On a class of invariant algebraic curves for Kukles systems

Osvaldo Osuna ${ }^{1}$, Salomón Rebollo-Perdomo ${ }^{\boxtimes 2}$ and Gabriel Villaseñor ${ }^{3}$
${ }^{1}$ Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo Edif. C-3, Cd. Universitaria, C.P. 58040, Morelia, México
${ }^{2}$ Departamento de Matemática, Universidad del Bío-Bío, Concepción, Chile
${ }^{3}$ Departamento de Ciencias Básicas, Instituto Tecnológico de Morelia Edif. AD, Avenida Tecnológico \# 1500, Col. Lomas de Santiaguito, Morelia, México

Received 3 October 2015, appeared 26 August 2016
Communicated by Gabriele Villari

Abstract

In this paper we give a new upper bound for the degree of a class of transversal to infinity invariant algebraic curves for polynomial Kukles systems of arbitrary degree. Moreover, we prove that a quadratic Kukles system having at least one transversal to infinity invariant algebraic curve is integrable.

Keywords: Kukles system, invariant curve, integrability, limit cycle.
2010 Mathematics Subject Classification: 34C05, 34C14, 37C10, 14H70.

1 Introduction

Darboux in 1878 published his seminal works [4] and [5], where he showed that a planar polynomial differential system with a sufficient number of invariant algebraic curves has a first integral. Since that time, the research and computation of invariant curves in planar polynomial vector fields has been intensive. See [2,3,6-8] and references there in. However, to determine whether a concrete planar polynomial system has invariant algebraic curves or not, as well as the properties of such curves: degree, connected components, etc. can be extremely difficult problems.

In this work, we consider real Kukles systems of the form

$$
\begin{equation*}
\dot{x}=-y, \quad \dot{y}=Q(x, y) \tag{1.1}
\end{equation*}
$$

where $Q(x, y)$ is a real polynomial of degree at least two and without y as a divisor.
Our main result is the following.
Theorem 1.1. Let $\{F=0\}$ be a transversal to infinity invariant algebraic curve of degree n of the Kukles system (1.1) of degree $d \geq 3$. Supposes that x is not a divisor of the higher degree homogeneous part of F. Then

[^0]
[^0]: ${ }^{\boxtimes}$ Corresponding author. Email: srebollo@ubiobio.cl

