DYNAMIC RAYS FOR
TRANSCENDENTAL HOLOMORPHIC
SELF-MAPS OF C AND C*

DAVID MARTI PETE

Master’s thesis in the Research pathway directed by
NURIA FAGELLA RABIONET
who was also my tutor

U

UNIVERSITAT DE BARCELONA

®

MASTER DE MATEMATICA AVANCADA I PROFESSIONAL
FACULTAT DE MATEMATIQUES
UNIVERSITAT DE BARCELONA

2010 — 2011 Academic Year






Acknowledgements

First of all I want to thank my supervisor, Nturia Fagella, not only for all her support with
the mathematical stuff but for taking care of me all this time. During the months I have
been doing this project I began attending to the Complex Dynamics Working Seminar
at my faculty. I would like to express my gratitude to all the members of the group for
being so welcoming. Specially to Xavier Jarque with who I had a couple of talks about
this topic. The first time I gave a talk in a cientific event it was in the Spring School:
Topics in Complex Dynamics 2011 at the IMUB (organized by this group) and it was
about this project.

I think that it is fair to thank also Sebastian Vogel, from Kiel. I met him in Gottingen
during a summer school and it was a big surprise to find out that he did his masters
thesis about R3S too. He was so kind and gave me some helpful tips and advises. In
that school I had the chance to attend to a mini-course on this topic given by Helena
Mihaljevi¢-Brandt which was very nice.

At this point, let me mention Jordi Taixés who introduced me to complex dynamics
when [ was a first year undergraduate. Thank you very much for discovering me such a
wonderful world!

And, finally, I cannot forget to thank my family and friends. Without your support this
could not be possible, I love you.



1



Contents

Introductionl

[1

Introduction to hyperbolic geometry and covering spaces|

(1.1 Hyperbolic metric in the unmit dise| . . . . . ... ... ... ... ..
(1.2 Hyperbolic geodesics| . . . . . ... ... ... ... ...
(1.3 Covering spaces| . . . . . . . . . . . . e e
(1.4 Universal coverings| . . . . . . . . . . . . . ... ... .. ...
(1.5 Hyperbolic metric for arbitrary domains| . . . . . . . . . ... ...
L6 Pick’stheoreml . . ... ... ... ... ... ... ... . ...
(1.7 Hyperbolic vs Euclidean distance| . . . . . . . ... ... ... ...

Introduction to continuum theory|

[2.1 Basic properties of continual . . . . . ... ... ...
[2.2  Boundary bumping theorems|. . . . . . . . .. ... ... ...
[2.3  Existence of non-cut points| . . . . . .. ... ... L.
[2.4  Separation ordering| . . . . . . . .. ...
[2.5  Non-cut point characterization of thearc] . . . . . . . .. ... ...

Introduction to transcendental dynamics|

[3.1 Iteration of holomorphic functions|. . . . . . . . ... ... ... ..
[3.2  Domains of normality|. . . . . . ... ... ... 0000
[3.3  Classification of the Fatou components| . . . . . . . . .. ... ...
[3.4  Singular values| . . . ... ... o0
[3.50  Cantor bouquets| . . . . . ... ... ... o
[3.6  The exponential family| . . . . . .. ... ... ... ... ... ..
[3.7 Escaping set and dynamicrays| . . . ... ... ... ... ... ..

14

Dynamic rays of bounded-type entire functions|

4.1 Logarithmic coordinates| . . . . . . . .. . .. ... ... ... ... ...

4.2 Expansivity and normalization|. . . . . . . .. ...

4.3 Symbolic dynamics and combinatorics| . . . . . . . ... ...

4.4 General properties of class Byl . . . . . . . ..o

4.5 TFunctions satisfying a head-start condition] . . . . . . . . . .. ... ...

4.6 Bounded slope and linear head-start conditionl . . . . . . . . .. ... ..

4.7 Wigegling of the tracts| . . . . . . . . . . . ... ...

4.8  Geometry of functions of finite order| . . . . . . . ... ...

4.9 Proof of the main theorem| . . . . . . . . . . . . ...

111

11
15
20
22
26
30

35
35
36
38
41
44

47
47
50
52
o4
55
o6
o8



[4.10 Disjoint-type functions| . . . . . . . . . ... o 87

[4.11 Existence of Cantor bouquets| . . . . . . . . ... ... ... ... .... 90
[>  Dynamic rays for holomorphic self-maps of the punctured plane] 93
[>.1 Analytic selt-maps ot the punctured plane} . . . . . ... ... ... ... 93
[>.2  Properties of the Juliaset| . . . . . ... ... ... 0. 94
[>.3 Classification of the Fatou components| . . . . . .. ... ... ... ... 95
[>.4  The complex standard family| . . . . . . ... ... .. ... ... .... 96
[5.5 Logarithmic coordinates| . . . . . . . .. ... ... ... ... ... ... 99
5.6  Escaping set and dynamicrays| . . ... ... ... ... ... 104
5.7 Functions of finite order] . . . . . . . . ... 105
6.8 Results and future workl . . . . . . . ... oo o 106
(5.9 A family of selt-maps ot C*{. . . . . ... ... ... L. 106
(Bibliography| 109
Index] 113

v



Introduction

This Master’s thesis belongs to the field of complex dynamical systems, those generated
by the iteration of self holomorphic maps of a Riemann surface. The theory is interesting
in 3 cases: the Riemann sphere C = CU {00} (rational maps), the complex plane (entire
transcendental maps) and the punctured plane C* = C\ {0} (maps with two essential
singularities). In any other case the Julia set is empty and the dynamical study becomes
trivial. By Montel’s theorem, if we iterate a map omitting at least three points of C then
every point must be normal.

The main goal of this project is twofold. On the one hand we study the recent article
Dynamic rays of bounded-type entire functions by Giinter Rottenfufler, Johannes Riickert,
Lasse Rempe and Dierk Schleicher published in Annals of Mathematics (Second Series) in
2011, [RRRSTI]. The results in this paper are a serious advance in the theory of iteration
of entire transcendental maps, since they apply to a wide class of maps, setting the basis
for further work in the field. The tools used in the paper are many and of varied nature,
and we have made an effort to introduce them properly and fill in all details. On the
other hand this project also contains original work by the author, namely the initial steps
necessary to extend the above mentioned theory to self holomorphic maps of C*.

We start with a brief historical note about complex dynamics and afterwards we will
motivate the project and present our main results. At the end there is a section to clarify
the notation we are going to use throughout this work.

A bit of history

Given a holomorphic function f : C — C and a seed zyg € C we are interested in the
behaviour of the sequence

zn = [(zp-1) = ["(20), n=1

called the (forward) orbit of zg under f. The origins of complex dynamics go back to the
first studies of the Newton’s method, one of the oldest root-finding algorithm but at the
same time very efficient. Given a holomorphic function f and a seed zy close enough to
a zero « of f then when we iterate the function

f(2)
f'(2)
the orbit of 2y converges to . The first time that the iteration of holomorphic func-

tions is mentioned is in 1870 in the studies of Ernst Schroder (1841-1902). A few years
later, Arthur Cayley (1821-1895) also became interested in this topic. Both Cayley and

Ny(2) =2 —
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Schroder developed greatly the local study of the method. They were worried about ques-
tions like finding sufficient conditions for the local convergence or improving the speed of
convergence. However, they also considered global questions (separating the plane into
different attracting basins) but they only solved the polynomial case of degree 2. If you
apply the Newton’s method to P(z) = (z — a)(z — ), a # (3, you obtain two half planes
of initial conditions converging respectively to a and [ divided by the line bisecting the
segment 3. These intermediate points, when used as initial conditions, produce orbits
which do not converge to any of the roots. Cayley already noticed the difficulty of the
degree 3 case. When we consider a polynomial with three roots there appear fractal
structures as you can see in Figure [1| hence it was really difficult to solve it analytically
with the tools that they had by that time.

Figure 1: Phase space of the Newton’s method applied to a polynomial. L: degree 2; R:
degree 3. The color indicates which is the limit point of every seed and the number of iterates
needed to enter a certain neighbourhood of the root, the white points belong to the Julia set.

There were no significant contributions to the global study until the beginning of the
20th century with the works by Pierre Fatou (1878-1929) and Gaston Julia (1893-1978)
about the iteration of holomorphic functions on the Riemann sphere C = C U {oco}. On
1915, the Académie des sciences from France announced that the Grand Prixz des Sciences
Mathématiques of 1918 was going to be awarded to the best work on iteration, specifying
that it needed to be a global study. This choice could have been motivated by the works
of Henri Poincaré. This contest led to a strong rivalry between Fatou and Julia. In the
last moment Fatou decided not to participate in the contest and the priz was awarded to
Julia. However, both produced excellent works which are basic to understand complex
dynamics as we do nowadays.

They introduced the use of normal families to decompose the phase space. Every normal
point has a neighbourhood of points which behave in a similar fashion when iterated:
these points are in the stable set. Conversely, every point in the complement of this set has
a chaotic behaviour. Today, the stable set is known as the Fatou set and its complement



Figure 2: From left to right, Ernst Schroder, Arthur Cayley, Pierre Fatou and Gaston Julia.
Pictures from the internet.

is called the Julia set. When they tried to study the Julia set they encountered the same
difficulty as Cayley, it is a fractal set. In Figure |3 you can see how Julia tried to draw it.

-

Figure 3: L: the sketch that Gaston Julia made of a Julia set; R: the actual Julia set. Picture
from [Ale94].

Fortunately, the use of computers was a major breakthrough for complex dynamics. Now
we can visualize the Fatou and Julia sets, and hence we have a much better intuition
of what is happening. The phase space of polynomials and rational functions has been
widely studied and is fairly well understood. Nevertheless there are still many relevant
open problems, specially those related about parameter spaces.

In parallel, but with a lesser speed, the theory of transcendental maps has been developed.
Maps with an essential singularity show a substantial increase of difficulty. For instance,
Great Picard’s theorem tells us that every neighbourhood of the essential singularity must
be mapped to the whole plane with the exception, at most, of one point. This simle fact,
adds plenty of chaos to the system producing unbounded Julia sets with very interesting
topology. Fatou was the first to consider the dynamics of entire transcendental functions
in his article [Fat26]. Since then, transcendental dynamics has become a very active area
of research.

If you are interested in the history of complex dynamics, you may like the book [Ale94].

3



Transcendental maps: Motivation and contents

In his article [Fat26], Fatou already observed that the Julia set of certain entire tran-
scendental functions contains curves of points that escape to infinity under iteration and
wondered if this was a general property. Alexandre Eremenko introduced the notion of
escaping set in his article [Ere89]. Given an entire transcendental function f,

I(f) ={2€C : |f"(2)] = +o0}.

He proved that every component of I(f) is unbounded and conjectured that
e cach component of I(f) is unbounded (weak Eremenko’s conjecture);

e every point in I(f) can be joined with co by a curve in I(f) (strong Eremenko’s
conjecture).

Such curves are called dynamical rays (or hairs) in analogy to the dynamic rays of polyno-
mials introduced by A. Douady and J. Hubbard [Mil06], These type of invariant objects,
governed by symbolic dynamic, proved themselves to be a crucial tool in the development
of the theory since they often can be used to define dynamicaly meaningful partitions of
the phase space.

In contrast to the polynomial case where dynamic rays belong to the Fatou (or stable)
set, dynamic rays for transcendental maps are part of the Julia (or chaotic) set. Studies
about the existence and topological description of (transcendental) dynamic rays were
developed in the 80’s by Robert L. Devaney and his collaborators. They started with
the exponential family as the simplest model for these types of maps, and they later
moved to entire maps of finite type (i.e., with a finite number of singularities of the
inverse map). The main reference is by Devaney and Tangerman [referencia] where they
gave some conditions under which they could prove the existence of Cantor Bouquets,
consisting of Cantor sets of dynamic rays. This seminal work gave rise to many intents of
generalizations. The most successful one is the recent work of Rempe et al. in [RRRS11],
which is partially the object of this thesis. In this paper, the authors set up a general
theory which partially proves Eremenko’s conjecture for a wide class of functions in class
B, i.e., maps with a bounded set of singularities of the inverse. More precisely, their main
theorem reads as follows.

Theorem (Entire functions with dynamic rays). Let f € B be a function of finite order,
or more generally a finite composition of such functions. Then every point z € I(f) can
be connected to oo by a curve v such that f(}y — 00 uniformly.

Chapter 4 of this project is devoted to prove this theorem. In the same paper they also
showed that some assumptions will be necessary, giving in fact a counterexample to the
strong Eremenko’s conjecture.

Theorem (Entire functions without dynamic rays). There ezists a hyperbolic entire func-
tion f € B such that every path-connected component of J(f) is bounded.

Furthermore we are interested in studying some structural properties of the Julia set of
holomorphic self-maps of the complex punctured plane C* = C\ {0}. A reason which
makes this class of self-maps very interesting is that they often arise as complexifications
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of analytic maps of the circle, crucial for the study of rotation domains in real and in
complex dynamical systems of all types. For instance, in Section we will see that the
complexification of the Arnol’d standard family is of this type.

If we lift a self-map of C*, say f, by h(z) = exp(z) we get an entire transcendental map,
say F, satisfying a lift property, i.e. F(z+42mi) = F(z)+2kni, where k € N. The relevant
dynamical objects (singularities of the inverse like critical points, asymptotic values, etc.)
and even the Julia sets for these two maps are in correspondence via the exponential map
[Ber95]. A consequence of this fact, because of the periodicity of the exponential, is that
such lift necessarily will have infinitely many of such elements, distributed in the whole
complex plane. In particular, no such lift belongs to class B.

The theory developed in [RRRS11] therefore cannot be applied directly to self-maps of
C*. Tt would be desirable however to establish such results, specially having in mind
further applications. This is the goal of a long term project as part of the author’s future
Ph.D. thesis. In the meantime, in this Master’s thesis, we construct the right setup under
which the results of [RRRS11] can be applied, providing some partial results in the right
direction. More precisely we show the following. Let Iy(f) and I(f) be the sets of
points that converge uniformly to 0 and oo respectively under iteration by a holomorphic
self-map of C* f. For this class of functions we must take into account two orders of
growth, one at zero and the other one at infinity. We say that f has finite order if both

log1
poo(f) = lim sup M
7—00 |z|=r IOg |Z’

, po(f) = pos(ho foh)

are finite, where h(z) := 1/z conjugates a neighbourhood of 0o to a neighbourhood of 0.

Theorem. Let f :€ B* be a function of finite order or a finite composition of such maps.
Then every point z € I(f) can be connected to oo by a curve v such that f‘: — 00
uniformly. Similarly, every every point z € Io(f) can be connected to 0 by a curve vy such
that f@ — 0 uniformly.

Structure of the project

The first three chapters are preliminary sections which contain the tools used in the main
chapters which are 4 and 5.

In the first chapter we introduce hyperbolic geometry. We begin by defining the Poincaré
metric in the unit disc D and study the existence and uniqueness of geodesics, minimal
length curves joining two points. Our purpose is to endow arbitrary domains with a
hyperbolic metric and for this we introduce the notion of covering space. In the last
section we prove Pick’s theorem and the standard estimate, which will be used many
times during the project.

Chapter 2 is dedicated to Continuum theory and the main goal is to prove the so-called
Non-cut point characterization of the arc which will be the key point in the proof of
the main result in Chapter 4. A continuum is a non-empty, compact, connected metric
space and we call cut point of a topological space S to a point p € S such that S\ {p} is
disconnected. Otherwise, the point p is called a non-cut point of S. Using some separation
ordering we show that a continuum is an arc if and only if it has exactly two non-cut



points. On the other hand, this is equivalent to the fact that the continuum has some
topological properties and its topology agrees with the separation order topology.

In Chapter 3 we introduce the basic concepts in complex dynamics, stating with the
notions of normality and the Fatou and Julia sets. We state their basic topological and
dynamical properties and classify the Fatou components for rational and entire transcen-
dental functions. A very characteristic property of transcendental functions is that their
Julia set contains Cantor bouquets. At the end of the chapter we describe the general
properties of the escaping set.

Chapter 4 is devoted to prove the main theorem in [RRRS11], as explained in the intro-
duction. To do so, we define logarithmic tracts and introduce logarithmic coordinates, an
exponential lift of the restriction of the function to the tracts. Using hyperbolic geome-
try, we prove some expansivity properties similar to the ones of the exponential function.
We conclude this chapter with a discussion about the existence of Cantor bouquets. We
would like to remark that we required the use of Zorn’s lemma in the proof of Proposi-
tion [3.7.3] Therefore you may be aware that this construction depends on the Axiom of
choice.

Finally in Chapter 5 we study self holomorphic maps of C*. We describe the geometry
of the tracts and logarithmic coordinates and provide the setup to apply the results in
[RRRS11] to this class of functions.

All the pictures in this project except a couple in the Introduction have been made by
the author, either using standard software (Mathematica, Geogebra, Inkscape) or own
programs written in C++ language.

Notation

Throughout this project, we will denote by C := C U {o0} the Riemann sphere and by
C* := C\ {0} the punctured plane. D will stand for the open unit disc, H the right
half-plane and if R > 0,

Br(z) :=={2€C : |z—2| <R}, Hr:={z€C : Rez> R}.

If A C C, then A and A denote respectively the closures of A in C and @, 0A is the
boundary of A in C and

A=A4\04

is the interior of A.

If P,QQ € C, PQ is the straight segment joining these two points. Euclidean length and
distance are denoted by [ and dist . Let X C C, then px, lx and dist x denote respectively
the hyperbolic density, length and distance with respect to the domain X. See Section
for the precise definitions.

In the context of continuum theory, we introduce the notation Y = P|Q to denote a
partition into mutually separated sets (see Section and S(p, q) for the set of points
separating p and ¢ (see Section . We use < to refer to non-standard orderings, like
the separation ordering in Chapter [2 or the speed ordering in Chapter [4]

If f is a function and n € N, by f™ we will always mean the composition of f with itself
n times,

fr=foof,



e.g. f2(z) = f(f(2)) which is different of g(z) = (f(z))?. We understand that N begins
with 0 and define f°(z) = 2. Some authors use the notation f°" to denote this, but we
will avoid it because we think that there is no possibility of confusion. As usual, J(f)
and F(f) are the Julia set and the Fatou set of f, the dynamical partition of the plane
associated to f. I(f) is the escaping set of f. Some related sets are J5(f) and J,, I, JE.
You can find out what all this terminology is by looking at Section If 2y is a fixed
point for f, Af(20) denotes its attracting basin and A% (zo) its immediate attracting basin
(the component of Af(z) containing z).

The Eremenko-Lyubich class B is introduced in the beginning of Chapter 4l Along that
chapter we define class By, and all its variants Bj,, (normalized), Bi,(c, 8) (bounded
slope) and B} (c, 8). In Chapter [5| we define the analogs of B and Bj,, for the punctured

log
plane and we have chosen to call them B* and B} , but this notation is not standard at

log>
all.






Chapter 1

Introduction to hyperbolic geometry
and covering spaces

First of all let us remind some general notions that will become useful tools afterwards.
We introduce the hyperbolic metric (also know as Poincaré metric) on the Poincaré disc
model. In particular, we focus on the existence and uniqueness of geodesics and describe
their shape. After this we move to the study of covering spaces, discussing their lifting
properties and the existence of a universal covering. Then using the universal cover
from the disc we define the Poincaré metric for arbitrary domains. The last sections are
devoted to prove two properties that we will use many times.

1.1 Hyperbolic metric in the unit disc

In this section we are going to introduce the basic notions of hyperbolic geometry in
dimension two. We are going to use the Poincaré disc model which consists of the unit
disc and can be embedded in the complex plane C,

D:={z€C : |z| <1}.

The Mobius transformations form a group of conformal maps of the Riemann sphere
C = CU{oo}. A Mébius transformation preserving DD can be written in the form

Alz) =e

where 6§ € R and a € D. The group of all such automorphisms will be denoted by Aut(D).

w0 2T a
1+az

Definition 1.1.1 (Hyperbolic density on D). The hyperbolic density at a point a € D

is defined by
2

po(a) = 1_—|a|2-

Observe that it only depends on the Euclidean distance of a to the origin. It takes its
minimum value at a = 0 where it equals 2 and tends to co as a approaches the boundary
of D. Some authors, like in [KLO7], use the convention that pp(0) =1 (i.e. they put a 1
in the numerator) but we prefer this one because then the metric has constant Gaussian
curvature —1 instead of —4.



Lemma 1.1.1 (Invariance under automorphisms). The hyperbolic density on D is

mwvariant under automorphisms of D.

Proof. Let A € Aut(D),
9 2T a
= e —
1+az

A(z)

where 0 € R and a € D. We want to see that

po(A)|dA)] = po(A®)|A'(D)]]dE] = po(t)ldt],

this is
po(A@)A' ()] = po(t).
We have
2 2[1 + at|? 2|11 +at|?
po(A(t) = [t+a> D) 2 = P PP 2 2
1 - ap 11 +at|? — |t + a 1+ 2[at| + |at|? — |t|* — 2|at| — |a]
211 +at|? 2|1 + at|?

L+ fat? =[P — a2 (1= ]tP)(1 - |af?)
and on the other hand

_|14+at—(t+a)a |1—aal 1-]al?

11+ at|? ol +at]r L 4at]r

[A'(t)]

Putting this together we get

po(A))|A'(t)| = (1 _2|(t1|2;(|1a|_>|a|2) 1 —2|t|2 = pp(t).

Using the hyperbolic density we can define a metric on D called the hyperbolic metric or

the Poincaré metric.

Definition 1.1.2 (Hyperbolic length on D). Let v be a path in D joining two points

p and ¢. Then define the hyperbolic length of ~ by

In(y) = / o

Definition 1.1.3 (Hyperbolic distance on D). Given two points p,q € D we define

the hyperbolic distance between them to be
distp(p, q) = i{ylf In(7)

where the paths « are contained in D and join p and gq.

Let us check that the hyperbolic distance defines a metric on D.

10



Lemma 1.1.2. The unit disc D together with the hyperbolic distance distp is a metric
space.

Proof. 1t is clear that the definition is symmetric, dist p(p,q) = distp(q,p). Note that
pp(a) = pp(0) = 2 for all a € D. Therefore, Ip(y) > 0 for any path v in D and it vanishes
if and only if the path is a point. This proves the non-negativity of the distance function
and shows that distp(p, q) = 0 if and only if p = ¢. Finally, the infimum in the definition
ensures that the triangle inequality is satisfied. Indeed, if there existed r» € D such that

dist p(p, q) > dist p(p, r) + dist p(r, q)

then concatenating these two limit sets of paths from p to r and from r to ¢ we would
contradict the minimality of ~. [ ]

It is a direct consequence of Lemma that if v is a path in D and A € Aut(D) then
In(y) = Ip(A(7)) and moreover if p,q € D,

dist p(p, ¢) = dist n(A(p), A(q))-

1.2 Hyperbolic geodesics

In general, the infimum in the definition of distance may not be realized by a curve.
For instance, in C* = C\ {0} the Euclidean distance between —1 and 1 is 2 but none
of the curves contained in C* joining these points has Euclidean length 2. In the other
extremum, in the sphere two antipodal points have an infinite number of curves joining
them minimizing the spherical length. However this cannot happen in D, we will prove
the existence and uniqueness of such curves. First, let us introduce the notion of geodesic.

Definition 1.2.1 (Geodesic). A curve v in D is called a geodesic if for all t; < ty < t3
we have

dist p(y(t1),7(t3)) = dist p(v(t1), 7(t2)) + dist p(v(t2), ¥(t3))-

If the extrempoints of v belong to D we say that 7 is a geodesic segment while if they
belong to 0D we say that 7 is an infinite geodesic.

By definition, geodesics always realize the minimum distance between two points. The
next lemma tells us that the converse is also true. Hence, geodesics can be characterized
as being the shortest paths between the points of .

Lemma 1.2.1 (Characterization of geodesics). If a curve v joining two points p,q €
D realizes the infimum length among all such curves then it is a geodesic.

Proof. By definition, dist p(p, q) = Ip(7y). Let 7 € v be an intermediate point. Then if we
split v in two curves 71,72 going from p to r and from r to g respectively we have

In(y) = Ip(71) + Ip(72)

by linearity of the integral operator. The minimality of  implies that Ip(y1) = dist p(p, r)
and Ip(vs) = dist p(r, ¢). Hence,

dist p(p, ¢) = ln(v) = lp(11) + In(72) = dist p(p, ) + dist p(r, ¢)

and v is a geodesic. |

11



Now let us prove their existence in a geometric way. The next lemma deals with geodesics
of D containing the origin.

Proposition 1.2.2 (Existence of geodesics). Consider p € D, p # 0. The straight
segment between 0 and p realizes the shortest path with respect to the hyperbolic metric
on D and has length

1+ |p|

1—|p|

distp(0,p) = log

Proof. We can parametrize the straight segment joining 0 to p by o(t) = tp for t € I
and then its hyperbolic length is given by

1
2

In (" :/p tdt:/—pdt.

p(70) 3 p(t)|d] i 1_t2|p|2H

Let us compute this integral,

2|p|
2|p| / 2[p| / =TE 1 +t[p|
Pt = dt = dt = log +C
/ 1 — 2[p|? (1 +¢[pl)(1 —¢lpl) e 1 —t[p|

and hence

1
1 +tlp!] e L7

1 —t[p| 0 1 —|p|

Consider now an arbitrary curve v : I — D connecting 0 to p. Take a partition P of I,
0=ty <---<t, =1, then the Riemann sum

In(70) = {log

n—1

Lo(v;P) =Y po(v(t:)) [ (tis1) — ()]

=0

approaches Ip(7y) as the mesh of P tends to 0. This can be thought as considering a
piecewise linear curve with vertices in 7. These vertices can be transported radially to
the straight line defined by 0 and p by the map

)

y(t:) wwu% —

If we join the image points by straight segments we get a curve ~ that may fold many
times over itself and which is contained in the line defined by vy. If we compare it with ~,
v, is clearly longer because it goes from 0 to p but we have to add the auto-intersections,

hence
n—1

Lo(v;P) = > po(30) 1t — il

=0

is an upper bound of Ip(p). Observe that since the hyperbolic density is invariant under
automorphisms of the disc and, in particular, under rotations about the origin,

po(16) = po(v(t:))-

12



On the other hand, it is well known that given two concentric circumferences Sy, Sy with
centre C' and a point x € 57, the minimum distance between x and Ss is realized by the
point in the intersection of S, and the line through C' and x. Thus,

i+1

Ve =6 < Iv(tin) — v(8)]-

Putting these together,

H

n—

p(7; P ZPD YOI =70l <D (v () Iv(tin) — v(t:)| = Ln(y; P).

=0

For every partition P,
In() < Ln(v0: P) < Lo(y; P).
Taking the limit as the mesh of P tends to 0 we get

Ip(70) < In(7)

and conclude that 7, realizes the minimum length path between 0 and p. ]

Corollary 1.2.3 (Existence of geodesics). Given two points p,q € D, p,q # 0, there
exists a geodesic joining them and its length equals

11 —Pg| + lg — pl

11— pg| = lg —pl

distp(p, q) = log

This geodesic corresponds to an arc of circle orthogonal to OD.

Proof. Recall that the hyperbolic distance is invariant under automorphisms of ID. Such
transformations are of the form

0 2T a
1+az

Az) =e
for some 6 and a. Let us impose that A(p) = 0:

Alp) =

Since 6 is arbitrary, fix § = 0 for simplicity. We will denote this map by A,. Then,
dist p(p, q) = dist p(0, A,(q)) where

9p+CL .

<  a= —p.
1+ap b

q—p
Aplg) = 1—pq

Denote by D the diameter of D that contains A,(q). Then A '(D) is the geodesic
connecting p and ¢. Using Proposition |1.2.2]

14 Jez L—pal+la—p
dist p(0, A,(q)) = 10%% =lo ll —ﬁq} - |!q —p='
[1—pq]|

Recall that Aut(ID) is a group and Mobius transformations are conformal and map circles
in C to circles in C. Since D is orthogonal to 9D and 9D is invariant under Aut(DD),

AZH(D) must be an arc of a circle orthogonal to dD. [ |
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To complete the proof of our claim, let us show that the geodesics of D are unique.

Proposition 1.2.4 (Uniqueness of geodesics). For any point p # 0 in D there ezists
a unique geodesic joining 0 to p.

Proof. Proposition [I.2.2] shows that the straight segment 7, from 0 to p is a geodesic.
Assume to the contrary that there exists another geodesic v connecting 0 and p,

dist p(0,p) = In(7) = In(yo)-

Since they are different, there must exist one point ¢ € 7 such that ¢ ¢ ~y. Let gy be the
radial projection of ¢ onto vy and let C' be the circle centred at 0 and containing ¢ and
qo- The geodesic property gives

dist (0, p) = distp(0, ¢) + dist p(q, p) = dist p(0, qo) + dist p(qo, )

and since |g| = |qo|, dist p(0, ¢) = dist (0, o) and hence we get dist p(g, p) = dist p(qo, p)-
Now, consider the Mobius transformation

Z—p
Ap(z) = 4 — Dz

mapping p to 0 and 0 to —p. Let ¢ = A,(q) and gy = A,(qo), by Lemma

dist D(aa O) = dlSt]D)(qap) = diStD<QO7p) = diStD(éB, 0)

and therefore |g| = |go|. A, maps the segment Op to the segment —p0 and the circle C'
to the circle with hyperbolic centre —p containing ¢ and go. Then either ¢ = gy (which is
impossible if ¢ # qo, A, is univalent) or they are at a different Euclidean distance from
0, |q] # |qgol, raising a contradiction in both cases. The geodesic 7y must be unique. W

To conclude this section we will see how to construct hyperbolic geodesics with compass
and straight-edge, see Figure [I.1} Let P,Q € D such that P,Q,O are not collinear. If
they were collinear, just trace the diameter through P and (). You have to follow these
steps:

e Trace the line through O and P.

Take the perpendicular r to OP through P.

Let A be the point in the intersection of » and JD.

Let s be the perpendicular to OA through A.

Call B the intersection of s and OA (B is the inverse of P with respect to ID).

e Draw the circle C passing through P, Q, B.

The arc of C' lying inside I is the hyperbolic geodesic joining P and Q).

14



Figure 1.1: Construction of the hyperbolic geodesic with compass and straight-edge.

1.3 Covering spaces

In this section we introduce the notions of covering space and universal covering that are
very useful for many reasons. Fist of all, as we will see in the next section, they allow
us to put a hyperbolic metric in domains far more general than the Poincaré disc. On
the other hand, they are a very important tool in the construction of the logarithmic
coordinates. We will see that logarithmic tracts and logarithmic coordinates are both
universal covers.

Definition 1.3.1 (Covering space). Let X be a topological space. A topological space
E together with a projection map p : E — X is a covering space of X if every x € X has
an open neighbourhood U such that p~*(U) is a disjoint union of open sets S; C F, each
of which is mapped homeomorphically onto U by p. The covering is holomorphic if 7 is
holomorphic. We say that the sets U are evenly covered and S; are sheets over U.

Note that for all z € X, the fibre p~!(z) is a discrete set. Since p is a local homeomor-
phism, F and X share the same local properties, for instance E is locally connected if and
only if X is so. Finally let us remark that we can endow X with the quotient topology
from F.

Definition 1.3.2 (Section). Let p : F — X be a covering space. A continuous map
s: X — E such that po s =1idy is called a section of the covering space.

EF—X
x _ -
B
The main example that motivated the theory of covering spaces and that we should keep
in mind is
p: R — St
t o et

15



Any branch of the logarithm would be a section of this covering. According to the above
definition, it is clear that p : R — S! is a covering space. We can take two charts in S*
consisting of overlapping open arcs Uy, U; and then the preimages of each of them by p
will be and infinite set of disjoint open intervals. For example if we take U; = S* \ {1}
and Uy = S\ {—1}, then

p ) = | |k k+1), pHUR) = | |(k—1/2, k+1/2).

Another interesting example would be the helicoid. Consider the surface
S = {(scos(2rt), ssin(2nt), t) € R® : (s,t) € (0,00) x R},

then
P12 : S g R3 — R2 \ {0}
(z,y,2) = (z,y)

is a covering space. See Figure [I.2]

Figure 1.2: The helicoid.

This example is closely related to the following one. The complex exponential

exp: C —» C*
z = €

is a covering of the punctured plane C* = C\ {0}. Every point in C* is covered infinitely
many times by the exponential map. This is very different of what happens with the
complex powers defined on C*,
o C — C*
z = 2"

is a covering space for all n € N, but in this case over each point there are exactly n
sheets.

16



Definition 1.3.3 (Critical point). Let f: Y — X be a holomorphic function. We say
that ¢ € Y is a critical point of f if f'(c) = 0.

Lemma 1.3.1. A holomorphic function f defined on a domain €2 is a holomorphic cover
of its image f() if and only if f has no critical points in €.

According to this lemma, since exp(z) has no critical points it is a holomorphic cover of
C*. In the case of p,(z) = 2", the only critical point is the origin and since it has been
removed from its domain it is also a holomorphic cover of C* for every n € N.

Definition 1.3.4 (Lift). Let p: E — X be a covering space. A lift of amap f:Y — X
isamap f:Y — FE such that pf = f.

The following diagram illustrates this situation:

f—/ E
1
L7 P
/s
Y —X.
f
We will devote the rest of this section to discuss the existence and uniqueness of lifts.

We are going to use the notation f : (Y,ys) — (X, zo) for a map (or a covering) with
specified basepoints. This only means that y, € Y is a point in the preimage of o € X

by f,ie. f(yo) = o

Theorem 1.3.2 (Unique lifting theorem). Given a covering space p: E — X and a

map f:Y — X with two lifts fi, fo : Y — E that agree at one point of Y, then if Y is
connected, these two lifts must agree on all of Y.

Proof. This can be restated in terms of maps with specified basepoints saying that if
p:(E,e0) = (X,z0) and f: (Y,yo) = (X, o) then if there is a lift f: (Y, yo) = (E,€p)
it is unique. Assume to the contrary that there were two of them, say ﬁ, f; (Y yo) —
(E,ep). We can consider the set of points where they coincide

A={yeY : fily) = f(y)}

and also D = Y \ A where they differ. Observe that the specified basepoint y, belongs
to A and hence A is not empty by assumption.

Take a point y; € Y and let U be an evenly covered neighbourhood of f(y;) in X.
Consider Sy, Sy the connected components of p~!(U) containing respectively f;(y), f;(y)
In the case that y; € A we these two sheets will be equal, S; = S5, while if y; € D they
will be different. In any case, by the continuity of the lifts, the set

F1(S1) N f2(Ss)

will be open and entirely contained in A or D. Therefore, we conclude that both A
and D are open sets. But since Y = AU D is connected, D must be empty reaching a
contradiction. [ ]
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Note that lifts may not exist. In the special case of paths, the next result guarantees
the existence of lifts. The general case will be discussed later when we state the Lifting
criterion.

Theorem 1.3.3 (Path lifting theorem). For p: (E,eq) — (X, x) as above, if o is a
path in X with initial point xo, there is a unique path o, in E with initial point ey such
that poe, = o.

Proof. The uniqueness is guaranteed by Theorem [1.3.2] If the whole space X is evenly
covered and ¢y € S C E, the projection p restricted to the sheet S, pjg : S — X, is a
homeomorphism. Consider its inverse 1) = (pg)~" which is also a continuous map. The
curve defined by 1 o ¢ is a lift of ¢ with initial point eg.

In general X may not be evenly covered, there might be more than one evenly covered
chart. Since I is compact, there is a partition

O=to<ti<---<t,=1

such that for all i, o([t;, t;+1]) is contained in an evenly covered neighbourhood U; of o (t;).
Using the above argument we can lift the path o4, to a curve o, : [0,¢;] — E with
initial point eg. We will proceed by induction. Assume we have a lift o; of oyj,) with
initial point eg. Again, since we are inside an evenly covered chart, by the same argument
as before we can lift oy, 4, ,) to a path mapping ¢; to the endpoint of the previous curve,
0;(t;). Thus, o; can be extended to ;41 in a continuous way. In a finite number of steps
we get the desired lift o, = 0,,. [ |

Now we are going to prove a much more general result concerning homotopies, but before
let us recall the definition of homotopy.

Definition 1.3.5 (Homotopy). A homotopy between two continuous functions f, g :
Y — X is a continuous function H : Y x I — X where I = [0, 1] such that for all y € Y,

H(y,0) = f(y) and H(y,1) = g(y).

Theorem 1.3.4 (Covering homotopy theorem). Let p : (E,eq) — (X, x) be a
covering with base points and let f : (Y,y0) — (X, z9) be a map which has lifting f:
(Y,yo) = (E,eq). Then, any homotopy F :Y x I — X with F(y,0) = f(y) for ally €Y
can be lifted to a homotopy F:Y x I — E with ﬁ(y, 0) = f(y)

Proof. If X is evenly covered, we can use the homeomorphism to lift the homotopy from
X to E. Otherwise, we will proceed like in the proof of Theorem [1.3.3, By compactness
of I, for every y € Y there exists an open neighbourhood N, of y and a partition of 1

O=ti<t1 <---<t,=1

possibly depending on y, such that F'(N, x [t;,t;+1]) is contained in some evenly covered
neighbourhood of F(y,t;). Since for each subinterval [t;,t;11] we are inside an evenly
covered chart, we can construct a lift ﬁy : Ny x I — E of the homotopy F’ restricted to
N, x I satisfying that ﬁy(y', 0) = f(y/) for all ' € N,,.

Finally, the lifts of two different neighbourhoods NV, x I and N,, x I must agree on the

intersection
(Ny, x I) NV (Ny, X ) = (Ny, NNy, ) x I
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If yo € Ny, N Ny,, then we have two lifts of Fjf,,1x; that coincide at the initial point
(Y0, 0). Therefore, since {yo} x I is connected, by Theorem these two lifts must be
the same one. [ |

In fact, Theorem is a particular case of this theorem taking Y = {x}. If we take
Y = I we obtain the following corollary.

Corollary 1.3.5 (Monodromy theorem). If o,7 are two homotopic paths in X with
initial point xo, then e, is homotopic to T, in E. In particular, they have the same end
point.

Corollary 1.3.6. The map p. : m(FE,ey) — m (X, zo) induced by a covering space p :
(E,eq) — (X, z0) is a monomorphism. The image subgroup p.mi(E,ey) consists of the
homotopy classes of loops in X based at xo whose lifts to E starting at ey are loops.

Proof. We will prove that the kernel of p, is trivial. Let ﬁ) € Ker p,, this is a loop in F
such that its projection fy = pfy is a loop in X homotopic to a trivial loop f;. Denote
by F': I x I — X the homotopy between fy and fi. By Corollary [I.3.5] there is a lifted
homotopy F' : I x I — E such that F(t,0) = fo(t) and F(t,1) = fi, with f; the lift of
the constant loop f; and hence trivial in E too. |

Note that if o is a loop at xg, its lift o., needs not to be a loop in £. We only can say
that its end point will belong to p~*(zg).

Proposition 1.3.7. The number of sheets of a covering space p : (E,eq) — (X, xo) with
X and E path-connected equals the indez of p.(m (E,ep)).

You can find the proof of this result in [Hat02, Proposition 1.32]. In particular, in this
situation all the fibres have the same cardinality, something that we cannot assert in
general. To conclude this section let us study the existence of lifts.

Theorem 1.3.8 (Lifting criterion). Suppose given a covering space p : (E, eq) —
(X, z0) and a map f : (Y,y0) — (X, zo) with Y path-connected and locally path-connected.
Then, a lift f: (Y,y0) — (E,eq) of [ exists if, and only if,

fe(m (Y, 90)) C pul(mi(E, e0)).

Proof. m is a covariant functor from the category of pointed topological spaces to the
category of groups. If there exists a lift f of f, pf = f, then by the functoriality of m,

m(f) =mpf) =mp)m(f) or
Fo(m1 (Y, 90)) = pa(f2(m1 (Y, 0))
and hence, since ﬁ(m(Y, Y0)) C m(E, ep),

f* (7T1 <Y7 yO)) - p*(ﬂ-l(Ea 60))'

Conversely, assuming that this property is true, we can construct a lift of f. Choose for
any y € Y a path o joining y to yo. Then fo is a path from xy to z = f(y). Define



then

and thus fis a map lifting f. |

Corollary 1.3.9. In the assumptions of the theorem, if Y is simply connected, the lifting
f always exists.

1.4 Universal coverings

Definition 1.4.1 (Semilocally simply-connected). We say that X is semilocally
simply-connected if each point x € X has a neighbourhood U such that the inclusion-
induced map m (U, z) — m (X, x) is trivial.

This is a necessary condition for X to have a simply-connected covering space. Observe
that both simply-connected and locally simply-connected spaces are semilocally simply-
connected, but none of the converses is true.

Theorem 1.4.1 (Covering classification theorem). Let X be path-connected, lo-
cally path-connected and semilocally simply connected. Then there is a bijection between
the set of basepoint-preserving isomorphism classes of path-connected covering spaces
p: (E,e) — (X,x0) and the set of subgroups of m (X, xy), obtained by associating
the subgroup p.(m1(E, ey)) to the covering space (E,ey). If basepoints are ignored, this
correspondence gives a bijection between isomorphism classes of path-connected covering
spaces p : E— X and conjugacy classes of subgroups of m (X, xo).

The proof of this statement can be found in [Hat02, Theorem 1.38].

Definition 1.4.2 (Universal covering). A covering space of X, p: E — X is called
universal if E is simply-connected.

Proposition 1.4.2. A universal cover p : E — X of a path-connected, locally path-

connected space X is a covering space of every other path-connected covering space p' :
E — X, ie.
E-->F

_[)i /
P
X.
It is unique up to isomorphism.

This is a consequence of Theorem [1.3.8] After this result, it makes sense to introduce an
equivalence relation between covering spaces of the same base space.

Definition 1.4.3 (Equivalent covering spaces). We say that two covering spaces p :
(E,eq) — (X, o) and p' : (E',ep) — (X, xg) are equivalent if there is a homeomorphism
¢ (E' ey) — (E,eg) such that po = p'.
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The Classification theorem induces a partial ordering on the set of covering spaces of
a given space X, being the universal covering on the top. If we go back to the initial
examples, we see that the complex plane (with exp z) and the helicoid S (with p;2) were
both universal covers of the punctured plane R?\ {0} = C\ {0}. Thus, there must be a
homeomorphism between them. For this, if we set z = x 4 iy, we only have to solve the
following system of equations:

e’ cosy = scos(2mt) s=¢€"
e’ siny = ssin(27t) 21t = y.

So, we get a homeomorphism from the complex plane to the helicoid S

C > R? > SCR?
(Rez, Imz) — (s=€f t=TImz/(21)) — (scos(2wt), ssin(27t), t)
(x=Ins, y=2mt) <+ (s =22 +y? t=2) — (z, y, 2).

Theorem 1.4.3 (Existence of the universal cover). Every path-connected, locally
path-connected, and semilocally simply-connected space X has a universal covering.

Let us give a brief sketch of the construction of the universal covering. Given a path-
connected, locally path-connected, semilocally simply-connected space X with a base-
point xg € X we can define

X={p] : v:1— X, 7(0) = z0}

where [7] is the homotopy class of all the curves in X fixing (0) = xo and 7(1). Consider
the map p: X — X given by

p([v]) = ~(1).

We claim that p : X — X is the universal covering of X. See [Hat02, p. 64-65] for a
complete and detailed construction.

Now we would like to know which domains admit D as a universal covering. The mo-
tivation for this question is that afterwards we will use these coverings to transport the
Poincaré metric to that domains.

Theorem 1.4.4 (Riemann mapping theorem). Let U be a non-empty simply con-
nected proper domain of the complex plane. Then there exists a bijective holomorphic
mapping from U onto the open unit disk D. Moreover, if zg € X is chosen and ¢ is
normalized so that ¢(z9) = 0 and ¢'(z9) > 0, then ¢ is unique.

Lemma 1.4.5. If f : U — V is a bijective holomorphic map then f=':V — U is also
holomorphic.

Therefore, D is a holomorphic covering space of every simply connected plane domain.
Using the notion of universal covering, this theorem can be generalized to Riemann
surfaces, complex analytic manifolds of dimension 1, and is known as the Uniformization
theorem.
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Theorem 1.4.6 (Uniformization theorem). The universal covering space X of an ar-
bitrary Riemann surface X is homeomorphic, by a conformal map, to either the Riemann
sphere C = C U {00}, the complex plane C or the unit disc D.

The proof of this theorem is complicated and can be found in any standard reference
about Riemann surfaces, for instance [FK92].

Given a universal covering, let us discuss what is the relationship between all the points
in the fibre of a given point.

Definition 1.4.4 (Deck transformation). A deck transformation or automorphism of
a covering space p : E— X is a homeomorphism f : F — E such that po f = p.

The set of all deck transformations of a given covering space forms a group with compo-
sition. Every deck transformation (also known as covering transformation) permutes the
points in each fibre.

Theorem 1.4.7. If p: E — X s a universal covering map and t,s € E are such that
p(t) = p(s), then there exists a deck transformation f : E — E such that f(t) = s.

Corollary 1.4.8. If a deck transformation has a fized point then it must be the identity.

1.5 Hyperbolic metric for arbitrary domains

We want to use what we have learnt about covering spaces to put a hyperbolic metric to
more general domains.

Definition 1.5.1 (Hyperbolic domain). A plane domain X is called hyperbolic if it
has at least two boundary points.

Corollary 1.5.1. D is the universal covering space of every hyperbolic plane domain X .

This is a consequence of the Uniformization theorem. A plane domain with more than
two boundary points cannot be conformally isomorphic to the Riemann sphere nor the
complex plane.

Definition 1.5.2 (Hyperbolic density). Let X be a hyperbolic domain and let 7 :
D — X be its universal covering. The hyperbolic density with respect to X at a point
z € X is defined by

px(2) = 20 = o (s(2)IS (2} -

2|s'(2)]
1 —[s(2)[?
where s denotes a section of 7.

Note that, in particular, the hyperbolic density function is a positive continuous function.
We define the hyperbolic length and the hyperbolic distance on an hyperbolic domain X
in the same fashion we did for .

Definition 1.5.3 (Hyperbolic length). Let v be a curve in a hyperbolic domain X.
We define the hyperbolic length of v with respect to X as

() = [ px(®lat].
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Definition 1.5.4 (Hyperbolic distance). Let X be a hyperbolic domain. If p,q € X
we define its hyperbolic distance with respect to X as

dist x (p, q) = igf Ix(7y)

where the infimum is taken over all the paths v in X joining p to q.

Theorem 1.5.2. Suppose that g is holomorphic covering map from a hyperbolic plane
domain X onto a plane domain ). Then g is an infinitesimal isometry, that is

pal(g(t)d' ()] = px(t)
forallt € X.

Proof. Let m be the universal covering map from D to X. Then the composition g o 7 :
D — Q a universal covering. Let z € 2 and s € D such that 7(s) = ¢ and g(t) = z, then

pa(z) = po(s)  _ po(s) _ px(t)
[(gom)(s)| |g(m(s)|- |7 (x)]  |g'(t)]

because px(t) = p(s)/|7'(s)|- [ |

Corollary 1.5.3. Let X,Q be plane domains, X being hyperbolic. Any holomorphic
covering map g from X onto Q) preserves the hyperbolic length of curves,

Ix(7) = lalg(7)).

Theorem 1.5.4. Let m be a universal cover from D onto a plane domain 2. If z,w € X
and t € D is any pre-image of z, then

disto(z,w) = min{distp(t,s) : s €D, n(s) =w}.
Proof. By definition, dist o(z,w) is the infimum of lo(y) over all curves 7 connecting z
and w in . Corollary tells us that when we take the preimage of each of these
curves we have the same hyperbolic length. Then,
dist o(z, w) = inf{dist p(¢,s) : t,s €D, 7(t) = 2z, 7(s) = w}
and since the map 7 is continuous, if we fix a preimage t of z,
dist o(z,w) = min{dist p(¢,s) : s €D, 7(s) = w}.

Proposition 1.5.5. FEvery hyperbolic plane domain X endowed with its hyperbolic dis-
tance dist x is a metric space.
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Figure 1.3: Scheme from Theorem m

Proof. The facts that dist x is symmetric and satisfies the triangle inequality follow di-
rectly from the definition. We only need to show that dist x(z,w) = 0 if and only if
z = w. Assume that z # w and let 7 : D — X be a universal cover, there exist s,t € D
such that 7(s) = z and 7(¢) = w. Note that s # ¢. By Theorem [1.5.4]

dist x(z,w) = dist p(¢, s) > 0.

Conversely, if z = w clearly dist x(z,z) = distp(s,s) = 0. Finally, as usual, the other
three properties imply the non-negativity of dist x:

2dist x(x,y) = dist x(x,y) + dist x(z,y) > dist x(z,2) =0
thus dist x(x,y) > 0. [ |

It can be shown that the metric space (X, dist x) is complete. Let us turn our attention
to the hyperbolic geodesics of an arbitrary domain. We will use the projection of the
universal covering to transport the geodesics of D to X.

Definition 1.5.5 (Hyperbolic geodesic). Let X be a hyperbolic domain and let 7 :
D — X be a universal covering map. A curve v C X is called hyperboli geodesic of X if
and only if every lift 7=!() is a geodesic in D.

Proposition 1.5.6. If v is a curve in the hyperbolic domain X such that for every
1 <ty <t3

dist x (y(t1),V(t3)) = dist x (v(t1), ¥(t2)) + dist x (7(t2), ¥(t3))
then vy s a geodesic on X.

Theorem 1.5.7 (Existence of geodesics). For every two distinct points z and w in
the domain X, there exists at least one shortest path v joining z to w. Furthermore 7y is
a geodesic.

Proof. Let z and w be distinct points in X. Theorem [1.5.4] guarantees the existence of
two points t,s € D such that n(t) = 2z, 7(s) = w and dist x(z,w) = distp(s,t). By
Lemma |1.2.1] there exists a geodesic v joining ¢ and s in D. The curve 7(y) connects

the points z and w in X and by Theorem must be a geodesic. Since covering maps
preserve lengths of curves,

dist x(z,w) = dist p(t, s) = Ip(y) = Ix(7(7)).
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Theorem 1.5.8 (Uniqueness of geodesics). Let z and w be any two distinct points in
X. Then there is a unique geodesic in every homotopy class of curves joining z and w.

Proof. Let z,w € X with z # w and let § be any curve in a given homotopy class of
curves joining z and w in X. Consider the universal covering 7 : D — X and take
s € D be a point in the fibre over z. By the Path lifting theorem, Theorem [1.3.3] there
exists a unique lift § of § beginning at s. Let ¢ be the endpoint of §. The Monodromy
theorem, Corollary [1.3.5] the lifts of all homotopic paths have the same endpoint, thus
t is determined by the homotopy class of . There is a unique geodesic in D joining s
and t and its projection is a geodesic of X in the homotopy class of §. If there were two
different geodesics v and 4" in the same homotopy class, then Monodromy theorem tells
us that their lifts would be two homotopic geodesics in D joining the same pair of points
and hence equal. |

Example 1.5.1. We are going to study an important example: the upper half plane
H :={z€C : Imz > 0}

together with the Mdbius transformations as isometries give the Poincaré half-plane model
for the hyperbolic geometry. Using the results of this section, let us find out an expression
for the hyperbolic distance on H'. We need a conformal map A : H — . Maobius
transformations are determined by the image of three points. Let

h(z) =

we want to map 0 — —1 (b/d = —1), 00— 1 (a/c = 1) and i — 0 (ai+b = 0). Therefore,
if we set a = 1,

az+b
cz+d’

zZ—1
h(z) = )
(2) z41
Then, by definition,
2|h'(2)]
O TEReR
and since 9
h =
K=
we have
4
P (2)

Tt — =i
Then, using a bit of trigonometry,
|z +i? — |z —i> = |Rez|? + [Imz + 1] — |[Rez|? — [Im 2z — 1|2
=[Imz+ 1> — [Imz — 1]?
=[Imz|*+2[Imz|+1—|[Imz[*+2|[Imz| — 1
=4|Im 2|

and hence
4 1

- 4 Tm z| " Imz

prr (2)
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The isometries of this model are the group of Mobius transformations leaving H' invariant,
i.e. maps of the form

b
A(z) = azt ,ad—bec=1, a,bc,deR.
cz+d

Geodesics are the image under h of geodesics of D, they are vertical lines and arcs of
circles orthogonal to the real axis.

Example 1.5.2. We will be interested in a slight modification of this model, we will
consider

H={zeC : Rez>0}.

You can pass from one model to the other by multiplying by ¢ or —¢, thus

(2) = pu(iz) = —— = 2
PRAE) = |i]pH/ - Im(iz) Rez’

Geodesics of H are horizontal lines and circles orthogonal to the imaginary axis.

1.6 Pick’s theorem

In this section we introduce one of the most powerful tools of hyperbolic geometry. Pick’s
theorem, named after Georg Pick, tells us that holomorphic maps are contractions with
respect to the hyperbolic metrics.

If f is a holomorphic self-map of D such that

Theorem 1.6.1 (Schwarz lemma). If
| < 1. Equality holds if and only if f is a rotation,

f(0) =0, then [f(2)| < |z] and |f'(0)
f(z) =€ for some 6 € R.

Proof. Consider the function g(z) := f(z)/z which is holomorphic in D\ {0}. Since

lim g(z) = lim M

2—0 2—0 z2—0

= /'(0)

the origin is a removable singularity for g and hence it can be extended to a map ¢
holomorphic in the whole disc. We have

3] = lg()| <

for all z such that |z| = r and by the Maximum modulus principle this holds in D(0, 7).
Since r < 1 is arbitrary, taking the limit we can conclude that

1)

||

19(2)|

<1

and hence |f(z)] < |z| for all z € D. In particular, since

f1(0) = lim g(2) = g(0)

z—0
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then | f'(0)| < 1. Let us prove the last claim. If f is a rotation these properties are clearly
satisfied, ‘
[f()] _ 2] _ Iz

EE

=1 17O = e = 1

Conversely, if there is a zp € D, 2y # 0, such that |f(z9)| = |zo| then this means that
g attains its maximum value in an interior point and hence, by the Maximum modulus

principle, it is a constant function. Thus, |f(z)| = |z| for all z € D, a characteristic
property of rotations. On the other hand, if |f/(0)| = 1, then |g(0)| = |f'(0)| = 1 and the
same argument applies. |

The Schwarz-Pick lemma is an extension of this classical result to hyperbolic metrics.

Theorem 1.6.2 (Schwarz-Pick lemma). If f is a holomorphic self-map of D, then f
s both an infinitesimal and a global contraction with respect to the hyperbolic metric on
D. That s,

po(fO)f' @) < po(?)
for allt € D, and
distp(f(2), f(w)) < distp(z,w)

for all z,w € D. In particular, if f is a holomorphic self-map of D fizing 0 then |f(2)] <
2| and | f(0)] < 1.

Proof. Suppose that f is an arbitrary holomorphic function from D into D. For every
t € D, consider the self-maps of D

oz f(t) _ ATt
ht(Z) = —1 _ mz, kt(Z) : —1 +%Z
and define g;(z) := hy o f o ky(z) which is another map from D into itself. We have
f) = ft)
= ht (@] (@) kt = h = =
(0) = o o (0) = () = T2 =0

for all t € D because |f(t)|?> < 1. Thus, for every value t € D we can apply the Schwarz
lemma to g; and we get |g;(0)] < 1. Let us compute ¢'(0),

9:(0) = hi(f (k:(0))) - f'(ke(0)) - K1(0)

we have
I B 10 [P B
R T ST A (e o
and hence
vnt — A= FOP) 1O Q= [t2) oy, L= [t
K [ A A e TEO T
Thus,

FOleo0) = £ O =75 < 7= = )
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proving that it is an infinitesimal contraction. Let us see now that it is also a global
contraction. Suppose that z,w € D and 7 is the geodesic joining them. Then

dist o(/(2), f(w)) < Ip(f(7)) = / ol = / oo (FO)1F (1) |de].

f

Using that it is an infinitesimal contraction and that the density functions are always
positive,

dist p(f(2), f(w)) < /pm(t)ldtl = Ip(y) = dist p(z, w).

Y

Let us prove a more general version of this theorem that applies to hyperbolic metrics
in arbitrary domains. It is called the Schwarz-Ahlfors-Pick theorem or simply Pick’s
theorem.

Theorem 1.6.3 (Pick’s theorem). If f is a holomorphic map from a domain'Y into
a domain X, then f is both an infinitesimal and a global contraction with respect to the
corresponding hyperbolic metrics on'Y and X. That is,

px (FOF (D] < py (1)

forallt €Y, and
dist x (f(t), f(s)) < disty(t,s)

forallt,s €Y.

Proof. Consider the universal coverings 7y : D — Y and mx : D — X. We are going to
construct a holomorphic lift f of f making the diagram

]D)*fﬂD)

Ty UP's

Y —>X
f

commutative. Fix an arbitrary point s € Y and let p,q € D be such that my(p) = s
and mx(q) = f(s). To find the image of a point a € D, join it to p by a curve 7 in D,
project it by 7y, take the image under f and lift it up by mx so that the initial point is
q. We define f(a) to be the endpoint of the resulting curve in D. Since all curves joining
a and p are homotopic in D, the Monodromy theorem (Corollary tells us that fvis
well-defined. Note that, in particular,

fomy(a) =mx o f(a)

for all @ € D and since f, 7y, mx are holomorphic, fis holomorphic too. Differentiating
the above equality we get



Applying the disc version of Pick’s theorem, Theorem [[.6.2] we have
po(f(a))|f(a)] < pola).

which can be rewritten as

7 weolf (@) f (my (a))[[my (a)]
|

po(f(a)) e (Fla))

< pp(a)

or equivalently

px(mx (Fa)|f (my (a))] = 2200

for all @ € D. Using that fry = 7rXf,
px (f (v (@))If (my ()] = px(mx (F(@)| ' (7v ()] < py (v (a))
Finally, since 7y is surjective, every ¢t € Y is equal to 7y (a) for some a € D, thus
px(FO)Lf ()] < py (1)

for all t € Y. To prove the global part, take two points s, € Y. Theorem [1.5.7] ensures
the existence of a unique geodesic v in Y going from s to ¢t. Thus,

mmmaﬂm<Mﬂm=4¢mmw:/muwwwwm<

< /py(a)|d0| Iy (y) = disty (s, 1).

Corollary 1.6.4. If f is a holomorphic one-to-one map from Y onto X, then f is both
an infinitesimal and a global isometry with respect to the corresponding hyperbolic metrics
onY and X. That 1s,

px (FENIF ()] = py ()
forallt €Y, and
dist x (f(t), f(s)) = disty(t, s)
forallt,s €Y.

Proof. Let g be the inverse of f and set s = f(¢). Applying Pick’s theorem to g we have
py (9(s)g' ()] < px(s)
and therefore
px (NI ()] = px(s)[f'(g(s))] = px(s)
On the other hand, for all t,s € Y
py(t,s) = py(9(f(1), 9(f(s))) < px(f(1), [(s))-

Since these are the converse inequalities in Pick’s theorem we conclude that both are
equalities. [ |
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1.7 Hyperbolic vs Euclidean distance

In this section we compare the hyperbolic and Euclidean distances. Following the dis-
cussion in [Mil06], we devote most of the section to prove the Koebe-Bieberbach quarter
theorem and then we get the standard estimate as a corollary. Let us begin with a the-
orem that will be needed in the proof of the Bieberbach theorem, which afterwards will
be used to prove the quarter theorem.

Theorem 1.7.1 (Gronwall area inequality). Let ¢ : C\ D — C\ K be a conformal
1somorphism where K is a compact connected set and let

b b
d(w )—blw+bo+—1+—2+0(| )

be its Laurent expansion. Then |by| > |b_y1|, with equality if and only if K is a straight
line segment.

You can find the proof of this theorem in [Mil06, A.4].

Theorem 1.7.2 (Bieberbach theorem). Let i) : D — U be a conformal isomorphism
with power series exrpansion

n>1

Then |as| < 2|ay|, with equality if and only if C\ U is a closed half-line pointing towards
the origin.

Proof. By composing ¢ with a linear transformation, we can assume without loss of
generality that a; = 1. Let h: C\ D — D defined by h(z) = 1/z%. Consider ¢ the map

conjugated to ¥ by h,
C\D N
hl J{h
D U
(G

where N is some neighbourhood of co. Then,

p(w) = h™"Ph(w) = h~ 1¢ 1/ \/7

We want to obtain an expression for the Taylor expansion of ¢. We have

1 1 a9 _
o (2) =gz &+ Ol

and since this has no term with a positive power of w, there cannot be such term in its
square root. In general,

¥

by by b N\ L 1 1 . 1
(B 22 2 0 ) = o+ b+ (it )+ Ol = (o

w?
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thus,
b% = 1, 2blbg = O, 2[)153 + b% = a2

and choosing by = 1 we get by = 0 and b3 = ay/2. Since ¢ is conjugated to 1, the
reciprocal of

RS
6 (22) =2+ Zos 0l

must be of the form .
o(w) = cqw+co+ i + O(lw™?|).

We have to solve

1 1
(E n %E + oqwﬂ)) (c,lw +co + % + O(Iw”!)) =1
thus,
a2
c.1=1, ¢ =0, C1+E:0
and hence 1
a2 -2
=w———+0 :
p(w) =w = —+O(|lw™))
By Theorem [I.7.1],
a
1>|01|=% & ao] <2

and we have equality if and only if N is the complement of a straight line segment K that
can be assumed to contain the origin. Thus, equality holds if and only if U = h(C \ K)
which is a half line pointing to the origin. |

In fact, Ludwig Bieberbach conjectured in 1916 that |a,| < n|ai| for all n > 2, having
equality in the same situation as above. After many partial results due to different
mathematicians, this was proved in 1984 by Louis de Branges.

Theorem 1.7.3 (Koebe-Bieberbach quarter theorem). Let ¢ : D — U C C be a
univalent analytic function. Then

}lw'(o)y < dist (1(0),0U) < [¢'(0)]

where the first equality holds if and only if C\ U is a half-line pointing towards the origin,
and the second inequality holds if and only if U is a disk centred at the origin.

Proof. Suppose by now that ¢(0) = 0. Then the power expansion of ¢ centred at the
origin is of the form

W(z) = Z anz"

n>1

and, again, without loss of generality we can assume that a; = 1. Let z5 € OU be a point
of minimal distance to the origin. Consider them Mobius map




mapping 2o to co. Let p = Ao,

_ _ LY o 3
o(z) = o =2t (ag + Z_o) 2=+ 0(|2]°).

To get the formal power expansion of ¢ we have to solve

(z+ a2z® + O(|2%)) = (1 - %z - %22 + O(|23|)> (2 + b2 4+ O(|2%)))
0 0

which gives

1
b2:a2—|——.
<0

Applying Theorem to ¥ and ¢ we get respectively

1
azs] <2, |bo| = |ag — —| < 2.
20
Hence, by triangle inequality
1 1 1
—|=laa+——az| < |aa+ —|+]az] <24+2=4
20 20 20
and thus .
dist (0,0U) = |zo| > i
We have equality if and only if
1
|CL2| = |y — —| = 2
20

and then by Theorem this is equivalent to the fact that C\ U is a half-line pointing
towards the origin.

On the other hand, assume to the contrary that dist (0,0U) > 1. Then, the inverse
function ¢! maps D into D and by the Schwarz lemma (Theorem , since

¥~! is a rotation. Then, 1) must be a rotation too, being D = (D) but this contradicts
the fact that dist (0, 0U) > 1. Hence, dist (0,0U) < 1. By Schwarz lemma, equality holds
if and only if ¢ is a rotation, therefore the domain must be a round disc.

Finally, the general case follows from the argument above taking ¢ (z) = ¢(z) —(0). N

This theorem was conjectured in 1907 by Paul Koebe, a PhD student of Hermann

Schwarz, and proved in 1914 by Ludwig Bieberbach. Using this classic result of complex
analysis we can obtain both a higher and a lower estimate for the hyperbolic density.
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Corollary 1.7.4 (Standard estimate). IfV C C is simply connected, then the Poincaré
metric on V agrees with the metric |dz|/dist(z,0V') up to a factor of two in either direc-

tion. That s
; < (z) < #
2dist (z,0V) PYisl s dist(z,0V)

for all z € V.. The left equality holds if and only if C\ V is a half-line pointing towards
the point z € V', while the right equality holds if and only if V' is a round disk centred at
z.

Proof. Let zy € V. By the Riemann mapping theorem (Theorem , there is a
conformal isomorphism ¢ : V' — I such that ¢(z9) = 0. Recall that by definition

() = L 2 2
PV T= 0P~ @)

Then applying Theorem to ¢ we get

1
Z\gp’(0)| < dist (20,0U) < @' (0)] & dist (20,0U) < |¢'(0)] < 4 dist (29, 9U).

Combining these two facts,

1 2 2
= < S~
2 dist (z0,0U) 4 dist (2, 0U) pv () dist (zo, 0U)

as we wanted to show. [ ]
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Chapter 2

Introduction to continuum theory

In this section we review the main results of Chapter V: The Boundary Bumping The-
orems and Chapter VI: Existence of Non-Cut Points from [Nad92]. The non-cut point
characterization of the arc will be a key point in the proof of the main theorem.

2.1 Basic properties of continua

Definition 2.1.1 (Continuum). A (metric) continuum is a non-empty, compact, con-
nected metric space. More generally, a Hausdorff continuum is a non-empty, compact,
connected Hausdorff space. A Hausdorff continuum is said to be non-degenerate if it has
more than one point.

Note that every metric space is Hausdorff. Therefore the notion of Hausdorff continuum
is weaker, Hausdorff continua might not be continua.

Definition 2.1.2 (Irreducible continuum). Let Y be a continuum and let A C Y.
Then, Y is said to be irreducible about A provided that no proper subcontinuum of Y
contains A. A continuum Y is said to be irreducible provided that Y is irreducible about
{p,q} for some p,q €Y.

Let us introduce here the notion of indecomposable continuum. For instance, this kind
of continua appear in the phase space of some functions of the exponential family.

Definition 2.1.3 (Indecomposable continuum). A continuum X is said to be de-
composable provided that X can be written as the union of two proper subcontinua. A
continuum which is not decomposable is said to be indecomposable.

One of the most important techniques for obtaining interesting examples of continua is
the use of nested intersections. Let us state a couple of results about them which will be
used later on.

Proposition 2.1.1. Let {X;}2, be a sequence of compact metric spaces such that X; D
X1 for each 1 =1,2,..., and let
X=X
i=1

If U is an open subset of X1 such that U O X, then there exists N € N such that U O X;
for alli > N. In particular, if each X; # 0, then X # 0 (and, clearly, compact metric).
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Proof. Assume to the contrary that for all i € N there exists z; € X;\U C X; \ U. Since
X1 \ U is a compact metric space, the sequence {z;}3°, has limit p € X; \ U. For every
k € N, X contains infinitely many x;, x; € X for all ¢ > k. Therefore, the limit point p
belongs to every set X} and hence belongs to their intersection, p € X. But since p ¢ U,
we get a contradiction with the assumption that X C U. Thus, it must exists N € N
such that X; \ U = (), or in other words X; C U. Observe that once this happens for
some N, since X;,; C X;, the same must happen for all i > N.

Suppose now that X = () and X; # () for all € N. Then we could choose U = () and
from the first part there would exist N € N such that X; = ) for all i > N, contradicting
our assumption. |

Theorem 2.1.2. Let {X;}°, be a sequence of continua such that X; O X;1 for each

1 € N. Then .
X:ﬂ&
=1

18 @ continuum.

To conclude this section we state a theorem that will be used in the proof of the first
Boundary bumping theorem. You can find a proof of it in [Nad92, Theorem 5.2].

Theorem 2.1.3 (Cut wire theorem). Let X be a compact metric space and let A, B
be closed subsets of X. If no connected subset of X intersects both A and B (equivalently,
no connected component of X does), then X = X; U Xy where Xy and Xy are disjoint
closed subsets of X with A C Xy and B C Xs.

2.2 Boundary bumping theorems

Given a topological space S and a subspace H C S recall that the boundary of H with
respect to S can be defined as

OH =HN(S\ H).

When we consider the boundary of a space H without specifying what is the space S that
we consider the boundary relative to, we will assume that S is the largest space under
consideration.

Theorem 2.2.1 (Boundary bumping theorem I). Let X be a continuum and let U
be a non-empty, proper, open subset of X. If K is a component of U, then K N oU # ()
(equivalently, since K C U and U is open, KN (X \U) #0).

Proof. Assume, by way of contradiction, that K NOU = ). K and dU are closed subsets
of U and note that no connected component of U intersects K and OU at the same time.
Indeed, all connected components are disjoint, therefore the only connected component
intersecting K is K itself and, by assumption, K N OU = (). Applying Theorem [2.1.3]
there are M;, My C U closed and such that My N M, =0, M; UM, =U, K C M, and
OU C My. Let Mz := My U (X \ U), a closed subset of X. Since U C U = M; U Mo,
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and since My, M3 C X we have X = M; U M3. Now we have
0#£KcC M, 0#£X\UC M
and hence M, M3y # (). On the other hand,
MyNMs=MN(MU(X\U))=MnNM)U(MNMNX\U))=MN(X\U)
because M; N My = (). Then
MiNM; CUN(X\U)=0U C M,

and therefore My N M3 C (M; N M) N M3 = (). Thus, X is the union of two non-empty,
disjoint closed subsets, contradicting the assumption that X was connected. Hence,

KNouU # 0. [ |

Corollary 2.2.2. Let X be a non-degenerate continuum. If A is a proper subcontinuum
of X and U is an open subset of X such that A C U, then there is a subcontinuum B of
X such that

ACB+#A, BCU.

In particular, every non-degenerate continuum X contains a non-degenerate proper sub-
continuum.

Proof. Let V' be a proper open subset of X compactly contained in U, V C U, containing
A. Since A is connected, let B be the component of V' containing A. We have A C B
and B CV C U. By Theorem m,

BN (X\V)#0

and since A C V', this implies that B # A.
The last claims follows from this taking A = {p} with p any point in X and U an open

set such that p € U and U # X. B C U is a non-degenerate proper subcontinuum of
X. [ |

Theorem 2.2.3 (Boundary bumping theorem II). Let X be a continuum, and let
E be a non-empty proper subset of X. If K is a component of E, then

KNOE #0
or, equivalently, since K CE, KN (X \ E) = 0K NOJE # .

\E) = 0. K # () by definition and since K C B =

Proof. Suppose that K N (X -
K # X. Therefore, K is a proper subcontinuum of X. Since
CFE,

X\(X\FE)and X \ E #
ﬁis open in X and K C

0,
E

by Corollary |2.2.2| there is a continuum B such that

KCB+K, BCE.

Then K is a proper subset of a g)nnected set B C U C E. This contradicts the fact that
K is a component of E, hence K N (X \ E) # 0. [ |

We will use this theorem in the following situation.

Corollary 2.2.4. Let X C C=CuU {oo} be a compact connected set containing oo and
E =X NC. Then every component of E is unbounded.
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2.3 Existence of non-cut points

Definition 2.3.1 (Non-cut point). Let S be a connected topological space, and let
p e S. If S\ {p} is connected, then p is called a non-cut point of S. If S'\ {p} is not
connected, then p is called a cut point of S.

If Y is a topological space, we will write
Y = PlQ

to mean that {P,Q} is a partition of Y (i.e. Y = PUQ, PNQ =0, P,Q # () and P,Q
are both open in Y. P and @) are open in Y if and only if they are mutually separated
inY, ie.

PNQ=PNnQ=1
and in this situation the condition P N Q) = () becomes trivial. It is very important to
remark that P and @ need not be connected and hence the expression Y = P|Q may not
to be unique as it is shown in the next example.

Example 2.3.1. Let Y = [-1,1] U [-1,1]i € C. Then 1,—1,7,—i are the only non-
cut points of this space. Y\ {0} is the disjoint union of four disjoint half-open intervals
I, I, I3, I;. Forinstance, we can write Y = ([1Ul)|(I3Uly) aswell as Y = I1|(1oUI3U1).

Proposition 2.3.1. Let S be a connected topological space and let C' be a connected
subset of S such that
S\C = A|B.

Then, AUC and BUC are connected. Hence, if S and C are continua, AUC and BUC
are continua.

Proof. Suppose that AU C = K|L. Since C is connected, either C C K or C' C L.
Assume, for instance, that C' C K. Then, L = (AUC)\ K C A. Since A and B are open
in S\ C,

LNBCANB=0, LNBCANB =1,

thus LN B = LN B ={0. We claim that
S=L|(BUK)

contradicting the fact that S is connected. Indeed, L, B, K # () by assumption and hence
also BU K # (). We have

LUBUK)=(KUL)UB=(CUAUB=S

and L and BU K are mutually separated in Y: since AUC = K|L, K and L are mutually
separated
LNK=LNK={

and hence

LN(BUK)=(LNB)U(LNK)=0, KN(BUK)=(LNB)U(LNK)=0.
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Thus, this contradiction tells us that A U C' is connected and, by symmetry, B U C too.
Finally, suppose that S and C' are compact. Then C' must be closed in S and therefore
both A, B must be open. Thus,

AuC=S8\B, BUC=S\4
are closed subsets of a compact set S, hence they are compact and continua. |

Lemma 2.3.2. Let S be a connected topological space. Assume that x,y € S are such
that

S\{z} = K|L, S\{y}=MIN.
Ifx € M andy € K, then NU{y} C K.

Proof. By Proposition [2.3.1, N U {y} is connected. Since x € M, x ¢ N U {y} and
therefore either NU{y} C K or NU{y} C L. If y € K,

(NU{gh)nK #0
and hence (N U {y}) C K. [ |

Theorem 2.3.3 (Non-cut point existence theorem). Let S be a non-degenerate
continuum. Assume that S has a cut point ¢ and S\ {c} = U|V. Then, there is a non-
cut point of S in U and there is a non-cut point of S in V. Hence, S has at least two
non-cut points.

Proof. Let N denote the set of all non-cut point of S which, of course, may be empty.
Suppose to the contrary that N C V', thus every point in U is a cut point of S. Let D
be a countable dense subset of S,

D={p, : neN}

Define n(1) :== min{n € N : p, € U}. Since U is non-empty and open in S, n(1) is well
defined. We have p,;) € U and hence is a cut point of S, let

S\ APy} = Ex|F}
so that ¢ € Fy. Lemma [2.3.2] implies
FLU{p.y} CU.

Now we can define n(2) := min{n € N : p, € Fi} and since Iy C U \ {p,1)} we have
n(2) > n(1) and pp) € U is a cut point,

S\APn)} = Eo|Fs

with p,a) € Eo. Again, by Lemma F> U{pn@} C F1. We can repeat this process
systematically. Given a partition

S\APu } = Ex|Fy
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with Fj, U {pn@ } € Fr—1 we can consider
n(k+1) :==min{n € N : p, € F;.} > n(k)
and since py41) € Fy, € Fr—y € --- C 7 C U, it is a cut point, let
S\NAPnkt1)} = Ers1lFra

with p,x) € FEj41. Finally, Lemma gives Fiy1 U {Pni+1)} € Fy and therefore
E), C Ej41. At every step, Proposition [2.3.1] ensures that

Fi1 U{pngesn b, B U Do) }
are continua. By induction we get two infinite collections of subcontinua of S,
{Frer Ut 2 Bkt U {pnn i

the first one being decreasing and the second one increasing. Consider

which by Proposition [2.1.1|is not empty, let p € F'. Then, using the De Morgan laws

S\F =JS\ (Fe U{paw}) = U (S\ Fr) 0 (S\ {Pniy }))

o0

= (J((Br U {pawy}) N (Br U Fy)) U
k=1

E' is a increasing union of nested connected sets, therefore it must be connected. Note
that the dense set D is entirely contained in E. We have

S\{p} DS\ F=EDD.

Since p € F' C U it must be a cut point, but if this was true we could write

S\{p}=AlB
where A and B are open. Since FE is connected, £ C A or ¥ C B. Assume, for instance,
that £ C A, then BN D = (), contradicting the fact that D is a dense set in S. |

The next corollary tells us that continua are irreducible about its set of non-cut points.

Corollary 2.3.4. Let S be a non-degenerate continuum. Let N denote the set of all
non-cut points of S. Then, no proper connected subset of S contains N .

The Non-cut point existence theorem is true for Hausdorff continua but you shall use
the Hausdorff maximal principle to prove it, which is equivalent to the Axiom of choice.
Using this, you can also obtain a version of Corollary for Hausdorff continua.
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2.4 Separation ordering

Definition 2.4.1 (Separating point). Let Z be a topological space and let p,q € Z
with p # ¢. A point z € Z is said to separate p and ¢ in Z provided that Z \ {z} = A|B
with p € A and ¢ € B. We will denote by S(p, q) the set of such points plus p and q.

Proposition 2.4.1. Let Z be a non-degenerate continuum. Then, Z has exactly two
non-cut points if and only if Z = S(p,q) for some p,q € Z.

Proof. Suppose that Z has exactly two non-cut points p and ¢. Let ¢ € Z \ {p, ¢} which
must be a cut point of Z, thus Z \ {c¢} = U|V. By the Non-cut point existence theorem
(Theorem [2.3.3)), one of the non-cut points must belong to U and the other one to V.
Hence, ¢ € S(p,q) and Z = S(p, q).

Conversely, if Z = S(p, q) for some p,q € Z, then the only possible non-cut points of Z
are p and ¢. But since by Theorem there must be two non-cut points in Z, p, q are
cut-points of Z. [ |

Lemma 2.4.2. Let Z be a connected topological space, and let p,q € Z with p # q. Let
z,y € S(p,a) \ {p, ¢} with

Z\{ZE}:A1|31:A2|BQ, peAlﬂAg, qEBlﬂBQ;
Z\{yt=C|D, peC, qeD.

Then, (1) and (2) below hold:
(1) If y € Ay U Ay, then CU{y} C A; N As.
(2) If y € By, then Ay U{z} C C.

Proof. Assume without loss of generality that y € A;. Since C and D are disjoint, then
either x € C' or x € D (or, in other words, either z ¢ DU {y} or x ¢ C' U{y}), thus

C’U{y}QAlUBl or DU{y}QAluBl

Moreover, since by Proposition C U{y} and DU {y} are connected and y € A; we
have
Cu{ypc A or DU{y}C A

and since g € BiN By, C X\ Ay and g€ D
CU{y} C A;.
On the other hand, since x ¢ Ay, ¢ C' U {y} and hence
CU{y} C Ay U By
but since p € Ay N C' and we already noted that C'U {y} is connected,
Cu{y} € A,
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and this together with the previous inclusion gives C'U {y} C A; N As. The proof is
analogous if you assume from the beginning that y € As.
To prove the second part, assume now that y € By = Z \ (A; U {x}). Then,

Aiu{z} CCUD
and, since A; U {z} is connected by Proposition [2.3.1]
Au{z}CC or A U{z}UD
but as p € A; N C, only the first one can hold. |

Corollary 2.4.3. Let Z be a connected topological space, and let p,q € Z with p # q.

(1) For each x € S(p,q) \ {p, q}, there exist unique sets P, and Q, such that

S, ) \{z} = P|Qs, pE P, q€Q,.

(2) If Z is a Fréchet space (or Ty) then P, and Q, are open in the subspace topology
for S(p, q).-

Furthermore, if x,y € S(p,q) \ {p, q} with x # y, then:
(5) y € Py UQy;
(4) if y € Py, then P,U{y} C P,;

(5) if y € Qqu, then P, U{x} C P, and, thus, x € P,.

Proof. Let us prove each one of these items:

(1) Suppose that Z \ {z} = A;|B; = As|By. By Lemma (1), given y € S(p,q) \
{p,q}, if y € A; then y € A; N Ay, thus

AN S(p,q) = AN S(p,q)

and hence also By N S(p,q) = By N S(p,q). Therefore the sets P, := Ay N S(p,q)
and @, := B; N S(p,q) must be unique.

(2) By definition, P, and @, are open in S(p,q) \ {x}. Since Z is Fréchet, every single
point is a closed subset and hence S(p,q) \ {z} is open in S(p,q). Hence, P, and
Q. are open in S(p, q).

(3) It is just because x # y.

(4) This is a direct consequence of Lemma (1). Using the notation from there, if
y € P, =ANS(p,q), then

P,u{y} = (CNSp.q) U{y} =(CU{y})NS(p.q) € (AiNA)NS(p,q) = P
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(5) This follows from Lemma[2.4.2] (2). If y € Q, = B1 N S(p,q),
P, U{z} = (AN S(p.q) U{z} = (A U{z})NS(p.q) SCNS(p,g) =P,

Definition 2.4.2 (Separation ordering). Let Z be a connected topological space and
let p,q € Z with p # q. We denote by <, the separation ordering for S(p,q) defined by:

e for any z € S(p,q) \ {p}, p <s %
e for any z € S(p,¢) \ {q}, z <s ¢;
e for any z,y € S(p,q) \ {p,q},
r=<sy & x€b
where P, is such that S(p,q) \ {y} = P,|Q, and ¢ € Q.

Let us recall what are the properties that must satisfy a simple ordering. In Lemma|2.4.5
we check that indeed < is a simple ordering on S(p, q).

Definition 2.4.3 (Simple ordering). A binary relation < for a set Y is called a simple
ordering (or strict total ordering) provided that

(i) < is irreflexive: no element is related to itself, * < y = x # y;
(ii) < is transitive: if x < y and y < z then = < z;
(iii) < is total: if z # y then either z < y or y < x.

Lemma 2.4.4. A totally ordered set X with the order topology is a completely normal
Hausdorff space (usually called Ts or completely Ty), this is a completely normal space
which is Fréchet. In particular, it is a Hausdorff space.

Lemma 2.4.5. The separation ordering <4 for S(p,q) is a simple ordering.
Proof. Let us verify that <, satisfies the three properties above:

(i) Trreflexivity. By definition, p A, p and ¢ 4, q. If z € S(p,q) \ {p, ¢}, by Corollary
2.4.3[ (1), ¢ P, and thus z #4; 2.

(ii) Transitivity. Let © <; y and y <5 2. If x = p or z = ¢ it is clear because they are
respectively smaller and greater than any other point. Otherwise, we have

re€ P, CP,U{y}CP,
by Corollary (4). Hence z € P, and = <, z.

(iii) Totality. By definition, the extrempoints p and ¢ are comparable to any other point.
Since x # y, as remarked in Corollary (3),y€e P,UQ,. Ifye€ P, theny <,
and we are done. Otherwise, if y € (), then, by Corollary (5), z € P, and
therefore x <, y.

Thus, < is a strict total ordering on S(p, q). [ |
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We have defined a total ordering on S(p, q) using only its topological properties. Con-
versely, every totally ordered set admits a topology coming from the order. This notion
generalizes the Euclidean topology of R.

Definition 2.4.4 (Order topology). Given a totally ordered set (X, <), the open
intervals
(a,b)s:={reX : a<b<c}

form a basis of the order topology in X. Equivalently, the set of all unbounded open
intervals

(a,00)x:={reX : a<z}, (—o00,b)x:={reX : x<b}
form a subbasis of this topology.

Proposition 2.4.6 (Separation order topology vs subspace topology). If Z is
Fréchet, the separation order topology for S(p,q) is contained in the subspace topology for

S(p,q).

Proof. Let Ts be the subspace topology for S(p,q) induced by the one of Z. For every
x € S(p,q) consider

Upi=(—00,1)5, ={y € S(p,q) : y=<sz}, Vii=(x,00)5, ={yeSpq : =<y}

Since these sets form a subbasis of the topology of S(p,q), it is enough to check it for
them. By irreflexivity, no point is related to itself and, in particular, p £, p and q 4, q.
By (1) in the definition of separation ordering, every point y € S(p, q)\{p} satisfies p <5 y
therefore V, = S(p, ¢) \ {p}. If y <, p then by transitivity we would have p <, p which is
not possible by irreflexivity, hence U, = ). Similarly, by (2) every point y € S(p, ¢) \ {q}
satisfies vy <5 ¢, U, = S(p,q) \ {¢}, and ¢ 4s y in order not to contradict irreflexivity,
V, =10. Thus, U, =V, =0 € Ts and, since Z is Fréchet, U,,V,, € Ts too.

On the other hand, if z € S(p,q) \ {p, ¢} by (3)

UN\Ap,a} = P\ {p, ¢}

Like before, p € U, and g ¢ U, by definition and, by (1) of Corollary p € P, and
q ¢ P,. We have U, = P, and (2) of the same corollary tells us that P, and @), are both
open in the subspace topology. Hence, U, € Ts. Since S(p,q) \ {z} = P.,|Q. and the
separation ordering is total,

V. \Ap, ¢} = Q. \ {p, 4}

Similarly, p ¢ V, and ¢ € V, by definition and, by (1) of Corollary [2.4.3] ¢ € Q. and
p ¢ Q. because Q, is disjoint of P, and p € P,. [ |

2.5 Non-cut point characterization of the arc

The goal of this section is to prove an order characterization of the arc. In the next
chapter, we will define an ordering for some components of the Julia set in terms of the
dynamics of the function and then thanks to this we will be able to ensure that this
components are arcs.
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Theorem 2.5.1. Let Z be a non-degenerate continuum. If Z has exactly two non-cut
points, then Z = S(p,q) for some p,q € Z and the topology of Z is equal to the separation
order topology in Z. Conversely, if Z is endowed with the order topology then Z has
exactly two non-cut points.

Proof. Let T be the topology of Z. Suppose that Z has exactly two non-cut points.
Then, by Proposition 2.4.1, Z = S(p, q) for some p,q € Z and, by Proposition [2.4.6] if
T’ denotes the separation order topology of Z then 7" C T'. Therefore, the identity map
from (Z,T) to (Z,T") is continuous. Since (Z,T') is a compact space and by Corollary
2.4.3[(2) (Z,T) is Hausdorff, the identity provides a homeomorphism between (Z,T") and
(Z,T") and hence both topologies are equal.

Conversely, let T be the order topology coming from some total order < on Z. Since Z
is compact, there exist p,q € Z such that p < z for all z € Z \ {p} and z < z for all
z € Z\ {q}. Explicitly, consider a cover A of Z by open sets of the form

Uy, ={z€Z : a<2z}

and since Z is compact there will be a finite subcover of A, take p to be the minimum of
the finite number of values of a from the subcover. You can construct ¢ in an analogue
way. Since T is the order topology, every z € Z \ {p, ¢} is a cut point, namely

Z\{z} = (=00, 2)<(2,00)«

and hence, the only possible non-cut points are p and g. By Theorem [2.3.3] Z must have
at least two non-cut points, thus p and ¢ must be cut points of Z. |

We would like to remark that Proposition and Theorem [2.5.1| can also be stated
for Hausdorff continua if you use the more general version of the Non-cut point existence
theorem which requires the use of the Axiom of choice in its proof. But we will apply
this to subsets of C, which is a metric space.

Theorem 2.5.2 (Non-cut point characterization of the arc). A continuum X is
an arc if and only if X has exactly two non-cut points.

Proof. Suppose that a continuum X has two non-cup points. Then, by Theorem [2.5.1}
X = S(p, q) for some p,q € X and has the topology induced by the separation ordering
<. Let C be a countable dense subset of X \ {p, ¢},

C={c¢ : n=1}
and let D be the set of all dyadic rationals in (0, 1),
D={k/2m : k<2" k>1 m>1}C (0,1)nQ.

We are going to construct an order isomorphism between C' and D. Let f(c;) = 1/2.
Since C' is a dense set, there are n(1,1),n(1,2) € N such that

D <s Cp(1,1) =s €1 <5 Cp(1,2) =s G-

Note that S(p,c1) and S(cq,q) are open subsets with the separation topology of S(p, q).
Let f(cna,1)) = 1/4 and f(cna,2)) = 3/4. In the next step we can find four middle points
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and assign them to 1/8, 3/8, 5/8 and 7/8. Observe that this covers all the points with
denominator 22 because 2/8 = 1/4, 4/8 = 1/2 and 6/8 = 3/4 were already assigned. We
can proceed inductively. In the kth step we will have constructed

1— 2k
sz: — — 92k _1

points. Let us call them c,(k), k € {1,...,2F —1}. By the same argument before, we
can find 2 middle points between them

P <5 Cn(k71) ~s Co’(l) <s - <s Co-(glc,l) <5 Cn(k,Qk) <5 q.

and assign them to the points in D of the form

g ged(a, 27 = 1.
Now we have defined the image of 2 — 1 4 2¥ = 28¥1 — 1 points. In the limit, all points
in C' have an image in D. f is an order isomorphism,

Ci < Cj = f(CZ) < f(Cj).

This is satisfied by construction, if a point lies between two points then its image will
be defined between the images of these points. Define now a function h : S(p,q) — I
extending f: h(p) :=0, h(q) := 1, h(c) = f(c) if c € C and

h(z) :=sup{f(c;) : ¢; € C, ¢; <5z} =inf{f(c;)) : ¢ € C, x <5 ¢}

for all z € X'\ (CU{p, ¢}). Since every point in X can be approximated by points in C' and
every point in I can be approximated by points in D we claim that h is a homeomorphism
from X to I. Furthermore, h is order-preserving: let z,y € X \ (C' U {p,q}) such that
z <4 ¥, then there is w € C' such that z <, w < y, thus

h(z) =inf{f(c;) : ¢ €C, 2 <5} < fw) <sup{f(e) + 6 €C e =5y} = f(y)

and the claim follows from the injectivity of h.

Conversely, it is clear that an arc has exactly two non-cut points. If h is a homeomorphism
from I to X then h(0) and h(1) must be non-cut points and every other h(x) must be a
cut point for x € (0, 1). [ |

Putting these two theorems together we obtain a characterization of the arc in terms of
its ordering.

Corollary 2.5.3 (Order characterization of the arc). Let X be a continuum. Sup-
pose that there is a total ordering < on X such that the order topology of (X, <) agrees
with the metric topology of X. Then either X consists of a single point or there is an
order-preserving homeomorphism from X to the unit interval.
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Chapter 3

Introduction to transcendental
dynamics

Complex dynamics studies the iteration of holomorphic functions on some domain of the
Riemann sphere C = C U {oo}. In this chapter we introduce the basic notion of this
area. For a complete proof of all these facts we refer to [Mil06] for the rational case and
to[Sch10] for the entire transcendental case.

3.1 Iteration of holomorphic functions

By iteration of a point zy € C by a holomorphic function f we mean the image of 2z
under the self-composition of the function f, f* = fo "o f. The point zy is usually
called the seed of the iteration.

Definition 3.1.1 (Orbit). Given a point z € 2 C C and a function f analytic on €, we
can consider the sequence

O™ (20) = {f"(20)}nz0
called the positive orbit of zy and the set
O(z) :={z€C : ImneN, f"(z)=f"(2)}
called the grand orbit of zj.

Note that grand orbits are completely invariant sets, f(O(zp)) = O(z). The goal of
complex dynamics is to understand what is the structure and the behaviour of these sets
for every analytic function. Let us introduce now a very special kind of orbits.

Definition 3.1.2 (Periodic orbit). Let z, € C and f be a holomorphic function. We
say that 2 is a periodic point under f if there is k € N such that f*(z) = 29. The period
of a point is the minimum integer with this property. If the period is k = 1, then we say
that zg is a fixed point.

Observe that if 2z, is a p-periodic point of f then it is a fixed point of the map fP.
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Definition 3.1.3 (Preperiodic point). A point z; € C is said to be preperiodic under
f if there is some n € N such that f™(zy) is a periodic point, i.e.

S (z0) = fM(20)

for some k£ € N.

Figure 3.1: Scheme of the grand orbit of a preperiodic point zg. Observe that w has period
3. The red points are the positive orbit of zj.

As a curiosity, let us say that a transcendental entire map does not need to have a fixed
point (e.g. f(z) = e* + 2 # z for every 2 € C) but f? has to have a fixed point.
Berweiler showed in [Ber91] that entire transcendental functions have infinitely many
periodic points of every period n > 2, proving a conjecture of Baker. Now we want to
study the behaviour of the points nearby a periodic orbit.

Definition 3.1.4 (Stability of a periodic orbit). Let zy be a p-periodic point of a
function f and denote 23 := f*(20), k=1,...,p — 1. Consider

Ar(z0) = (") (20) = f'(20) - f'(z1) - f'(2p-1)
the multiplier of the orbit of 2y under f, then
o if A\¢(20) = 0 we say that z, is a superattracting periodic point;
o if |[A\(20)] < 1 we say that 2z is an attracting periodic point;
o if [Af(z0)| > 1 we say that zg is a repelling periodic point.

Every (super)attracting periodic point zq is equipped with a neighbourhood of points that
converge to it under iteration by f. Similarly, every repelling point has a neighbourhood
of points that are mapped outside of it eventually.

Definition 3.1.5 (Basin of attraction). Let zy be a (super)attracting periodic point
of a function f. The attracting basin of z is defined as

As(z) =1z € C : " (z) = 20}

Note that it may not be a connected set. We denote by A}(zo) the connected component
of As(zp) containing 2z, and we call it the immediate attracting basin of z.
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Definition 3.1.6 (Parabolic point). Let zy be a p-periodic point for some function f.
Then we say that zg is a parabolic point if

Ay(z0) = €7/

for some p, ¢ € Z such that (p,q) = 1. We call parabolic basin of attraction to the set of
points converging to a parabolic point.

The major difference between a regular attracting basin and a parabolic basin of attrac-
tion is that if the periodic point is parabolic then it is located in the boundary of the
basin while otherwise it lies in its interior.

Observe that for a polynomial oo is always a superattracting fixed point, therefore we
always have an attracting basin Ap(co) in the phase space. If you consider a rational
function, still analytic on @, oo is no longer a special point: it has a well-defined image
and some preimages (poles) as well. Conversely, there is a substantial increase of difficulty
when you study entire transcendental functions, i.e. entire functions for which oco is an
essential singularity.

Definition 3.1.7 (Essential singularity). Let U C C be a domain with a € U and let
f: U\ {a} — C be a holomorphic function. Then « is said to be an essential singularity
if the Laurent series expansion of f arround « has infinitely many terms with negative
powers of (z — «).

Lemma 3.1.1. A point « is an essential singularity for f if and only if the limit of f(2)
as z — « does not exitst.

Definition 3.1.8 (Transcendental function). A function is said to be transcendental
if it has at least one essential singularity.

Example 3.1.1. The point at oo is an essential singularity for the exponential map or,
equivalently, 0 is an essential singularity for exp(1/z). Observe that
1 1 1
1/z __
e =1 b s b e
z o 2122 0 3123
is the Laurent series expansion of exp(1/z) around the origin. On the other hand, the
directional real limits
lim e/ = lim ¢’ =0, lim e’/*= lim ¢’ = +o0
z—0~ Y——00 z—0t y——+00
show that the limit of exp(1/z) at z = 0 does not exist. Other examples of entire
transcendental functions are sin(z) and cos(z).

The following theorem illustrates the chaos in the dynamics of a function introduced by
an essential singularity.

Theorem 3.1.2 (Great Picard theorem). If an analytic function f has an essential
singularity at a point w, then on any open set containing w, the function f takes on all
possible complex values, with at most a single exception, infinitely often.

Therefore, if f is an entire transcendental function, when you map close to co in the next
iterate you can be mapped everywhere. This injects a lot of chaos to the dynamics of the
function and makes it more interesting.
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3.2 Domains of normality

All the points in the attracting basin of some periodic point behave in a similar way. In
this sense we say that they have a stable behaviour. On the other hand, the points in
the boundary of an attracting basin behave in a more chaotic way. To formalize this, let
us introduce the notion of normality.

Definition 3.2.1 (Normality). Let F be a family of analytic functions on some domain
Q). We say that F is a normal family (in the sense of Montel) if every infinite sequence
in F contains a subsequence which converges uniformly on compact subsets of €.

Definition 3.2.2 (Fatou and Julia sets). Let f be an analytic self-map of a domain
D C C. We call the Fatou set of f, denoted by F(f), to the set of points that have a
neighbourhood U C D where the family of iterates F = { f%}n is normal in the sense of
Montel. The complement J(f) = D \ F(f) is called the Julia set of f and has chaotic
behaviour.

Throughout this chapter and the next one the domain D will equal C or C but we have
stated the definition in a more general context to fit the setting D = C* in the last
chapter as well.

Theorem 3.2.1 (Montel’s theorem). If U C C and there are a,b,c € C pairwise
distinct such that f, : U — C\ {a,b,c} for alln € N, then {f(g]}n is a normal family.

Corollary 3.2.2. If z € J(f) and U is any neighbourhood of z, then

U )

neN
covers the whole Riemann sphere C with the exception of, at most, two points.

Lemma 3.2.3 (Characterization of the Julia set). Let f be an entire function. Then
J(f) is the closure of the set of repelling periodic points of f.

Proposition 3.2.4 (Properties of the Fatou and Julia sets). Let f be an entire
transcendental function or a polynomial of degree greater than 2. Then,

o J(f) and F(f) are forward invariant;
o J(f) is closed and F(f) is open,

e J(f) is non-empty, unbounded and has not isolated points;

o foralln>1, J(f*)=J(f) and F(f") = F(f).

Lemma 3.2.5 (Filled Julia set). Let P be a polynomial. Then K(P):=C\ Ap(co) is
called the filled Julia set and J(P) = 0K (P).
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Figure 3.2: Polynomial Julia sets. The colors indicate the number of iterates needed to
escape some bound. In black, the filled Julia set K(P). TL: P(z) = 22 — 0.12 + 0.74i (the
Douady rabbit); TR: P(z) = 2% + i (dendrite); BL: P(z) = 2% + 0.486 + 0.54i (Cantor dust);
BR: P(z) = 23 — 1.082 — 0.161 (a disconnected Julia set). z € [~2,2] + i[-2, 2].

Figure [3.2] shows four examples of polynomial Julia sets which are different from the
topological point of view. In the first one, 0 belongs to a superattracting 3-cycle and the
Julia set is the boundary between Ap(oco) and Ap(0). On the right hand side, F/(P) =
Ap(oo) and hence J(P) = K(P). When this happens, we usually say that J(P) is a
dendrite. Downstairs we have two disconnected Julia sets. On the left, we have what
is called a Cantor dust, i.e. a totally disconnected, compact, perfect set. On the right,
the Julia set is disconnected but not totally disconnected. This last case cannot occur
for polynomials of degree two because it requires to have two critical points, one of them
escaping to oo and the other one being periodic, we will discuss this in the next section.
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3.3 Classification of the Fatou components

Now we focus in the study of the Fatou set. We want to understand what are the
possible dynamics for the connected components of F(f) for any entire function f. We
have already seen two examples of such components: attracting basins and parabolic
basins of attraction are Fatou components.

Definition 3.3.1 (Siegel disc). A Siegel disc (or rotation disc) is an open set confor-
mally equivalent to D containing a fixed point zg and such that the dynamics there are
conformally conjugated to an irrational rotation Ry(z) = €™ 6 € R\ Q, on D.

Figure 3.3: Siegel disc. Phase space of the function Py(z) = Az(1 + z) with A\ = €2™ and

0= ‘/52*1, z € [=2,1] +i[—1,1]. The origin is a fixed point with multiplier \. The boundary of
the Siegel disc has been drawn in blue and there are some invariant curves in green containing
the points —0.1,—0.2, —0.3, —0.4. All the other components of the Fatou set are preimages of

it.

Definition 3.3.2 (Herman ring). A Herman ring (or rotation ring) is an open set
conformally equivalent to an anulus A such that the dynamics there are conformally
conjugated to an irrational rotation Ry(z) = e*™ 6 € R\ Q, on A.

Lemma 3.3.1. Fvery Herman ring requires the existence of a pole inside the bounded
component of its complement. Thus, entire maps cannot have Herman rings.

Proof. Let v be an invariant curve inside the Herman ring. On ~ the dynamics are
conjugated to an irrational rotation. Thus, for every point 2y € 7,

sup | f"(z0)| < max |z| =: M.
neN z€y

Call U the bounded component defined by . U contains the inner boundary of the
Herman ring, therefore it contains points of the Julia set. Let V' C U be a neighbourhood
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Figure 3.4: Herman ring. Phase space of the function f(z) = ethzz% with £ = 0.6151732
and z € [—4,8]+1i[—3, 3]. In orange, A¢(c0) and, in blue, Af(4). The boundaries of the Herman
ring have been drawn in blue and red. All the other Fatou components are preimages of it.

of one of these points. By Corollary , the iterates of VV must cover the whole C with
the exception of, at most, two points. Therefore, there is some point in zg € V such that
|f"(20)] > M for some n € N. Applying the Maximum modulus principle to f™ on U,
since the maximum of |f™(z)| lies not in v = OU but inside U and f" is not constant,
we conclude that f™ cannot be holomorphic, it must have a pole in U. Hence, there is a
pole of f in f™(U) for some m < n. |

These sets are named after Carl Ludwig Siegel (1896-1981) and Michael Robert Herman
(1942-2000). In 1918, Pierre Fatou proved the following classification theorem for the
periodic Fatou components of a rational function.

Theorem 3.3.2 (Fatou classification theorem). Let f be a rational function. If U is
a periodic component of F(f) then either

e U is a (super)attracting basin, or

e U is a parabolic basin of attraction, or
o U is a Siegel disc, or

e U is a Herman ring.

The proof of this theorem is out of the scope of this project, you can find it in [Mil06,
Theorem 13.1]. A priori, some components of the Fatou set may not be periodic nor
preperiodic, this type of components are called wandering domains.

Definition 3.3.3 (Wandering domain). A wandering domain is a domain U such that
fMU)N f™U) =0 for all n,m € N, n # m.
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In 1985, Dennis Sullivan discarted the possibility of existence of wandering domains for
rational functions, thus completing the classification of the Fatou components for rational
functions.

Theorem 3.3.3 (No wandering domain theorem). Let f be a rational function. Then
every component of the Fatou set must be either periodic or preperiodic, there cannot be
wandering components.

The situation is different for transcendental functions. If the function has an essential
singularity there can be another type of Fatou component.

Definition 3.3.4 (Baker domain). A Baker domain (or parabolic domain at infinity)
is a forward invariant domain on which the sequence of iterates converges uniformly on
compact subsets to the constant limit function co, which must be an essential singularity.

They received their name in honour of Irvine Noel Baker (1932-2001). The proof of
the classification theorem for the Fatou components of entire transcendental functions
goes back to the early 90’s. We will continue this discussion in Section studying the
Fatou components of the self-maps of the punctured plane, functions with two essential
singularities.

3.4 Singular values

The study of singular values is important for two reasons. First of all, we will see that
nearly every Fatou component has associated a singular value and therefore computing
the orbits of the singular values of a function gives us information about the composition
of its Fatou set. On the other hand, they are problematic points in the sense that prevent
the function to be conformal or to be a regular covering.

Definition 3.4.1 (Singular value). Let f : C — C be a meromorphic function. We
call a point a € Ca singular value of f if for every open neighbourhood U of a there
exists a component V of f~1(U) such that f: V — U is not bijective. We will denote by
S(f) the set of all finite singular values of f.

Definition 3.4.2 (Critical value). We say that ¢ is a critical point of order n if 0 =
flic) = -+ = f™(c) and f*+V(c) # 0. At a small neighbourhood of these points, the
function f behaves like 2z and therefore it is non injective. Thus, the image of a critical
point v = f(c), what is called a critical value, is a singular value.

If the function we are considering has essential singularities, there is another kind of
singular values to take into account.

Definition 3.4.3 (Asymptotic value). A point a € C is an asymptotic value of f if
there exists a curve v : [0, +00) — C such that

li = =1 )
Jim [y(#)] =00 and a= lim f(y(t))
Since the function f is not defined at oo, every asymptotic value is a singular value.
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Lemma 3.4.1. S(f) is the closure of the set sing(f~'), the set of all finite critical and
asymptotic values.

The next theorem explains what is the relation between the singular values and the Fatou
components. Check [Mil06] for a proof of it.

Theorem 3.4.2 (Singular values and Fatou components). Every cycle of attracting
and parabolic Fatou components contains a singular value. FEvery Siegel disc and Herman
ring requires that the orbit of respectively one and two singular values accumulates in
their boundary.

This is a powerful tool to detect quickly the presence of these Fatou components. For
instance, a rational function of degree d has at most 2d — 2 critical points, therefore this
gives us an upper bound for the number of Fatou components.

Now let us introduce some special classes of functions depending on the geometry of its
singular set. Many of the theorems in transcendental dynamics are restricted to these
classes.

Definition 3.4.4 (Eremenko-Lyubich class B). We say that an entire function f
belongs to the class B if S(f) is a bounded set.

Example 3.4.1. Every non-trivial function in the exponential family Ey(z) = \e* is of
class B because the only singular value is 0. If A ¢ 0, E) has no critical points and 0
is the only omitted point, hence it must be an asymptotic value. Recall that by the Big
Picard theorem, an entire transcendental function omits at most one point. See Section

3.6l

The exponential family is the main example that motivated all this theory. In some
sense, the maps that we study here share the global behaviour with exponential maps.
Once this family was better understood, Devaney and Tangerman moved to study a more
general class of functions.

Definition 3.4.5 (Critically finite function). An entire transcendental function is
said to be critically finite if S(f) is a finite set.

In their article [DT86] they considered critically finite entire functions satisfying certain
growth conditions. They proved that this functions have ’Cantor bouquets’ in their Julia
sets, see Section for a disambiguation about the term Cantor bouquet. For instance,
their results apply to s(z) = sin(z) and ¢(z) = cos(z). Note that these functions are all
in B. The setting considered by Rempe et al. in [RRRS11] is much more general, they
study finite composition of functions f € B of finite order.

3.5 Cantor bouquets

Cantor bouquets are a very interesting object from the topological point of view, for
instance see Theorem for a really surprising property. In the next section we will
show that they are very related to the iteration of transcendental functions. You can find
non-equivalent definitions of what is a Cantor bouquet in the literature. We will use the
one introduced by Aarts and Oversteegen in [AO93] in terms of straight brushes.
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Definition 3.5.1 (Straight brush). A subset B of [0, +00) x (R\ Q) is called a straight
brush if the following properties are satisfied:

(a) Hairiness: for every (z,y) € B there exists ¢, > 0 such that
{z : (z,y) € B} = [t,, +00).

(b) Density: the set {y : Jz, (x,y) € B} is dense in R\ Q. Moreover, for every
(x,y) € B there exist two sequences of hairs attached respectively at 3,7, € R\ Q
such that 8, <y < v, Bn, 7 — y and tg,,t,, — t, as n — oo.

(c) Compact sections: the set B is a closed subset of R?.

The set [t,, +00) X {y} is called the hair attached at y and the point (¢,,y) is called its
endpoint. The set of endpoints is usually called the crown of the straight brush.

Proposition 3.5.1 (Accessible points of a straight brush). Let B be an straigh
brush. If (z,y) € B is not an endpoint, then (x,y) is not accessible from R*\ B in the
sense that there is no continuous curve 7 : [0,1] — R? such that y(t) ¢ B for 0 <t < 1
and (1) = (x,y). On the other hand, the endpoint (t,,v) is accessible from R*\ B.

Theorem 3.5.2 (Connectivity of the crown). Let £ be the crown of some straight
brush. Then & =& U {oo} is a connected set, but £ is totally disconnected.

Definition 3.5.2 (Cantor bouquet). A Cantor bouquet is any subset of the plane that
is ambiently homeomorphic to a straight brush.

In [DT86], they define a Cantor N-bouquet as a set homeomorphic to the Cartesian
product of a Cantor set and a closed interval I. Then they say that a Cantor bouquet is
a limit of such sets. Observe that this is not equivalent to the above definition.

Theorem 3.5.3. Any two straight brushes By, By C R? are ambiently homeomorphic.
That is, there is a homeomorphism ¢ : By — By that can be extended to a homeomorphism
¢ :R? — R2,

3.6 The exponential family

In this section we will sketch the construction of the Julia set of a transcendental function
explicitly. After this we will describe the dynamics of the exponential family for positive
real values of the parameter. For a complete proof of these results we refer to Devaney’s
articles [DT86], [Dev94] and [Dev99).

Definition 3.6.1 (Exponential family). The ezponential family is given by
E\(z) = Aexp(z)

where A € C* = C\ {0}. Sometimes it is formulated as

Bu(z) = exp(2) + a

with @ € C. Both families are conformally conjugated through the exponential map.
Explicitly, the map F, is conjugated to the map E) such that A = e®.
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Usually the function F.(2) = e e* is among the transcendental functions with a simpler

Julia set.

Theorem 3.6.1. J(E;.) is an uncountable union of simple closed curves, each of them
connecting a point in C to co. The Fatou set is connected and consists of the attraction
basin of the attracting fived point of E ..

Sketch of the proof. Let us construct this set explicitly. For simplicity denote E := E ..
It is easy to see that as a real function Eg only has one fixed point, £(1) = 1 and
E’(1) = 1. This neutral fixed point is attracting on the left and repelling on the right.
Denote by B the parabolic basin of attraction of this point, B = Ag(1). Consider the
left half-plane

H={2e€C : Rez < 1}.

Observe that £ maps H to D C H. The map f is a contraction on H,
1
Vze H, |E'(z)|=-exp(Rez) <1
e
and hence H C B. Let

J={2€C : Vn>0, f"(2) e C\ H}.

Observe that the horizontal rays Ry with Im 2z = (2k + 1) and Re z > 1 are mapped to
the negative real axis R_ C H. Indeed,

1 . 1
E(z) = —eR*e"™* = —eR* (cos(Im z) + i sin(Im 2))
e e

and therefore

1 1 1
Re E(Ry) = —e®*cos(Im2) = ——e* <0, ImE(R;) = —e®“sin(Im z) = 0.
e e e

Thus, for every k € Z, R, C C\ J. Moreover, the same is true for an open neighbourhood
of each curve. The preimage of H consists of C except a collection of unbounded Jordan
domains containing each one a ray Ry. Each of these domains is mapped to the right half-
plane C\ H bijectively. Therefore, every domain contains a preimage of all the domains.
This leads to another collection of unbounded jordan domains inside every previous one.
Continuing inductively we get a sequence of nested unbounded Jordan domains, which in
the limit is an infinite set of injective curves tending to co. Namely, a Cantor bouquet.

0

You have a picture of the Julia set of this function in Figure [3.5. Below we describe the
phase space of E) for parameters A € R,. The following theorem is proved in [Dev99,
Theorems 3.4 and 5.4].

Theorem 3.6.2. Let E)\(z) = Aexp(z). If 0 < A < 1/e then J(E)) is a Cantor bouquet.
On the other hand, if A > 1/e then J(E,) = C.

For 0 < A < 1/e the Fatou set consists of an attracting basin. When A > 1/e this is
replaced by an invariant set which is an indecomposable continua.

Example 3.6.1. The Julia sets of Sy(z) = Asin z for A € (0,1) are Cantor bouquets as
well.
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Figure 3.5: Cantor bouquet. Phase space of E)(z) = Aexpz with A = 0.367879441 < 1/e,
z €10, 4n] + i[—m, 7).

Figure 3.6: Undecomposable continua. Phase space of E1(z) =expz (A=1> 1/e). L:
z €7; R: a zoom of it.

3.7 Escaping set and dynamic rays
Definition 3.7.1 (Escaping set). Let f : C — C, we call escaping set to
I(f) ={2€C : |f"(2)] — oo}.

By definition, I(f) is forward invariant. Eremenko proved the following properties for
the transcendental case, see [Ere89].

o8



Proposition 3.7.1 (Properties of I(f)). Let f be an entire transcendental function.

Then,
o I(f)NJ(f)#0;
o J(f)=0I(f);

e all the components of I(f) are unbounded.

Note that the second property is a third characterization of J(f) for the transcendental
case. It generalizes what happens for polynomials. If P is a polynomial of degree greater
or equal than two, then J(P) = 0K (P) where K(P) = C\ Ap(c0), the filled Julia set of
P.

Proposition 3.7.2. If f € B then I(f) C J(f). In particular, I(f) has no interior.

Definition 3.7.2 (Ray tail). Let f : C — C be an entire transcendental function. A
ray tail of f is an injective curve

7 :[0,00) = I(f)

such that |F™(v(t))] — 400 as t — oo for all n > 0 and such that |F"(y(t))] — +o0
uniformly in ¢ as n — oo.

Definition 3.7.3 (Dynamic ray). Let f be an entire function. A dynamic ray of f is a
maximal injective curve 7 : (0,00) — I(f) such that 7|y is a ray tail for every t > 0.

Proposition 3.7.3 (Escaping points on rays). Let f : C — C be an entire function
and let z € 1(f). Suppose that some iterate f*(z) is on a ray tail v, of f. Then either z
is on a ray tail, or there is some n < k such that f™(z) belongs to a ray tail that contains
an asymptotic value of f.

In particular, there is a curve v connecting z to oo such that f],, tends to co uniformly

(in fact, f*(70) S & )-

Proof. Suppose that 7, : [0,00) — C is a parametrization of such ray tail and 7;(0) =
f*(2). We call v:[0,T) — C a lift of 7, starting at f*=Y(2) if

e 7(0) = f*I(2) (ie. 4(0) is a preimage of f*(2));
o VL€ [0,T), f(7(t)) = m(t);

The set of all these curves is a partially ordered set: if v, : [0,7}) — C and 7 : [0,T3) — C
are two of such lifts, we say that v, < v if T} < Ty and Vi < T, 1 (t) = 72(t). Note that
this set is not empty, f*~1)(2) is always a preimage of f*(z) and a single point can also
be considered a lift. In this set, every chain {~, : [0,7,) — C}, has an upper bound: let
T. be the supremum of {T,}, and take 7, : [0,7,) — C given by 7.(t) = Yo, (t) for any
ag > t. Then by Zorn’s Lemma there exists a maximal curve y;_; : [0,7) — C satisfying
the two properties above.

Now we have two possibilities, either 7' = oo or not. In the first case, yx_1(¢) must tend
to oo as t — oo, otherwise we would have

Fz0) = f (Jim s (8)) = Tim f (31(8)) = Jim (t) = o0
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so 2y would be a pole of f contradicting the assumption that f is entire. Thus, f*~1(z)
is on a ray tail. Now consider the case T' < oo and let

~

w = }LIr%vk_l(t) e C.

Again, it cannot happen that f(w) = oo, so f(w) = Y(ty) for some ¢, € [0,00). In
this case, vx_1 could be prolonged, contradicting its maximality. Note that if w was
a critical point we would need to choose a branch of the inverse. Thus, w = oo and
v(T') is an asymptotic value of f (possibly co). Then either we have found a ray tail
Vi1 € f7H () € I(f) connecting f*#~1(2) to oo or 4, contains an asymptotic value.

Finally we will proceed by induction. At each step, due to the above reasoning, we can
either construct a new rail tail connecting f7(z) to oo or we find an asymptotic value of
f. After k steps, if we have not found an asymptotic value, we are going to have a ray
tail vy connecting z to oo. |

Regarding the escaping set and dynamical rays Alexandre Eremenko conjectured the
following:

e cach component of I(f) is unbounded (weak Eremenko’s conjecture);

e every point in I(f) can be joined with co by a curve in I(f) (strong Eremenko’s
conjecture).

As we have explained in the Introduction, the article [RRRS11] gives a negative answer
to strong Eremenko’s conjecture even when we restrict to functions in the Eremenko-
Lyubich class B. However, they also give a partial positive result showing that this holds
for a large class of functions in B. This will be proved in the next chapter.
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Chapter 4

Dynamic rays of bounded-type
entire functions

In this chapter we are going to introduce our main tool, the logarithmic coordinates to
study functions of the class B.

4.1 Logarithmic coordinates

Definition 4.1.1 (Logarithmic singularity). Let f : C — C be a transcendental entire
or meromorphic function and let a € C. Suppose there is some simply-connected open
neighbourhood D C C of a and a component U of f~1(D\{a}) such that f : U — D\{a}
is a universal covering map. Then we say that f has a logarithmic singularity over a.
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