V24 =

[
∂v̂0

∂v0
′

0

− û0

2

∂t

∂v0
′

0

]
e

=
1

2
√
C

sin
(

2
√
Cs
)
− 2

C3/2
cos θ0 sin θ0 sin

(
2
√
Cs
)
s+

1

C2
cos θ0 sin θ0 cos

(
2
√
Cs
)

sin2
(

2
√
Cs
)

• V31 =

[
∂û0

′

∂u00
+ 2

(
û0

2

+ 3v̂0
2
) ∂v̂0
∂u00

+ 4û0v̂0
∂û0

∂u00
+
v̂0
′ − 2(û0

2

+ v̂0
2

)û0

2

∂t

∂u00

]
e

= −2
√
C sin

(
2
√
Cs
)

+
8√
C

cos θ0 sin θ0 sin
(

2
√
Cs
)
s

+
4

C
cos θ0 sin θ0

[
2− 3 cos2

(
2
√
Cs
)]

cos
(

2
√
Cs
)

− 8

C2
sin2 θ0

[
5− 8 cos2

(
2
√
Cs
)]

cos
(

2
√
Cs
)
s

+
4

C5/2

[
6 sin2 θ0 −

(
9− 11 cos2 θ0

)
cos2

(
2
√
Cs
)
− 2 cos2 θ0 cos4

(
2
√
Cs
)]

sin
(

2
√
Cs
)

− 16

C7/2
cos θ0 sin θ0

[
1 + 2 cos2

(
2
√
Cs
)]

sin3
(

2
√
Cs
)
s

+
24

C4
cos θ0 sin θ0 cos

(
2
√
Cs
)

sin4
(

2
√
Cs
)

• V32 =

[
∂û0

′

∂v00
+ 2

(
û0

2

+ 3v̂0
2
) ∂v̂0
∂v00

+ 4û0v̂0
∂û0

∂v00
+
v̂0
′ − 2(û0

2

+ v̂0
2

)û0

2

∂t

∂v00

]
e

= − 8√
C

cos2 θ0 sin
(

2
√
Cs
)
s

+
4

C

[
3− 2 cos2 θ0 −

(
4− 3 cos2 θ0

)
cos2

(
2
√
Cs
)]

cos
(

2
√
Cs
)

+
8

C2
cos θ0 sin θ0

[
5− 8 cos2

(
2
√
Cs
)]

cos
(

2
√
Cs
)
s

− 4

C5/2
cos θ0 sin θ0

[
6− 11 cos2

(
2
√
Cs
)

+ 2 cos4
(

2
√
Cs
)]

sin
(

2
√
Cs
)

+
16

C7/2
cos2 θ0

[
1 + 2 cos2

(
2
√
Cs
)]

sin3
(

2
√
Cs
)
s

− 24

C4
cos2 θ0 cos

(
2
√
Cs
)

sin4
(

2
√
Cs
)
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• V33 =

[
∂û0

′

∂u0
′

0

+ 2
(
û0

2

+ 3v̂0
2
) ∂v̂0

∂u0
′

0

+ 4û0v̂0
∂û0

∂u0
′

0

+
v̂0
′ − 2(û0

2

+ v̂0
2

)û0

2

∂t

∂u0
′

0

]
e

= cos
(

2
√
Cs
)

+
4

C
cos θ0 sin θ0 cos

(
2
√
Cs
)
s

+
2

C3/2
cos θ0 sin θ0

[
2− 3 cos2

(
2
√
Cs
)]

sin
(

2
√
Cs
)

− 8

C5/2
cos2 θ0 sin3

(
2
√
Cs
)
s

+
4

C3
cos2 θ0 cos

(
2
√
Cs
)

sin4
(

2
√
Cs
)

• V34 =

[
∂û0

′

∂v0
′

0

+ 2
(
û0

2

+ 3v̂0
2
) ∂v̂0

∂v0
′

0

+ 4û0v̂0
∂û0

∂v0
′

0

+
v̂0
′ − 2(û0

2

+ v̂0
2

)û0

2

∂t

∂v0
′

0

]
e

=
4

C
sin2 θ0 cos

(
2
√
Cs
)
s

− 2

C3/2

[
3− 2 sin2 θ0 −

(
4− 3 sin2 θ0

)
cos2

(
2
√
Cs
)]

sin
(

2
√
Cs
)

− 8

C5/2
cos θ0 sin θ0 sin3

(
2
√
Cs
)
s

+
4

C3
cos θ0 sin θ0 cos

(
2
√
Cs
)

sin4
(

2
√
Cs
)

• V41 =

[
∂v̂0

′

∂u00
− 2

(
3û0

2

+ v̂0
2
) ∂û0
∂u00
− 4û0v̂0

∂v̂0

∂u00
− û0

′
+ 2(û0

2

+ v̂0
2

)v̂0

2

∂t

∂u00

]
e

=
8√
C

sin2 θ0 sin
(

2
√
Cs
)
s

− 4

C

[
3− 2 sin2 θ0 −

(
4− 3 sin2 θ0

)
cos2

(
2
√
Cs
)]

cos
(

2
√
Cs
)

+
8

C2
cos θ0 sin θ0

[
5− 8 cos2

(
2
√
Cs
)]

cos
(

2
√
Cs
)
s

− 4

C5/2
cos θ0 sin θ0

[
6− 11 cos2

(
2
√
Cs
)

+ 2 cos4
(

2
√
Cs
)]

sin
(

2
√
Cs
)

− 16

C7/2
sin2 θ0

[
1 + 2 cos2

(
2
√
Cs
)]

sin3
(

2
√
Cs
)
s

+
24

C4
sin2 θ0 cos

(
2
√
Cs
)

sin4
(

2
√
Cs
)

• V42 =

[
∂v̂0

′

∂v00
− 2

(
3û0

2

+ v̂0
2
) ∂û0
∂v00
− 4û0v̂0

∂v̂0

∂v00
− û0

′
+ 2(û0

2

+ v̂0
2

)v̂0

2

∂t

∂v00

]
e

= −2
√
C sin

(
2
√
Cs
)
− 8√

C
cos θ0 sin θ0 sin

(
2
√
Cs
)
s

− 4

C
cos θ0 sin θ0

[
2− 3 cos2

(
2
√
Cs
)]

cos
(

2
√
Cs
)

− 8

C2
cos2 θ0

[
5− 8 cos2

(
2
√
Cs
)]

cos
(

2
√
Cs
)
s

+
4

C5/2

[
6 cos2 θ0 −

(
9− 11 sin2 θ0

)
cos2

(
2
√
Cs
)
− 2 sin2 θ0 cos4

(
2
√
Cs
)]

sin
(

2
√
Cs
)

+
16

C7/2
cos θ0 sin θ0

[
1 + 2 cos2

(
2
√
Cs
)]

sin3
(

2
√
Cs
)
s

− 24

C4
cos θ0 sin θ0 cos

(
2
√
Cs
)

sin4
(

2
√
Cs
)
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• V43 =

[
∂v̂0

′

∂u0
′

0

− 2
(

3û0
2

+ v̂0
2
) ∂û0

∂u0
′

0

− 4û0v̂0
∂v̂0

∂u0
′

0

− û0
′
+ 2(û0

2

+ v̂0
2

)v̂0

2

∂t

∂u0
′

0

]
e

= − 4

C
cos2 θ0 cos

(
2
√
Cs
)
s

− 2

C3/2

[
3− 2 cos2 θ0 −

(
4− 3 cos2 θ0

)
cos2

(
2
√
Cs
)]

sin
(

2
√
Cs
)

− 8

C5/2
cos θ0 sin θ0 sin3

(
2
√
Cs
)
s

+
4

C3
cos θ0 sin θ0 cos

(
2
√
Cs
)

sin4
(

2
√
Cs
)

• V44 =

[
∂v̂0

′

∂v0
′

0

− 2
(

3û0
2

+ v̂0
2
) ∂û0
∂v0

′
0

− 4û0v̂0
∂v̂0

∂v0
′

0

− û0
′
+ 2(û0

2

+ v̂0
2

)v̂0

2

∂t

∂v0
′

0

]
e

= cos
(

2
√
Cs
)
− 4

C
cos θ0 sin θ0 cos

(
2
√
Cs
)
s

− 2

C3/2
cos θ0 sin θ0

[
2− 3 cos2

(
2
√
Cs
)]

sin
(

2
√
Cs
)

− 8

C5/2
sin2 θ0 sin3

(
2
√
Cs
)
s

+
4

C3
sin2 θ0 cos

(
2
√
Cs
)

sin4
(

2
√
Cs
)

Computation of V −1 =
(
V −1
ij

)
, 1 ≤ i, j ≤ 4.

According to the theorem of Liouville, the determinant of the matrix V (s) is identically 1 because the
trace of DF0(u0) in (16) is zero.

• V −11,1 = cos
(

2
√
Cs
)

+
4

C
cos θ0 sin θ0 cos

(
2
√
Cs
)
s+

2

C3/2

[
2− 3 cos2

(
2
√
Cs
)]

cos θ0 sin θ0 sin
(

2
√
Cs
)

+
24

C5/2
cos2 θ0 sin3

(
2
√
Cs
)
s− 12

C3
cos2 θ0 cos

(
2
√
Cs
)

sin4
(

2
√
Cs
)

• V −11,2 = − 4

C
cos2 θ0 cos

(
2
√
Cs
)
s+

2

C3/2

[
1 + 2 sin2 θ0 − 3 sin2 θ0 cos2

(
2
√
Cs
)]

sin
(

2
√
Cs
)

+
24

C5/2
cos θ0 sin θ0 sin3

(
2
√
Cs
)
s− 12

C3
cos θ0 sin θ0 cos

(
2
√
Cs
)

sin4
(

2
√
Cs
)

• V −11,3 = − 1

2
√
C

sin
(

2
√
Cs
)
− 2

C3/2
cos θ0 sin θ0 sin

(
2
√
Cs
)
s+

1

C2
cos θ0 sin θ0 cos

(
2
√
Cs
)

sin2
(

2
√
Cs
)

• V −11,4 =
2

C3/2
cos2 θ0 sin

(
2
√
Cs
)
s− 1

C2
cos2 θ0 cos

(
2
√
Cs
)

sin2
(

2
√
Cs
)

• V −12,1 =
4

C
sin2 θ0 cos

(
2
√
Cs
)
s− 2

C3/2

[
1 + 2 cos2 θ0 − 3 cos2 θ0 cos2

(
2
√
Cs
)]

sin
(

2
√
Cs
)

+
24

C5/2
cos θ0 sin θ0 sin3

(
2
√
Cs
)
s

− 12

C3
cos θ0 sin θ0 cos

(
2
√
Cs
)

sin4
(

2
√
Cs
)
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• V −12,2 = cos
(

2
√
Cs
)
− 4

C
cos θ0 sin θ0 cos

(
2
√
Cs
)
s

− 2

C3/2

[
2− 3 cos2

(
2
√
Cs
)]

cos θ0 sin θ0 sin
(

2
√
Cs
)

+
24

C5/2
sin2 θ0 sin3

(
2
√
Cs
)
s

− 12

C3
sin2 θ0 cos

(
2
√
Cs
)

sin4
(

2
√
Cs
)

• V −12,3 = − 2

C3/2
sin2 θ0 sin

(
2
√
Cs
)
s+

1

C2
sin2 θ0 cos

(
2
√
Cs
)

sin2
(

2
√
Cs
)

• V −12,4 = − 1

2
√
C

sin
(

2
√
Cs
)

+
2

C3/2
cos θ0 sin θ0 sin

(
2
√
Cs
)
s− 1

C2
cos θ0 sin θ0 cos

(
2
√
Cs
)

sin2
(

2
√
Cs
)

• V −13,1 = 2
√
C sin

(
2
√
Cs
)
− 8√

C
cos θ0 sin θ0 sin

(
2
√
Cs
)
s

− 4

C

[
2− 3 cos2

(
2
√
Cs
)]

cos θ0 sin θ0 cos
(

2
√
Cs
)

− 8

C2
sin2 θ0 cos

(
2
√
Cs
)
s

− 4

C5/2

[
6 cos2 θ0 −

(
1 + 11 cos2 θ0

)
cos2

(
2
√
Cs
)

+ 6 cos2 θ0 cos4
(

2
√
Cs
)]

sin
(

2
√
Cs
)

+
48

C7/2

[
1− 2 cos2

(
2
√
Cs
)]

cos θ0 sin θ0 sin3
(

2
√
Cs
)
s

+
24

C4
cos θ0 sin θ0 cos

(
2
√
Cs
)

sin4
(

2
√
Cs
)

• V −13,2 = − 8√
C

sin2 θ0 sin
(

2
√
Cs
)
s− 4

C

[
2− 3 cos2

(
2
√
Cs
)]

sin2 θ0 cos
(

2
√
Cs
)

+
8

C2
cos θ0 sin θ0 cos

(
2
√
Cs
)
s

− 4

C5/2

[
6− 11 cos2

(
2
√
Cs
)

+ 6 cos4
(

2
√
Cs
)]

cos θ0 sin θ0 sin
(

2
√
Cs
)

+
48

C7/2

[
1− 2 cos2

(
2
√
Cs
)]

sin2 θ0 sin3
(

2
√
Cs
)
s

+
24

C4
sin2 θ0 cos

(
2
√
Cs
)

sin4
(

2
√
Cs
)

• V −13,3 = cos
(

2
√
Cs
)
− 4

C
cos θ0 sin θ0 cos

(
2
√
Cs
)
s

+
2

C3/2
cos θ0 sin θ0 sin3

(
2
√
Cs
)

− 4

C5/2

[
1− 2 cos2

(
2
√
Cs
)]

sin2 θ0 sin
(

2
√
Cs
)
s

− 2

C3
sin2 θ0 cos

(
2
√
Cs
)

sin2
(

2
√
Cs
)

• V −13,4 = − 4

C
sin2 θ0 cos

(
2
√
Cs
)
s− 2

C3/2
cos2 θ0 ∗ sin3

(
2
√
Cs
)

+
4

C5/2

[
1− 2 cos2

(
2
√
Cs
)]

cos θ0 sin θ0 sin
(

2
√
Cs
)
s

+
2

C3
cos θ0 sin θ0 cos

(
2
√
Cs
)

sin2
(

2
√
Cs
)
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• V −14,1 =
8√
C

cos2 θ0 sin
(

2
√
Cs
)
s+

4

C

[
2− 3 cos2

(
2
√
Cs
)]

cos2 θ0 cos
(

2
√
Cs
)

+
8

C2
cos θ0 sin θ0 cos

(
2
√
Cs
)
s

− 4

C5/2

[
6− 11 cos2

(
2
√
Cs
)

+ 6 cos4
(

2
√
Cs
)]

cos θ0 sin θ0 sin
(

2
√
Cs
)

− 48

C7/2

[
1− 2 cos2

(
2
√
Cs
)]

cos2 θ0 sin3
(

2
√
Cs
)
s

− 24

C4
cos2 θ0 cos

(
2
√
Cs
)

sin4
(

2
√
Cs
)

• V −14,2 = 2
√
C sin

(
2
√
Cs
)

+
8√
C

cos θ0 sin θ0 sin
(

2
√
Cs
)
s

+
4

C

[
2− 3 cos2

(
2
√
Cs
)]

cos θ0 sin θ0 cos
(

2
√
Cs
)

− 8

C2
cos2 θ0 cos

(
2
√
Cs
)
s

− 4

C5/2

[
6 sin2 θ0 −

(
1 + 11 sin2 θ0

)
cos2

(
2
√
Cs
)

+ 6 sin2 θ0 cos4
(

2
√
Cs
)]

sin
(

2
√
Cs
)

− 48

C7/2

[
1− 2 cos2

(
2
√
Cs
)]

cos θ0 sin θ0 sin3
(

2
√
Cs
)
s

− 24

C4
cos θ0 sin θ0 cos

(
2
√
Cs
)

sin4
(

2
√
Cs
)

• V −14,3 =
4

C
cos2 θ0 cos

(
2
√
Cs
)
s+

2

C3/2
sin2 θ0 sin3

(
2
√
Cs
)

+
4

C5/2

[
1− 2 cos2

(
2
√
Cs
)]

cos θ0 sin θ0 sin
(

2
√
Cs
)
s

+
2

C3
cos θ0 sin θ0 cos

(
2
√
Cs
)

sin2
(

2
√
Cs
)

• V −14,4 = cos
(

2
√
Cs
)

+
4

C
cos θ0 sin θ0 cos

(
2
√
Cs
)
s

− 2

C3/2
cos θ0 sin θ0 sin3

(
2
√
Cs
)

− 4

C5/2

[
1− 2 cos2

(
2
√
Cs
)]

cos2 θ0 sin
(

2
√
Cs
)
s

− 2

C3
cos2 θ0 cos

(
2
√
Cs
)

sin2
(

2
√
Cs
)

Appendix B Computation of u1

In this appendix we use the variable τ = 2
√
Cs introduced in Section 6 in order to simplify the

expressions. With this new variable we have from (50)

t(τ) =
2τ − sin(2τ)

C3/2
(61)

The function F1 = (0, 0, F13, F14) in (13) is given by
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• F13 =
4
√

2√
C

sin τU1(θ0, τ) +
32
√

2

C3/2
sin3 τU3

1 (θ0, τ) +
8
√

2 sin τU1(θ0, τ)√
Cr2

−
16
√

2 sin3 τ

(
2

C
sin2 τ + 1

)
U1(θ0, τ)

C3/2r32

• F14 =
4
√

2√
C

sin τU2(θ0, τ)− 32
√

2

C3/2
sin3 τU3

2 (θ0, τ) +
8
√

2 sin τU2(θ0, τ)√
Cr2

−
16
√

2 sin3 τ

(
2

C
sin2 τ − 1

)
U2(θ0, τ)

C3/2r32

where

• U1(θ0, τ) = cos θ0 cos

(
1

C3/2

−2τ + sin(2τ)

2

)
− sin θ0 sin

(
1

C3/2

−2τ + sin(2τ)

2

)

• U2(θ0, τ) = cos θ0 sin

(
1

C3/2

−2τ + sin(2τ)

2

)
+ sin θ0 cos

(
1

C3/2

−2τ + sin(2τ)

2

)

• r2 =

√
1 +

2

C
cos

(
2θ0 +

−2τ + sin(2τ)

C3/2

)
sin2 τ +

4

C2
sin4 τ

The second step is to compute X−1F1 and its integral over [0, 2k−12 π]. The full function F1 gives rise
to expressions which are not easy to be integrated. Expanding F1 in powers of C−1/2 up to order
C−11/2 we are able to give an analytic result for C large enough. Considering the expansions

• cos(t(τ)/2) =
∑
i=0

(−1)i
(2τ − sin(2τ))

2i

4iC3i(2i)!

• sin(±t(τ)/2) = ∓
∑
i=0

(−1)i
(2τ − sin(2τ))

2i+1

22i+1C3(2i+1)/2(2i+ 1)!

we obtain the following expressions for
∫

1

2
√
C
X−1F1
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∫ (2k−1)π
2

0

1

2
√
C

(
X−1F1

)
1
dτ =− 3

√
2(2k − 1)π cos θ0

4C3/2
− 15

√
2(2k − 1)π cos θ0(2 cos4 θ0 − 1)

4C7/2

+O(C−9/2)

∫ (2k−1)π
2

0

1

2
√
C

(
X−1F1

)
2
dτ =− 3

√
2(2k − 1)π sin θ0

4C3/2
− 15

√
2(2k − 1)π sin θ0(2 sin4 θ0 − 1)

4C7/2

+O(C−9/2)

∫ (2k−1)π
2

0

1

2
√
C

(
X−1F1

)
3
dτ =

3
√

2 cos θ0
C

+
3
√

2π sin θ0(2k − 1)

2C5/2
+

8
√

2 cos θ0(2 cos4 θ0 − 1)

C3

− 16
√

2 cos θ0(5 cos6 θ0 − 6 cos2 θ0 + 2)

C4

+

√
2π sin θ0(2k − 1)(992 sin4 θ0 − 1376 sin2 θ0 + 431)

8C9/2

+
32
√

2 cos θ0(14 cos8 θ0 − 30 cos4 θ0 + 20 cos2 θ0 − 3)

C5
+O(C−11/2)

∫ (2k−1)π
2

0

1

2
√
C

(
X−1F1

)
4
dτ =

3
√

2 sin θ0
C

− 3
√

2π cos θ0(2k − 1)

2C5/2
+

8
√

2 sin θ0(2 sin4 θ0 − 1)

C3

+
16
√

2 sin θ0(5 sin6 θ0 − 6 sin2 θ0 + 2)

C4

−
√

2π cos θ0(2k − 1)(992 cos4 θ0 − 1376 cos2 θ0 + 431)

8C9/2

+
32
√

2 sin θ0(14 sin8 θ0 − 30 sin4 θ0 + 20 sin2 θ0 − 3)

C5
+O(C−11/2)

(62)

The final step is to compute u1(s) from (17). The following formulas are obtained for u1(s0k) (actually
only the components u1 and v1 are required)

u1(s0k) =
(−1)k

√
2 cos θ0

2
√
C

− 3(−1)k
√

2 cos θ0
2C3/2

+
3(−1)k(2k − 1)

√
2π sin θ0

4C2
− 3(−1)k(2k − 1)

√
2π sin θ0

2C3

− (−1)k
√

2 cos θ0(5π2(2k − 1)2 + 128 cos4 θ0 − 64)

16C7/2

+
(−1)k

√
2 cos θ0(27(2k − 1)2π2 + 1920 cos6 θ0 − 2304 cos2 θ0 + 768)

48C9/2
+O(C−6)

v1(s0k) =
(−1)k

√
2 sin θ0

2
√
C

− 3(−1)k
√

2 sin θ0
2C3/2

− 3(−1)k(2k − 1)
√

2π cos θ0
4C2

+
3(−1)k(2k − 1)

√
2π cos θ0

2C3

− (−1)k
√

2 sin θ0(5π2(2k − 1)2 + 128 sin4 θ0 − 64)

16C7/2

− (−1)k
√

2 sin θ0(27(2k − 1)2π2 + 1920 sin6 θ0 − 2304 sin2 θ0 + 768)

48C9/2
+O(C−6)

(63)
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