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Introduction and statement of the main
results

A polynomial vector field X in R
3 is a vector field of the form

X = P (x, y, z)
∂

∂x
+ Q(x, y, z)

∂

∂y
+ R(x, y, z)

∂

∂z
, (1)

where P , Q, R are polynomials in the variables x, y and z with real coefficients. We denote

m = max{deg P, deg Q, deg R} the degree of the polynomial vector field X. In what follows

X will denote the above polynomial vector field.

Let S
2 be the 2–dimensional sphere {(x, y, z) ∈ R

3 : x2 + y2 + z2 = 1}. A polynomial

vector field X on S
2 is a polynomial vector field in R

3 such that restricted to the sphere S
2

defines a vector field on S
2; i.e. it must satisfy the following equality

xP (x, y, z) + yQ(x, y, z) + zR(x, y, z) = 0, (2)

for all points (x, y, z) of the sphere S
2.

Let f ∈ R[x, y, z], where R[x, y, z] denotes the ring of all polynomials in the variables x,

y and z with real coefficients. The algebraic surface f = 0 is an invariant algebraic surface

of the polynomial vector field X if for some polynomial K ∈ R[x, y, z] we have

Xf = P
∂f

∂x
+ Q

∂f

∂y
+ R

∂f

∂z
= Kf.

The polynomial K is called the cofactor of the invariant algebraic surface f = 0. We note

that since the polynomial system has degree m, then any cofactor has at most degree m− 1.

The algebraic surface f = 0 defines an invariant algebraic curve {f = 0} ∩ S
2 of the

polynomial vector field X on the sphere S
2 if

(i) for some polynomial K ∈ R[x, y, z] we have Xf = P
∂f

∂x
+ Q

∂f

∂y
+ R

∂f

∂z
= Kf , on all

the points (x, y, z) of the sphere S
2, and

(ii) the intersection of the two surfaces f = 0 and S
2 is transversal; i.e. for all points

(x, y, z) ∈ {f = 0} ∩ S
2 we have that (x, y, z) ∧

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
�= 0, where ∧ denotes

the vector cross product in R
3.
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Again the polynomial K is called the cofactor of the invariant algebraic curve {f = 0} ∩ S
2.

Since on the points of the algebraic curve {f = 0} ∩ S
2 the gradient

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
of

the surface f = 0 is orthogonal to the polynomial vector field X = (P,Q,R), and the vector

field X is tangent to the sphere S
2, it follows that the vector field X is tangent to the curve

{f = 0} ∩ S
2. Hence, the curve {f = 0} ∩ S

2 is formed by trajectories of the vector field

X. This justifies to call {f = 0} ∩ S
2 an invariant algebraic curve, since in this case it is

invariant under flow defined by X on S
2.

If the invariant algebraic curve {f = 0} ∩ S
2 is contained in some plane, then we say

that {f = 0} ∩ S
2 is an invariant circle of the polynomial vector field X on the sphere S

2.

Moreover, if the plane contains the origin, then {f = 0} ∩ S
2 is a invariant great circle.

Let U be an open subset of R
3. Here a nonconstant analytic function H : U → R is

called a first integral of the system on U if it is constant on all solutions curves (x(t), y(t), z(t))

of the vector field X on U ; i.e. H(x(t), y(t), z(t)) = constant for all values of t for which the

solution (x(t), y(t), z(t)) is defined in U . Clearly H is a first integral of the vector field X

on U if and only if XH ≡ 0 on U . If X is a vector field on S
2, the definition of first integral

on S
2 is the same substituting U by U ∩ S

2.

In what follows we say that two phase portraits of the vector fields X1 and X2 on S
2 are

(topologically ) equivalent, if there exists a homeomorphism h : S
2 → S

2 such that h applies

orbits of X1 into orbits of X2, preserving or reversing the orientation of all orbits.

Let C1 and C2 be invariant circles of a homogeneous polynomial vector field X on S
2.

We say that C1 and C2 are parallel invariant circles if the planes that contains them are

parallel. In particular, we say that C1 and C2 have the same director vector of the planes

that contain them.

In 2002 Gutierrez and Llibre [9] extended the Darbouxian theory of integrability from

polynomial vector fields on R
2 (see [6]) to polynomial vector fields on S

2. The Darbouxian

theory of integrability analyze how to construct a first integral of a polynomial vector field

by using a sufficient number of invariant algebraic curves. Therefore, to study the existence

and number of invariant algebraic curves of a polynomial vector field X in dimension 2 (and

in particular in S
2), is an interesting subject of recent papers [2,4,5,6,10,11]. The first step in

this direction is to determine the maximum number of invariant circles (invariant algebraic
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curves of degree 1 on S
2) for a polynomial vector fields X on S

2, when X has finitely many

invariant circles. The main motivation for study this problem is the paper [2]. In [2] the

authors study the maximum number of invariant straight lines for a polynomial vector fields

X on R
2, when X has finitely many invariant straight lines. They solve this problem for the

cases in that X has degree 1–5 and they show that for degree n the upper bound is 3n − 1.

Moreover, for degrees 6–20 lower bounds are find for the maximum number of invariant

straight lines.

In Chapter 1 we consider homogeneous polynomial vector fields of degree two on S
2,

and we determine the number of invariant circles when it has finitely many invariant circles.

Moreover, we characterize the global phase portrait of these vector fields modulo limit cycles.

Camacho [3] in 1981 proved some properties of this kind of vector fields. More precisely, in

her work we can find a classification of the Morse–Smale homogeneous polynomial vector

fields of degree two on S
2 with no limit cycles.

In Chapter 2 we study the problem for polynomial vector fields of degree n on S
2 and

we obtains upper bounds for the number of invariant circles, invariant great circles, invariant

circles intersecting at a same point and parallel circles with the same director vector, when

the vector fields have a finite number of these objects.

In Chapter 3 we give examples of homogeneous polynomial vector fields of degree 3 on

S
2 having finitely many invariant circles which are not great circles, which are limit cycles,

but are not great circles and invariant great circles that also are limit cycles. These examples

show that for degree 3 the problem is more complicate than for degree 2 and there exist many

others phenomena.

The main results of this work are the following theorems.

Theorem 1. Let X be a homogeneous polynomial vector field of degree 2 on S
2. If X has

finitely many invariant circles, then every invariant circle is a great circle of S
2.

Theorem 2. Let X be a homogeneous polynomial vector field of degree 2 on S
2. Suppose

that X has invariant circles on S
2, then it has either at most two invariant circles, or it has

infinitely many invariant circles on S
2. Moreover, the invariant circles are never limit cycles

of X.

Theorems 1 and 2 will be proved in Section 1.9.
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Theorem 3. Let X be a homogeneous polynomial vector field of degree 2 on S
2. Suppose

that X has exactly two invariant circles on S
2, then the phase portrait of X is equivalent to

one of Figures 1.6, 1.8, 1.9 or 1.10.

Theorem 4. Let X be a homogeneous polynomial vector field of degree 2 on S
2. Suppose

that X has exactly one invariant circle on S
2, then the phase portrait of X is equivalent to

one of the phase portraits of Figures 1.11, 1.12, 1.13, 1.14, 1.16, 1.17 or 1.18.

Theorems 3 and 4 will be proved in Sections 1.13 and 1.15, respectively.

Proposition 5. Let X be a homogeneous polynomial vector field on S
2 of degree n. If X

has finitely many invariant circles, then X has at most 15n − 3 invariant circles on S
2 if n

is odd, or 15n − 4 if n is even.

Proposition 6. Let X be a homogeneous polynomial vector field on S
2 of degree n. If X

has finitely many invariant great circles, then X has at most 3n invariant great circles on

S
2.

Proposition 7. Let X be a homogeneous polynomial vector field on S
2 of degree n. If X has

finitely many parallel invariant circles having the same director vector, then X has at most

n + 3 parallel invariant circles on S
2 having the same director vector if n is odd, or n + 2 if

n is even.

Proposition 8. Let X be a homogeneous polynomial vector field of degree n on S
2. Suppose

that X has finitely many invariant circles on S
2, then a single point can belongs at most to

6n + 2 different invariant circles.

Proposition 9. Let X be a homogeneous polynomial vector field of degree n on S
2. Suppose

that X has finitely many invariant great circles on S
2, then a single point can belongs at

most to n + 1 different invariant great circles.

Propositions 5–9 will be proved in Section 2.3.
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Proposition 10. Consider the homogeneous polynomial vector field X on S
2 given by the

system

ẋ = P (x, y, z) = −x2z + xy2 + 3yz2 + 3z3,

ẏ = Q(x, y, z) = −x2y − xyz − 3xz2,

ż = R(x, y, z) = x3 + xy2 − 3xz2.

(3)

Then X has only two invariant circles which are not great circles. Moreover, these invariant

circles also are limit cycles.

Proposition 11. Consider the homogeneous polynomial vector field X on S
2 given by the

system

ẋ = P (x, y, z) = x2y + y3 + y2z + z3,

ẏ = Q(x, y, z) = −x3 − xy2 − xyz + z3,

ż = R(x, y, z) = −xz2 − yz2.

(4)

Then the equator S
1 of S

2 is the unique invariant circle of X. Moreover, S
1 is also a limit

cycle.

Proposition 12. Consider the homogeneous polynomial vector field X on S
2 given by the

system

ẋ = z3 − 1

3
x2z + y2z,

ẏ = −4

3
xyz,

ż =
1

3
x3 +

1

3
xy2 − xz2.

(5)

Then X has seven invariant circles on S
2.

Propositions 10, 11 and 12 will be proved in Chapter 3.
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