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Introduction

This Master’s thesis belongs to the field of complex dynamical systems, those generated
by the iteration of self holomorphic maps of a Riemann surface. The theory is interesting
in 3 cases: the Riemann sphere Ĉ = C∪ {∞} (rational maps), the complex plane (entire
transcendental maps) and the punctured plane C∗ = C \ {0} (maps with two essential
singularities). In any other case the Julia set is empty and the dynamical study becomes

trivial. By Montel’s theorem, if we iterate a map omitting at least three points of Ĉ then
every point must be normal.
The main goal of this project is twofold. On the one hand we study the recent article
Dynamic rays of bounded-type entire functions by Günter Rottenfußer, Johannes Rückert,
Lasse Rempe and Dierk Schleicher published in Annals of Mathematics (Second Series) in
2011, [RRRS11]. The results in this paper are a serious advance in the theory of iteration
of entire transcendental maps, since they apply to a wide class of maps, setting the basis
for further work in the field. The tools used in the paper are many and of varied nature,
and we have made an effort to introduce them properly and fill in all details. On the
other hand this project also contains original work by the author, namely the initial steps
necessary to extend the above mentioned theory to self holomorphic maps of C∗.
We start with a brief historical note about complex dynamics and afterwards we will
motivate the project and present our main results. At the end there is a section to clarify
the notation we are going to use throughout this work.

A bit of history

Given a holomorphic function f : C → C and a seed z0 ∈ C we are interested in the
behaviour of the sequence

zn = f(zn−1) = fn(z0), n > 1

called the (forward) orbit of z0 under f . The origins of complex dynamics go back to the
first studies of the Newton’s method, one of the oldest root-finding algorithm but at the
same time very efficient. Given a holomorphic function f and a seed z0 close enough to
a zero α of f then when we iterate the function

Nf (z) = z − f(z)

f ′(z)

the orbit of z0 converges to α. The first time that the iteration of holomorphic func-
tions is mentioned is in 1870 in the studies of Ernst Schröder (1841-1902). A few years
later, Arthur Cayley (1821-1895) also became interested in this topic. Both Cayley and
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Schröder developed greatly the local study of the method. They were worried about ques-
tions like finding sufficient conditions for the local convergence or improving the speed of
convergence. However, they also considered global questions (separating the plane into
different attracting basins) but they only solved the polynomial case of degree 2. If you
apply the Newton’s method to P (z) = (z− α)(z− β), α 6= β, you obtain two half planes
of initial conditions converging respectively to α and β divided by the line bisecting the
segment αβ. These intermediate points, when used as initial conditions, produce orbits
which do not converge to any of the roots. Cayley already noticed the difficulty of the
degree 3 case. When we consider a polynomial with three roots there appear fractal
structures as you can see in Figure 1, hence it was really difficult to solve it analytically
with the tools that they had by that time.

Figure 1: Phase space of the Newton’s method applied to a polynomial. L: degree 2; R:
degree 3. The color indicates which is the limit point of every seed and the number of iterates
needed to enter a certain neighbourhood of the root, the white points belong to the Julia set.

There were no significant contributions to the global study until the beginning of the
20th century with the works by Pierre Fatou (1878-1929) and Gaston Julia (1893-1978)

about the iteration of holomorphic functions on the Riemann sphere Ĉ = C ∪ {∞}. On
1915, the Académie des sciences from France announced that the Grand Prix des Sciences
Mathématiques of 1918 was going to be awarded to the best work on iteration, specifying
that it needed to be a global study. This choice could have been motivated by the works
of Henri Poincaré. This contest led to a strong rivalry between Fatou and Julia. In the
last moment Fatou decided not to participate in the contest and the prix was awarded to
Julia. However, both produced excellent works which are basic to understand complex
dynamics as we do nowadays.

They introduced the use of normal families to decompose the phase space. Every normal
point has a neighbourhood of points which behave in a similar fashion when iterated:
these points are in the stable set. Conversely, every point in the complement of this set has
a chaotic behaviour. Today, the stable set is known as the Fatou set and its complement
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Figure 2: From left to right, Ernst Schröder, Arthur Cayley, Pierre Fatou and Gaston Julia.
Pictures from the internet.

is called the Julia set. When they tried to study the Julia set they encountered the same
difficulty as Cayley, it is a fractal set. In Figure 3 you can see how Julia tried to draw it.

Figure 3: L: the sketch that Gaston Julia made of a Julia set; R: the actual Julia set. Picture
from [Ale94].

Fortunately, the use of computers was a major breakthrough for complex dynamics. Now
we can visualize the Fatou and Julia sets, and hence we have a much better intuition
of what is happening. The phase space of polynomials and rational functions has been
widely studied and is fairly well understood. Nevertheless there are still many relevant
open problems, specially those related about parameter spaces.

In parallel, but with a lesser speed, the theory of transcendental maps has been developed.
Maps with an essential singularity show a substantial increase of difficulty. For instance,
Great Picard’s theorem tells us that every neighbourhood of the essential singularity must
be mapped to the whole plane with the exception, at most, of one point. This simle fact,
adds plenty of chaos to the system producing unbounded Julia sets with very interesting
topology. Fatou was the first to consider the dynamics of entire transcendental functions
in his article [Fat26]. Since then, transcendental dynamics has become a very active area
of research.
If you are interested in the history of complex dynamics, you may like the book [Ale94].
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Transcendental maps: Motivation and contents

In his article [Fat26], Fatou already observed that the Julia set of certain entire tran-
scendental functions contains curves of points that escape to infinity under iteration and
wondered if this was a general property. Alexandre Eremenko introduced the notion of
escaping set in his article [Ere89]. Given an entire transcendental function f ,

I(f) := {z ∈ C : |fn(z)| → +∞}.

He proved that every component of I(f) is unbounded and conjectured that

• each component of I(f) is unbounded (weak Eremenko’s conjecture);

• every point in I(f) can be joined with ∞ by a curve in I(f) (strong Eremenko’s
conjecture).

Such curves are called dynamical rays (or hairs) in analogy to the dynamic rays of polyno-
mials introduced by A. Douady and J. Hubbard [Mil06], These type of invariant objects,
governed by symbolic dynamic, proved themselves to be a crucial tool in the development
of the theory since they often can be used to define dynamicaly meaningful partitions of
the phase space.
In contrast to the polynomial case where dynamic rays belong to the Fatou (or stable)
set, dynamic rays for transcendental maps are part of the Julia (or chaotic) set. Studies
about the existence and topological description of (transcendental) dynamic rays were
developed in the 80’s by Robert L. Devaney and his collaborators. They started with
the exponential family as the simplest model for these types of maps, and they later
moved to entire maps of finite type (i.e., with a finite number of singularities of the
inverse map). The main reference is by Devaney and Tangerman [referencia] where they
gave some conditions under which they could prove the existence of Cantor Bouquets,
consisting of Cantor sets of dynamic rays. This seminal work gave rise to many intents of
generalizations. The most successful one is the recent work of Rempe et al. in [RRRS11],
which is partially the object of this thesis. In this paper, the authors set up a general
theory which partially proves Eremenko’s conjecture for a wide class of functions in class
B, i.e., maps with a bounded set of singularities of the inverse. More precisely, their main
theorem reads as follows.

Theorem (Entire functions with dynamic rays). Let f ∈ B be a function of finite order,
or more generally a finite composition of such functions. Then every point z ∈ I(f) can
be connected to ∞ by a curve γ such that fn|γ →∞ uniformly.

Chapter 4 of this project is devoted to prove this theorem. In the same paper they also
showed that some assumptions will be necessary, giving in fact a counterexample to the
strong Eremenko’s conjecture.

Theorem (Entire functions without dynamic rays). There exists a hyperbolic entire func-
tion f ∈ B such that every path-connected component of J(f) is bounded.

Furthermore we are interested in studying some structural properties of the Julia set of
holomorphic self-maps of the complex punctured plane C∗ = C \ {0}. A reason which
makes this class of self-maps very interesting is that they often arise as complexifications
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of analytic maps of the circle, crucial for the study of rotation domains in real and in
complex dynamical systems of all types. For instance, in Section 5.4 we will see that the
complexification of the Arnol’d standard family is of this type.

If we lift a self-map of C∗, say f , by h(z) = exp(z) we get an entire transcendental map,
say F , satisfying a lift property, i.e. F (z+2πi) = F (z)+2kπi, where k ∈ N. The relevant
dynamical objects (singularities of the inverse like critical points, asymptotic values, etc.)
and even the Julia sets for these two maps are in correspondence via the exponential map
[Ber95]. A consequence of this fact, because of the periodicity of the exponential, is that
such lift necessarily will have infinitely many of such elements, distributed in the whole
complex plane. In particular, no such lift belongs to class B.

The theory developed in [RRRS11] therefore cannot be applied directly to self-maps of
C∗. It would be desirable however to establish such results, specially having in mind
further applications. This is the goal of a long term project as part of the author’s future
Ph.D. thesis. In the meantime, in this Master’s thesis, we construct the right setup under
which the results of [RRRS11] can be applied, providing some partial results in the right
direction. More precisely we show the following. Let I0(f) and I∞(f) be the sets of
points that converge uniformly to 0 and∞ respectively under iteration by a holomorphic
self-map of C∗ f . For this class of functions we must take into account two orders of
growth, one at zero and the other one at infinity. We say that f has finite order if both

ρ∞(f) := lim
r→∞

sup
|z|=r

log log |f(z)|
log |z|

, ρ0(f) := ρ∞(h ◦ f ◦ h)

are finite, where h(z) := 1/z conjugates a neighbourhood of ∞ to a neighbourhood of 0.

Theorem. Let f :∈ B∗ be a function of finite order or a finite composition of such maps.
Then every point z ∈ I∞(f) can be connected to ∞ by a curve γ such that fn|γ → ∞
uniformly. Similarly, every every point z ∈ I0(f) can be connected to 0 by a curve γ such
that fn|γ → 0 uniformly.

Structure of the project

The first three chapters are preliminary sections which contain the tools used in the main
chapters which are 4 and 5.

In the first chapter we introduce hyperbolic geometry. We begin by defining the Poincaré
metric in the unit disc D and study the existence and uniqueness of geodesics, minimal
length curves joining two points. Our purpose is to endow arbitrary domains with a
hyperbolic metric and for this we introduce the notion of covering space. In the last
section we prove Pick’s theorem and the standard estimate, which will be used many
times during the project.

Chapter 2 is dedicated to Continuum theory and the main goal is to prove the so-called
Non-cut point characterization of the arc which will be the key point in the proof of
the main result in Chapter 4. A continuum is a non-empty, compact, connected metric
space and we call cut point of a topological space S to a point p ∈ S such that S \ {p} is
disconnected. Otherwise, the point p is called a non-cut point of S. Using some separation
ordering we show that a continuum is an arc if and only if it has exactly two non-cut
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points. On the other hand, this is equivalent to the fact that the continuum has some
topological properties and its topology agrees with the separation order topology.
In Chapter 3 we introduce the basic concepts in complex dynamics, stating with the
notions of normality and the Fatou and Julia sets. We state their basic topological and
dynamical properties and classify the Fatou components for rational and entire transcen-
dental functions. A very characteristic property of transcendental functions is that their
Julia set contains Cantor bouquets. At the end of the chapter we describe the general
properties of the escaping set.
Chapter 4 is devoted to prove the main theorem in [RRRS11], as explained in the intro-
duction. To do so, we define logarithmic tracts and introduce logarithmic coordinates, an
exponential lift of the restriction of the function to the tracts. Using hyperbolic geome-
try, we prove some expansivity properties similar to the ones of the exponential function.
We conclude this chapter with a discussion about the existence of Cantor bouquets. We
would like to remark that we required the use of Zorn’s lemma in the proof of Proposi-
tion 3.7.3. Therefore you may be aware that this construction depends on the Axiom of
choice.
Finally in Chapter 5 we study self holomorphic maps of C∗. We describe the geometry
of the tracts and logarithmic coordinates and provide the setup to apply the results in
[RRRS11] to this class of functions.
All the pictures in this project except a couple in the Introduction have been made by
the author, either using standard software (Mathematica, Geogebra, Inkscape) or own
programs written in C++ language.

Notation

Throughout this project, we will denote by Ĉ := C ∪ {∞} the Riemann sphere and by
C∗ := C \ {0} the punctured plane. D will stand for the open unit disc, H the right
half-plane and if R > 0,

BR(z0) := {z ∈ C : |z − z0| < R}, HR := {z ∈ C : Re z > R}.

If A ⊆ C, then A and Â denote respectively the closures of A in C and Ĉ, ∂A is the
boundary of A in C and

◦
A = A \ ∂A

is the interior of A.
If P,Q ∈ C, PQ is the straight segment joining these two points. Euclidean length and
distance are denoted by l and dist . Let X ⊆ C, then ρX , lX and distX denote respectively
the hyperbolic density, length and distance with respect to the domain X. See Section
1.5 for the precise definitions.
In the context of continuum theory, we introduce the notation Y = P |Q to denote a
partition into mutually separated sets (see Section 2.3) and S(p, q) for the set of points
separating p and q (see Section 2.4). We use ≺ to refer to non-standard orderings, like
the separation ordering in Chapter 2 or the speed ordering in Chapter 4.
If f is a function and n ∈ N, by fn we will always mean the composition of f with itself
n times,

fn = f ◦ n· · · ◦f,
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e.g. f 2(z) = f(f(z)) which is different of g(z) = (f(z))2. We understand that N begins
with 0 and define f 0(z) = z. Some authors use the notation f ◦n to denote this, but we
will avoid it because we think that there is no possibility of confusion. As usual, J(f)
and F (f) are the Julia set and the Fatou set of f , the dynamical partition of the plane
associated to f . I(f) is the escaping set of f . Some related sets are JK(f) and Js, Is, J

K
s .

You can find out what all this terminology is by looking at Section 4.3. If z0 is a fixed
point for f , Af (z0) denotes its attracting basin and A∗f (z0) its immediate attracting basin
(the component of Af (z0) containing z0).
The Eremenko-Lyubich class B is introduced in the beginning of Chapter 4. Along that
chapter we define class Blog and all its variants Bnlog (normalized), Blog(α, β) (bounded
slope) and Bnlog(α, β). In Chapter 5 we define the analogs of B and Blog for the punctured
plane and we have chosen to call them B∗ and B∗log, but this notation is not standard at
all.
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Chapter 1

Introduction to hyperbolic geometry
and covering spaces

First of all let us remind some general notions that will become useful tools afterwards.
We introduce the hyperbolic metric (also know as Poincaré metric) on the Poincaré disc
model. In particular, we focus on the existence and uniqueness of geodesics and describe
their shape. After this we move to the study of covering spaces, discussing their lifting
properties and the existence of a universal covering. Then using the universal cover
from the disc we define the Poincaré metric for arbitrary domains. The last sections are
devoted to prove two properties that we will use many times.

1.1 Hyperbolic metric in the unit disc

In this section we are going to introduce the basic notions of hyperbolic geometry in
dimension two. We are going to use the Poincaré disc model which consists of the unit
disc and can be embedded in the complex plane C,

D := {z ∈ C : |z| < 1}.

The Möbius transformations form a group of conformal maps of the Riemann sphere
Ĉ = C ∪ {∞}. A Möbius transformation preserving D can be written in the form

A(z) = eiθ
z + a

1 + az

where θ ∈ R and a ∈ D. The group of all such automorphisms will be denoted by Aut(D).

Definition 1.1.1 (Hyperbolic density on D). The hyperbolic density at a point a ∈ D
is defined by

ρD(a) =
2

1− |a|2
.

Observe that it only depends on the Euclidean distance of a to the origin. It takes its
minimum value at a = 0 where it equals 2 and tends to∞ as a approaches the boundary
of D. Some authors, like in [KL07], use the convention that ρD(0) = 1 (i.e. they put a 1
in the numerator) but we prefer this one because then the metric has constant Gaussian
curvature −1 instead of −4.
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Lemma 1.1.1 (Invariance under automorphisms). The hyperbolic density on D is
invariant under automorphisms of D.

Proof. Let A ∈ Aut(D),

A(z) = eiθ
z + a

1 + az

where θ ∈ R and a ∈ D. We want to see that

ρD(A(t))|dA(t)| = ρD(A(t))|A′(t)||dt| = ρD(t)|dt|,

this is
ρD(A(t))|A′(t)| = ρD(t).

We have

ρD(A(t)) =
2

1− |t+a|2
|1+at|2

=
2|1 + at|2

|1 + at|2 − |t+ a|2
=

2|1 + at|2

1 + 2|at|+ |at|2 − |t|2 − 2|at| − |a|2

=
2|1 + at|2

1 + |at|2 − |t|2 − |a|2
=

2|1 + at|2

(1− |t|2)(1− |a|2)

and on the other hand

|A′(t)| = |1 + at− (t+ a)a|
|1 + at|2

=
|1− aa|
|1 + at|2

=
1− |a|2

|1 + at|2
.

Putting this together we get

ρD(A(t))|A′(t)| = 2(1− |a|2)

(1− |t|2)(1− |a|2)
=

2

1− |t|2
= ρD(t).

�

Using the hyperbolic density we can define a metric on D called the hyperbolic metric or
the Poincaré metric.

Definition 1.1.2 (Hyperbolic length on D). Let γ be a path in D joining two points
p and q. Then define the hyperbolic length of γ by

lD(γ) =

∫
γ

ρD(t)|dt|.

Definition 1.1.3 (Hyperbolic distance on D). Given two points p, q ∈ D we define
the hyperbolic distance between them to be

distD(p, q) = inf
γ
lD(γ)

where the paths γ are contained in D and join p and q.

Let us check that the hyperbolic distance defines a metric on D.
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Lemma 1.1.2. The unit disc D together with the hyperbolic distance dist D is a metric
space.

Proof. It is clear that the definition is symmetric, dist D(p, q) = dist D(q, p). Note that
ρD(a) > ρD(0) = 2 for all a ∈ D. Therefore, lD(γ) > 0 for any path γ in D and it vanishes
if and only if the path is a point. This proves the non-negativity of the distance function
and shows that distD(p, q) = 0 if and only if p = q. Finally, the infimum in the definition
ensures that the triangle inequality is satisfied. Indeed, if there existed r ∈ D such that

dist D(p, q) > dist D(p, r) + dist D(r, q)

then concatenating these two limit sets of paths from p to r and from r to q we would
contradict the minimality of γ. �

It is a direct consequence of Lemma 1.1.1 that if γ is a path in D and A ∈ Aut(D) then
lD(γ) = lD(A(γ)) and moreover if p, q ∈ D,

dist D(p, q) = dist D(A(p), A(q)).

1.2 Hyperbolic geodesics

In general, the infimum in the definition of distance may not be realized by a curve.
For instance, in C∗ = C \ {0} the Euclidean distance between −1 and 1 is 2 but none
of the curves contained in C∗ joining these points has Euclidean length 2. In the other
extremum, in the sphere two antipodal points have an infinite number of curves joining
them minimizing the spherical length. However this cannot happen in D, we will prove
the existence and uniqueness of such curves. First, let us introduce the notion of geodesic.

Definition 1.2.1 (Geodesic). A curve γ in D is called a geodesic if for all t1 < t2 < t3
we have

dist D(γ(t1), γ(t3)) = dist D(γ(t1), γ(t2)) + dist D(γ(t2), γ(t3)).

If the extrempoints of γ belong to D we say that γ is a geodesic segment while if they
belong to ∂D we say that γ is an infinite geodesic.

By definition, geodesics always realize the minimum distance between two points. The
next lemma tells us that the converse is also true. Hence, geodesics can be characterized
as being the shortest paths between the points of D.

Lemma 1.2.1 (Characterization of geodesics). If a curve γ joining two points p, q ∈
D realizes the infimum length among all such curves then it is a geodesic.

Proof. By definition, dist D(p, q) = lD(γ). Let r ∈ γ be an intermediate point. Then if we
split γ in two curves γ1, γ2 going from p to r and from r to q respectively we have

lD(γ) = lD(γ1) + lD(γ2)

by linearity of the integral operator. The minimality of γ implies that lD(γ1) = dist D(p, r)
and lD(γ2) = dist D(r, q). Hence,

dist D(p, q) = lD(γ) = lD(γ1) + lD(γ2) = dist D(p, r) + dist D(r, q)

and γ is a geodesic. �
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Now let us prove their existence in a geometric way. The next lemma deals with geodesics
of D containing the origin.

Proposition 1.2.2 (Existence of geodesics). Consider p ∈ D, p 6= 0. The straight
segment between 0 and p realizes the shortest path with respect to the hyperbolic metric
on D and has length

dist D(0, p) = log
1 + |p|
1− |p|

.

Proof. We can parametrize the straight segment joining 0 to p by γ0(t) = tp for t ∈ I
and then its hyperbolic length is given by

lD(γ0) =

∫
γ0

ρD(t)|dt| =
∫ 1

0

2

1− t2|p|2
|p|dt.

Let us compute this integral,

∫
2|p|

1− t2|p|2
dt =

∫
2|p|

(1 + t|p|)(1− t|p|)
dt =

∫ 2|p|
(1−t|p|)2

1+t|p|
1−t|p|

dt = log
1 + t|p|
1− t|p|

+ C

and hence

lD(γ0) =

[
log

1 + t|p|
1− t|p|

]1

0

= log
1 + |p|
1− |p|

.

Consider now an arbitrary curve γ : I → D connecting 0 to p. Take a partition P of I,
0 = t0 < · · · < tn = 1, then the Riemann sum

LD(γ;P) =
n−1∑
i=0

ρD(γ(ti))|γ(ti+1)− γ(ti)|

approaches lD(γ) as the mesh of P tends to 0. This can be thought as considering a
piecewise linear curve with vertices in γ. These vertices can be transported radially to
the straight line defined by 0 and p by the map

γ(ti) 7→ |γ(ti)|
p

|p|
=: γi0.

If we join the image points by straight segments we get a curve γ′0 that may fold many
times over itself and which is contained in the line defined by γ0. If we compare it with γ0,
γ′0 is clearly longer because it goes from 0 to p but we have to add the auto-intersections,
hence

LD(γ′0;P) =
n−1∑
i=0

ρD(γi0)|γi+1
0 − γi0|

is an upper bound of lD(γ0). Observe that since the hyperbolic density is invariant under
automorphisms of the disc and, in particular, under rotations about the origin,

ρD(γi0) = ρD(γ(ti)).

12



On the other hand, it is well known that given two concentric circumferences S1, S2 with
centre C and a point x ∈ S1, the minimum distance between x and S2 is realized by the
point in the intersection of S2 and the line through C and x. Thus,

|γi+1
0 − γi0| 6 |γ(ti+1)− γ(ti)|.

Putting these together,

LD(γ′0;P) =
n−1∑
i=0

ρD(γi0)|γi+1
0 − γi0| 6

n−1∑
i=0

ρD(γ(ti))|γ(ti+1)− γ(ti)| = LD(γ;P).

For every partition P ,
lD(γ0) 6 LD(γ′0;P) 6 LD(γ;P).

Taking the limit as the mesh of P tends to 0 we get

lD(γ0) 6 lD(γ)

and conclude that γ0 realizes the minimum length path between 0 and p. �

Corollary 1.2.3 (Existence of geodesics). Given two points p, q ∈ D, p, q 6= 0, there
exists a geodesic joining them and its length equals

dist D(p, q) = log
|1− pq|+ |q − p|
|1− pq| − |q − p|

.

This geodesic corresponds to an arc of circle orthogonal to ∂D.

Proof. Recall that the hyperbolic distance is invariant under automorphisms of D. Such
transformations are of the form

A(z) = eiθ
z + a

1 + az

for some θ and a. Let us impose that A(p) = 0:

A(p) = eiθ
p+ a

1 + ap
= 0 ⇔ a = −p.

Since θ is arbitrary, fix θ = 0 for simplicity. We will denote this map by Ap. Then,
dist D(p, q) = dist D(0, Ap(q)) where

Ap(q) =
q − p
1− pq

.

Denote by D the diameter of D that contains Ap(q). Then A−1
p (D) is the geodesic

connecting p and q. Using Proposition 1.2.2,

dist D(0, Ap(q)) = log
1 + |q−p|

|1−pq|

1− |q−p|
|1−pq|

= log
|1− pq|+ |q − p|
|1− pq| − |q − p|

.

Recall that Aut(D) is a group and Möbius transformations are conformal and map circles

in Ĉ to circles in Ĉ. Since D is orthogonal to ∂D and ∂D is invariant under Aut(D),
A−1
p (D) must be an arc of a circle orthogonal to ∂D. �
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To complete the proof of our claim, let us show that the geodesics of D are unique.

Proposition 1.2.4 (Uniqueness of geodesics). For any point p 6= 0 in D there exists
a unique geodesic joining 0 to p.

Proof. Proposition 1.2.2 shows that the straight segment γ0 from 0 to p is a geodesic.
Assume to the contrary that there exists another geodesic γ connecting 0 and p,

dist D(0, p) = lD(γ) = lD(γ0).

Since they are different, there must exist one point q ∈ γ such that q /∈ γ0. Let q0 be the
radial projection of q onto γ0 and let C be the circle centred at 0 and containing q and
q0. The geodesic property gives

dist D(0, p) = dist D(0, q) + dist D(q, p) = dist D(0, q0) + dist D(q0, p)

and since |q| = |q0|, dist D(0, q) = dist D(0, q0) and hence we get dist D(q, p) = dist D(q0, p).
Now, consider the Möbius transformation

Ap(z) =
z − p
q − pz

mapping p to 0 and 0 to −p. Let q̃ = Ap(q) and q̃0 = Ap(q0), by Lemma 1.1.1

dist D(q̃, 0) = dist D(q, p) = dist D(q0, p) = dist D(q̃0, 0)

and therefore |q̃| = |q̃0|. Ap maps the segment 0p to the segment −p0 and the circle C
to the circle with hyperbolic centre −p containing q̃ and q̃0. Then either q̃ = q̃0 (which is
impossible if q 6= q0, Ap is univalent) or they are at a different Euclidean distance from
0, |q̃| 6= |q̃0|, raising a contradiction in both cases. The geodesic γ0 must be unique. �

To conclude this section we will see how to construct hyperbolic geodesics with compass
and straight-edge, see Figure 1.1. Let P,Q ∈ D such that P,Q,O are not collinear. If
they were collinear, just trace the diameter through P and Q. You have to follow these
steps:

• Trace the line through O and P .

• Take the perpendicular r to OP through P .

• Let A be the point in the intersection of r and ∂D.

• Let s be the perpendicular to OA through A.

• Call B the intersection of s and OA (B is the inverse of P with respect to ∂D).

• Draw the circle C passing through P,Q,B.

The arc of C lying inside D is the hyperbolic geodesic joining P and Q.

14



Figure 1.1: Construction of the hyperbolic geodesic with compass and straight-edge.

1.3 Covering spaces

In this section we introduce the notions of covering space and universal covering that are
very useful for many reasons. Fist of all, as we will see in the next section, they allow
us to put a hyperbolic metric in domains far more general than the Poincaré disc. On
the other hand, they are a very important tool in the construction of the logarithmic
coordinates. We will see that logarithmic tracts and logarithmic coordinates are both
universal covers.

Definition 1.3.1 (Covering space). Let X be a topological space. A topological space
E together with a projection map p : E → X is a covering space of X if every x ∈ X has
an open neighbourhood U such that p−1(U) is a disjoint union of open sets Si ⊆ E, each
of which is mapped homeomorphically onto U by p. The covering is holomorphic if π is
holomorphic. We say that the sets U are evenly covered and Si are sheets over U .

Note that for all x ∈ X, the fibre p−1(x) is a discrete set. Since p is a local homeomor-
phism, E and X share the same local properties, for instance E is locally connected if and
only if X is so. Finally let us remark that we can endow X with the quotient topology
from E.

Definition 1.3.2 (Section). Let p : E → X be a covering space. A continuous map
s : X → E such that p ◦ s = idX is called a section of the covering space.

E
p // X

s
cc r_L

The main example that motivated the theory of covering spaces and that we should keep
in mind is

p : R → S1

t 7→ eit.
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Any branch of the logarithm would be a section of this covering. According to the above
definition, it is clear that p : R → S1 is a covering space. We can take two charts in S1

consisting of overlapping open arcs U1, U2 and then the preimages of each of them by p
will be and infinite set of disjoint open intervals. For example if we take U1 = S1 \ {1}
and U2 = S1 \ {−1}, then

p−1(U1) =
⊔
k∈Z

(k, k + 1), p−1(U2) =
⊔
k∈Z

(k − 1/2, k + 1/2).

Another interesting example would be the helicoid. Consider the surface

S = {(s cos(2πt), s sin(2πt), t) ∈ R3 : (s, t) ∈ (0,∞)× R},

then
p12 : S ⊆ R3 → R2 \ {0}

(x, y, z) 7→ (x, y)

is a covering space. See Figure 1.2.

Figure 1.2: The helicoid.

This example is closely related to the following one. The complex exponential

exp : C → C∗
z 7→ ez

is a covering of the punctured plane C∗ = C \ {0}. Every point in C∗ is covered infinitely
many times by the exponential map. This is very different of what happens with the
complex powers defined on C∗,

pn : C∗ → C∗
z 7→ zn

is a covering space for all n ∈ N, but in this case over each point there are exactly n
sheets.
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Definition 1.3.3 (Critical point). Let f : Y → X be a holomorphic function. We say
that c ∈ Y is a critical point of f if f ′(c) = 0.

Lemma 1.3.1. A holomorphic function f defined on a domain Ω is a holomorphic cover
of its image f(Ω) if and only if f has no critical points in Ω.

According to this lemma, since exp(z) has no critical points it is a holomorphic cover of
C∗. In the case of pn(z) = zn, the only critical point is the origin and since it has been
removed from its domain it is also a holomorphic cover of C∗ for every n ∈ N.

Definition 1.3.4 (Lift). Let p : E → X be a covering space. A lift of a map f : Y → X

is a map f̃ : Y → E such that pf̃ = f .

The following diagram illustrates this situation:

E

p
��

Y
f

//

f̃
>>}

}
}

}
X.

We will devote the rest of this section to discuss the existence and uniqueness of lifts.
We are going to use the notation f : (Y, y0) → (X, x0) for a map (or a covering) with
specified basepoints. This only means that y0 ∈ Y is a point in the preimage of x0 ∈ X
by f , i.e. f(y0) = x0.

Theorem 1.3.2 (Unique lifting theorem). Given a covering space p : E → X and a

map f : Y → X with two lifts f̃1, f̃2 : Y → E that agree at one point of Y , then if Y is
connected, these two lifts must agree on all of Y .

Proof. This can be restated in terms of maps with specified basepoints saying that if
p : (E, e0)→ (X, x0) and f : (Y, y0)→ (X, x0) then if there is a lift f̃ : (Y, y0)→ (E, e0)

it is unique. Assume to the contrary that there were two of them, say f̃1, f̃2 : (Y, y0) →
(E, e0). We can consider the set of points where they coincide

A = {y ∈ Y : f̃1(y) = f̃2(y)}

and also D = Y \ A where they differ. Observe that the specified basepoint y0 belongs
to A and hence A is not empty by assumption.
Take a point y1 ∈ Y and let U be an evenly covered neighbourhood of f(y1) in X.

Consider S1, S2 the connected components of p−1(U) containing respectively f̃1(y), f̃2(y).
In the case that y1 ∈ A we these two sheets will be equal, S1 = S2, while if y1 ∈ D they
will be different. In any case, by the continuity of the lifts, the set

f̃1(S1) ∩ f̃2(S2)

will be open and entirely contained in A or D. Therefore, we conclude that both A
and D are open sets. But since Y = A t D is connected, D must be empty reaching a
contradiction. �
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Note that lifts may not exist. In the special case of paths, the next result guarantees
the existence of lifts. The general case will be discussed later when we state the Lifting
criterion.

Theorem 1.3.3 (Path lifting theorem). For p : (E, e0)→ (X, x0) as above, if σ is a
path in X with initial point x0, there is a unique path σ̃e0 in E with initial point e0 such
that pσ̃e0 = σ.

Proof. The uniqueness is guaranteed by Theorem 1.3.2. If the whole space X is evenly
covered and e0 ∈ S ⊆ E, the projection p restricted to the sheet S, p|S : S → X, is a
homeomorphism. Consider its inverse ψ = (p|S)−1 which is also a continuous map. The
curve defined by ψ ◦ σ is a lift of σ with initial point e0.
In general X may not be evenly covered, there might be more than one evenly covered
chart. Since I is compact, there is a partition

0 = t0 < t1 < · · · < tn = 1

such that for all i, σ([ti, ti+1]) is contained in an evenly covered neighbourhood Ui of σ(ti).
Using the above argument we can lift the path σ|[0,t1] to a curve σ̃1 : [0, t1] → E with
initial point e0. We will proceed by induction. Assume we have a lift σ̃i of σ|[0,ti] with
initial point e0. Again, since we are inside an evenly covered chart, by the same argument
as before we can lift σ|[ti,ti+1] to a path mapping ti to the endpoint of the previous curve,
σ̃i(ti). Thus, σ̃i can be extended to σ̃i+1 in a continuous way. In a finite number of steps
we get the desired lift σ̃e0 = σ̃n. �

Now we are going to prove a much more general result concerning homotopies, but before
let us recall the definition of homotopy.

Definition 1.3.5 (Homotopy). A homotopy between two continuous functions f, g :
Y → X is a continuous function H : Y × I → X where I = [0, 1] such that for all y ∈ Y ,
H(y, 0) = f(y) and H(y, 1) = g(y).

Theorem 1.3.4 (Covering homotopy theorem). Let p : (E, e0) → (X, x0) be a

covering with base points and let f : (Y, y0) → (X, x0) be a map which has lifting f̃ :
(Y, y0)→ (E, e0). Then, any homotopy F : Y × I → X with F (y, 0) = f(y) for all y ∈ Y
can be lifted to a homotopy F̃ : Y × I → E with F̃ (y, 0) = f̃(y).

Proof. If X is evenly covered, we can use the homeomorphism to lift the homotopy from
X to E. Otherwise, we will proceed like in the proof of Theorem 1.3.3. By compactness
of I, for every y ∈ Y there exists an open neighbourhood Ny of y and a partition of I

0 = t0 < t1 < · · · < tn = 1

possibly depending on y, such that F (Ny × [ti, ti+1]) is contained in some evenly covered
neighbourhood of F (y, ti). Since for each subinterval [ti, ti+1] we are inside an evenly

covered chart, we can construct a lift F̃y : Ny × I → E of the homotopy F restricted to

Ny × I satisfying that F̃y(y
′, 0) = f̃(y′) for all y′ ∈ Ny.

Finally, the lifts of two different neighbourhoods Ny1 × I and Ny2 × I must agree on the
intersection

(Ny1 × I) ∩ (Ny2 × I) = (Ny1 ∩Ny2)× I.
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If y0 ∈ Ny1 ∩ Ny2 , then we have two lifts of F|{y0}×I that coincide at the initial point
(y0, 0). Therefore, since {y0} × I is connected, by Theorem 1.3.2 these two lifts must be
the same one. �

In fact, Theorem 1.3.3 is a particular case of this theorem taking Y = {∗}. If we take
Y = I we obtain the following corollary.

Corollary 1.3.5 (Monodromy theorem). If σ, τ are two homotopic paths in X with
initial point x0, then σ̃e0 is homotopic to τ̃e0 in E. In particular, they have the same end
point.

Corollary 1.3.6. The map p∗ : π1(E, e0) → π1(X, x0) induced by a covering space p :
(E, e0) → (X, x0) is a monomorphism. The image subgroup p∗π1(E, e0) consists of the
homotopy classes of loops in X based at x0 whose lifts to E starting at e0 are loops.

Proof. We will prove that the kernel of p∗ is trivial. Let f̃0 ∈ Ker p∗, this is a loop in E
such that its projection f0 = pf̃0 is a loop in X homotopic to a trivial loop f1. Denote
by F : I × I → X the homotopy between f0 and f1. By Corollary 1.3.5, there is a lifted
homotopy F̃ : I × I → E such that F̃ (t, 0) = f̃0(t) and F̃ (t, 1) = f̃1, with f̃1 the lift of
the constant loop f1 and hence trivial in E too. �

Note that if σ is a loop at x0, its lift σ̃e0 needs not to be a loop in E. We only can say
that its end point will belong to p−1(x0).

Proposition 1.3.7. The number of sheets of a covering space p : (E, e0)→ (X, x0) with
X and E path-connected equals the index of p∗(π1(E, e0)).

You can find the proof of this result in [Hat02, Proposition 1.32]. In particular, in this
situation all the fibres have the same cardinality, something that we cannot assert in
general. To conclude this section let us study the existence of lifts.

Theorem 1.3.8 (Lifting criterion). Suppose given a covering space p : (E, e0) →
(X, x0) and a map f : (Y, y0)→ (X, x0) with Y path-connected and locally path-connected.

Then, a lift f̃ : (Y, y0)→ (E, e0) of f exists if, and only if,

f∗(π1(Y, y0)) ⊆ p∗(π1(E, e0)).

Proof. π1 is a covariant functor from the category of pointed topological spaces to the
category of groups. If there exists a lift f̃ of f , pf̃ = f , then by the functoriality of π1,
π1(f) = π1(pf̃) = π1(p)π1(f̃) or

f∗(π1(Y, y0)) = p∗(f̃∗(π1(Y, y0)))

and hence, since f̃∗(π1(Y, y0)) ⊆ π1(E, e0),

f∗(π1(Y, y0)) ⊆ p∗(π1(E, e0)).

Conversely, assuming that this property is true, we can construct a lift of f . Choose for
any y ∈ Y a path σ joining y to y0. Then fσ is a path from x0 to x = f(y). Define

f̃(y) = (̃fσ)e0(1).
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then

p(f̃(y)) = p((̃fσ)e0)(1) = f(σ(1)) = f(y)

and thus f̃ is a map lifting f . �

Corollary 1.3.9. In the assumptions of the theorem, if Y is simply connected, the lifting
f̃ always exists.

1.4 Universal coverings

Definition 1.4.1 (Semilocally simply-connected). We say that X is semilocally
simply-connected if each point x ∈ X has a neighbourhood U such that the inclusion-
induced map π1(U, x)→ π1(X, x) is trivial.

This is a necessary condition for X to have a simply-connected covering space. Observe
that both simply-connected and locally simply-connected spaces are semilocally simply-
connected, but none of the converses is true.

Theorem 1.4.1 (Covering classification theorem). Let X be path-connected, lo-
cally path-connected and semilocally simply connected. Then there is a bijection between
the set of basepoint-preserving isomorphism classes of path-connected covering spaces
p : (E, e0) → (X, x0) and the set of subgroups of π1(X, x0), obtained by associating
the subgroup p∗(π1(E, e0)) to the covering space (E, e0). If basepoints are ignored, this
correspondence gives a bijection between isomorphism classes of path-connected covering
spaces p : E → X and conjugacy classes of subgroups of π1(X, x0).

The proof of this statement can be found in [Hat02, Theorem 1.38].

Definition 1.4.2 (Universal covering). A covering space of X, p : E → X, is called
universal if E is simply-connected.

Proposition 1.4.2. A universal cover p : E → X of a path-connected, locally path-
connected space X is a covering space of every other path-connected covering space p′ :
E ′ → X, i.e.

E

p
��

//___ E ′

p′}}||
||

||
||

X.

It is unique up to isomorphism.

This is a consequence of Theorem 1.3.8. After this result, it makes sense to introduce an
equivalence relation between covering spaces of the same base space.

Definition 1.4.3 (Equivalent covering spaces). We say that two covering spaces p :
(E, e0)→ (X, x0) and p′ : (E ′, e′0)→ (X, x0) are equivalent if there is a homeomorphism
φ : (E ′, e′0)→ (E, e0) such that pφ = p′.
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The Classification theorem induces a partial ordering on the set of covering spaces of
a given space X, being the universal covering on the top. If we go back to the initial
examples, we see that the complex plane (with exp z) and the helicoid S (with p12) were
both universal covers of the punctured plane R2 \ {0} ∼= C \ {0}. Thus, there must be a
homeomorphism between them. For this, if we set z = x+ iy, we only have to solve the
following system of equations:{

ex cos y = s cos(2πt)
ex sin y = s sin(2πt)

⇔
{
s = ex

2πt = y.

So, we get a homeomorphism from the complex plane to the helicoid S

C ←→ R2 ←→ S ⊆ R3

(Rez, Imz) → (s = eRez, t = Im z/(2π)) → (s cos(2πt), s sin(2πt), t)

(x = ln s, y = 2πt) ← (s =
√
x2 + y2, t = z) ← (x, y, z).

Theorem 1.4.3 (Existence of the universal cover). Every path-connected, locally
path-connected, and semilocally simply-connected space X has a universal covering.

Let us give a brief sketch of the construction of the universal covering. Given a path-
connected, locally path-connected, semilocally simply-connected space X with a base-
point x0 ∈ X we can define

X̃ := {[γ] : γ : I → X, γ(0) = x0}

where [γ] is the homotopy class of all the curves in X fixing γ(0) = x0 and γ(1). Consider

the map p : X̃ → X given by

p([γ]) = γ(1).

We claim that p : X̃ → X is the universal covering of X. See [Hat02, p. 64-65] for a
complete and detailed construction.
Now we would like to know which domains admit D as a universal covering. The mo-
tivation for this question is that afterwards we will use these coverings to transport the
Poincaré metric to that domains.

Theorem 1.4.4 (Riemann mapping theorem). Let U be a non-empty simply con-
nected proper domain of the complex plane. Then there exists a bijective holomorphic
mapping from U onto the open unit disk D. Moreover, if z0 ∈ X is chosen and φ is
normalized so that φ(z0) = 0 and φ′(z0) > 0, then φ is unique.

Lemma 1.4.5. If f : U → V is a bijective holomorphic map then f−1 : V → U is also
holomorphic.

Therefore, D is a holomorphic covering space of every simply connected plane domain.
Using the notion of universal covering, this theorem can be generalized to Riemann
surfaces, complex analytic manifolds of dimension 1, and is known as the Uniformization
theorem.
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Theorem 1.4.6 (Uniformization theorem). The universal covering space X̃ of an ar-
bitrary Riemann surface X is homeomorphic, by a conformal map, to either the Riemann
sphere Ĉ = C ∪ {∞}, the complex plane C or the unit disc D.

The proof of this theorem is complicated and can be found in any standard reference
about Riemann surfaces, for instance [FK92].
Given a universal covering, let us discuss what is the relationship between all the points
in the fibre of a given point.

Definition 1.4.4 (Deck transformation). A deck transformation or automorphism of
a covering space p : E → X is a homeomorphism f : E → E such that p ◦ f = p.

The set of all deck transformations of a given covering space forms a group with compo-
sition. Every deck transformation (also known as covering transformation) permutes the
points in each fibre.

Theorem 1.4.7. If p : E → X is a universal covering map and t, s ∈ E are such that
p(t) = p(s), then there exists a deck transformation f : E → E such that f(t) = s.

Corollary 1.4.8. If a deck transformation has a fixed point then it must be the identity.

1.5 Hyperbolic metric for arbitrary domains

We want to use what we have learnt about covering spaces to put a hyperbolic metric to
more general domains.

Definition 1.5.1 (Hyperbolic domain). A plane domain X is called hyperbolic if it
has at least two boundary points.

Corollary 1.5.1. D is the universal covering space of every hyperbolic plane domain X.

This is a consequence of the Uniformization theorem. A plane domain with more than
two boundary points cannot be conformally isomorphic to the Riemann sphere nor the
complex plane.

Definition 1.5.2 (Hyperbolic density). Let X be a hyperbolic domain and let π :
D → X be its universal covering. The hyperbolic density with respect to X at a point
z ∈ X is defined by

ρX(z) =
ρD(t)

|π′(t)|
= ρD(s(z))|s′(z)| = 2|s′(z)|

1− |s(z)|2

where s denotes a section of π.

Note that, in particular, the hyperbolic density function is a positive continuous function.
We define the hyperbolic length and the hyperbolic distance on an hyperbolic domain X
in the same fashion we did for D.

Definition 1.5.3 (Hyperbolic length). Let γ be a curve in a hyperbolic domain X.
We define the hyperbolic length of γ with respect to X as

lX(γ) =

∫
γ

ρX(t)|dt|.
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Definition 1.5.4 (Hyperbolic distance). Let X be a hyperbolic domain. If p, q ∈ X
we define its hyperbolic distance with respect to X as

distX(p, q) = inf
γ
lX(γ)

where the infimum is taken over all the paths γ in X joining p to q.

Theorem 1.5.2. Suppose that g is holomorphic covering map from a hyperbolic plane
domain X onto a plane domain Ω. Then g is an infinitesimal isometry, that is

ρΩ(g(t))|g′(t)| = ρX(t)

for all t ∈ X.

Proof. Let π be the universal covering map from D to X. Then the composition g ◦ π :
D→ Ω a universal covering. Let z ∈ Ω and s ∈ D such that π(s) = t and g(t) = z, then

ρΩ(z) =
ρD(s)

|(g ◦ π)′(s)|
=

ρD(s)

|g′(π(s))| · |π′(x)|
=
ρX(t)

|g′(t)|

because ρX(t) = ρ(s)/|π′(s)|. �

Corollary 1.5.3. Let X,Ω be plane domains, X being hyperbolic. Any holomorphic
covering map g from X onto Ω preserves the hyperbolic length of curves,

lX(γ) = lΩ(g(γ)).

Theorem 1.5.4. Let π be a universal cover from D onto a plane domain Ω. If z, w ∈ X
and t ∈ D is any pre-image of z, then

dist Ω(z, w) = min{dist D(t, s) : s ∈ D, π(s) = w}.

Proof. By definition, dist Ω(z, w) is the infimum of lΩ(γ) over all curves γ connecting z
and w in Ω. Corollary 1.5.3 tells us that when we take the preimage of each of these
curves we have the same hyperbolic length. Then,

dist Ω(z, w) = inf{dist D(t, s) : t, s ∈ D, π(t) = z, π(s) = w}

and since the map π is continuous, if we fix a preimage t of z,

dist Ω(z, w) = min{dist D(t, s) : s ∈ D, π(s) = w}.

�

Proposition 1.5.5. Every hyperbolic plane domain X endowed with its hyperbolic dis-
tance distX is a metric space.
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Figure 1.3: Scheme from Theorem 1.5.4.

Proof. The facts that distX is symmetric and satisfies the triangle inequality follow di-
rectly from the definition. We only need to show that distX(z, w) = 0 if and only if
z = w. Assume that z 6= w and let π : D → X be a universal cover, there exist s, t ∈ D
such that π(s) = z and π(t) = w. Note that s 6= t. By Theorem 1.5.4,

distX(z, w) = dist D(t, s) > 0.

Conversely, if z = w clearly distX(z, z) = dist D(s, s) = 0. Finally, as usual, the other
three properties imply the non-negativity of distX :

2distX(x, y) = distX(x, y) + distX(x, y) > distX(x, x) = 0

thus distX(x, y) > 0. �

It can be shown that the metric space (X, distX) is complete. Let us turn our attention
to the hyperbolic geodesics of an arbitrary domain. We will use the projection of the
universal covering to transport the geodesics of D to X.

Definition 1.5.5 (Hyperbolic geodesic). Let X be a hyperbolic domain and let π :
D→ X be a universal covering map. A curve γ ⊆ X is called hyperboli geodesic of X if
and only if every lift π−1(γ) is a geodesic in D.

Proposition 1.5.6. If γ is a curve in the hyperbolic domain X such that for every
t1 < t2 < t3

distX(γ(t1), γ(t3)) = distX(γ(t1), γ(t2)) + distX(γ(t2), γ(t3))

then γ is a geodesic on X.

Theorem 1.5.7 (Existence of geodesics). For every two distinct points z and w in
the domain X, there exists at least one shortest path γ joining z to w. Furthermore γ is
a geodesic.

Proof. Let z and w be distinct points in X. Theorem 1.5.4 guarantees the existence of
two points t, s ∈ D such that π(t) = z, π(s) = w and distX(z, w) = dist D(s, t). By
Lemma 1.2.1, there exists a geodesic γ joining t and s in D. The curve π(γ) connects
the points z and w in X and by Theorem 1.4.7 must be a geodesic. Since covering maps
preserve lengths of curves,

distX(z, w) = dist D(t, s) = lD(γ) = lX(π(γ)).

�
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Theorem 1.5.8 (Uniqueness of geodesics). Let z and w be any two distinct points in
X. Then there is a unique geodesic in every homotopy class of curves joining z and w.

Proof. Let z, w ∈ X with z 6= w and let δ be any curve in a given homotopy class of
curves joining z and w in X. Consider the universal covering π : D → X and take
s ∈ D be a point in the fibre over z. By the Path lifting theorem, Theorem 1.3.3, there
exists a unique lift δ̃ of δ beginning at s. Let t be the endpoint of δ̃. The Monodromy
theorem, Corollary 1.3.5, the lifts of all homotopic paths have the same endpoint, thus
t is determined by the homotopy class of δ. There is a unique geodesic in D joining s
and t and its projection is a geodesic of X in the homotopy class of δ. If there were two
different geodesics γ and γ′ in the same homotopy class, then Monodromy theorem tells
us that their lifts would be two homotopic geodesics in D joining the same pair of points
and hence equal. �

Example 1.5.1. We are going to study an important example: the upper half plane

H′ := {z ∈ C : Im z > 0}

together with the Möbius transformations as isometries give the Poincaré half-plane model
for the hyperbolic geometry. Using the results of this section, let us find out an expression
for the hyperbolic distance on H′. We need a conformal map h : H′ → D. Möbius
transformations are determined by the image of three points. Let

h(z) =
az + b

cz + d
,

we want to map 0 7→ −1 (b/d = −1),∞ 7→ 1 (a/c = 1) and i 7→ 0 (ai+b = 0). Therefore,
if we set a = 1,

h(z) =
z − i
z + i

.

Then, by definition,

ρH′(z) =
2|h′(z)|

1− |h(z)|2
,

and since

|h′(z)| = 2

(z + i)2

we have

ρH′(z) =
4

|z + i|2 − |z − i|2
.

Then, using a bit of trigonometry,

|z + i|2 − |z − i|2 = |Re z|2 + |Im z + 1|2 − |Re z|2 − |Im z − 1|2

= |Im z + 1|2 − |Im z − 1|2

= |Im z|2 + 2 |Im z|+ 1− |Im z|2 + 2 |Im z| − 1

= 4 |Im z|

and hence

ρH′(z) =
4

4 |Im z|
=

1

Im z
.
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The isometries of this model are the group of Möbius transformations leaving H′ invariant,
i.e. maps of the form

A(z) =
az + b

cz + d
, ad− bc = 1, a, b, c, d ∈ R.

Geodesics are the image under h of geodesics of D, they are vertical lines and arcs of
circles orthogonal to the real axis.

Example 1.5.2. We will be interested in a slight modification of this model, we will
consider

H = {z ∈ C : Re z > 0}.

You can pass from one model to the other by multiplying by i or −i, thus

ρH(z) =
1

|i|
ρH′(iz) =

1

Im (iz)
=

1

Re z
.

Geodesics of H are horizontal lines and circles orthogonal to the imaginary axis.

1.6 Pick’s theorem

In this section we introduce one of the most powerful tools of hyperbolic geometry. Pick’s
theorem, named after Georg Pick, tells us that holomorphic maps are contractions with
respect to the hyperbolic metrics.

Theorem 1.6.1 (Schwarz lemma). If f is a holomorphic self-map of D such that
f(0) = 0, then |f(z)| 6 |z| and |f ′(0)| 6 1. Equality holds if and only if f is a rotation,
f(z) = eiθ for some θ ∈ R.

Proof. Consider the function g(z) := f(z)/z which is holomorphic in D \ {0}. Since

lim
z→0

g(z) = lim
z→0

f(z)− f(0)

z − 0
= f ′(0)

the origin is a removable singularity for g and hence it can be extended to a map g̃
holomorphic in the whole disc. We have

|g̃(z)| = |g(z)| 6 1

r

for all z such that |z| = r and by the Maximum modulus principle this holds in D(0, r).
Since r 6 1 is arbitrary, taking the limit we can conclude that

|g̃(z)| = |f(z)|
|z|

6 1

and hence |f(z)| 6 |z| for all z ∈ D. In particular, since

f ′(0) = lim
z→0

g(z) = g̃(0)
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then |f ′(0)| 6 1. Let us prove the last claim. If f is a rotation these properties are clearly
satisfied,

|f(z)|
|z|

=
|eiθz|
|z|

=
|z|
|z|

= 1, |f ′(0)| = |eiθ| = 1.

Conversely, if there is a z0 ∈ D, z0 6= 0, such that |f(z0)| = |z0| then this means that
g̃ attains its maximum value in an interior point and hence, by the Maximum modulus
principle, it is a constant function. Thus, |f(z)| = |z| for all z ∈ D, a characteristic
property of rotations. On the other hand, if |f ′(0)| = 1, then |g̃(0)| = |f ′(0)| = 1 and the
same argument applies. �

The Schwarz-Pick lemma is an extension of this classical result to hyperbolic metrics.

Theorem 1.6.2 (Schwarz-Pick lemma). If f is a holomorphic self-map of D, then f
is both an infinitesimal and a global contraction with respect to the hyperbolic metric on
D. That is,

ρD(f(t))|f ′(t)| 6 ρD(t)

for all t ∈ D, and
dist D(f(z), f(w)) 6 dist D(z, w)

for all z, w ∈ D. In particular, if f is a holomorphic self-map of D fixing 0 then |f(z)| 6
|z| and |f ′(0)| 6 1.

Proof. Suppose that f is an arbitrary holomorphic function from D into D. For every
t ∈ D, consider the self-maps of D

ht(z) :=
z − f(t)

1− f(t)z
, kt(z) :=

z + t

1 + tz
.

and define gt(z) := ht ◦ f ◦ kt(z) which is another map from D into itself. We have

g(0) = ht ◦ f ◦ kt(0) = h
(
f(t)

)
=
f(t)− f(t)

1− |f(t)|2
= 0

for all t ∈ D because |f(t)|2 < 1. Thus, for every value t ∈ D we can apply the Schwarz
lemma to gt and we get |g′t(0)| 6 1. Let us compute g′(0),

g′t(0) = h′t(f(kt(0))) · f ′(kt(0)) · k′t(0)

we have

h′t(z) =
1− |f(t)|2

(1− f(t)z)2
, k′t(z) =

1− |t|2

(1 + tz)2

and hence

|g′t(0)| = (1− |f(t)|2) · |f ′(t)| · (1− |t|2)

(1− |f(t)|2)2
= |f ′(t)| 1− |t|2

1− |f(t)|2
.

Thus,

|f ′(t)|ρD(f(t)) = |f ′(t)| 2

1− |f(t)|2
6

2

1− |t|2
= ρD(t)
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proving that it is an infinitesimal contraction. Let us see now that it is also a global
contraction. Suppose that z, w ∈ D and γ is the geodesic joining them. Then

dist D(f(z), f(w)) 6 lD(f(γ)) =

∫
f(γ)

ρD(t)|dt| =
∫
γ

ρD(f(t))|f ′(t)||dt|.

Using that it is an infinitesimal contraction and that the density functions are always
positive,

dist D(f(z), f(w)) 6
∫
γ

ρD(t)|dt| = lD(γ) = dist D(z, w).

�

Let us prove a more general version of this theorem that applies to hyperbolic metrics
in arbitrary domains. It is called the Schwarz-Ahlfors-Pick theorem or simply Pick’s
theorem.

Theorem 1.6.3 (Pick’s theorem). If f is a holomorphic map from a domain Y into
a domain X, then f is both an infinitesimal and a global contraction with respect to the
corresponding hyperbolic metrics on Y and X. That is,

ρX(f(t))|f ′(t)| 6 ρY (t)

for all t ∈ Y , and
distX(f(t), f(s)) 6 dist Y (t, s)

for all t, s ∈ Y .

Proof. Consider the universal coverings πY : D → Y and πX : D → X. We are going to
construct a holomorphic lift f̃ of f making the diagram

D
f̃ //

πY
��

D
πX

��
Y

f
// X

commutative. Fix an arbitrary point s ∈ Y and let p, q ∈ D be such that πY (p) = s
and πX(q) = f(s). To find the image of a point a ∈ D, join it to p by a curve γ in D,
project it by πY , take the image under f and lift it up by πX so that the initial point is
q. We define f̃(a) to be the endpoint of the resulting curve in D. Since all curves joining

a and p are homotopic in D, the Monodromy theorem (Corollary 1.3.5) tells us that f̃ is
well-defined. Note that, in particular,

f ◦ πY (a) = πX ◦ f̃(a)

for all a ∈ D and since f, πY , πX are holomorphic, f̃ is holomorphic too. Differentiating
the above equality we get

f ′(πY (a))π′Y (a) = π′X(f̃(a))f̃ ′(a).
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Applying the disc version of Pick’s theorem, Theorem 1.6.2, we have

ρD(f̃(a))|f̃ ′(a)| 6 ρD(a).

which can be rewritten as

ρD(f̃(a))
ρD(f̃(a))|f ′(πY (a))||π′Y (a)|

|π′X(f̃(a))|
6 ρD(a)

or equivalently

ρX(πX(f̃(a)))|f ′(πY (a))| = ρD(f̃(a))

|π′X(f̃(a))|
|f ′(πY (a))| 6 ρD(a)

|π′Y (a)|
= ρY (πY (a)).

for all a ∈ D. Using that fπY = πX f̃ ,

ρX(f(πY (a)))|f ′(πY (a))| = ρX(πX(f̃(a)))|f ′(πY (a))| 6 ρY (πY (a))

Finally, since πY is surjective, every t ∈ Y is equal to πY (a) for some a ∈ D, thus

ρX(f(t))|f ′(t)| 6 ρY (t)

for all t ∈ Y . To prove the global part, take two points s, t ∈ Y . Theorem 1.5.7 ensures
the existence of a unique geodesic γ in Y going from s to t. Thus,

distX(f(s), f(t)) 6 lX(f(γ)) =

∫
f(γ)

ρX(τ)|dτ | =
∫
γ

ρX(f(σ))|f ′(σ)||dσ| 6

6
∫
γ

ρY (σ)|dσ| = lY (γ) = dist Y (s, t).

�

Corollary 1.6.4. If f is a holomorphic one-to-one map from Y onto X, then f is both
an infinitesimal and a global isometry with respect to the corresponding hyperbolic metrics
on Y and X. That is,

ρX(f(t))|f ′(t)| = ρY (t)

for all t ∈ Y , and
distX(f(t), f(s)) = dist Y (t, s)

for all t, s ∈ Y .

Proof. Let g be the inverse of f and set s = f(t). Applying Pick’s theorem to g we have

ρY (g(s))|g′(s)| 6 ρX(s)

and therefore

ρX(f(t))|f ′(t)| = ρX(s)|f ′(g(s))| = ρX(s)
1

|g′(s)|
> ρY (g(s)) = ρY (t).

On the other hand, for all t, s ∈ Y

ρY (t, s) = ρY (g(f(t)), g(f(s))) 6 ρX(f(t), f(s)).

Since these are the converse inequalities in Pick’s theorem we conclude that both are
equalities. �
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1.7 Hyperbolic vs Euclidean distance

In this section we compare the hyperbolic and Euclidean distances. Following the dis-
cussion in [Mil06], we devote most of the section to prove the Koebe-Bieberbach quarter
theorem and then we get the standard estimate as a corollary. Let us begin with a the-
orem that will be needed in the proof of the Bieberbach theorem, which afterwards will
be used to prove the quarter theorem.

Theorem 1.7.1 (Gronwall area inequality). Let φ : C \ D → C \K be a conformal
isomorphism where K is a compact connected set and let

φ(w) = b1w + b0 +
b−1

w
+
b−2

w2
+O(|w−3|)

be its Laurent expansion. Then |b1| > |b−1|, with equality if and only if K is a straight
line segment.

You can find the proof of this theorem in [Mil06, A.4].

Theorem 1.7.2 (Bieberbach theorem). Let ψ : D → U be a conformal isomorphism
with power series expansion

ψ(η) =
∑
n>1

anη
n.

Then |a2| 6 2|a1|, with equality if and only if C \ U is a closed half-line pointing towards
the origin.

Proof. By composing ψ with a linear transformation, we can assume without loss of
generality that a1 = 1. Let h : C \D → D defined by h(z) = 1/z2. Consider ϕ the map
conjugated to ψ by h,

C \ D
ϕ //

h
��

N

h
��

D
ψ

// U

where N is some neighbourhood of ∞. Then,

ϕ(w) = h−1ψh(w) = h−1ψ

(
1

w2

)
=

√
1

ψ
(

1
w2

) =
1√

ψ
(

1
w2

) .
We want to obtain an expression for the Taylor expansion of ϕ. We have

ψ

(
1

w2

)
=

1

w2
+
a2

w4
+O(|w−5|)

and since this has no term with a positive power of w, there cannot be such term in its
square root. In general,(
b1

w
+
b2

w2
+
b3

w3
+O(|w−4|)

)2

= b2
1

1

w2
+ 2b1b2

1

w3
+ (2b1b3 + b2

2)
1

w4
+O(|w−5|) = ψ

(
1

w2

)
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thus,
b2

1 = 1, 2b1b2 = 0, 2b1b3 + b2
2 = a2

and choosing b1 = 1 we get b2 = 0 and b3 = a2/2. Since ϕ is conjugated to ψ, the
reciprocal of √

ψ

(
1

w2

)
=

1

w
+
a2

2

1

w3
+O(|w−4|)

must be of the form
ϕ(w) = c−1w + c0 +

c1

w
+O(|w−2|).

We have to solve(
1

w
+
a2

2

1

w3
+O(|w−4|)

)(
c−1w + c0 +

c1

w
+O(|w−2|)

)
= 1,

thus,

c−1 = 1, c0 = 0, c1 +
a2

2
= 0

and hence

ϕ(w) = w − a2

2

1

w
+O(|w−2|).

By Theorem 1.7.1,

1 > |c1| =
|a2|
2

⇔ |a2| 6 2

and we have equality if and only if N is the complement of a straight line segment K that
can be assumed to contain the origin. Thus, equality holds if and only if U = h(C \K)
which is a half line pointing to the origin. �

In fact, Ludwig Bieberbach conjectured in 1916 that |an| 6 n|a1| for all n > 2, having
equality in the same situation as above. After many partial results due to different
mathematicians, this was proved in 1984 by Louis de Branges.

Theorem 1.7.3 (Koebe-Bieberbach quarter theorem). Let ψ : D → U ⊆ C be a
univalent analytic function. Then

1

4
|ψ′(0)| 6 dist (ψ(0), ∂U) 6 |ψ′(0)|

where the first equality holds if and only if C\U is a half-line pointing towards the origin,
and the second inequality holds if and only if U is a disk centred at the origin.

Proof. Suppose by now that ψ(0) = 0. Then the power expansion of ψ centred at the
origin is of the form

ψ(z) =
∑
n>1

anz
n

and, again, without loss of generality we can assume that a1 = 1. Let z0 ∈ ∂U be a point
of minimal distance to the origin. Consider them Möbius map

A(z) =
z

1− z
z0
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mapping z0 to ∞. Let ϕ = A ◦ ψ,

ϕ(z) =
ψ(z)

1− ψ(z)
z0

= z +

(
a2 +

1

z0

)
z2 +O(|z|3).

To get the formal power expansion of ϕ we have to solve

(
z + a2z

2 +O(|z3|)
)

=

(
1− a1

z0

z − a2

z0

z2 +O(|z3|)
)(

z + b2z
2 +O(|z3|)

)
which gives

b2 = a2 +
1

z0

.

Applying Theorem 1.7.2 to ψ and ϕ we get respectively

|a2| 6 2, |b2| =
∣∣∣∣a2 −

1

z0

∣∣∣∣ 6 2.

Hence, by triangle inequality∣∣∣∣ 1

z0

∣∣∣∣ =

∣∣∣∣a2 +
1

z0

− a2

∣∣∣∣ 6 ∣∣∣∣a2 +
1

z0

∣∣∣∣+ |a2| 6 2 + 2 = 4

and thus

dist (0, ∂U) = |z0| >
1

4
.

We have equality if and only if

|a2| =
∣∣∣∣a2 −

1

z0

∣∣∣∣ = 2

and then by Theorem 1.7.2 this is equivalent to the fact that C \U is a half-line pointing
towards the origin.
On the other hand, assume to the contrary that dist (0, ∂U) > 1. Then, the inverse
function ψ−1 maps D into D and by the Schwarz lemma (Theorem 1.6.1), since

|(ψ−1)′(0)| = 1

|ψ′(0)|
= 1,

ψ−1 is a rotation. Then, ψ must be a rotation too, being D = ψ(D) but this contradicts
the fact that dist (0, ∂U) > 1. Hence, dist (0, ∂U) 6 1. By Schwarz lemma, equality holds
if and only if ψ is a rotation, therefore the domain must be a round disc.
Finally, the general case follows from the argument above taking ψ̃(z) = ψ(z)−ψ(0). �

This theorem was conjectured in 1907 by Paul Koebe, a PhD student of Hermann
Schwarz, and proved in 1914 by Ludwig Bieberbach. Using this classic result of complex
analysis we can obtain both a higher and a lower estimate for the hyperbolic density.
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Corollary 1.7.4 (Standard estimate). If V ⊆ C is simply connected, then the Poincaré
metric on V agrees with the metric |dz|/dist (z, ∂V ) up to a factor of two in either direc-
tion. That is

1

2dist (z, ∂V )
6 ρV (z) 6

2

dist (z, ∂V )

for all z ∈ V . The left equality holds if and only if C \ V is a half-line pointing towards
the point z ∈ V , while the right equality holds if and only if V is a round disk centred at
z.

Proof. Let z0 ∈ V . By the Riemann mapping theorem (Theorem 1.4.4), there is a
conformal isomorphism ϕ : V → D such that ϕ(z0) = 0. Recall that by definition

ρV (z0) =
1

|ϕ′(0)|
2

1− |0|2
=

2

|ϕ′(0)|
.

Then applying Theorem 1.7.3 to ϕ we get

1

4
|ϕ′(0)| 6 dist (z0, ∂U) 6 |ϕ′(0)| ⇔ dist (z0, ∂U) 6 |ϕ′(0)| 6 4 dist (z0, ∂U).

Combining these two facts,

1

2 dist (z0, ∂U)
=

2

4 dist (z0, ∂U)
6 ρV (z0) 6

2

dist (z0, ∂U)

as we wanted to show. �
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Chapter 2

Introduction to continuum theory

In this section we review the main results of Chapter V: The Boundary Bumping The-
orems and Chapter VI: Existence of Non-Cut Points from [Nad92]. The non-cut point
characterization of the arc will be a key point in the proof of the main theorem.

2.1 Basic properties of continua

Definition 2.1.1 (Continuum). A (metric) continuum is a non-empty, compact, con-
nected metric space. More generally, a Hausdorff continuum is a non-empty, compact,
connected Hausdorff space. A Hausdorff continuum is said to be non-degenerate if it has
more than one point.

Note that every metric space is Hausdorff. Therefore the notion of Hausdorff continuum
is weaker, Hausdorff continua might not be continua.

Definition 2.1.2 (Irreducible continuum). Let Y be a continuum and let A ⊆ Y .
Then, Y is said to be irreducible about A provided that no proper subcontinuum of Y
contains A. A continuum Y is said to be irreducible provided that Y is irreducible about
{p, q} for some p, q ∈ Y .

Let us introduce here the notion of indecomposable continuum. For instance, this kind
of continua appear in the phase space of some functions of the exponential family.

Definition 2.1.3 (Indecomposable continuum). A continuum X is said to be de-
composable provided that X can be written as the union of two proper subcontinua. A
continuum which is not decomposable is said to be indecomposable.

One of the most important techniques for obtaining interesting examples of continua is
the use of nested intersections. Let us state a couple of results about them which will be
used later on.

Proposition 2.1.1. Let {Xi}∞i=1 be a sequence of compact metric spaces such that Xi ⊇
Xi+1 for each i = 1, 2, . . ., and let

X =
∞⋂
i=1

Xi.

If U is an open subset of X1 such that U ⊇ X, then there exists N ∈ N such that U ⊇ Xi

for all i > N . In particular, if each Xi 6= ∅, then X 6= ∅ (and, clearly, compact metric).
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Proof. Assume to the contrary that for all i ∈ N there exists xi ∈ Xi \U ⊆ X1 \U . Since
X1 \ U is a compact metric space, the sequence {xi}∞i=1 has limit p ∈ X1 \ U . For every
k ∈ N, Xk contains infinitely many xi, xi ∈ Xk for all i > k. Therefore, the limit point p
belongs to every set Xk and hence belongs to their intersection, p ∈ X. But since p /∈ U ,
we get a contradiction with the assumption that X ⊆ U . Thus, it must exists N ∈ N
such that Xi \ U = ∅, or in other words Xi ⊆ U . Observe that once this happens for
some N , since Xi+1 ⊆ Xi, the same must happen for all i > N .
Suppose now that X = ∅ and Xi 6= ∅ for all i ∈ N. Then we could choose U = ∅ and
from the first part there would exist N ∈ N such that Xi = ∅ for all i > N , contradicting
our assumption. �

Theorem 2.1.2. Let {Xi}∞i=1 be a sequence of continua such that Xi ⊇ Xi+1 for each
i ∈ N. Then

X =
∞⋂
i=1

Xi

is a continuum.

To conclude this section we state a theorem that will be used in the proof of the first
Boundary bumping theorem. You can find a proof of it in [Nad92, Theorem 5.2].

Theorem 2.1.3 (Cut wire theorem). Let X be a compact metric space and let A,B
be closed subsets of X. If no connected subset of X intersects both A and B (equivalently,
no connected component of X does), then X = X1 ∪ X2 where X1 and X2 are disjoint
closed subsets of X with A ⊆ X1 and B ⊆ X2.

2.2 Boundary bumping theorems

Given a topological space S and a subspace H ⊆ S recall that the boundary of H with
respect to S can be defined as

∂H = H ∩ (S \H).

When we consider the boundary of a space H without specifying what is the space S that
we consider the boundary relative to, we will assume that S is the largest space under
consideration.

Theorem 2.2.1 (Boundary bumping theorem I). Let X be a continuum and let U
be a non-empty, proper, open subset of X. If K is a component of U , then K ∩ ∂U 6= ∅
(equivalently, since K ⊆ U and U is open, K ∩ (X \ U) 6= ∅).

Proof. Assume, by way of contradiction, that K ∩ ∂U = ∅. K and ∂U are closed subsets
of U and note that no connected component of U intersects K and ∂U at the same time.
Indeed, all connected components are disjoint, therefore the only connected component
intersecting K is K itself and, by assumption, K ∩ ∂U = ∅. Applying Theorem 2.1.3,
there are M1,M2 ⊆ U closed and such that M1 ∩M2 = ∅, M1 ∪M2 = U, K ⊆ M1 and
∂U ⊆M2. Let M3 := M2 ∪ (X \ U), a closed subset of X. Since U ⊆ U = M1 ∪M2,

X = U t (X \ U) ⊆M1 ∪M2 ∪ (X \ U) = M1 ∪M3
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and since M1,M3 ⊆ X we have X = M1 ∪M3. Now we have

∅ 6= K ⊂M1, ∅ 6= X \ U ⊆M3

and hence M1,M3 6= ∅. On the other hand,

M1 ∩M3 = M1 ∩
(
M2 ∪ (X \ U)

)
= (M1 ∩M2) ∪

(
M1 ∩ (X \ U)

)
= M1 ∩ (X \ U)

because M1 ∩M2 = ∅. Then

M1 ∩M3 ⊆ U ∩ (X \ U) = ∂U ⊆M2

and therefore M1 ∩M3 ⊆ (M1 ∩M2) ∩M3 = ∅. Thus, X is the union of two non-empty,
disjoint closed subsets, contradicting the assumption that X was connected. Hence,
K ∩ ∂U 6= ∅. �

Corollary 2.2.2. Let X be a non-degenerate continuum. If A is a proper subcontinuum
of X and U is an open subset of X such that A ⊆ U , then there is a subcontinuum B of
X such that

A ⊆ B 6= A, B ⊆ U.

In particular, every non-degenerate continuum X contains a non-degenerate proper sub-
continuum.

Proof. Let V be a proper open subset of X compactly contained in U , V ⊆ U , containing
A. Since A is connected, let B be the component of V containing A. We have A ⊆ B
and B ⊆ V ⊆ U . By Theorem 2.2.1,

B ∩ (X \ V ) 6= ∅

and since A ⊆ V , this implies that B 6= A.
The last claims follows from this taking A = {p} with p any point in X and U an open
set such that p ∈ U and U 6= X. B ⊆ U is a non-degenerate proper subcontinuum of
X. �

Theorem 2.2.3 (Boundary bumping theorem II). Let X be a continuum, and let
E be a non-empty proper subset of X. If K is a component of E, then

K ∩ ∂E 6= ∅

or, equivalently, since K ⊆ E, K ∩ (X \ E) = ∂K ∩ ∂E 6= ∅.

Proof. Suppose that K ∩ (X \ E) = ∅. K 6= ∅ by definition and since K ⊆
◦
E =

X \ (X \ E) and X \ E 6= ∅, K 6= X. Therefore, K is a proper subcontinuum of X. Since
◦
E is open in X and K ⊆

◦
E ⊆ E, by Corollary 2.2.2 there is a continuum B such that

K ⊆ B 6= K, B ⊆
◦
E .

Then K is a proper subset of a connected set B ⊆ U ⊆ E. This contradicts the fact that
K is a component of E, hence K ∩ (X \ E) 6= ∅. �

We will use this theorem in the following situation.

Corollary 2.2.4. Let X ⊆ Ĉ = C ∪ {∞} be a compact connected set containing ∞ and
E = X ∩ C. Then every component of E is unbounded.
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2.3 Existence of non-cut points

Definition 2.3.1 (Non-cut point). Let S be a connected topological space, and let
p ∈ S. If S \ {p} is connected, then p is called a non-cut point of S. If S \ {p} is not
connected, then p is called a cut point of S.

If Y is a topological space, we will write

Y = P |Q

to mean that {P,Q} is a partition of Y (i.e. Y = P ∪Q, P ∩Q = ∅, P,Q 6= ∅) and P,Q
are both open in Y . P and Q are open in Y if and only if they are mutually separated
in Y , i.e.

P ∩Q = P ∩Q = ∅

and in this situation the condition P ∩ Q = ∅ becomes trivial. It is very important to
remark that P and Q need not be connected and hence the expression Y = P |Q may not
to be unique as it is shown in the next example.

Example 2.3.1. Let Y = [−1, 1] ∪ [−1, 1]i ⊆ C. Then 1,−1, i,−i are the only non-
cut points of this space. Y \ {0} is the disjoint union of four disjoint half-open intervals
I1, I2, I3, I4. For instance, we can write Y = (I1∪I2)|(I3∪I4) as well as Y = I1|(I2∪I3∪I4).

Proposition 2.3.1. Let S be a connected topological space and let C be a connected
subset of S such that

S \ C = A|B.

Then, A∪C and B∪C are connected. Hence, if S and C are continua, A∪C and B∪C
are continua.

Proof. Suppose that A ∪ C = K|L. Since C is connected, either C ⊆ K or C ⊆ L.
Assume, for instance, that C ⊆ K. Then, L = (A∪C)\K ⊆ A. Since A and B are open
in S \ C,

L ∩B ⊆ A ∩B = ∅, L ∩B ⊆ A ∩B = ∅,

thus L ∩B = L ∩B = ∅. We claim that

S = L|(B ∪K)

contradicting the fact that S is connected. Indeed, L,B,K 6= ∅ by assumption and hence
also B ∪K 6= ∅. We have

L ∪ (B ∪K) = (K ∪ L) ∪B = (C ∪ A) ∪B = S

and L and B∪K are mutually separated in Y : since A∪C = K|L, K and L are mutually
separated

L ∩K = L ∩K = ∅

and hence

L ∩ (B ∪K) = (L ∩B) ∪ (L ∩K) = ∅, K ∩ (B ∪K) = (L ∩B) ∪ (L ∩K) = ∅.
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Thus, this contradiction tells us that A ∪ C is connected and, by symmetry, B ∪ C too.
Finally, suppose that S and C are compact. Then C must be closed in S and therefore
both A,B must be open. Thus,

A ∪ C = S \B, B ∪ C = S \ A

are closed subsets of a compact set S, hence they are compact and continua. �

Lemma 2.3.2. Let S be a connected topological space. Assume that x, y ∈ S are such
that

S \ {x} = K|L, S \ {y} = M |N.

If x ∈M and y ∈ K, then N ∪ {y} ⊆ K.

Proof. By Proposition 2.3.1, N ∪ {y} is connected. Since x ∈ M , x /∈ N ∪ {y} and
therefore either N ∪ {y} ⊆ K or N ∪ {y} ⊆ L. If y ∈ K,

(N ∪ {y}) ∩K 6= ∅

and hence (N ∪ {y}) ⊆ K. �

Theorem 2.3.3 (Non-cut point existence theorem). Let S be a non-degenerate
continuum. Assume that S has a cut point c and S \ {c} = U |V . Then, there is a non-
cut point of S in U and there is a non-cut point of S in V . Hence, S has at least two
non-cut points.

Proof. Let N denote the set of all non-cut point of S which, of course, may be empty.
Suppose to the contrary that N ⊆ V , thus every point in U is a cut point of S. Let D
be a countable dense subset of S,

D = {pn : n ∈ N}.

Define n(1) := min{n ∈ N : pn ∈ U}. Since U is non-empty and open in S, n(1) is well
defined. We have pn(1) ∈ U and hence is a cut point of S, let

S \ {pn(1)} = E1|F1

so that c ∈ E1. Lemma 2.3.2 implies

F1 ∪ {pn(1)} ⊆ U.

Now we can define n(2) := min{n ∈ N : pn ∈ F1} and since F1 ⊆ U \ {pn(1)} we have
n(2) > n(1) and pn(2) ∈ U is a cut point,

S \ {pn(2)} = E2|F2

with pn(1) ∈ E2. Again, by Lemma 2.3.2 F2 ∪ {pn(2)} ⊆ F1. We can repeat this process
systematically. Given a partition

S \ {pn(k)} = Ek|Fk
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with Fk ∪ {pn(k)} ⊆ Fk−1 we can consider

n(k + 1) := min{n ∈ N : pn ∈ Fk} > n(k)

and since pn(k+1) ∈ Fk ⊆ Fk−1 ⊆ · · · ⊆ F1 ⊆ U , it is a cut point, let

S \ {pn(k+1)} = Ek+1|Fk+1

with pn(k) ∈ Ek+1. Finally, Lemma 2.3.2 gives Fk+1 ∪ {pn(k+1)} ⊆ Fk and therefore
Ek ⊆ Ek+1. At every step, Proposition 2.3.1 ensures that

Fk+1 ∪ {pn(k+1)}, Ek+1 ∪ {pn(k+1)}

are continua. By induction we get two infinite collections of subcontinua of S,

{Fk+1 ∪ {pn(k+1)}}∞k=1, {Ek+1 ∪ {pn(k+1)}}∞k=1

the first one being decreasing and the second one increasing. Consider

F :=
∞⋂
k=1

(Fk ∪ {pn(k)})

which by Proposition 2.1.1 is not empty, let p ∈ F . Then, using the De Morgan laws

S \ F =
∞⋃
k=1

S \ (Fk ∪ {pn(k)}) =
∞⋃
k=1

(
(S \ Fk) ∩ (S \ {pn(k)})

)
=
∞⋃
k=1

(
(Ek ∪ {pn(k)}) ∩ (Ek ∪ Fk)

)
=
∞⋃
k=1

Ek =: E.

E is a increasing union of nested connected sets, therefore it must be connected. Note
that the dense set D is entirely contained in E. We have

S \ {p} ⊇ S \ F = E ⊇ D.

Since p ∈ F ⊆ U it must be a cut point, but if this was true we could write

S \ {p} = A|B

where A and B are open. Since E is connected, E ⊆ A or E ⊆ B. Assume, for instance,
that E ⊆ A, then B ∩D = ∅, contradicting the fact that D is a dense set in S. �

The next corollary tells us that continua are irreducible about its set of non-cut points.

Corollary 2.3.4. Let S be a non-degenerate continuum. Let N denote the set of all
non-cut points of S. Then, no proper connected subset of S contains N .

The Non-cut point existence theorem is true for Hausdorff continua but you shall use
the Hausdorff maximal principle to prove it, which is equivalent to the Axiom of choice.
Using this, you can also obtain a version of Corollary 2.3.4 for Hausdorff continua.
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2.4 Separation ordering

Definition 2.4.1 (Separating point). Let Z be a topological space and let p, q ∈ Z
with p 6= q. A point z ∈ Z is said to separate p and q in Z provided that Z \ {z} = A|B
with p ∈ A and q ∈ B. We will denote by S(p, q) the set of such points plus p and q.

Proposition 2.4.1. Let Z be a non-degenerate continuum. Then, Z has exactly two
non-cut points if and only if Z = S(p, q) for some p, q ∈ Z.

Proof. Suppose that Z has exactly two non-cut points p and q. Let c ∈ Z \ {p, q} which
must be a cut point of Z, thus Z \ {c} = U |V . By the Non-cut point existence theorem
(Theorem 2.3.3), one of the non-cut points must belong to U and the other one to V .
Hence, c ∈ S(p, q) and Z = S(p, q).
Conversely, if Z = S(p, q) for some p, q ∈ Z, then the only possible non-cut points of Z
are p and q. But since by Theorem 2.3.3 there must be two non-cut points in Z, p, q are
cut-points of Z. �

Lemma 2.4.2. Let Z be a connected topological space, and let p, q ∈ Z with p 6= q. Let
x, y ∈ S(p, q) \ {p, q} with

Z \ {x} = A1|B1 = A2|B2, p ∈ A1 ∩ A2, q ∈ B1 ∩B2;

Z \ {y} = C|D, p ∈ C, q ∈ D.

Then, (1) and (2) below hold:

(1) If y ∈ A1 ∪ A2, then C ∪ {y} ⊆ A1 ∩ A2.

(2) If y ∈ B1, then A1 ∪ {x} ⊆ C.

Proof. Assume without loss of generality that y ∈ A1. Since C and D are disjoint, then
either x ∈ C or x ∈ D (or, in other words, either x /∈ D ∪ {y} or x /∈ C ∪ {y}), thus

C ∪ {y} ⊆ A1 ∪B1 or D ∪ {y} ⊆ A1 ∪B1.

Moreover, since by Proposition 2.3.1 C ∪ {y} and D ∪ {y} are connected and y ∈ A1 we
have

C ∪ {y} ⊆ A1 or D ∪ {y} ⊆ A1

and since q ∈ B1 ∩B2 ⊆ X \ A1 and q ∈ D

C ∪ {y} ⊆ A1.

On the other hand, since x /∈ A1, x /∈ C ∪ {y} and hence

C ∪ {y} ⊆ A2 ∪B2

but since p ∈ A2 ∩ C and we already noted that C ∪ {y} is connected,

C ∪ {y} ⊆ A2
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and this together with the previous inclusion gives C ∪ {y} ⊆ A1 ∩ A2. The proof is
analogous if you assume from the beginning that y ∈ A2.
To prove the second part, assume now that y ∈ B1 = Z \ (A1 ∪ {x}). Then,

A1 ∪ {x} ⊆ C ∪D

and, since A1 ∪ {x} is connected by Proposition 2.3.1,

A1 ∪ {x} ⊆ C or A1 ∪ {x} ∪D

but as p ∈ A1 ∩ C, only the first one can hold. �

Corollary 2.4.3. Let Z be a connected topological space, and let p, q ∈ Z with p 6= q.

(1) For each x ∈ S(p, q) \ {p, q}, there exist unique sets Px and Qx such that

S(p, q) \ {x} = Px|Qx, p ∈ Px, q ∈ Qx.

(2) If Z is a Fréchet space (or T1) then Px and Qx are open in the subspace topology
for S(p, q).

Furthermore, if x, y ∈ S(p, q) \ {p, q} with x 6= y, then:

(3) y ∈ Px ∪Qx;

(4) if y ∈ Px, then Py ∪ {y} ⊆ Px;

(5) if y ∈ Qx, then Px ∪ {x} ⊆ Py and, thus, x ∈ Py.

Proof. Let us prove each one of these items:

(1) Suppose that Z \ {x} = A1|B1 = A2|B2. By Lemma 2.4.2 (1), given y ∈ S(p, q) \
{p, q}, if y ∈ Ai then y ∈ A1 ∩ A2, thus

A1 ∩ S(p, q) = A2 ∩ S(p, q)

and hence also B1 ∩ S(p, q) = B2 ∩ S(p, q). Therefore the sets Px := A1 ∩ S(p, q)
and Qx := B1 ∩ S(p, q) must be unique.

(2) By definition, Px and Qx are open in S(p, q) \ {x}. Since Z is Fréchet, every single
point is a closed subset and hence S(p, q) \ {x} is open in S(p, q). Hence, Px and
Qx are open in S(p, q).

(3) It is just because x 6= y.

(4) This is a direct consequence of Lemma 2.4.2 (1). Using the notation from there, if
y ∈ Px = A1 ∩ S(p, q), then

Py ∪ {y} =
(
C ∩ S(p, q)

)
∪ {y} = (C ∪ {y}) ∩ S(p, q) ⊆ (A1 ∩ A2) ∩ S(p, q) = Px.

42



(5) This follows from Lemma 2.4.2 (2). If y ∈ Qx = B1 ∩ S(p, q),

Px ∪ {x} =
(
A1 ∩ S(p, q)

)
∪ {x} = (A1 ∪ {x}) ∩ S(p, q) ⊆ C ∩ S(p, q) = Py.

�

Definition 2.4.2 (Separation ordering). Let Z be a connected topological space and
let p, q ∈ Z with p 6= q. We denote by ≺s the separation ordering for S(p, q) defined by:

• for any z ∈ S(p, q) \ {p}, p ≺s z;

• for any z ∈ S(p, q) \ {q}, z ≺s q;

• for any x, y ∈ S(p, q) \ {p, q},

x ≺s y ⇔ x ∈ Py

where Py is such that S(p, q) \ {y} = Py|Qy and q ∈ Qy.

Let us recall what are the properties that must satisfy a simple ordering. In Lemma 2.4.5
we check that indeed ≺s is a simple ordering on S(p, q).

Definition 2.4.3 (Simple ordering). A binary relation ≺ for a set Y is called a simple
ordering (or strict total ordering) provided that

(i) ≺ is irreflexive: no element is related to itself, x ≺ y ⇒ x 6= y;

(ii) ≺ is transitive: if x ≺ y and y ≺ z then x ≺ z;

(iii) ≺ is total: if x 6= y then either x ≺ y or y ≺ x.

Lemma 2.4.4. A totally ordered set X with the order topology is a completely normal
Hausdorff space (usually called T5 or completely T4), this is a completely normal space
which is Fréchet. In particular, it is a Hausdorff space.

Lemma 2.4.5. The separation ordering ≺s for S(p, q) is a simple ordering.

Proof. Let us verify that ≺s satisfies the three properties above:

(i) Irreflexivity. By definition, p ⊀s p and q ⊀s q. If z ∈ S(p, q) \ {p, q}, by Corollary
2.4.3 (1), x /∈ Px and thus z ⊀s z.

(ii) Transitivity. Let x ≺s y and y ≺s z. If x = p or z = q it is clear because they are
respectively smaller and greater than any other point. Otherwise, we have

x ∈ Py ⊆ Py ∪ {y} ⊆ Pz

by Corollary 2.4.3 (4). Hence x ∈ Pz and x ≺x z.

(iii) Totality. By definition, the extrempoints p and q are comparable to any other point.
Since x 6= y, as remarked in Corollary 2.4.3 (3), y ∈ Px ∪Qx. If y ∈ Px then y ≺x x
and we are done. Otherwise, if y ∈ Qx then, by Corollary 2.4.3 (5), x ∈ Py and
therefore x ≺s y.

Thus, ≺s is a strict total ordering on S(p, q). �
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We have defined a total ordering on S(p, q) using only its topological properties. Con-
versely, every totally ordered set admits a topology coming from the order. This notion
generalizes the Euclidean topology of R.

Definition 2.4.4 (Order topology). Given a totally ordered set (X,≺), the open
intervals

(a, b)≺ := {x ∈ X : a ≺ b ≺ c}
form a basis of the order topology in X. Equivalently, the set of all unbounded open
intervals

(a,∞)≺ := {x ∈ X : a ≺ x}, (−∞, b)≺ := {x ∈ X : x ≺ b}

form a subbasis of this topology.

Proposition 2.4.6 (Separation order topology vs subspace topology). If Z is
Fréchet, the separation order topology for S(p, q) is contained in the subspace topology for
S(p, q).

Proof. Let TS be the subspace topology for S(p, q) induced by the one of Z. For every
x ∈ S(p, q) consider

Ux := (−∞, x)≺s = {y ∈ S(p, q) : y ≺s x}, Vx := (x,∞)≺s = {y ∈ S(p, q) : x ≺s y}.

Since these sets form a subbasis of the topology of S(p, q), it is enough to check it for
them. By irreflexivity, no point is related to itself and, in particular, p ⊀s p and q ⊀s q.
By (1) in the definition of separation ordering, every point y ∈ S(p, q)\{p} satisfies p ≺s y
therefore Vp = S(p, q) \ {p}. If y ≺s p then by transitivity we would have p ≺s p which is
not possible by irreflexivity, hence Up = ∅. Similarly, by (2) every point y ∈ S(p, q) \ {q}
satisfies y ≺s q, Uq = S(p, q) \ {q}, and q ⊀s y in order not to contradict irreflexivity,
Vq = ∅. Thus, Up = Vq = ∅ ∈ TS and, since Z is Fréchet, Uq, Vp ∈ TS too.
On the other hand, if z ∈ S(p, q) \ {p, q} by (3)

Uz \ {p, q} = Pz \ {p, q}.

Like before, p ∈ Uz and q /∈ Uz by definition and, by (1) of Corollary 2.4.3, p ∈ Pz and
q /∈ Pz. We have Uz = Pz and (2) of the same corollary tells us that Pz and Qz are both
open in the subspace topology. Hence, Uz ∈ TS. Since S(p, q) \ {z} = Pz|Qz and the
separation ordering is total,

Vz \ {p, q} = Qz \ {p, q}.

Similarly, p /∈ Vz and q ∈ Vz by definition and, by (1) of Corollary 2.4.3, q ∈ Qz and
p /∈ Qz because Qz is disjoint of Pz and p ∈ Pz. �

2.5 Non-cut point characterization of the arc

The goal of this section is to prove an order characterization of the arc. In the next
chapter, we will define an ordering for some components of the Julia set in terms of the
dynamics of the function and then thanks to this we will be able to ensure that this
components are arcs.
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Theorem 2.5.1. Let Z be a non-degenerate continuum. If Z has exactly two non-cut
points, then Z = S(p, q) for some p, q ∈ Z and the topology of Z is equal to the separation
order topology in Z. Conversely, if Z is endowed with the order topology then Z has
exactly two non-cut points.

Proof. Let T be the topology of Z. Suppose that Z has exactly two non-cut points.
Then, by Proposition 2.4.1, Z = S(p, q) for some p, q ∈ Z and, by Proposition 2.4.6, if
T ′ denotes the separation order topology of Z then T ′ ⊆ T . Therefore, the identity map
from (Z, T ) to (Z, T ′) is continuous. Since (Z, T ) is a compact space and by Corollary
2.4.3 (2) (Z, T ) is Hausdorff, the identity provides a homeomorphism between (Z, T ) and
(Z, T ′) and hence both topologies are equal.
Conversely, let T be the order topology coming from some total order ≺ on Z. Since Z
is compact, there exist p, q ∈ Z such that p ≺ z for all z ∈ Z \ {p} and z ≺ z for all
z ∈ Z \ {q}. Explicitly, consider a cover A of Z by open sets of the form

Ua := {z ∈ Z : a ≺ z}

and since Z is compact there will be a finite subcover of A, take p to be the minimum of
the finite number of values of a from the subcover. You can construct q in an analogue
way. Since T is the order topology, every z ∈ Z \ {p, q} is a cut point, namely

Z \ {z} = (−∞, z)≺|(z,∞)≺

and hence, the only possible non-cut points are p and q. By Theorem 2.3.3, Z must have
at least two non-cut points, thus p and q must be cut points of Z. �

We would like to remark that Proposition 2.4.1 and Theorem 2.5.1 can also be stated
for Hausdorff continua if you use the more general version of the Non-cut point existence
theorem which requires the use of the Axiom of choice in its proof. But we will apply
this to subsets of C, which is a metric space.

Theorem 2.5.2 (Non-cut point characterization of the arc). A continuum X is
an arc if and only if X has exactly two non-cut points.

Proof. Suppose that a continuum X has two non-cup points. Then, by Theorem 2.5.1,
X = S(p, q) for some p, q ∈ X and has the topology induced by the separation ordering
≺s. Let C be a countable dense subset of X \ {p, q},

C = {ci : n > 1}

and let D be the set of all dyadic rationals in (0, 1),

D = {k/2m : k < 2m, k > 1, m > 1} ⊆ (0, 1) ∩Q.

We are going to construct an order isomorphism between C and D. Let f(c1) = 1/2.
Since C is a dense set, there are n(1, 1), n(1, 2) ∈ N such that

p ≺s cn(1,1) ≺s c1 ≺s cn(1,2) ≺s q.

Note that S(p, c1) and S(c1, q) are open subsets with the separation topology of S(p, q).
Let f(cn(1,1)) = 1/4 and f(cn(1,2)) = 3/4. In the next step we can find four middle points
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and assign them to 1/8, 3/8, 5/8 and 7/8. Observe that this covers all the points with
denominator 23 because 2/8 = 1/4, 4/8 = 1/2 and 6/8 = 3/4 were already assigned. We
can proceed inductively. In the kth step we will have constructed

k−1∑
k=0

2k =
1− 2k

1− 2
= 2k − 1

points. Let us call them cσ(k), k ∈ {1, . . . , 2k − 1}. By the same argument before, we
can find 2k middle points between them

p ≺s cn(k,1) ≺s cσ(1) ≺s · · · ≺s cσ(2k−1) ≺s cn(k,2k) ≺s q.

and assign them to the points in D of the form

a

2k+1
, gcd(a, 2k+1) = 1.

Now we have defined the image of 2k − 1 + 2k = 2k+1 − 1 points. In the limit, all points
in C have an image in D. f is an order isomorphism,

ci ≺s cj ⇒ f(ci) < f(cj).

This is satisfied by construction, if a point lies between two points then its image will
be defined between the images of these points. Define now a function h : S(p, q) → I
extending f : h(p) := 0, h(q) := 1, h(c) = f(c) if c ∈ C and

h(x) := sup{f(ci) : ci ∈ C, ci ≺s x} = inf{f(ci) : ci ∈ C, x ≺s ci}

for all x ∈ X\(C∪{p, q}). Since every point in X can be approximated by points in C and
every point in I can be approximated by points in D we claim that h is a homeomorphism
from X to I. Furthermore, h is order-preserving: let z, y ∈ X \ (C ∪ {p, q}) such that
z ≺s y, then there is w ∈ C such that z ≺s w ≺s y, thus

h(z) = inf{f(ci) : ci ∈ C, z ≺s ci} 6 f(w) 6 sup{f(ci) : ci ∈ C, ci ≺s y} = f(y)

and the claim follows from the injectivity of h.
Conversely, it is clear that an arc has exactly two non-cut points. If h is a homeomorphism
from I to X then h(0) and h(1) must be non-cut points and every other h(x) must be a
cut point for x ∈ (0, 1). �

Putting these two theorems together we obtain a characterization of the arc in terms of
its ordering.

Corollary 2.5.3 (Order characterization of the arc). Let X be a continuum. Sup-
pose that there is a total ordering ≺ on X such that the order topology of (X,≺) agrees
with the metric topology of X. Then either X consists of a single point or there is an
order-preserving homeomorphism from X to the unit interval.
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Chapter 3

Introduction to transcendental
dynamics

Complex dynamics studies the iteration of holomorphic functions on some domain of the
Riemann sphere Ĉ = C ∪ {∞}. In this chapter we introduce the basic notion of this
area. For a complete proof of all these facts we refer to [Mil06] for the rational case and
to[Sch10] for the entire transcendental case.

3.1 Iteration of holomorphic functions

By iteration of a point z0 ∈ Ĉ by a holomorphic function f we mean the image of z0

under the self-composition of the function f , fn = f ◦ n· · · ◦f . The point z0 is usually
called the seed of the iteration.

Definition 3.1.1 (Orbit). Given a point z ∈ Ω ⊆ Ĉ and a function f analytic on Ω, we
can consider the sequence

O+(z0) := {fn(z0)}n>0

called the positive orbit of z0 and the set

O(z0) := {z ∈ Ĉ : ∃m,n ∈ N, fm(z0) = fn(z)}

called the grand orbit of z0.

Note that grand orbits are completely invariant sets, f(O(z0)) = O(z0). The goal of
complex dynamics is to understand what is the structure and the behaviour of these sets
for every analytic function. Let us introduce now a very special kind of orbits.

Definition 3.1.2 (Periodic orbit). Let z0 ∈ Ĉ and f be a holomorphic function. We
say that z0 is a periodic point under f if there is k ∈ N such that fk(z0) = z0. The period
of a point is the minimum integer with this property. If the period is k = 1, then we say
that z0 is a fixed point .

Observe that if z0 is a p-periodic point of f then it is a fixed point of the map fp.
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Definition 3.1.3 (Preperiodic point). A point z0 ∈ Ĉ is said to be preperiodic under
f if there is some n ∈ N such that fn(z0) is a periodic point, i.e.

fk+n(z0) = fn(z0)

for some k ∈ N.

Figure 3.1: Scheme of the grand orbit of a preperiodic point z0. Observe that w has period
3. The red points are the positive orbit of z0.

As a curiosity, let us say that a transcendental entire map does not need to have a fixed
point (e.g. f(z) = ez + z 6= z for every z ∈ C) but f 2 has to have a fixed point.
Berweiler showed in [Ber91] that entire transcendental functions have infinitely many
periodic points of every period n > 2, proving a conjecture of Baker. Now we want to
study the behaviour of the points nearby a periodic orbit.

Definition 3.1.4 (Stability of a periodic orbit). Let z0 be a p-periodic point of a
function f and denote zk := fk(z0), k = 1, . . . , p− 1. Consider

λf (z0) := (fp)′(z0) = f ′(z0) · f ′(z1) · · · f ′(zp−1)

the multiplier of the orbit of z0 under f , then

• if λf (z0) = 0 we say that z0 is a superattracting periodic point;

• if |λf (z0)| < 1 we say that z0 is an attracting periodic point;

• if |λf (z0)| > 1 we say that z0 is a repelling periodic point.

Every (super)attracting periodic point z0 is equipped with a neighbourhood of points that
converge to it under iteration by f . Similarly, every repelling point has a neighbourhood
of points that are mapped outside of it eventually.

Definition 3.1.5 (Basin of attraction). Let z0 be a (super)attracting periodic point
of a function f . The attracting basin of z0 is defined as

Af (z0) := {z ∈ Ĉ : fn(z)→ z0}.

Note that it may not be a connected set. We denote by A∗f (z0) the connected component
of Af (z0) containing z0 and we call it the immediate attracting basin of z0.
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Definition 3.1.6 (Parabolic point). Let z0 be a p-periodic point for some function f .
Then we say that z0 is a parabolic point if

λf (z0) = e2πip/q

for some p, q ∈ Z such that (p, q) = 1. We call parabolic basin of attraction to the set of
points converging to a parabolic point.

The major difference between a regular attracting basin and a parabolic basin of attrac-
tion is that if the periodic point is parabolic then it is located in the boundary of the
basin while otherwise it lies in its interior.
Observe that for a polynomial ∞ is always a superattracting fixed point, therefore we
always have an attracting basin AP (∞) in the phase space. If you consider a rational

function, still analytic on Ĉ, ∞ is no longer a special point: it has a well-defined image
and some preimages (poles) as well. Conversely, there is a substantial increase of difficulty
when you study entire transcendental functions, i.e. entire functions for which ∞ is an
essential singularity.

Definition 3.1.7 (Essential singularity). Let U ⊆ Ĉ be a domain with α ∈ U and let

f : U \ {α} → Ĉ be a holomorphic function. Then α is said to be an essential singularity
if the Laurent series expansion of f arround α has infinitely many terms with negative
powers of (z − α).

Lemma 3.1.1. A point α is an essential singularity for f if and only if the limit of f(z)
as z → α does not exitst.

Definition 3.1.8 (Transcendental function). A function is said to be transcendental
if it has at least one essential singularity.

Example 3.1.1. The point at ∞ is an essential singularity for the exponential map or,
equivalently, 0 is an essential singularity for exp(1/z). Observe that

e1/z = 1 +
1

z
+

1

2!z2
+

1

3!z3
+ · · ·

is the Laurent series expansion of exp(1/z) around the origin. On the other hand, the
directional real limits

lim
x→0−

e1/x = lim
y→−∞

ey = 0, lim
x→0+

e1/x = lim
y→+∞

ey = +∞

show that the limit of exp(1/z) at z = 0 does not exist. Other examples of entire
transcendental functions are sin(z) and cos(z).

The following theorem illustrates the chaos in the dynamics of a function introduced by
an essential singularity.

Theorem 3.1.2 (Great Picard theorem). If an analytic function f has an essential
singularity at a point w, then on any open set containing w, the function f takes on all
possible complex values, with at most a single exception, infinitely often.

Therefore, if f is an entire transcendental function, when you map close to∞ in the next
iterate you can be mapped everywhere. This injects a lot of chaos to the dynamics of the
function and makes it more interesting.
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3.2 Domains of normality

All the points in the attracting basin of some periodic point behave in a similar way. In
this sense we say that they have a stable behaviour. On the other hand, the points in
the boundary of an attracting basin behave in a more chaotic way. To formalize this, let
us introduce the notion of normality.

Definition 3.2.1 (Normality). Let F be a family of analytic functions on some domain
Ω. We say that F is a normal family (in the sense of Montel) if every infinite sequence
in F contains a subsequence which converges uniformly on compact subsets of Ω.

Definition 3.2.2 (Fatou and Julia sets). Let f be an analytic self-map of a domain

D ⊆ Ĉ. We call the Fatou set of f , denoted by F (f), to the set of points that have a
neighbourhood U ⊆ D where the family of iterates F = {fn|U}n is normal in the sense of

Montel. The complement J(f) = D \ F (f) is called the Julia set of f and has chaotic
behaviour.

Throughout this chapter and the next one the domain D will equal C or Ĉ but we have
stated the definition in a more general context to fit the setting D = C∗ in the last
chapter as well.

Theorem 3.2.1 (Montel’s theorem). If U ⊆ C and there are a, b, c ∈ Ĉ pairwise

distinct such that fn : U → Ĉ \ {a, b, c} for all n ∈ N, then {fn|U}n is a normal family.

Corollary 3.2.2. If z ∈ J(f) and U is any neighbourhood of z, then⋃
n∈N

fn(U)

covers the whole Riemann sphere Ĉ with the exception of, at most, two points.

Lemma 3.2.3 (Characterization of the Julia set). Let f be an entire function. Then
J(f) is the closure of the set of repelling periodic points of f .

Proposition 3.2.4 (Properties of the Fatou and Julia sets). Let f be an entire
transcendental function or a polynomial of degree greater than 2. Then,

• J(f) and F (f) are forward invariant;

• J(f) is closed and F (f) is open;

• J(f) is non-empty, unbounded and has not isolated points;

• for all n > 1, J(fn) = J(f) and F (fn) = F (f).

Lemma 3.2.5 (Filled Julia set). Let P be a polynomial. Then K(P ) := C \AP (∞) is
called the filled Julia set and J(P ) = ∂K(P ).
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Figure 3.2: Polynomial Julia sets. The colors indicate the number of iterates needed to
escape some bound. In black, the filled Julia set K(P ). TL: P (z) = z2 − 0.12 + 0.74i (the
Douady rabbit); TR: P (z) = z2 + i (dendrite); BL: P (z) = z2 + 0.486 + 0.54i (Cantor dust);
BR: P (z) = z3 − 1.08z − 0.161 (a disconnected Julia set). z ∈ [−2, 2] + i[−2, 2].

Figure 3.2 shows four examples of polynomial Julia sets which are different from the
topological point of view. In the first one, 0 belongs to a superattracting 3-cycle and the
Julia set is the boundary between AP (∞) and AP (0). On the right hand side, F (P ) =
AP (∞) and hence J(P ) = K(P ). When this happens, we usually say that J(P ) is a
dendrite. Downstairs we have two disconnected Julia sets. On the left, we have what
is called a Cantor dust , i.e. a totally disconnected, compact, perfect set. On the right,
the Julia set is disconnected but not totally disconnected. This last case cannot occur
for polynomials of degree two because it requires to have two critical points, one of them
escaping to ∞ and the other one being periodic, we will discuss this in the next section.
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3.3 Classification of the Fatou components

Now we focus in the study of the Fatou set. We want to understand what are the
possible dynamics for the connected components of F (f) for any entire function f . We
have already seen two examples of such components: attracting basins and parabolic
basins of attraction are Fatou components.

Definition 3.3.1 (Siegel disc). A Siegel disc (or rotation disc) is an open set confor-
mally equivalent to D containing a fixed point z0 and such that the dynamics there are
conformally conjugated to an irrational rotation Rθ(z) = e2πiθ, θ ∈ R \Q, on D.

Figure 3.3: Siegel disc. Phase space of the function Pλ(z) = λz(1 + z) with λ = e2πiθ and

θ =
√

5−1
2 , z ∈ [−2, 1] + i[−1, 1]. The origin is a fixed point with multiplier λ. The boundary of

the Siegel disc has been drawn in blue and there are some invariant curves in green containing
the points −0.1,−0.2,−0.3,−0.4. All the other components of the Fatou set are preimages of
it.

Definition 3.3.2 (Herman ring). A Herman ring (or rotation ring) is an open set
conformally equivalent to an anulus A such that the dynamics there are conformally
conjugated to an irrational rotation Rθ(z) = e2πiθ, θ ∈ R \Q, on A.

Lemma 3.3.1. Every Herman ring requires the existence of a pole inside the bounded
component of its complement. Thus, entire maps cannot have Herman rings.

Proof. Let γ be an invariant curve inside the Herman ring. On γ the dynamics are
conjugated to an irrational rotation. Thus, for every point z0 ∈ γ,

sup
n∈N
|fn(z0)| 6 max

z∈γ
|z| =: M.

Call U the bounded component defined by γ. U contains the inner boundary of the
Herman ring, therefore it contains points of the Julia set. Let V ⊆ U be a neighbourhood
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Figure 3.4: Herman ring. Phase space of the function f(z) = e2πitz2 z−4
1−4z with t = 0.6151732

and z ∈ [−4, 8]+ i[−3, 3]. In orange, Af (∞) and, in blue, Af (4). The boundaries of the Herman
ring have been drawn in blue and red. All the other Fatou components are preimages of it.

of one of these points. By Corollary 3.2.2, the iterates of V must cover the whole Ĉ with
the exception of, at most, two points. Therefore, there is some point in z0 ∈ V such that
|fn(z0)| > M for some n ∈ N. Applying the Maximum modulus principle to fn on U ,
since the maximum of |fn(z)| lies not in γ = ∂U but inside U and fn is not constant,
we conclude that fn cannot be holomorphic, it must have a pole in U . Hence, there is a
pole of f in fm(U) for some m < n. �

These sets are named after Carl Ludwig Siegel (1896–1981) and Michael Robert Herman
(1942–2000). In 1918, Pierre Fatou proved the following classification theorem for the
periodic Fatou components of a rational function.

Theorem 3.3.2 (Fatou classification theorem). Let f be a rational function. If U is
a periodic component of F (f) then either

• U is a (super)attracting basin, or

• U is a parabolic basin of attraction, or

• U is a Siegel disc, or

• U is a Herman ring.

The proof of this theorem is out of the scope of this project, you can find it in [Mil06,
Theorem 13.1]. A priori, some components of the Fatou set may not be periodic nor
preperiodic, this type of components are called wandering domains.

Definition 3.3.3 (Wandering domain). A wandering domain is a domain U such that
fn(U) ∩ fm(U) = ∅ for all n,m ∈ N, n 6= m.
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In 1985, Dennis Sullivan discarted the possibility of existence of wandering domains for
rational functions, thus completing the classification of the Fatou components for rational
functions.

Theorem 3.3.3 (No wandering domain theorem). Let f be a rational function. Then
every component of the Fatou set must be either periodic or preperiodic, there cannot be
wandering components.

The situation is different for transcendental functions. If the function has an essential
singularity there can be another type of Fatou component.

Definition 3.3.4 (Baker domain). A Baker domain (or parabolic domain at infinity)
is a forward invariant domain on which the sequence of iterates converges uniformly on
compact subsets to the constant limit function∞, which must be an essential singularity.

They received their name in honour of Irvine Noel Baker (1932–2001). The proof of
the classification theorem for the Fatou components of entire transcendental functions
goes back to the early 90’s. We will continue this discussion in Section 5.3 studying the
Fatou components of the self-maps of the punctured plane, functions with two essential
singularities.

3.4 Singular values

The study of singular values is important for two reasons. First of all, we will see that
nearly every Fatou component has associated a singular value and therefore computing
the orbits of the singular values of a function gives us information about the composition
of its Fatou set. On the other hand, they are problematic points in the sense that prevent
the function to be conformal or to be a regular covering.

Definition 3.4.1 (Singular value). Let f : C → Ĉ be a meromorphic function. We

call a point a ∈ Ĉ a singular value of f if for every open neighbourhood U of a there
exists a component V of f−1(U) such that f : V → U is not bijective. We will denote by
S(f) the set of all finite singular values of f .

Definition 3.4.2 (Critical value). We say that c is a critical point of order n if 0 =
f ′(c) = · · · = f (n)(c) and f (n+1)(c) 6= 0. At a small neighbourhood of these points, the
function f behaves like zn and therefore it is non injective. Thus, the image of a critical
point v = f(c), what is called a critical value, is a singular value.

If the function we are considering has essential singularities, there is another kind of
singular values to take into account.

Definition 3.4.3 (Asymptotic value). A point a ∈ Ĉ is an asymptotic value of f if
there exists a curve γ : [0,+∞)→ C such that

lim
t→∞
|γ(t)| =∞ and a = lim

t→∞
f(γ(t)).

Since the function f is not defined at ∞, every asymptotic value is a singular value.
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Lemma 3.4.1. S(f) is the closure of the set sing(f−1), the set of all finite critical and
asymptotic values.

The next theorem explains what is the relation between the singular values and the Fatou
components. Check [Mil06] for a proof of it.

Theorem 3.4.2 (Singular values and Fatou components). Every cycle of attracting
and parabolic Fatou components contains a singular value. Every Siegel disc and Herman
ring requires that the orbit of respectively one and two singular values accumulates in
their boundary.

This is a powerful tool to detect quickly the presence of these Fatou components. For
instance, a rational function of degree d has at most 2d− 2 critical points, therefore this
gives us an upper bound for the number of Fatou components.
Now let us introduce some special classes of functions depending on the geometry of its
singular set. Many of the theorems in transcendental dynamics are restricted to these
classes.

Definition 3.4.4 (Eremenko-Lyubich class B). We say that an entire function f
belongs to the class B if S(f) is a bounded set.

Example 3.4.1. Every non-trivial function in the exponential family Eλ(z) = λez is of
class B because the only singular value is 0. If λ 6= 0, Eλ has no critical points and 0
is the only omitted point, hence it must be an asymptotic value. Recall that by the Big
Picard theorem, an entire transcendental function omits at most one point. See Section
3.6.

The exponential family is the main example that motivated all this theory. In some
sense, the maps that we study here share the global behaviour with exponential maps.
Once this family was better understood, Devaney and Tangerman moved to study a more
general class of functions.

Definition 3.4.5 (Critically finite function). An entire transcendental function is
said to be critically finite if S(f) is a finite set.

In their article [DT86] they considered critically finite entire functions satisfying certain
growth conditions. They proved that this functions have ’Cantor bouquets’ in their Julia
sets, see Section 3.5 for a disambiguation about the term Cantor bouquet. For instance,
their results apply to s(z) = sin(z) and c(z) = cos(z). Note that these functions are all
in B. The setting considered by Rempe et al. in [RRRS11] is much more general, they
study finite composition of functions f ∈ B of finite order.

3.5 Cantor bouquets

Cantor bouquets are a very interesting object from the topological point of view, for
instance see Theorem 3.5.2 for a really surprising property. In the next section we will
show that they are very related to the iteration of transcendental functions. You can find
non-equivalent definitions of what is a Cantor bouquet in the literature. We will use the
one introduced by Aarts and Oversteegen in [AO93] in terms of straight brushes.
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Definition 3.5.1 (Straight brush). A subset B of [0,+∞)× (R\Q) is called a straight
brush if the following properties are satisfied:

(a) Hairiness: for every (x, y) ∈ B there exists ty > 0 such that

{x : (x, y) ∈ B} = [ty,+∞).

(b) Density: the set {y : ∃x, (x, y) ∈ B} is dense in R \ Q. Moreover, for every
(x, y) ∈ B there exist two sequences of hairs attached respectively at βn, γn ∈ R\Q
such that βn < y < γn, βn, γn → y and tβn , tγn → ty as n→∞.

(c) Compact sections: the set B is a closed subset of R2.

The set [ty,+∞)× {y} is called the hair attached at y and the point (ty, y) is called its
endpoint . The set of endpoints is usually called the crown of the straight brush.

Proposition 3.5.1 (Accessible points of a straight brush). Let B be an straigh
brush. If (x, y) ∈ B is not an endpoint, then (x, y) is not accessible from R2 \ B in the
sense that there is no continuous curve γ : [0, 1] → R2 such that γ(t) /∈ B for 0 6 t < 1
and γ(1) = (x, y). On the other hand, the endpoint (ty, y) is accessible from R2 \B.

Theorem 3.5.2 (Connectivity of the crown). Let E be the crown of some straight

brush. Then Ê = E ∪ {∞} is a connected set, but E is totally disconnected.

Definition 3.5.2 (Cantor bouquet). A Cantor bouquet is any subset of the plane that
is ambiently homeomorphic to a straight brush.

In [DT86], they define a Cantor N -bouquet as a set homeomorphic to the Cartesian
product of a Cantor set and a closed interval I. Then they say that a Cantor bouquet is
a limit of such sets. Observe that this is not equivalent to the above definition.

Theorem 3.5.3. Any two straight brushes B1, B2 ⊂ R2 are ambiently homeomorphic.
That is, there is a homeomorphism ϕ : B1 → B2 that can be extended to a homeomorphism
ϕ′ : R2 → R2.

3.6 The exponential family

In this section we will sketch the construction of the Julia set of a transcendental function
explicitly. After this we will describe the dynamics of the exponential family for positive
real values of the parameter. For a complete proof of these results we refer to Devaney’s
articles [DT86], [Dev94] and [Dev99].

Definition 3.6.1 (Exponential family). The exponential family is given by

Eλ(z) = λ exp(z)

where λ ∈ C∗ = C \ {0}. Sometimes it is formulated as

Ẽa(z) = exp(z) + a

with a ∈ C. Both families are conformally conjugated through the exponential map.
Explicitly, the map Ẽa is conjugated to the map Eλ such that λ = ea.
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Usually the function E1/e(z) = e−1ez is among the transcendental functions with a simpler
Julia set.

Theorem 3.6.1. J(E1/e) is an uncountable union of simple closed curves, each of them
connecting a point in C to ∞. The Fatou set is connected and consists of the attraction
basin of the attracting fixed point of E1/e.

Sketch of the proof. Let us construct this set explicitly. For simplicity denote E := E1/e.
It is easy to see that as a real function E|R only has one fixed point, E(1) = 1 and
E ′(1) = 1. This neutral fixed point is attracting on the left and repelling on the right.
Denote by B the parabolic basin of attraction of this point, B = AE(1). Consider the
left half-plane

H = {z ∈ C : Re z < 1}.
Observe that E maps H to D ⊆ H. The map f is a contraction on H,

∀z ∈ H, |E ′(z)| = 1

e
exp(Re z) < 1

and hence H ⊆ B. Let

J = {z ∈ C : ∀n > 0, fn(z) ∈ C \H}.

Observe that the horizontal rays Rk with Im z = (2k + 1)π and Re z > 1 are mapped to
the negative real axis R− ⊆ H. Indeed,

E(z) =
1

e
eRezeiImz =

1

e
eRez

(
cos(Im z) + i sin(Im z)

)
and therefore

ReE(Rk) =
1

e
eRez cos(Im z) = −1

e
eRez < 0, ImE(Rk) =

1

e
eRez sin(Im z) = 0.

Thus, for every k ∈ Z, Rk ⊆ C\J . Moreover, the same is true for an open neighbourhood
of each curve. The preimage of H consists of C except a collection of unbounded Jordan
domains containing each one a ray Rk. Each of these domains is mapped to the right half-
plane C \H bijectively. Therefore, every domain contains a preimage of all the domains.
This leads to another collection of unbounded jordan domains inside every previous one.
Continuing inductively we get a sequence of nested unbounded Jordan domains, which in
the limit is an infinite set of injective curves tending to ∞. Namely, a Cantor bouquet.

�

You have a picture of the Julia set of this function in Figure 3.5. Below we describe the
phase space of Eλ for parameters λ ∈ R+. The following theorem is proved in [Dev99,
Theorems 3.4 and 5.4].

Theorem 3.6.2. Let Eλ(z) = λ exp(z). If 0 < λ < 1/e then J(Eλ) is a Cantor bouquet.
On the other hand, if λ > 1/e then J(Eλ) = C.

For 0 < λ < 1/e the Fatou set consists of an attracting basin. When λ > 1/e this is
replaced by an invariant set which is an indecomposable continua.

Example 3.6.1. The Julia sets of Sλ(z) = λ sin z for λ ∈ (0, 1) are Cantor bouquets as
well.
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Figure 3.5: Cantor bouquet. Phase space of Eλ(z) = λ exp z with λ = 0.367879441 . 1/e,
z ∈ [0, 4π] + i[−π, π].

Figure 3.6: Undecomposable continua. Phase space of E1(z) = exp z (λ = 1 > 1/e). L:
z ∈?; R: a zoom of it.

3.7 Escaping set and dynamic rays

Definition 3.7.1 (Escaping set). Let f : C→ C, we call escaping set to

I(f) := {z ∈ C : |fn(z)| → ∞}.

By definition, I(f) is forward invariant. Eremenko proved the following properties for
the transcendental case, see [Ere89].
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Proposition 3.7.1 (Properties of I(f)). Let f be an entire transcendental function.
Then,

• I(f) ∩ J(f) 6= ∅;

• J(f) = ∂I(f);

• all the components of I(f) are unbounded.

Note that the second property is a third characterization of J(f) for the transcendental
case. It generalizes what happens for polynomials. If P is a polynomial of degree greater
or equal than two, then J(P ) = ∂K(P ) where K(P ) = C \AP (∞), the filled Julia set of
P .

Proposition 3.7.2. If f ∈ B then I(f) ⊆ J(f). In particular, I(f) has no interior.

Definition 3.7.2 (Ray tail). Let f : C → C be an entire transcendental function. A
ray tail of f is an injective curve

γ : [0,∞)→ I(f)

such that |F n(γ(t))| → +∞ as t → ∞ for all n > 0 and such that |F n(γ(t))| → +∞
uniformly in t as n→∞.

Definition 3.7.3 (Dynamic ray). Let f be an entire function. A dynamic ray of f is a
maximal injective curve γ : (0,∞)→ I(f) such that γ|[t,∞) is a ray tail for every t > 0.

Proposition 3.7.3 (Escaping points on rays). Let f : C → C be an entire function
and let z ∈ I(f). Suppose that some iterate fk(z) is on a ray tail γk of f . Then either z
is on a ray tail, or there is some n 6 k such that fn(z) belongs to a ray tail that contains
an asymptotic value of f .
In particular, there is a curve γ0 connecting z to ∞ such that f j|γ0 tends to ∞ uniformly
(in fact, fk(γ0) ⊆ γk).

Proof. Suppose that γk : [0,∞) → C is a parametrization of such ray tail and γk(0) =
fk(z). We call γ : [0, T )→ C a lift of γk starting at f (k−1)(z) if

• γ(0) = f (k−1)(z) (i.e. γ(0) is a preimage of fk(z));

• ∀t ∈ [0, T ), f(γ(t)) = γk(t);

The set of all these curves is a partially ordered set: if γ1 : [0, T1)→ C and γ2 : [0, T2)→ C
are two of such lifts, we say that γ1 6 γ2 if T1 6 T2 and ∀t 6 T1, γ1(t) = γ2(t). Note that
this set is not empty, f (k−1)(z) is always a preimage of fk(z) and a single point can also
be considered a lift. In this set, every chain {γα : [0, Tα)→ C}α has an upper bound: let
T∗ be the supremum of {Tα}α and take γ∗ : [0, T∗) → C given by γ∗(t) = γα0(t) for any
α0 > t. Then by Zorn’s Lemma there exists a maximal curve γk−1 : [0, T )→ C satisfying
the two properties above.
Now we have two possibilities, either T =∞ or not. In the first case, γk−1(t) must tend
to ∞ as t→∞, otherwise we would have

f(z0) = f
(

lim
t→∞

γk−1(t)
)

= lim
t→∞

f (γk−1(t)) = lim
t→∞

γk(t) =∞
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so z0 would be a pole of f contradicting the assumption that f is entire. Thus, f (k−1)(z)
is on a ray tail. Now consider the case T <∞ and let

w = lim
t→T

γk−1(t) ∈ Ĉ.

Again, it cannot happen that f(w) = ∞, so f(w) = γk(t0) for some t0 ∈ [0,∞). In
this case, γk−1 could be prolonged, contradicting its maximality. Note that if w was
a critical point we would need to choose a branch of the inverse. Thus, w = ∞ and
γk(T ) is an asymptotic value of f (possibly ∞). Then either we have found a ray tail
γk−1 ⊆ f−1(γk) ⊆ I(f) connecting f (k−1)(z) to ∞ or γk contains an asymptotic value.
Finally we will proceed by induction. At each step, due to the above reasoning, we can
either construct a new rail tail connecting f j(z) to ∞ or we find an asymptotic value of
f . After k steps, if we have not found an asymptotic value, we are going to have a ray
tail γ0 connecting z to ∞. �

Regarding the escaping set and dynamical rays Alexandre Eremenko conjectured the
following:

• each component of I(f) is unbounded (weak Eremenko’s conjecture);

• every point in I(f) can be joined with ∞ by a curve in I(f) (strong Eremenko’s
conjecture).

As we have explained in the Introduction, the article [RRRS11] gives a negative answer
to strong Eremenko’s conjecture even when we restrict to functions in the Eremenko-
Lyubich class B. However, they also give a partial positive result showing that this holds
for a large class of functions in B. This will be proved in the next chapter.
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Chapter 4

Dynamic rays of bounded-type
entire functions

In this chapter we are going to introduce our main tool, the logarithmic coordinates to
study functions of the class B.

4.1 Logarithmic coordinates

Definition 4.1.1 (Logarithmic singularity). Let f : C→ Ĉ be a transcendental entire

or meromorphic function and let a ∈ Ĉ. Suppose there is some simply-connected open
neighbourhood D ⊆ C of a and a component U of f−1(D\{a}) such that f : U → D\{a}
is a universal covering map. Then we say that f has a logarithmic singularity over a.

Definition 4.1.2 (Tract). Let f ∈ B and let D ⊆ C be a bounded Jordan domain
containing S(f)∪{0, f(0)}. We call tract to each connected component V of V = f−1(W )
where W = C \D.

Lemma 4.1.1. A tract V is an unbounded Jordan domain (i.e. a disk whose closure
contains ∞) and f : V → W is a universal covering.

Proof. First of all we will prove that f : V → W is a covering map. It is clear that
this map is continuous (f is entire) and surjective (by construction). Let z ∈ W and
U ⊆ W be a small enough neighbourhood of z. Consider X a connected component of
f−1(U). A priori there are two possibilities: either X is compact or not. In the first
case, since U contains no critical values, X contains no critical points and f : X → U
is a diffeomorphism. Suppose now that X was not compact. Then we can choose an
exhaustion of U by simple closed curves γt, 0 6 t 6 1, such that γ0 = {q} with q ∈ U and
γ1 = ∂U . See Figure 4.2. For small values of t, f−1(γt) is a simple closed curve but there
will be t0 6 1 such that f−1(γt0) is not. But since there are no critical points in X, this
curve is a submanifold of C and can be extended to ∞. This leads to the existence of an
asymptotic value of f in the curve γt0 contradicting the assumption that all asymptotic
values are in C \W . We conclude that X needs to be compact and f : V → W is a
covering map.
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Figure 4.1: Tracts of a function f ∈ B.

The preimage of W has to be either a disk or a punctured disk. If it was a disk, we would
have a universal covering. Note that since W has points as close of ∞ as we please, if
this disk was bounded then it would need to contain a pole but f is entire. On the other
hand, if f−1(W ) was a punctured disk then we can distinguish two cases depending on
the nature of the puncture point a. If a = ∞ this means that f is an entire function
that fixes the point at infinity and hence it must be a polynomial, not a transcendental
function. If a 6=∞ then a must be a pole of f , but we’re assuming f to be entire. �

This proof follows the one that Devaney and Tangermann made for critically finite entire
transcendental functions in [DT86].

Figure 4.2: Sketch in the proof of Lemma 4.1.1.
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Definition 4.1.3 (Logarithmic transform). Let f ∈ B and consider T := exp−1(V)
and H := exp−1(W ). We will call logarithmic transform of f to the continuous function
F : T → H that makes the diagram

T F //

exp
��

H

exp
��

V
f

// W

commute. The connected components of T are called tracts of F .

Example 4.1.1. Taking f(z) = exp z leads to a very special situation. If we choose
W = D(0, e) then V is the right half plane H1. Here H = V and F = exp z. T is the
second preimage of W by f and consists of some finger shaped sets contained in H0, you
can see a picture of them in Figure 4.3.

Figure 4.3: The set exp−2(D(0, e)).

Proposition 4.1.2. If f ∈ B, then its logarithmic transform F : T → H satisfies the
following properties:

a) H is a 2πi-periodic Jordan domain that contains a right half plane;

b) every component T of T is an unbounded Jordan domain with real parts bounded
below, but unbounded from above;

c) the components of T have disjoint closures and accumulate only at infinity;

d) for every component T of T , F : T → H is a conformal isomorphism;

e) for every component T of T , exp |T is injective;

f) T is invariant under translation by 2πi.

Proof. Recall that exp : C → C∗ is a holomorphic cover and, in particular, a local
homeomorphism. Let us check each one of the above properties:

a) The boundary of D is a loop arround 0, hence its preimage under the exponential
map must be a 2πi-periodic continuous curve. Since exp is a local homeomorphism,
this curve cannot have self-intersections. The exterior of D is mapped to the right
of this curve. There is R > 0 such that D ⊆ D(0, R), therefore the right half plane
with Re z > logR is contained in H.

b) Again, since exp is a holomorphic cover, every component T of T must be a Jordan
domain. Since the point f(0) is in the interior of D, the components of V must be
bounded away from the origin. Taking a logarithm, this gives a lower bound for the
real part of the points in T . On the other hand, the logarithm of an unbounded
set must have points with unbounded real part.
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c) Tracts of F must have disjoint closures. Indeed, if the boundaries of two tracts had a
common point z0, take a small enough neighbourhood U of z0 so that V = f(exp(U))
does not intersect any singular value of f . Now since exp is a conformal map and
the restriction of f to f−1(V ) has no critical points, the map f ◦ exp is a covering
from U to V and hence a local homeomorphism. Since D is a Jordan domain, the
intersection of the boundary of D with U is a piece of arc. Thus, the intersection
of the boundary of T with U must also be a piece or arc, all the points in ∂T ∩ U
must be common to both tracts. If the tracts are different, this cannot happen for
all the common points. There must be a point z′0 with a neighbourhood U ′ such
that ∂T ∩ U ′ has points belonging only to boundary of one of the tracts. Hence it
would not be homeomorphic to an arc, raising a contradiction.
Suppose now that there was a sequence of points zk each one belonging to a different
tract and converging to a finite point z. Consider wk = f(exp(zk)) which is a
converging sequence in ∂D and let w ∈ D be its limit. Since f(exp z) = w, the
point z must be in the boundary of some tract. Let U be a small neighbourhood
of z such that V = f(expU) does not intersect S(f). U contains infinitely many
points of the sequence {zk}k and hence U ∩ T is a disjoint union of infinitely many
pieces of arc. We get a contradiction because V ∩ ∂D is a piece of arc and f ◦ exp
must be a local homeomorphism. Thus, z =∞.

As a consequence of b) and c), there exists a curve δ ⊆ C\V joining 0 and∞ (it has been
drawn in blue in Figure 4.4). Hence, we can define a continuous branch of the logarithm
on T .

d) Let T be a tract of F . By Proposition 1.4.2, since f ◦ exp : T → W and exp :
H → W are both universal covers, they must be equivalent. That is, there exist
a homeomorphism F : T → H making the diagram commute. Since f ◦ exp|T and
exp are conformal, F must be conformal too.

e) The preimage of V under exp is compactly contained in the open band defined by
two preimages of the curve δ. Therefore, it cannot contain vertical segments of
length 2π and hence exp|T is injective.

f) This is a direct consequence of the fact that the exponential map is 2πi-periodic.

�

Definition 4.1.4 (Class Blog). We will denote by Blog the subclass of B consisting of
any function F ∈ B, F : T → H satisfying the properties a) to f) in Proposition 4.1.2.

Note that maybe not every function in Blog comes as a logarithmic transform of a function
in B, but we will only be interested in those ones.

Remark 4.1.1. A function F ∈ Blog need not to be 2πi-periodic. Some authors add this
condition to functions in class Blog.
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Corollary 4.1.3. Let F : T → H in Blog be a logamic transform of a function f ∈ B.
Every compact set K ⊆ C can intersect only a finite number of tracts of F .

Proof. This is a direct consequence of propety (c) in the definition of class Blog. If a
compact set K was able to intersect an infinite number of tracts then there would be
an accumulation point inside K contradicting the fact that tracts only accumulate at
infinity. �

Figure 4.4: Logarithmic coordinates for a function f ∈ B.
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4.2 Expansivity and normalization

Using the Koebe-Bieberbach quarter theorem (Theorem 1.7.3), we can prove an expan-
sivity property for the functions of the class Blog.

Lemma 4.2.1 (Expansivity property). Let F : T → H be a function of class Blog.
There exists R0 > 0 such that |F ′(z)| > 2 when ReF (z) > R0.

Proof. Let T be a tract of F . Denote by F−1
T the inverse of the conformal isomorphism

F : T → H. By property (a) we know that there exists R > 0 such that

HR := {z ∈ C : Re z > R} ⊆ H.

It is clear that if ReF (z) > R the disk D(F (z), ReF (z) − R) is contained in HR, see
Figure 4.5.

Figure 4.5: Scheme in the proof of Lemma 4.2.1.

Consider now for every value of z the map ψ : D→ D(F (z), ReF (z)− R) consisting of
a dilatation composed with a translation:

ψ(ζ) = F (z) + ζ|ReF (z)−R|.

Then the map F−1
T ◦ ψ : D → T is a conformal isomorphism. By the Koebe-Bieberbach

quarter theorem (Theorem 1.7.3),

D((F−1
T ◦ ψ)(0), |(F−1

T ◦ ψ)′(0)|/4) ⊆ (F−1
T ◦ ψ)(D) = F−1

T (D(F (z), ReF (z)−R)).

Using the chain rule,

(F−1
T ◦ ψ)′(0) = (F−1

T )′(ψ(0)) · ψ′(0) = (F−1
T )′(F (z)) · |ReF (z)−R|

and since F−1
T (F (z)) = z,

(F−1
T )′(F (z)) · F ′(z) = 1 ⇔ (F−1

T )′(F (z)) =
1

F ′(z)

we have

(F−1
T ◦ ψ)′(0) =

|ReF (z)−R|
F ′(z)

.
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Hence,

D

(
z,
|ReF (z)−R|

4|F ′(z)|

)
⊆ F−1

T (D(F (z), ReF (z)−R)) ⊆ T.

Property (e) says that exp |T is univalent, then since the exponential is a 2πi-periodic
function T cannot contain any vertical segment of length 2π. Then,

|ReF (z)−R|
4|F ′(z)|

6 π ⇔ 1

4π
|ReF (z)−R| 6 |F ′(z)|.

Observe that there exists always a value R0 > R such that if ReF (z) > R0 then

|F ′(z)| > 1

4π
|ReF (z)−R| > 1

4π
|R0 −R| > 2,

it is enough to pick R0 > 8π +R. �

Definition 4.2.1 (Normalized function). We say that F : T → H is normalized if H
is the right half plane H and furthermore the expansivity property holds for all z ∈ T .

Remark 4.2.1. Given any function F ∈ Blog we can always normalize it by restricting to
HR0 and using the change of variables w = z −R0.

4.3 Symbolic dynamics and combinatorics

Definition 4.3.1 (Julia set for Blog). If F ∈ Blog, then

J(F ) := {z ∈ T : F n(z) is defined and in T for all n > 0}.

Note that J(F ) is the set of points which can be iterated infinitely many times. Recall
that F is defined only in T , hence if one iterate gets out of T then the orbit of the point
is truncated. Here the nomenclature can be confusing; apparently there is no relation
between J(f) and a possible definition of Julia set for such function. Lemma 4.3.1 explains
what the relation with J(f) is, justifying the use of this name.

Definition 4.3.2 (Escaping set for Blog). If F ∈ Blog, then

I(F ) := {z ∈ J(F ) : lim
n→∞

ReF n(z) =∞}.

Note that I(F ) ⊆ J(F ) by definition. If we can understand the structure of I(F ) for
functions F ∈ Blog then next lemma tells us what information we get from the original
function f ∈ B that has F as logarithmic transform.

Lemma 4.3.1. If f ∈ B and F is a logarithmic transform of f , then exp(I(F )) ⊆ I(f).
Furthermore, if F is normalized then exp(J(F )) ⊆ J(f).

Proposition 4.10.2 is an extension of this to a particular subclass of Blog. Finally, let us
define

JK(F ) := {z ∈ J(F ) : ∀n > 1, ReF n(z) > K}
for K > 0. Observe that every z ∈ I(F ) eventually enters JK(F ) for all K.
Let F : T → H be a logarithmic transform. We denote by A the set of tracts of F and
call it the symbolic alphabet associated to F . Thus, there is a one-to-one correspondence
between the tracts of F and symbols in A which, by Corollary 4.1.3, must be countable.
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Definition 4.3.3 (External address). Let F ∈ Blog and let z ∈ J(F ). For each j > 0,
let Tj ∈ A be the (unique) tract of F with F j(z) ∈ Tj. Then the sequence

s := addr(z) := T0T1T2 . . . ∈ AN

is called the external address (or itinerary) of z.

Given an external address s ∈ AN, we introduce

Js := {z ∈ J(F ) : addr(z) = s}, Is := {z ∈ I(F ) : addr(z) = s}.

and also, for K > 0
JKs := {z ∈ JK(F ) : addr(z) = s}.

There may be itineraries s ∈ AN that are not realized by any point, thus these sets may
be empty for some s.

Definition 4.3.4 (Shift operator). The one-sided shift operator with alphabet A is a
map

σ : AN → AN

defined by
σ(T0T1T2 . . .) = T1T2 . . .

This map makes the following diagram commutative:

J(F ) F //

addr
��

J(F )

addr
��

AN σ
// AN

i.e. for all z ∈ J(F ),
σ(addr(z)) = addr(F (z)).

4.4 General properties of class Blog
Lemma 4.4.1 (Exponential separation of orbits). Let F ∈ Bnlog and let T be a tract
of F . If ω, ζ ∈ T are such that |ω − ζ| > 8π, then

|F (ω)− F (ζ)| > exp(|ω − ζ|/8π) ·min{ReF (ω),ReF (ζ)}.

Proof. We can assume without loss of generality that ReF (ω) > ReF (ζ). By property
(e) in the definition of class Blog, T has height at most 2π, dist (z, ∂T ) 6 π for all z ∈ T
and hence by the standard estimate and Pick’s theorem we have

|ω − ζ|
2π

6 dist T (ω, ζ) = dist H(F (ω), F (ζ).

Let ξ ∈ H be a point such that Re ξ = ReF (ζ) and dist H(F (ζ, ξ) = dist H(F (ζ), F (ω)).
This is possible because along the line {z ∈ H : Re z = ReF (ζ)} the distance function
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Figure 4.6: Scheme in the proof of Lemma 4.4.1.

dist H(F (ζ), · ) takes the value 0 at F (ζ) and increases to ∞ as z moves away of F (ζ)
(geodesics between points with the same real part are arcs of circles orthogonal to ∂H,
their Euclidean length increases as they separate and hence the same does their hyperbolic
length). See Figure 4.6. Let s = |F (ζ) − ξ| > 0. The straight segments F (ζ)F (ω) and
F (ζ)ξ have the same hyperbolic length but since ReF (ω) > ReF (ζ) = Re ξ, the points
of the first one may be further away of ∂H than the points of the second one and hence
|F (ζ)−F (ω)| > s to compensate this. Let γ be the dashed curve in Figure 4.6 consisting
of three straight segments connecting F (ζ) to ξ through F (ζ) + s and ξ + s, let

γ1 := ξ(ξ + s), γ2 := (ξ + s)(F (ζ) + s), γ3 := (F (ζ) + s)F (ζ), γ := γ1 ∪ γ2 ∪ γ3.

On the one hand,

lH(γ2) =

∫
γ2

1

Re z
|dz| 6 sup

z∈γ

∣∣∣∣ 1

Re z

∣∣∣∣ · l(γ2) =
1

Re ξ + s
· s 6 1,

while on the other hand,

lH(γ1) =

∫
γ1

1

Re z
|dz| =

∫ Reξ+s

Reξ

dt

t
=
[
log t

]Reξ+s

Reξ
= log(Re ξ + s)− log(ξ)

and since γ1 and γ3 are indistinguishable in terms of the real parts of their points

lH(γ1) = lH(γ3) = log(ReF (ζ) + s)− log(ReF (ζ)) = log

(
ReF (ζ) + s

ReF (ζ)

)
.

Hence, we get

lH(γ) = lH(γ1) + lH(γ2) + lH(γ3) = 2 log

(
ReF (ζ) + s

ReF (ζ)

)
+ 1

and thus

|ω − ζ|
2π

6 dist H(F (ω), F (ζ)) = dist H(F (ζ), ξ) < lH(γ) = 2 log

(
ReF (ζ) + s

ReF (ζ)

)
+ 1.
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Isolating s from the above expression,

|F (ω)− F (ζ)| > s > ReF (ζ)

[
exp

(
|ω − ζ|

4π
− 1

2

)
− 1

]
.

It is easy to check that ex−1/2 − 1 > ex/2 for x > 2, since |ω − ζ| > 8π by assumption,

|ω − ζ|
4π

> 2

and the result holds. �

Lemma 4.4.2 (Growth of real parts). Let F ∈ Bnlog. If ζ, ω ∈ J(F ) are distinct points
with the same external address s, then

lim
k→∞

max{ReF k(ζ),ReF k(ω)} =∞.

Proof. Assume to the contrary that there exists S > 0 such that ReF k(ζ),ReF k(ω) < S
(and hence max{ReF k(ζ),ReF k(ω)} < S) for infinitely many k ∈ N. Observe that since
ζ and ω have the same external address, F k(ζ) and F k(ω) will belong to the same tract
for every k.
Let T be a tract of F . Property (b) in the definition of the Blog says that the real parts of
points in T are bounded from below. Recall also that, by property (e), T cannot contain
vertical segments of length greater than 2π. Thus, T ∩{z ∈ C : Re z 6 S} is a compact
set and has bounded imaginary parts.
Every tract T that intersects this set must also intersect the vertical line {Re z = S}
because they are Jordan domains with unbounded real part. Note that, up to translations
by a multiple of 2πi, only a finite finite number of tracts intersect this line. Otherwise
we could find a sequence in T with points all belonging to different tracts accumulating
at a finite point, contradicting property (c). Thus, there exists a constant C > 0 such
that if ReF k(ζ),ReF k(ω) < S then

|F k(ζ)− F k(ω)| < C.

Note that S and C are independent of the value of k. By the expansivity property
(Lemma 4.2.1)

|F−1
T (F (z))| = 1

F ′(z)
6

1

2
.

Therefore,

|F (k−1)(ζ)− F (k−1)(ω)| = |F−1
T (F k(ζ))− F−1

T (F k(ω))| 6 1

2
· |F k(ζ)− F k(ω)| 6 C

2

and by induction

|ζ − ω| = |(F−1
T )k(F k(ζ))− (F−1

T )k(F k(ω))| 6 1

2k
· |F k(ζ)− F k(ω)| 6 C

2k
.

Now since this happens for infinitely many k ∈ N, we can take the limit

|ζ − ω| 6 lim
k→∞

C

2k
= 0

and hence ζ = ω proving the result. �
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Theorem 4.4.3 (Existence of unbounded continua in Js). For every F ∈ Blog there
exists K > 0 with the following property: if z0 ∈ JK(F ) and s is the external address of
z0, then there exists an unbounded closed connected set A ⊆ Js with dist (z0, A) 6 2π.

Proof. We may assume without loss of generality that F is normalized. Choose K > 0
large enough so that no bounded component of H∩T intersects the line {z ∈ C : Re z =
K} for any tract T of F . Let z0 ∈ JK(F ) and consider zk := F k(z0) ∈ HK for all k > 1.
Let us introduce a bit of notation. Given an unbounded set S ⊆ C such that

S \B2π(zk) = S \ {z ∈ C : |z − zk| < 2π}

has exactly one unbounded component, we will denote by Xk(S) this component. Denote
by Tk the tract of F containing xk, then Tk \B2π(zk) has only one unbounded component
and hence Xk(Tk) is well defined. Note that by property (e) of functions in class Blog,
the straight segment

zk + i[−2π, 2π] ⊆ B2π(zk)

intersects Tk transversally. See Figure 4.7.

Figure 4.7: Scheme in the proof of Theorem 4.4.3.

Therefore Xk(Tk) is non-empty and contained in H for all k > 1. Hence, we can consider
F−1
Tk−1

(Xk(Tk)) ⊆ Tk−1 which is an unbounded Jordan domain and by the expansivity of
F

dist (F−1
Tk−1

(Xk(Tk)), zk−1) 6
1

2
dist (Xk(Tk), zk) =

2π

2
= π.

Thus, F−1
Tk−1

(Xk(Tk)) ∩ B2π(zk−1) 6= ∅ and dist (Xk−1(F−1
Tk−1

(Xk(Tk))), zk−1) = 2π. Let

A0 = X0(T0). Define inductively the following sequence of sets

Ak := X0(F−1
T0

(X1(F−1
T1

(· · · (Xk−1(F−1
Tk−1

(Xk(Tk)))) · · · ))))

for k > 1. Each Ak is an unbounded Jordan domain and its closure in Ĉ, Âk, is a
continuum which has distance 2π to z0. Since as we said before F−1

Tk−1
(Xk(Tk)) ⊆ Tk−1,

{Âk}∞k=0 is a sequence of nested continua, Proposition 2.1.1 applies and

A :=
⋂
k>0

Âk
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is a continuum. We have

dist (A, z0) 6 sup
k>0

dist (Âk, z0) = 2π

and by the Boundary bumping theorem (Theorem 2.2.3), A is unbounded. �

4.5 Functions satisfying a head-start condition

Now we introduce a sufficient condition that guarantees that every escaping point is on
a ray tail.

Definition 4.5.1 (Head-start condition). We will define it in three steps:

• Let T and T ′ be tracts and let ϕ : R → R be a (not necessarily strictly) mono-
tonically increasing continuous function with ϕ(x) > x for all x ∈ R. We say that
the pair (T, T ′) satisfies the head-start condition for ϕ if, for all z, w ∈ T with
F (z), F (w) ∈ T ′,

Rew > ϕ(Re z)⇒ ReF (w) > ϕ(ReF (z)).

• An external address s satisfies the head-start condition for ϕ if all consecutive pairs
of tracts (Tk, Tk+1) satisfy the head-start condition for ϕ, and if for all distinct
z, w ∈ Js, there is M ∈ N such that ReFM(z) > ϕ(ReFM(w)) or ReFM(w) >
ϕ(ReFM(z)).

• We say that F satisfies a head-start condition if every external address of F satisfies
the head-start condition for some ϕ. If the same function ϕ can be chosen for all
external addresses, we say that F satisfies the uniform head-start condition for ϕ.

Notice that in the second part we require that the head-start condition cannot be a void
condition for any itinerary. Furthermore, if ReFM(z) > ϕ(ReFM(w)) and the head-start
condition is satisfied for that pair of tracts then for all n > M , ReF n(z) > ϕ(ReFM(w))
and similarly if ReFM(w) > ϕ(ReFM(z)).

The head-start condition allows us to order the points in Js by the growth of their
real parts. At this point it would be good to recall the definitions of strict total order
(Definition 2.4.3) and order topology (Definition 2.4.4) given in Section 2.4.

Definition 4.5.2 (Speed ordering). Let s be an external address satisfying the head-
start condition for ϕ. For z, w ∈ Js, we say that z � w if there exists K ∈ N such that

ReFK(z) > ϕ(ReFK(w)). We extend this order to the closure Ĵs in Ĉ by the convention
that ∞ � z for all z ∈ Js.

Note that this definition is consistent. If there existed K1, K2 such that ReFK1(z) >
ϕ(ReFK1(w)) and ReFK2(w) > ϕ(ReFK2(z)) then we would raise a contradiction be-
cause as we have said before once we are in one of these situations and the head-start
condition is satisfied then it is preserved by iteration.
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Lemma 4.5.1. Equivalently, z � w if and only if there exists n0 ∈ N such that ReF n(z) >
ReF n(w) for all n > n0. Hence the speed ordering does not depend on the choice of the
function ϕ of the head-start condition.

Proof. If z � w, since ϕ(x) > x for all x ∈ R, then ReF n(z) > ϕ(ReF n(w)) > ReF n(w)
for all large enough values of n.
Conversely, since z 6= w and s satisfies the head-start condition for some function ϕ,
then by definition ∃M ∈ N such that either ReFM(z) > ϕ(ReFM(w)) > ReFM(w)
or ReFM(w) > ϕ(ReFM(z)) > ReFM(z) and this is preserved under iteration. But
we are assuming that ReF n(z) > ReF n(w) for all n > n0. Thus, it must happen that
ReFM(z) > ϕ(ReFM(w)) and therefore z � w. �

Lemma 4.5.2. Ĵs together with the speed ordering � is a totally ordered space.

Proof. We will see that it is a transitive and total binary relation in Ĵs:

• Let a ≺ b and b ≺ c, then there are k, l ∈ N such that ReF k(a) > ϕ(ReF k(b)) and
ReF l(b) > ϕ(F l(c)). Take m = max{k, l}. Then we have

ReFm(a) > ϕ(ReFm(b)) > ReFm(b) > ϕ(ReFm(c))

where the first and last inequalities hold because of the head-start condition. Thus
a ≺ c.

• To be a total order, every pair of elements must be comparable under it. Given
z, w ∈ Ĵs, z 6= w, the head-start condition requests that either ReFM(z) >
ϕ(ReFM(w)) or ReFM(w) > ϕ(ReFM(z)) for some M ∈ N. In the first case
we would have z � w while the second one implies w � z.

Finally, note that it is a non-reflexive relation and thus a strict order. �

Corollary 4.5.3 (Growth of real parts). Consider F ∈ Bnlog. Let s be an external
address that satisfies the head-start condition for ϕ and let z, w ∈ Js. If z � w, then
z ∈ I(F ). In particular, Js \ Is consists of at most one point.

Proof. Recall that Lemma 4.4.2 stated that if z, w ∈ Js then

lim
k→∞

max{ReF k(z),ReF k(w)} =∞.

By Lemma 4.5.1, if z � w then ReF n(z) > ReF n(w) for all sufficiently large n. Then,
from a moment on max{ReF n(z),ReF n(w)) = ReF n(z) so

∞ = lim
k→∞

max{ReF k(z),ReF k(w)} = lim
k→∞

ReF k(z).

which means that z ∈ I(F ). �

Proposition 4.5.4 (Speed order topology vs subspace topology). Let s be an

external address satisfying the head-start condition for ϕ. Then the topology of Ĵs as a

subset of the Riemann sphere Ĉ agrees with the order topology induced by �.
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Proof. The map id : Ĵs ⊆ Ĉ→ (Ĵs,≺) is continuous. Indeed, let us see that the preimages

of (a,∞)≺ and (−∞, b)≺ are open sets in Ĵs with the subspace topology. Take z ∈ (a,∞)≺
and consider k ∈ N minimal such that ReF k(z) > ϕ(ReF k(a)). It must exists because
z � a. Then since ϕ, Re and F are continuous functions, there exists a small enough
neighbourhood V ⊆ Ĉ of z in satisfying ReF k(w) > ϕ(ReF k(a)) for all w ∈ V and

V ∩ Ĵs ⊆ (a,∞)≺. Hence (a,∞)≺ is open in Ĵs ⊆ Ĉ. Analogously, (−∞, b)≺ is open too.
Now we shall see that id−1 is continuous too. But recall that a continuous one-to-one
map from a compact space onto a Hausdorff space is a homeomorphism. Therefore, by
2.4.4 id is a homeomorphism between Ĵs ⊆ Ĉ and (Ĵs,≺). �

Corollary 4.5.5 (Arcs in Js). Let s be an external address satisfying the head-start

condition for ϕ. Every component of Ĵs is either a point or is homeomorphic to [0, 1]
preserving the order.

Proof. Connected components of Ĵs are compact metric spaces. It is a direct consequence
of Proposition 4.5.4 and the Order characterization of the arc (Corollary 2.5.3) from
Section 2.5. �

Corollary 4.5.6 (Uniqueness of the unbounded component in Js). Let s be an
external address satisfying the head-start condition for ϕ and let K > 0 be such that
JKs 6= ∅. Suppose that if z0 ∈ JKs there exists an unbounded closed connected set A ⊆ Js
with dist (z0, A) 6 2π. Then Js has a unique unbounded component, which is a closed arc
to infinity.

Proof. We deduced the existence of this unbounded component in Theorem 4.4.3. By
Corollary 4.5.5, connected components need to be arcs. Since infinity is the largest
point in (Ĵs,≺) it cannot be an interior point of the arc. Otherwise it would contradict
Proposition 4.5.4. Thus, infinity must be the extreme point of a closed arc and all other
components must be bounded. �

Proposition 4.5.7 (Points in the unbounded component of Js). Let s be an ex-
ternal address that satisfies the head-start condition for ϕ. Then there exists K ′ > 0
such that JK

′
s is either empty or contained in the unbounded component of Js (and this

component is a closed arc). The value K ′ depends on F and ϕ, but not on s.

Proof. As usual, we can assume F to be normalized without loss of generality, F ∈ Bnlog,
which means that H = H and the expansivity property of F holds in all T . Let K > 0
be like in Theorem 4.4.3 and Corollary 4.5.6 and set

K ′ := max{ϕ(0) + 1, K}.

Let z0 ∈ JK
′

s and consider zk := F k(z0) and

Sk := {w ∈ Jσk(s) : w � zk or w = zk}

for all k > 0. By Corollary 4.5.6 there exists a unique unbounded component Ak of Sk
and is an arc to infinity. Theorem 4.4.3 tells us that dist (zk, Ak) 6 2π.
Recall that by property (d) of the logarithmic transforms, the restriction to every tract
F|T : T → H is a conformal isomorphism. We want to apply F−1

|T to Ak and so before we
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have to check that Ak ⊆ H. Let w ∈ Jσk(s) with Rew 6 0. Because of the monotonicity

of ϕ, ϕ(Rew) 6 ϕ(0). On the other hand, since z0 ∈ JK
′

s we have that for all k > 1

Re zk > K ′ > ϕ(0) + 1 > ϕ(0).

Putting these together we get Re zk > ϕ(0) > ϕ(Rew) and thus w ≺ zk. Therefore
w /∈ Sk and, in particular, w /∈ Ak. Hence Ak ⊆ H for all k > 1 and F−1

|Tk−1
(Ak) is well

defined, where Ti denotes the tract of F containing the point zi. By construction,

F−1
|Tk−1

(Ak) ⊆ Jσk−1(s) ⊆ Tk−1.

Furthermore, F−1
|Tk−1

(Ak) ⊆ Ak−1. Indeed, if w ∈ F−1
|Tk−1

(Ak) then either F (w) � zk (and

ReF (w) > ϕ(Re zk)) or F (w) = zk. Since the speed ordering is a total order, w and
zk−1 must be comparable. If w ≺ zk−1 then Re zk−1 > ϕ(Rew) and, by the head-start
condition,

Re zk = ReF (zk−1) > ϕ(ReF (w)) > ReF (w)

contradicting what we obtained before: ReF (w) > ϕ(Re zk) or F (w) = zk. Therefore,
the only possibilities are w � zk−1 or w = zk−1, which means that w ∈ Sk−1 and
F−1
|Tk−1

(Ak) ⊆ Sk−1. Also, the preimage of an unbounded component cannot be bounded,

therefore we have F−1
|Tk−1

(Ak) ⊆ Ak−1.
Finally, the expansivity property of F gives

dist (z0, A0) 6
1

|F ′(w)|k
dist (zk, Ak) 6

1

2k
dist (zk, Ak) 6

π

2k−1

for all k > 0. Taking the limit we obtain dist (z0, A0) = 0 and since A0 is a closed set,
z0 ∈ A0. �

Theorem 4.5.8 (Ray tails). Suppose that F ∈ Blog satisfies a head-start condition.
Then for every escaping point z, there exists k ∈ N such that F k(z) is on a ray tail γ.
This ray tail is the unique arc in J(F ) connecting F k(z) to ∞ (up to reparametrization).

Proof. Let z ∈ I(F ) ⊆ J(F ) and s = σ(z) its external address. Since F satisfies a head-
start condition, this means that s satisfies the head-start condition for some function ϕ.
Let K ′ be defined like in Proposition 4.5.7, then if JK

′
s 6= ∅ it is contained in the unique

unbounded component of Js which is an arc to infinity and we will denote by A. The
orbit of z tends to ∞, thus there exists k > 0 such that F k(z) enters JK

′
s . Consider the

set
γk := {w ∈ Iσk(s) : w � F k(z) or w = F k(z)},

which, by Corollary 4.5.3, equals Sk (in the notation of Proposition 4.5.7) because Iσk(s) =
Jσk(s). Summarizing, we have

F k(z) ∈ JK′s ⊆ A ⊆ γk ⊆ Is = Js.

In fact, A is the only connected component of γk, A = γk. The extreme points of γk,
F k(z) and ∞, both belong to A. By Corollary 4.5.5, all the intermediate points must
belong to A too. Therefore, γk is an injective curve connecting F k(z) to∞ and is unique.
(!!!: falta) �
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4.6 Bounded slope and linear head-start condition

Since the head-start condition is quite technical and it is not easy to check it directly, we
introduce some geometric facts that imply a linear head-start condition.

Definition 4.6.1 (Linear head-start condition). Let K > 1 and M > 0. We say that
an external address s satisfies the linear head-start condition with constants K and M if
it satisfies the head-start condition for

ϕ(t) := K · t+ +M

where t+ := max{t, 0}.

Observe that ϕ is an admissible function for the head-start condition. Either ϕ′(t) =
K > 1 or ϕ′(t) = 0, in both cases ϕ′(t) > 0 and hence ϕ is a monotonically increasing
function. On the other hand, if t < 0 we have ϕ(t) = 0 > t and if t > 0,

ϕ(t) = Kt+M > Kt > t

because M > 0 and K > 1.

Definition 4.6.2 (Bounded slope). Let F ∈ Blog. We say that the tracts of F have
bounded slope (with constants α, β > 0) if

|Im z − Imw| 6 αmax{Re z,Rew, 0}+ β

whenever z and w belong to a common tract of F . We denote the class of all functions with
this property by Blog(α, β) and use Bnlog(α, β) to denote those that are also normalized.

Lemma 4.6.1 (Characterization of bounded slope). A function F belongs to Blog(α, β)
if and only if exists a curve γ : [0,∞)→ T with |F (γ(t))| → ∞ and

lim sup
t→∞

|Im γ(t)|
Re γ(t)

<∞.

Hence, if one tract of F has bounded slope, then all tracts do.

Proof. Assume that F ∈ Blog(α, β). Condition (b) in the definition of class Blog guarantees
that every point in T can be connected to ∞ by a curve γ with unbounded real part.
Since the restriction of F to each tract is a conformal isomorphism, it must happen that
|F (γ(t))| tends to ∞ as t approaches ∞. Let w be any point in T , eventually

max{Re γ(t),Rew, 0} = Re γ(t)

as t→∞. Suppose that

lim sup
t→∞

|Im γ(t)|
Re γ(t)

=∞

then since F ∈ Blog(α, β)

lim sup
t→∞

|Im γ(t)|
Re γ(t)

= lim sup
t→∞

|Im γ(t)|
Re γ(t)

− |Imw|+ β

Re γ(t)
6 lim sup

t→∞

|Im γ(t)− Imw| − β
max{Re γ(t),Rew, 0}

6 α
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raising a contradiction. Conversely, let γ : [0,∞)→ T satisfying

lim
t→∞
|F (γ(t))| =∞, lim sup

t→∞

|Im γ(t)|
Re γ(t)

= K <∞.

Assume to the contrary that for every α, β > 0 there exist z, w ∈ T such that

|Im z − Imw| > αmax{Re z,Rew, 0}+ β.

If we fix a point w ∈ T and the value of β this tells us that we can find points z ∈ T such
that

|Im z − Imw| − β
Re z

is arbitrary large. But, by property (e), the whole tract T is contained in the band

B(γ) := {z ∈ C : ∃t > 1, |Im z − Im γ(t)| < 2π}

around γ. Therefore, we could find points in γ where

|Im γ(t)− Imw| − β
Re γ(t)

is arbitrary large, contradicting our assumption. �

Lemma 4.6.2 (Linear separation of orbits). Let F ∈ Bnlog and let α, β > 0. Let T

be a tract of F , and suppose that z, w ∈ T satisfy ReF (w) > ReF (z) and |ImF (w) −
ImF (z)| 6 αReF (w) + β.

(a) There exists a constant δ = δ(α, β) with the following property: if |z−w| > δ, then

ReF (w) > e|z−w|/16πReF (z).

(b) Let K > 1 and Q > 0. Then there is a constant δ = δ(α, β,K,Q) with the following
property: if |z − w| > δ, then

ReF (w) > KReF (z) + |z − w|+Q.

Proof. Let us prove (a) first, (b) is an extension of it.

(a) Set δ := α + β + 2 and δ := max{δ′, 16π log δ′}. We have

|F (w)− F (z)| 6 |ReF (w)− ReF (z)|+ |ImF (w)− ImF (z)|
6 ReF (w) + αReF (w) + β = (α + 1)ReF (w) + β

because F is normalized (ReF (w),ReF (z) > 0) and hence 0 6 ReF (w)−ReF (z) 6
ReF (w). The expansivity of F gives

|F (z)− F (w)| > 2|z − w| > 2δ > 2δ′ = 2α + 2β + 4 > α + β + 1.
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Therefore, putting both inequalities together we get

α + 1 + β < |F (z)− F (w)| 6 (α + 1)ReF (w) + β

and conclude that ReF (w) > 1. Thus,

|F (z)− F (w)| 6 (α + 1)ReF (w) + β < (α + 1 + β)ReF (w) < δ′ReF (w).

We are assuming that |z − w| > δ > δ′ > 2, then Lemma 4.4.1 gives

|F (z)− F (w)| > exp

(
|z − w|

8π

)
min{ReF (z),ReF (w)} = exp

(
|z − w|

8π

)
ReF (z)

and hence

ReF (w) >
|F (z)− F (w)|

δ′
>

exp(|z − w|/8π)ReF (z)

δ′
.

We claim that
1

δ′
exp

( x
8π

)
> exp

( x

16π

)
for all x > 16π log δ′ and in particular for |z − w| > δ > 16π log δ′. Indeed,

exp
( x

8π
− x

16π

)
= exp

( x

16π

)
> δ′ ⇔ x

16π
> log δ′ ⇔ x > 16π log δ′.

Thus,

ReF (w) >
exp(|z − w|/8π)ReF (z)

δ′
> e|z−w|/16πReF (z).

(b) Let δ0 = δ(α, β) from (a) and pick δ > δ0 + 1/2 large enough so that all x >
δ − 1/2 > δ0 satisfy

ex/16π > x+K +Q+ 1/2.

Let z′ ∈ T the point with ReF (z′) = max{1,ReF (z)} and ImF (z′) = ImF (z). It
is well defined because F is normalized and FT : T → H is a conformal isomorphism.
Then, by the expansivity of F

|z − z′| 6 1

2
|F (z)− F (z′)| = 1

2
|ReF (z)− ReF (z′)| 6 1

2

because either ReF (z) = ReF (z′) or ReF (z) 6 1 and ReF (z′) = 1. We have

|w − z′| > |w − z| − |z − z′| > |w − z| − 1/2 > δ − 1

2
> δ0

and also |ImF (w)−ImF (z′)| = |ImF (w)−ImF (z′)| 6 αReF (w)+β. In the proof
of (a) we have seen that the hypothesis on z and w imply that Rew > 1. Hence,

ReF (w) > max{1,ReF (z)} = ReF (z′).

Therefore we can apply (a) to z′, w,

ReF (w) > e
|w−z′|
16π ReF (z′) > (|w − z′|+K +Q+ 1/2) · ReF (z′) >

> KReF (z′) + |w − z′|+Q+ 1/2 > KReF (z) + |w − z|+Q.

�
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Note that the constant δ only depends on α, β,K,Q but not on the function nor the
tract. The same constant is valid for all the tracts of F at the same time.

Corollary 4.6.3 (Linear separation of orbits). Let F ∈ Bnlog(α, β) and let s be an
external address. If z, w ∈ Js with |z − w| > δ(α, β,K, 0), then

ReF k(z) > KReF k(w) + |z − w| or ReF k(w) > KReF k(z) + |z − w|

for all k > 1.

Proof. We will proceed by induction. The case k = 1 is a particular case of (b) in Lemma
4.6.2. Let δ be the constant provided by the lemma in this initial case. Since z and w
have the same external address, F k(z) and F k(w) will belong to the same tract of F for
any value of k. Assume that the statement is true for some value k = n, suppose that
|F n−1(z)− F n−1(w)| > δ and for instance

ReF n(w) > KReF n(z) + |F n−1(z)− F n−1(w)|

(if ReF n(z) > KReF n(w) + |F n−1(z)− F n−1(w)| the procedure is analogous). Then we
have

|F n(z)− F n(w)| > |ReF n(z)− ReF n(w)| > ReF n(w)− ReF n(z) >

> KReF n(z) + |F n−1(z)− F n−1(w)| − ReF n(z) =

= (K − 1)ReF n(z) + |F n−1(z)− F n−1(w)| > δ

because K > 1, ReF (z) > 0 and |F n−1(z)− F n−1(w)| > δ by assumption. Now we have
to distinguish two cases: (!!!: falta algo?) ReF n+1(w) > ReF n+1(z) (resp. ReF n+1(z) >
ReF n+1(w)), the bounded slope of the tracts of F gives

|ImF n+1(w)− ImF n+1(z)| 6 αmax{ReF n+1(z),ReF n+1(w), 0}+ β = αReF n+1(w) + β

(resp. |ImF n+1(w)− ImF n+1(z)| 6 αReF n+1(z) +β). Recall that δ does not depend on
the tract. �

4.7 Wiggling of the tracts

Definition 4.7.1 (Bounded wiggling). Let F ∈ Blog and let T be a tract of F . We say
that T has bounded wiggling if there exist K > 1 and µ > 0 such that for every z0 ∈ T ,
every point z on the hyperbolic geodesic of T that connects z0 to ∞ satisfies

(Re z)+ >
1

K
Re z0 − µ.

We say that F ∈ Blog has uniformly bounded wiggling if the wiggling of all tracts of F is
bounded by the same constants K,µ.
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Lemma 4.7.1 (Domains with bounded wiggling). Let V be an unbounded Jordan
domain such that exp|V is injective. Suppose that there are K,M > 0 such that every
z0 ∈ V can be connected to ∞ by a curve γ ⊆ V satisfying

Re z >
Re z0

K
−M

for all z ∈ γ. Then there is M ′ > 0 that depends only on M such that, for every z0 ∈ V ,

Re z >
Re z0

K
−M ′

for all z on the geodesic connecting z0 to ∞.

Proposition 4.7.2 (Head-start and wiggling for bounded slope). Let F ∈ Bnlog(α, β)
and let K > 1. Then the following are equivalent:

(a) For some M > 0, F satisfies the uniform linear head-start condition with constants
K and M .

(b) For some µ > 0, the tracts of F have uniformly bounded wiggling with constants K
and µ.

(c) For some M ′ > 0, the following holds: if T is a tract of F and z, w ∈ T with
Rew > K(Re z)+ +M ′ and |ImF (z)− ImF (w)| 6 αmax{ReF (z),ReF (w)}+ β,
then ReF (w) > KReF (z) +M ′.

Proof. We will see that (c)⇒(a)⇒(b)⇒(c).

(c)⇒(a) This implication is direct. Let z, w ∈ Js for some external address s. In particular,
F (z), F (w) belong to the same tract of F . The bounded slope of F gives

|ImF (z)− ImF (w)| 6 αmax{ReF (z),ReF (w)}+ β.

Suppose that Rew > ϕ(Re z) = K(Re z)+ +M , then by (c)

ReF (w) > ϕ(ReF (z)) = K(ReF (z))+ +M = KReF (z) +M.

We also need to check that ∃k ∈ N such that either ReF k(z) > ϕ(ReF k(w)) or
ReF k(w) > ϕ(ReF k(z)). But this is a consequence of Corollary 4.6.3, if |z −w| >
δ(α, β,K, 0) then this is true for all k > 1. Recall that by the expansivity of F ,
there exists j ∈ N such that |F j(w)−F j(z)| > 2 and then Lemma 4.4.1 applies and
thus |F k(z) − F k(w)| eventually must be greater than any constant δ(α, β,K, 0).
Hence F satisfies the uniform linear head-start condition for ϕ.

(b)⇒(c) Let δ = δ(α, β,K, 0) from Lemma 4.6.2 and set

M̃ := K · (µ+ 2π(α + β)), M := max{δ, M̃ , 1}.

Let T be a tract of F and let z, w ∈ T be such that

Rew > K(Re z)+ +M, |ImF (z)− ImF (w)| 6 αmax{ReF (z),ReF (w)}+ β.
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Note that, in particular, Rew > (Re z)+ > Re z and

|z − w| > |Re z − Rew| = Rew − Re z > K(Re z)+ +M − Re z >

> K(Re z)+ +M − (Re z)+ = (K − 1)(Re z)+ +M >M > δ.

By Lemma 4.6.2 (b), we only need to show that ReF (w) > ReF (z). Suppose to
the contrary that ReF (w) 6 F (z). Then by Lemma 4.6.2

ReF (z) > KReF (w) + |z − w| > |z − w| > M > 1

Recall from the preliminaries, that the geodesic of H connecting F (w) to ∞ is the
horizontal ray

Γ(t) := F (w) + t, t > 0.

and hence γ(t) := F−1
T (F (w)+ t) is the geodesic of T connecting w to∞. Let y ∈ Γ

such that Re y = ReF (z) and let σ be the straight segment from F (z) to y. We
can estimate the hyperbolic length of σ as follows

dist H(F (z),Γ) 6 dist H(F (z), y) 6 lH(σ) =

∫
σ

1

Re z
|dz| 6 sup

z∈σ

∣∣∣∣ 1

Re z

∣∣∣∣ · l(σ) =

=
1

ReF (z)
· |ImF (z)− ImF (w)| 6 αmax{ReF (z),ReF (w)}+ β

ReF (z)
=

=
αReF (z) + β

ReF (z)
= α +

β

ReF (z)
6 α + β.

Now by the standard estimate and Pick’s theorem we have

dist (z, γ) 6 2πdist T (z, γ) = 2πdist H(F (z),Γ) 6 2π(α + β)

i.e. γ intersects the Euclidean ball B(z, 2π(α + β)) and hence

min
ζ∈γ

Re ζ 6 Re z + 2π(α + β).

By the bounded wiggling condition, (Re ζ)+ > 1/K · Rew − µ for all ζ ∈ γ,

Rew < K((Re ζ)+ + µ) 6 K(Re z + 2π(α + β) + µ) 6

6 K(Re z)+ + M̃ 6 K(Re z)+ +M.

This contradicts our assumptions, thus we have proved the claim. Applying Lemma
4.6.2 (b) we get ReF (w) > KReF (z) +M .

(a)⇒(b) Assume that F satisfies the uniform linear head-start condition with constants K
and M for some M > 0. Let T be a tract of F and z ∈ T . By Theorem 4.5.8, there
is k ∈ N such that F k(z) is on a ray tail. Therefore, there exists a set Γ ⊆ I(F )∩H
such that Γ ∪ {∞} is an arc. Since I(F ) ⊆ T is 2πi-periodic and the real part
of the points in H is bounded from below, we can choose a copy of Γ such that
dist (F (z),Γ) 6 κ where κ > 0 is a constant independent of z and T . Since F|T is
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a conformal isomorphism, let ζ ∈ T be such that dist (F (z),Γ) = dist (F (z), F (ζ)).
Then

|z − ζ| 6 1

2
|F (z)− F (ζ)| < κ

2
and ζ can be connected to ∞ along the curve γ := F−1

T (Γ) ⊆ I(F ). At this point
we claim that

Re ζ 6 K(Rew)+ +M = ϕ(Rew)

for all w ∈ γ. Suppose by way of contradiction that there exists w0 ∈ γ such that

Re ζ > K(Rew0)+ +M = ϕ(Rew0).

Since F satisfies the uniform head-start condition for ϕ,

ReF n(ζ) > ϕ(ReF n(w0)) = K(ReF n(w0))+ +M = KReF n(w0) +M

for all n > 1. Since ζ ≺ w0 in γ, where ≺ denotes the speed ordering, there must
exist n0 ∈ N such that

ReF n0(w) > ϕ(ReF n0(ζ)) = K(ReF n0(ζ))+ +M = KReF n0(ζ)) +M

but then using the head-start condition

ReF n0(w) > K(KReF n0(w) +M) +M = K2ReF n0(w) + (KM +M),

0 > (K2 − 1)ReF n0(w) + (KM +M)

which is not possible because K2− 1,ReF n0(w), KM +M > 0. Therefore we have
proved our claim. Then,

(Rew)+ >
Re ζ

K
− M

K
for all w ∈ γ and there is a curve γ′ ⊆ T extending γ to z such that

(Rew)+ >
Re ζ

K
− M

K
− κ

2
>

Re z

K
− κ

K
− M

K
− κ

2

for all w ∈ γ′. Recall that by property (b) of the logarithmic transform, the real
part of the points in the tracts of F is bounded from below. Call

L := inf
z∈T

Re z

then we have

Rew > (Rew)+ − L > Re z

K
− κ

K
− M

K
− κ

2
− L =:

Re z

K
− µ1, µ1 > 0

for all w ∈ γ′. However, γ′ may not be the geodesic connecting z to ∞. Let us call
γ̃ this geodesic and let w ∈ γ̃. By Lemma 4.7.1, there exists µ2 > 0 depending only
on µ1 such that

Rew >
Re z

K
− µ2

for all w ∈ γ̃. Finally,

(Rew)+ > Rew >
Re z

K
− µ2 >

Re z

K
− µ2

2
=:

Re z

K
− µ, µ > 0

and therefore the tracts of F have uniformly bounded wiggling with constants K
and µ.

�
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4.8 Geometry of functions of finite order

Definition 4.8.1 (Order of an entire function). The order (at infinity) of an entire
function is defined as

ρ(f) := lim
r→∞

sup
|z|=r

log log |f(z)|
log |z|

.

Equivalently,

ρ(f) = inf{m ∈ R ∪ {∞} : f(z) = O(exp(|z|n)) as z →∞}.

We say that f has finite order if ρ(f) <∞, that is log log |f(z)| = O(log |z|) as |z| → ∞.

Example 4.8.1. The functions fm(z) = exp(|z|m) have finite order m, while g(z) =
exp(exp(z)) has not finite order. Indeed,

ρ(g) = lim
r→∞

sup
|z|=r

|z|
log |z|

= lim
r→∞

r

log r
= +∞.

We want to characterize the functions F ∈ Blog that come out as logarithmic coordinates
of functions f ∈ B of finite order.

Definition 4.8.2 (Finite order for Blog). We say that F ∈ Blog has finite order if

log ReF (w) = O(|Rew|)

as Rew →∞ in T .

Lemma 4.8.1. A function f ∈ B has finite order if and only if any logarithmic transform
F ∈ Blog of f has finite order in the sense of Definition 4.8.2.

Proof. If F is a logarithmic transform of f we have

f(z) = expF (w), z = exp(w)

and hence

lim
r→∞

sup
|z|=r

log log |f(z)|
log |z|

= lim
r→∞

sup
|ew|=r

log log | exp(F (w))|
log | exp(w)|

=

= lim
r→∞

sup
|eRew|=r

log log | exp(ReF (w))|
log | exp(Rew)|

= lim
Rew→∞

log ReF (w)

Rew

showing the equivalence. �

Theorem 4.8.2 (Spiral theorem). Suppose that F ∈ Bnlog has finite order. Then the
tracts of F have bounded slope.
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Proof. Let T be a tract of F and set

% := sup

{
log ReF (z)

Re z
: z ∈ T , Re z,ReF (z) > 1

}
<∞

which is well defined because F has finite order. Consider the central geodesic γ :
[1,∞)→ T defined by γ(t) = F−1

T (t). The length of the geodesic is given by

lH(γ([1, t])) =

∫ t

1

dt

t
=
(
log t

]t
1

= log t

Then for every t > 1, using the standard estimate, Pick’s theorem and the finite order of
F

|γ(t)| − |γ(1)| 6 |γ(t)− γ(1)| 6 2πlT (γ([1, t])) = 2πlH(γ([1, t])) = 2π log t 6 2π% Re γ(t).

Thus, we have found an asymptotic curve satisfying

|Im γ(t)| 6 |γ(t)| 6 2π%Re γ(t) + |γ(1)|

which by Lemma 4.6.1 is equivalent to the bounded slope condition. �

This is a version of the Ahlfors non-spiralling theorem.

Theorem 4.8.3 (Finite order functions have good geometry). Suppose that F ∈
Bnlog has finite order. Then the tracts of F have bounded slope and (uniformly) bounded
wiggling.

Proof. By Theorem 4.8.2, F ∈ Bnlog(α, β) for some α, β. Since F has finite order, there
exist %,M > 0 such that

log ReF (z) 6 %Re z +M

for all z ∈ T . Let T be a tract of F and consider z ∈ T . Assume by now that ReF (z) > 1.
As we saw in the preliminaries, the geodesic connecting z to ∞ in H is a horizontal ray,
consider its preimage

γ(t) := F−1
T (F (z) + t), t > 0.

Using Pick’s theorem, we can compute the distance between z and the points of γ:

dist T (z, γ(t)) = dist H(F (z), γ(t)) =

∫ 1+t

1

dt

t
=
(
log(t)

]t+1

1
= log(1 + t).

By the standard estimate,

Re z − Re γ(t) 6 |z − γ(t)| 6 2πdist T (z, γ(t)) = 2π log(1 + t),

since we are assuming ReF (z) > 1,

2π log(1 + t) 6 2π log(ReF (z) + t) = 2π log(ReF (γ(t)),

and using the finite order condition,

2π log(ReF (γ(t)) 6 2π log(ReF (z)) 6 2π(% Re γ(t) +M).
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Thus,
Re z − Re γ(t) 6 2π(% Re γ(t) +M)

or equivalently,

Re z 6 (2π%+ 1) Re γ(t) + 2πM,

(Re γ(t))+ = Re γ(t) >
1

2π%+ 1
Re z − 2πM

2π%+ 1
.

Since z was arbitrary, this tells us that F has uniformly bounded wiggling with constants

K = 2π%+ 1 > 1, µ =
2πM

2π%+ 1
> 0.

It remains to cover the case where ReF (z) < 1. Let w be a point in the geodesic
connecting z to ∞ such that ReF (w) = 1. If z1, z2 are any two points in the geodesic
connecting z to w, the expansivity of F gives

|z1 − z2| 6
1

2
|F (z)− F (w)| 6 1

2

and hence γ′(t) has bounded Euclidean diameter. Thus, this can be absorbed in the
constant µ and does not matter for the bounded wiggling. �

4.9 Proof of the main theorem

Now we have all the tools to prove the theorem for functions of class B of finite order.
Note that class B is closed under finite composition, but the composition of two functions
of finite order need not to have finite order in general. The following lemma completes
the argument.

Lemma 4.9.1 (Linear head-start is preserved by composition). Let Fi : TFi →
H be in Bnlog, for i = 1, 2, . . . , n. Then there is an a > 0 so that if τa(z) = z − a
then Ga := τa ◦ Fn ◦ · · · ◦ F1 ∈ Bnlog on appropriate tracts Ta ⊆ TF1, so that Ga is a
conformal isomorphism from each component of Ta onto H. If all Fi have bounded slope
and satisfy uniform linear head-start conditions, then Ga also has bounded slope and
satisfies a uniform linear head-start condition.

Proof. Since each Fi is normalized, Fi : TFi → H. For every i > 2 we can define

ai := sup
z∈TFi\H

ReFi(z) > 0

if TFi \H 6= ∅ and ai := 0 otherwise. Then F−1
i (Hai) ⊆ H for i = 2, . . . , n, where

HR := {z ∈ C : Re z > R}.

Set a = an > 0 and consider

Ta := (Fn ◦ · · · ◦ F1)−1(Ha) = F−1
1 ◦ · · · ◦ F−1

n (Ha) ⊆ TF1 .
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Note that for every i we have chosen a branch of F−1
i to a specified tract Tij of Fi so that

Fi|Tij is a conformal isomorphism. Thus, the restriction of F := (Fn ◦ · · · ◦F1) : Ta → Ha

to every connected component of Ta is a composition of conformal isomorphisms and
hence, a conformal isomorphism. The geometric properties of the tracts in the definition
of class Blog are inherited from F1, Ta ⊆ TF1 . Thus, the function

Ga := τa ◦ F : Ta → H

belongs to Bnlog. Moreover, since the characteristic of having bounded slope is intrinsic to
the geometry of the tracts, as Ta ⊆ TF1 and F1 has bounded slope, Ga has bounded slope
too.
It remains to show that Ga satisfies a uniform linear head-start condition. Let α, β be such
that Fi ∈ Bnlog(α, β) for i = 1, . . . , n. Note that if F ∈ Bnlog(α, β), then F ∈ Bnlog(α′, β′) for
all α′ > α and β′ > β. For instance, if Fi ∈ Bnlog(αi, βi), take as α and β the maximums
of αi and βi respectively. Assume that Fi satisfies the uniform linear head-start condition
with constants Ki > 1 and Mi > 0 and let M ′

i be the constant provided by Proposition
4.7.2 (c). Now set

K = max
i
Ki, M = max{δ, max

i
M ′

i}

where δ = δ(α, β,K, 0) from Lemma 4.6.2 (b). Fix i and let T be a tract of Fi. Let
w, z ∈ T such that

Rew > K(Re z)+ +M

and such that Fi(w) and Fi(z) belong to the same tract of Fi+1 (if i = n, we use the
convention Fi+1 = F1). Note that in particular Rew > Re z. Then

|w − z| > |Rew − Re z| = Rew − Re z > K(Re z)+ +M − Re z >M > δ.

The inequality K(Re z)+ +M − Re z >M holds because if Re z > 0,

K(Re z)+ +M − Re z = KRe z +M − Re z = (K − 1)Re z +M > M

while if Re z 6 0, K(Re z)+ + M − Re z > M = M − Re z > M . In this situation,
Corollary 4.6.3 gives that

ReFi(z) > KReFi(w) + |w − z| or ReFi(w) > KReFi(z) + |w − z|

and in particular, since |w − z| >M , we have

ReFi(z) > KReFi(w) +M or ReFi(w) > KReFi(z) +M.

Finally, by Proposition 4.7.2 (c), there is some M ′ > 0 such that

ReF (w) > KReF (z) +M ′

which contradicts the inequality in the left hand side:

ReF (z)−M
K

> ReF (w) > KReF (z) +M ′,

ReF (z)−M > K2ReF (z) +K2M ′,

0 > (K2 − 1)ReF (z) +K2M ′ +M
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but K2 − 1,ReF (z), k2M ′ +M > 0. Therefore,

ReFi(w) > KReFi(z) +M

and hence all Fi satisfy the uniform linear head-start condition with constants K,M . Let
ϕ(t) = Kt+ +M , if w, z ∈ Ta we have

Rew > ϕ(Re z)⇒ ReF1(w) > ϕ(ReF1(z))⇒ · · · ⇒ ReF (w) > ϕ(ReF (z))

and then

ReGa(w) = ReF (w)− a > ϕ(ReF (z))− a = K(ReF (z))+ +M − a =

= KReF (z) +M − a > KReF (z) +M −Ka = K(ReF (z)− a) +M =

= K(ReGa(z)) +M = K(ReGa(z))+ +M = ϕ(ReGa(z)).

Hence, Ga satisfies the uniform linear head-start condition with constants K and M . �

Now we proceed to prove the main theorem in [RRRS11] giving a partial positive result
on strong Eremenko’s conjecture.

Theorem 4.9.2 (Entire functions with dynamic rays). Let f ∈ B be a function of
finite order, or more generally a finite composition of such functions. Then every point
z ∈ I(f) can be connected to ∞ by a curve γ such that fn|γ →∞ uniformly.

Proof. Let f1, . . . fn ∈ B be functions of finite order. By applying a suitable affine change
of variable to each fi, we may assume without loss of generality that Fi is a normalized
logarithmic transform of fi. By Theorem 4.8.3, the tracts of Fi have bounded slope and
(uniformly) bounded wiggling for all i. Then, by Proposition 4.7.2 each Fi satisfies a
linear head-start condition. Applying Lemma 4.9.1, there is an a > 0 such that Ga(z) :=
τa ◦Fn ◦ · · ·◦F1 ∈ Bnlog satisfies a uniform linear head-start condition, where τa(z) = z−a.
On a sufficiently restricted domain T ⊆ H,

F := Ga ◦ τ−1
a = τa ◦ Fn ◦ · · · ◦ F1 ◦ τ−1

a : T → H

is a logarithmic transform of f = fn ◦ · · · ◦ f1 and satisfies a linear head-start condition.
Now Theorem 4.5.8 tells us that every escaping point z is eventually mapped to a ray
tail γ in J(F ) connecting F k(z) to ∞. Finally, by Proposition 3.7.3 z must be on a ray
tail. �

4.10 Disjoint-type functions

Among all the functions in class B, in some sense the disjoint-type functions behave in a
nicer way and enjoy better properties.

Definition 4.10.1 (Disjoint-type function). An entire function f ∈ B is said to be of
disjoint-type if there is a bounded Jordan domain D ⊆ C such that S(f) ⊆ D and the
tracts of f , V = f−1(C \D), satisfy that V ∩D = ∅. Or, in other words, the tracts of f
are compactly contained in C \D.
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Figure 4.8: A disjoint-type function f ∈ B.

Example 4.10.1. The function f(z) = that we considered in Section 3.6 is of disjoint
type.

The same notion can be defined in Blog easily. Then, the following lemma explains what
is the relation between these classes of functions.

Definition 4.10.2 (Disjoint-type logarithmic transform). Let F ∈ Blog, we say that
F : T → H is a disjoint-type function if T ⊆ H.

Lemma 4.10.1. A function f ∈ B is of disjoint type if and only if f has a logarithmic
transform of disjoint type.

Remark 4.10.1. We may not be able to normalize a disjoint-type logarithmic transform
preserving the disjoint-type property.

Proposition 4.10.2. Let f ∈ B and let F be a logarithmic transform of F . If F is of
disjoint type, then exp(J(F )) = J(f).

Maybe this is the best benefit of the disjoint-type case. This tells us that the logarithmic
transform F encodes all the information from the Julia set J(f).

Lemma 4.10.3 (Characterization of disjoint-type). A function f ∈ B is of disjoint-
type if and only if S(f) is contained in the immediate basin of an attracting fixed point
of f .

Proof. Let f ∈ B be of disjoint type, this means that V ∩W = ∅ where S(f) ⊆ D, W =
C \D and V = f−1(W ). The definition of V gives

f(C \ V) ⊆ C \W = D.

In particular, since D ⊆ C \ V by the disjoint-type property, we have f(D) ⊆ D. Recall
that D is a bounded Jordan domain hence homeomorphic to a disk. Brouwer fixed point
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theorem asserts that there exists an attracting fixed point z0 ∈ D and D is contained in
its immediate basin of attraction. Thus, S(f) ⊆ D ⊆ A∗f (z0).
Conversely, if S(f) ⊆ A∗f (z0) we can take D ⊆ A∗f (z0) a bounded Jordan domain contain-
ing S(f) such that f(D) ⊆ D (in particular z0 ∈ D). Note that the whole A∗f (z0) may not
be a bounded Jordan domain, for instance it can be unbounded. This choice of the do-
main D leads to a disjoint-type logarithmic transform for f . Indeed, f−1(C \D) ⊆ C \D
and

V ∩D = f−1(C \D) ∩D = ∅.
�

Lemma 4.10.4 (Uniform expansion for disjoint-type maps). Suppose F : T → H
is of disjoint type. Then there exists a constant Λ > 1 such that the derivative of F with
respect to the hyperbolic metric on H satisfies ‖DF (z)‖H = λT (z)/λH(z) > Λ for all
z ∈ T . In particular, distH(F (z), F (w)) > ΛdistH(z, w) whenever z and w belong to the
same tract of F .

Proof. The derivative of F : T → H with respect to the hyperbolic metric on H is defined
as

‖DF (z)‖H := |F ′(z)| · ρH(F (z))

ρH(z)
.

For every tract T of T , F : T → H is a conformal isomorphism by property (d). Therefore,
F is a local isometry, this is

|F ′(z)| · ρH(F (z)) = ρT (z)

and so

‖DF (z)‖H =
ρT (z)

ρH(z)
.

Since F is of disjoint-type, T ( H, Pick’s theorem (Theorem 1.6.3) tells us that

ρT (z) > ρH(z)

which gives ‖DF (z)‖H > 1. Now we have to see that, in fact, it is away from 1. By
continuity, ‖DF (z)‖H could only take values close to 1 in the boundary of T . If z tends
to the boundary of T in C we know

lim
z→∂T

ρT (z)

ρH(z)
→∞,

note that points in T are away from ∂H and hence ρH(z) is bounded. Since T is an
unbounded Jordan domain, we also have to check the directions with unbounded points.
In this case, the real part of the points is unbounded. We would like that

lim inf
Re z→+∞

ρT (z)

ρH(z)
> 1.

By property (e), T cannot contain vertical segments of length 2π. Therefore, if z ∈ T

dist (z, ∂T ) 6 π
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and hence, using the standard estimate,

ρT (z) >
1

2dist (z, ∂T )
>

1

2π
.

From that we have

lim inf
Re z→+∞

ρT (z)

ρH(z)
> lim inf

Re z→+∞

1

2π · ρH(z)
> 1

because ρH(z) → 0 as Re z → +∞, it goes away from the boundary. We conclude that
there exists a constant Λ > 1 such that ‖DF (z)‖H > Λ. Furthermore, we have seen that

ρT (z) > Λ · ρH(z).

In particular, combining this with Pick’s theorem applied to the conformal isomorphism
F−1
T ,

distH(F (z), F (w)) = distT (z, w) > Λ · distH(z, w).

�

Proposition 4.10.5 (Disjoint-type maps and linear head-start). Let F : T → H
be a disjoint-type map in Blog(α, β), and let R > 0 be such that HR ⊆ H. Then F satisfies
a uniform linear head-start condition if and only if the map F̃ := F|F−1(HR) satisfies a
head-start condition.

You can find the corresponding proof in [RRRS11, Proposition 5.9]. Since the argument
in the proof of the main theorem is based on normalized functions but we may not be
able to normalize a function preserving the disjoint-type property, this proposition allows
us to prove an analogue result for disjoint-type logarithmic transforms without the need
of normalizing them.

Theorem 4.10.6 (Disjoint-type maps). Let f = f1 ◦ f2 ◦ · · · ◦ fn, where fi ∈ B for all
i, and all fi have finite order. Suppose that S(f) ⊆ F (f) and that F (f) consists only of
the immediate basin of an attracting fixed point of f . Then every component of J(f) is a
dynamic ray together with a single landing point; in particular, every point of I(f) is on
a ray tail of f .

Proof. Since S(f) ⊆ F (f) = A∗f (z0) where z0 denotes an attracting fixed point of f (the
only one), by the characterization in Lemma 4.10.3, f has a disjoint-type logarithmic
transform F . Hence, by Proposition 4.10.2, exp(J(F )) = J(f). Following the reasoning
in the proof of Theorem 4.9.2, there is R > 0 such that F|F−1(HR satisfies a uniform
linear head-start condition. By Proposition 4.10.5, F satisfies a uniform linear head-
start condition. Thus, Theorem 4.5.8 and Proposition 3.7.3 apply and show that every
component of J(f) is a ray tail. �

4.11 Existence of Cantor bouquets

Recall that we have introduced Cantor bouquets in Section 3.5. We will see that the
Julia sets of the functions considered in this chapter contain Cantor bouquets. More
precisely we will prove that if a logarithmic transform F ∈ Blog of some function f ∈ B
satisfies a head-start condition, then J(F ) (and hence J(f) too) contains a set with a
brush structure.
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Theorem 4.11.1 (Existence of absorbing brush). Suppose that F ∈ Blog satisfies a
head-start condition. Then there exists a closed 2πi-periodic subset X ⊆ J(F ) with the
following properties:

(a) F (X) ⊆ X;

(b) each connected component C of X is a closed arc to infinity all of whose points
except possibly the finite endpoint escape;

(c) every escaping point of F enters X after finitely many iterations. If F satisfies the
uniform head-start condition for some function, then there exists K ′ > 0 such that
JK

′
(F ) ⊆ X.

If, additionally, F is of disjoint type, then we may choose X = J(F ).

Proof. Let X denote the union of all unbounded components of J(F ). The set J(F ) ∪
{∞} ⊆ Ĉ may have some connected components, let X̂ be the one containing ∞. Con-

sider E = X̂ ∩ C ( X̂. By the Boundary bumping theorem stated in the preliminaries,
or more precisely by its Corollary 2.2.4, every connected component of E is unbounded,
hence E = X. By Corollary 4.5.5, J(F ) ∪ {∞} ⊆ Ĉ is a union of arcs (sets homeomor-

phics to I) and therefore is a compact set in Ĉ. Recall that closed subsets of compact

spaces are compact. Thus, X = X̂ ∩ C is a closed set in C. Let us check the properties
(a) to (c):

(a) By definition, J(F ) is an invariant set under F . An unbounded component of J(F )
cannot be mapped to one of its bounded components because this would lead to
the existence of an asymptotic value in J(F ) which is not possible.

(b) By Corollary 4.5.5, each connected component of X is a closed arc to infinity and,
by Corollary 4.5.3, all their points must escape with the only possible exception of
the finite endpoint.

(c) Escaping points end up entering JK for all K > 0. By Proposition 4.5.7, there is
K ′ > 0 such that either JK

′
s is empty or it is contained in the unbounded component

of Js, and hence in X.

The final claim follows from the fact that J(F ) ∪ {∞} is connected. Indeed,

J(F ) ∪ {∞} =
⋂
n>0

F−n(H) ∪ {∞}

and since {F−n(H) ∪ {∞}}∞n=0 is a nested sequence of continua, Theorem 2.1.2 tells us
that J(F ) ∪ {∞} is a continuum and, in particular, connected. �

The fact that X is absorbing is very remarkable. If we understand the dynamics in X,
since we can recover J(F ) taking preimages of X, then we understand the dynamics of
the whole J(F ). The following two theorems are an extension of this result. The first
one is about disjoint-type functions, compare it with Theorem 4.10.6. The second one
deals with the general case. Both of them are proved in [BJR].
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Theorem 4.11.2. Let f ∈ B be a disjoint-type function such that f = f1 ◦ · · · ◦ fn for
some n > 1 and such that fi ∈ B have finite order for all i. Then the Julia set J(f) is a
Cantor bouquet.

Theorem 4.11.3 (Absorbing Cantor bouquets). Let f ∈ B be a finite order function
or, more generally, a finite composition of such functions. Then for every R > 0, there
exists a Cantor bouquet X ⊆ J(f) with f(X) ⊆ X such that

(1) |f j(z)| > R for all z ∈ X and j > 0;

(2) there is R′ > R such that, if z ∈ C with |f j(z)| > R′ for all j, then z ∈ X.

Therefore, the set X from Theorem 4.11.1 can be chosen such that X and exp(X) are
Cantor bouquets.
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Chapter 5

Dynamic rays for holomorphic
self-maps of the punctured plane

The purpose of this chapter is to review what has been prooved about the analytic self-
maps of C∗ and discuss if we can apply the results of the previous chapter.

5.1 Analytic self-maps of the punctured plane

The study of the iteration of rational functions in the Riemann sphere Ĉ goes back to
the times of Pierre Fatou and Gaston Julia at the beginning of the 20th century. A
thing that we can do is to remove one point from Ĉ and study the analytical self-maps
of this space. We can assume without loss of generality that the removed point was ∞
and hence we have the complex plane C. There are two kinds of analytic self-maps of C:
polynomials and transcendental entire functions. The first ones are analytic analytic in
the whole Ĉ but ∞ is a fixed point with no preimages in C. For transcendental entire
maps ∞ is an essential singularity, therefore they are analytic in C but cannot even be
extended continuously to Ĉ.

Beyond this, we can continue our construction and take away two points from Ĉ which
we will assume that are ∞ and 0. The resulting space is called the punctured plane and
denoted by C∗ = C \ {0}. We want to describe what are the analytic self-maps of C∗
depending on the behaviour of 0 and∞. Let us begin with the more regular ones, assume
that f is analytic in the whole Riemann sphere and hence rational. The points 0 and ∞
cannot have any image nor preimage in C∗, therefore they are either fixed or form a two
periodic orbit. If∞ is fixed and has no finite preimages (poles), f must be a polynomial.
Since 0 must be the only possible root of f , then it must be of the form

f(z) = kzn, k 6= 0, n > 2. (i)

On the other hand, if f exchanges 0 and∞, then the polynomial in the numerator cannot
have any roots and 0 must be the only root of the denominator, hence

f(z) = k
1

zn
, k 6= 0, n > 2. (ii)
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Note that we have excluded the cases where f is constant or is a Möbius transformation.
Their Julia set is empty and hence they must be treated separately. Assume now that
one of the excluded points is an essential singularity, for instance ∞. Then f is an entire
transcendental map. We have to distinguish two cases depending on the behaviour of 0.
If 0 is a fixed point, then

f(z) = zn exp(g(z)), n > 0 (iii)

where g(z) denotes a non-constant entire function, while if 0 is mapped to ∞ by f then

f(z) =
1

zn
exp(g(z)), n > 1 (iv)

with g(z) as before. Finally, let us consider the maps for which 0 and∞ are essential sin-
gularities and thus, are properly analytic in C∗ and cannot be extended even continuously
to a larger space. They are of the form

f(z) = zm exp(g(z) + h(1/z)), m ∈ Z (v)

where g(z) and h(z) are non-constant entire functions. The cases (i) to (v) describe all
the possible kinds of analytic self-maps of C∗.

Note that this is the last interesting case. If we remove three points of Ĉ, Montel’s
theorem (Theorem 3.2.1) tells us that the Julia set of the analytic self-maps there is
trivial. This was first showed by Hans R̊adström in [R̊ad53] without using this theorem.

5.2 Properties of the Julia set

Recall the definition of the Julia set from Definition 3.2.2. In analogy with the rational
or entire transcendental cases, H. R̊adström proved the following properties of the Julia
set of an analytic self-map of C∗. Compare with Proposition 3.2.4.

Proposition 5.2.1. If f is a holomorphic self-map of C∗ which is not a Möbius trans-
formation, then

(i) J(f) is a non-empty perfect subset of C∗;

(ii) J(f) is completely invariant;

(iii) for every p ∈ N, J(fp) = J(f).

Pierre Fatou and Gaston Julia proved that for a rational function, the Julia set is the
closure of the set of repelling periodic points. The same was proved by Irvine N. Baker
for transcendental entire functions. The following proposition is the analog for C∗.

Proposition 5.2.2. Let f be an analyitc self-map of C∗. Then J(f) is the closure of the
set of repelling periodic points of f .

This was originally proved by Prodipeswar Bhattacharyya in his PhD thesis Iteration
of Analytic Functions (University of London, 1969) having as advisor Irvine N. Baker.
Finally, this last property is also very standard.
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Proposition 5.2.3. Let f be an analytic self-map of C∗. If U ∩J(f) 6= ∅, then for every
compact set K ⊆ C∗ there is n0 ∈ N such that

fn(U) ⊇ K

for all n > n0.

Since exp : C → C∗ is a universal covering, we would like to relate the properties of the
Julia set of an analytical self-map of C∗ to the ones of the Julia set of the lift to C.

Lemma 5.2.4. Given g an analytic self-map C∗ let f be an entire function sattisfying
exp f(z) = g(exp z). Then we have

exp−1 F (g) ⊆ F (f).

Proof. Let z0 ∈ C be such that exp z0 ∈ F (g). Let U be a neighbourhood of z0 in C and
consider V = expU ⊆ C∗. �

In particular, since C∗ = F (g) t J(g) and C = F (f) t J(f) we have

exp−1 J(g) = exp−1(C∗ \ F (g)) = C \ exp−1 F (g) ⊇ C \ F (f) = J(f).

Walter Bergweiler proved in [Ber95] that exp−1 J(g) ⊆ J(f) and hence we have the
following theorem.

Theorem 5.2.5. Given g an analytic self-map C∗ let f be an entire function sattisfying
exp f(z) = g(exp z). If f is not linear nor constant, then

exp−1 J(g) = J(f).

The connectivity of the Julia set was studied in [BD98] proving the following two sur-
prising results.

Theorem 5.2.6. If f(z) is a transcendental self-map of C∗, then J(f) has no compact
component. In particular, J(f) has no singleton component.

Note that in the polynomial case it can happen that J(f) consists of Cantor dust and
hence every point in J(f) is a singleton component. For entire transcendental functions
it is also possible that singleton components are dense in the Julia set.

Theorem 5.2.7. If f(z) is an analytic self-map of C∗, then J(f) has either one or
infinitely many components.

5.3 Classification of the Fatou components

Definition 5.3.1 (Simply/doubly connected). A connected set X ⊆ Ĉ is said to

be simply connected if Ĉ \ X is connected or, equivalently, if every loop is contractible,

π1(X) = 0. X is called doubly connected if Ĉ \X has exactly two connected components
or, in terms of the fundamental group, every non-trivial loop is homotopic.
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The following theorem is due to Irvine N. Baker. It was first proved in [Bak87] and there
is another proof in [BD98, Theorem 1]. Check also [Kee88].

Theorem 5.3.1. If f(z) is an analytic self-map of C∗ which is not a Möbius transfor-
mation, then the components of F (f) are simply or doubly-connected. There is at most
one doubly connected component, which must separate 0 from ∞, except in the case when
f(z) = kzn for some k 6= 0 and n ∈ Z \ {0,±1}.

Observe that in the omitted case in the above theorem, when f(z) = kzn, the Julia
set is the unit circle and the Fatou set consists of two punctured discs: the attracting
basins of 0 and∞ with the fixed points removed. Therefore, it has two doubly connected
components and is an exception for this rule.

Theorem 5.3.2. If A is a doubly-connected component of F (f) for a self-map f(z) of
C∗ and A is relatively compact in C∗, then either

(i) A is a Herman ring,

(ii) A is pre-periodic but not periodic, or

(iii) A is a wandering component.

Furthermore, in cases (ii) and (iii) for all n ∈ N, fn(A) are relatively compact simply-
connected components.

You can find the proof of this theorem in [BD98, Theorem 4]. Additionally, they show
that there are examples for each of these cases.

5.4 The complex standard family

One reason that makes interesting to understand the dynamics of the analytic self-maps of
C∗ is that they arise as complexification of analytic self-maps of the circle. The standard
family is an example that illustrates this phenomena.

Definition 5.4.1 (Standard family). The standard family of circle maps is given by

Fαβ(θ) := θ + α + β sin(θ) (mod 2π)

where α, β ∈ R are two parameters and θ ∈ S1 = R/(2πZ).

They are perturbations of the rigid rotation of angle α,

Rα(θ) = θ + α (mod 2π).

Usually the parameters are restricted to α ∈ [0, 2π) and β > 0. Consider the lift of Fαβ
to C

F̃αβ(z) = z + α + β sin(z)

which restricted to R and modulo 2π gives Fαβ. Note that

F̃αβ(z + 2π) = z + 2π + α + β sin(z + 2π) = z + α + β sin(z) + 2π = F̃αβ(z) + 2π.
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We want to map the real line to the unit circle with a 2π-periodic map. This can be done
semiconjugating F̃αβ by h(z) = exp(iz),

C
F̃αβ //

exp(iz)
��

C
exp(iz)

��
C∗

F̂αβ

// C∗

if w = eiz,

F̂αβ(w) = F̂αβ(exp(iz)) = exp(iF̃αβ(z)) = eizeiαeiβ sin(z) = weiαeβ(w−1/w)/2

because recall that sin(z) = (eiz − e−iz)/(2i) = (w − 1/w)/(2i). Thus, we have

F̂αβ |S1 ≡ Fαβ

and hence we say that F̂αβ is a complexification of Fαβ. The resulting map F̂αβ is an
anylitic self-map of C∗ for which 0 and ∞ are essential singularities, type (iv) above. In
Figure 5.1 you can see the phase space of two maps of this family exhibiting a very dif-
ferent character. For the one on the left hand side, there is an attracting cycle of period
two in S1. The black regions correspond to the attracting basin. On the right hand side
it seems that the Julia set fills up the whole plane.

Figure 5.1: Phase space of the complex standard family fα,β. (L): α = 3.1, β = 0.8 and
z ∈ [−3, 5] + i[−4, 4]. (R): α = 3.1, β = 5 and z ∈ [−2, 2] + i[−2, 2]. We have drawn in white
the unit circle S1.

In Figure 5.2 we have drawn the phase spaces of the lifts of these maps, F̃αβ, for the
same values of the parameters. Observe that now the unit circle S1 in the above images
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Figure 5.2: Phase space of the lift of the complex standard family Fα,β. (L): α = 3.1, β = 0.8.
(R): α = 3.1, β = 5. z ∈ [−π, π] + i[−π, π].

corresponds to the real line.

Let us compute the singular values of this map. Critical points must satisfy

F̂ ′αβ(w) = eβ(w−1/w)/2

[
eiα +

β

2

(
w +

1

w

)]
= 0

or, equivalently,

w2 +
2eiα

β
w + 1 = 0

which leads to two critical points and the two corresponding critical values. Although
S(f) is finite, the results of [DT86] and [RRRS11] cannot be applied because the map F̂

is not entire. On the other hand, the critical points of the lift F̃αβ satisfy

F̃ ′αβ(z) = 1 + β cos z = 0 ⇔ cos z = − 1

β

and if 0 < β 6 1 this has infinitely many solutions on the real line and form an unbounded
set. The distance of every critical point zc to its image (a critical value) is

|zc − F̃αβ(zc)| = |α + β sin(zc)| = α + β

√
1 +

1

β2

thus, the critical values of F̃αβ are unbounded. Hence, S(F̃αβ) is an unbounded set and
we cannot use the results of [DT86] nor [RRRS11].

In [Fag99], Núria Fagella showed that the Julia set of F̂αβ contains an invariant set of
curves such that the points on them tend exponentially fast to the essential singularities
under iteration. The landing properties of these tails are also discussed there.
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5.5 Logarithmic coordinates

Definition 5.5.1 (Class B∗). We denote by B∗ the class of all analytic self-maps of C∗
for which 0 and ∞ are essential singularities and S(f) is bounded away from 0 and ∞.

Definition 5.5.2 (Tract in B∗). Let f ∈ B∗ and let A ⊆ C be a topological anulus
bounded away from 0 and ∞ containing S(f). Denote by W0 and W∞ the components
of C \ A containing respectively 0 and ∞. We call tract to each component V of V =
f−1(W0) ∪ f−1(W∞).

The following theorem is a version of Lemma 4.1.1 for B∗.

Theorem 5.5.1. A tract V ⊆ C∗ of a function f ∈ B∗ is a Jordan domain containing
either 0 or ∞ (but not both) in its closure and f : V → W is a universal covering where
either W = W0 or W = W∞.

Proof. We will begin showing that f : V → W is a covering map. The map f is analytic
on V and, by construction, it is surjective. Let z ∈ W and consider U ⊆ W to be
a neighbourhood of z. Let X be a component of f−1(U), we have to prove that X is
mapped homeomorphically onto U . If X is compact, since U contains no critical values,
X contains no critical points and hence f : X → U is a diffeomorphism. Suppose now
that U was not compact and let q ∈ U . Then, we can choose an exhaustion of U by a
continuous family of simple, closed curves γt, 0 6 t 6 1 such that γ0 = {q} and γ1 = ∂U ,
see Figure 5.3. For small values of t, f−1(γt) is a simple closed curve around f−1(q), but
since X is unbounded there must be a value t0 6 1 such that γt is no longer a closed
curve. Since X contains no critical points, this curve can be extended to∞ and then this
implies the existence of an asymptotic value on γt0 contradicting the assumption that
γt0 ⊆ W and all the asymptotic values are in D = C \W . Hence, f : V → W must be a
covering map.

Figure 5.3: Sketch in the proof of Theorem 5.5.1.

The preimage of W under a covering map can be either a disc or a punctured disc. Let
us discard the second case. Suppose to the contrary that V was a punctured disc with
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puncture point a ∈ Ĉ. Great Picard theorem tells us that the puncture a cannot be one
of the essential singularities because its image omits too many points. Suppose now that
a 6= 0,∞. If W = W∞, then a needs to be a pole but this is impossible because f is
analytic on C∗. On the other hand, if W = W0 let f ′ be the function conjugated to f
by h(z) = 1/z. The map f ′ is again a self-map of C∗, we just have interchanged the
singularities. Then we would have a punctured disc with puncture a′ = 1/a such that its
image is a neighbourhood of ∞. Again, since f ′ is analytic on C∗ this is impossible. We
conclude that V has to be a disc. Since W∞ has points as close to ∞ as we want and
f is holomorphic on C∗, the preimage of W∞ must have an essential singularity in its
boundary. Similarly, the preimage of W0 also needs to contain an essential singularity in
its boundary, otherwise we would obtain a contradiction by conjugating by h(z) = 1/z
as before.

Figure 5.4: Sketch in the proof of Theorem 5.5.1.

It only remains to discard the case where V is a disc containing both 0 and ∞ in its
boundary. Assume by now that W = W∞. See Figure 5.4. Suppose this was possible,
then the boundary of V would consist of two disjoint curves mapped ∞-to-1 onto ∂W .
Foliate W with a family of simple closed curves δt, 0 6 t 6 1 such that δ0 = ∂W and
δ1 =∞. Let Bt and Ut be respectively the bounded and unbounded components defined
by the curve δt. We have that S(f) ⊆ A ⊆ Bt for every value of t, therefore the preimages
of Ut must be topological discs containing either 0,∞ or both in their boundary. Observe
that, since we are assuming ∂V contains 0 and ∞, for small values of t the set ∂f−1(Ut)
will also contain both (look at the orange curve in the above figure). We claim there is
some 0 < t∗ < 1 such that ∂f−1(Ut∗) only contains one of these two points. Indeed, if
this was not true, consider a curve α ⊆ V joining two points one from each components
of ∂V and such that they have a different image under f (in pink in the above figure).
Since f is continuous, f(α) must be a continuous curve in W∞. Since the endpoints of
this curve lie in ∂W∞, the curve f(α) is bounded, let D be a disc centred at 0 containing
f(α) (in yellow in the above figure). The preimage of C \D cannot intersect α, therefore
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each of its connected components can only have one of the essential singularities in its
boundary. Hence, to this point we have proved that we can always enlarge the anulus A
so that tracts only contain one of the essential singularities on the boundary.
We want to prove that indeed any of the tracts can contain both of the essential singular-
ities independently on how you choose A. Consider now a curve β ⊆ V joining 0 and ∞.
Then both endpoint of f(β) must be ∞ because otherwise we would find an asymptotic
value in W∞, which is not possible. Thus, both the final part and the begining part of β
have points in f−1(C\D). Hence, if the component of f−1(C\D) does not have 0 and∞
in its boundary necessarily there must be two components, one having 0 and the other one
∞ in their boundary. Using again a foliation of W∞ by simple closed curves there must
be a t1 such that the preimage of f−1(Ut) passes from being connected to disconnected.
The preimage at t = t1 can be of any of the both types. Let t2 be a parameter such that
the preimage is of the other type. Between these two, there must be a foliation of curves
of this second type filling all the space. This leads to the existence of a point such that
both components of this family of curves accumulate. We raise a contradiction with the
fact that f restricted to every tract needs to be a covering.
The proof for W0 is analogous, you only have to conjugate by h(z) = 1/z. �

Therefore, we can classify the tracts in V in four types

V = V0
0 t V∞0 t V0

∞ t V∞∞

where the lower index indicates if the tracts have 0 or ∞ in their closure and the upper
index indicates if they are a covering of W0 or W∞.

Definition 5.5.3 (Logarithmic transform in B∗). Let f ∈ B∗ and consider T :=
exp−1(V) and H := exp−1(W ). We call logarithmic transform of f to the continuous
functions F : T → H making the diagram

T
exp

��

F // H

exp
��

V
f

// W

commutative. The set H can be decomposed in H = H0 tH∞ where

H0 := exp−1(W0), H∞ := exp−1(W∞).

The connected components of T are called tracts of F and can be classified in four subsets
as well

T = T 0
0 t T ∞0 t T 0

∞ t T ∞∞ .

We denote by T ji the set of tracts T of F such that expT ∈ Vji , i, j ∈ {0,∞}.

Theorem 5.5.2. If f ∈ B∗, then its logarithmic transform F : T → H satisfies the
following properties:

a) H is the disjoint union of two 2πi-periodic Jordan domains H0 and H∞, H0 con-
taining a left halft plane and H∞ containing a right half plane;
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b) every component of T is an unbounded Jordan domain with real parts either bounded
below and unbounded from above or unbounded below and bounded from above;

d) for every component T of T , F : T → H is a conformal isomorphism;

e) for every component T of T , exp|T is injective;

f) T is invariant under translation by 2πi.

Proof. Recall that exp : C → C∗ is a holomorphic cover and, in particular, a local
homeomorphism. Let us check each one of the above properties:

a) The boundary of A are two disjoint loops arround 0, hence its preimage under
the exponential map must be a 2πi-periodic continuous band. Since exp is a local
homeomorphism, the boundaries of this band cannot have self-intersections. The
domains W∞ and W0 are mapped to the right and to the left of this band re-
spectively. There are R+, R− > 0 such that A ⊆ D(0, R+) and W0 ⊆ D(0, R−),
therefore the right half plane with Re z > logR+ is contained in H∞ and the left
half plane with Re z < logR− is contained in H0.

b) Again, since exp is a holomorphic cover, every component T of T must be a Jordan
domain. Let r− and r+ be respectively a lower and an upper bound for the tracts
of f containing respectively ∞ and 0 in their boundary. Taking a logarithm, this
gives a lower and an upper bounds for the real part of the points in T containing
respectively +∞ and −∞ in their boundary. On the other hand, the logarithm of
an unbounded set must have points with unbounded real part.

c) This is the same argument as for entire functions. If the boundaries of two tracts
had a common point z0, take a small enough neighbourhood U of z0 so that V =
f(exp(U)) does not intersect any singular value of f . Now since exp is a conformal
map and the restriction of f to f−1(V ) has no critical points, the map f ◦ exp is
a covering from U to V and hence a local homeomorphism. Since D is a Jordan
domain, the intersection of the boundary of D with U is a piece of arc. Thus, the
intersection of the boundary of T with U must also be a piece or arc, all the points
in ∂T ∩ U must be common to both tracts. If the tracts are different, this cannot
happen for all the common points. There must be a point z′0 with a neighbourhood
U ′ such that ∂T ∩ U ′ has points belonging only to boundary of one of the tracts.
Hence it would not be homeomorphic to an arc, raising a contradiction.
Suppose now that there was a sequence of points zk each one belonging to a different
tract and converging to a finite point z. Consider wk = f(exp(zk)) which is a
converging sequence in ∂D and let w ∈ D be its limit. Since f(exp z) = w, the
point z must be in the boundary of some tract. Let U be a small neighbourhood
of z such that V = f(expU) does not intersect S(f). U contains infinitely many
points of the sequence {zk}k and hence U ∩ T is a disjoint union of infinitely many
pieces of arc. We get a contradiction because V ∩ ∂D is a piece of arc and f ◦ exp
must be a local homeomorphism. Thus, z =∞.

Like in the case of entire functions, as a consequence of b) and c), there exists a curve
δ ⊆ C∗ \ V joining 0 and ∞ (it has been drawn in blue in Figure 5.5). Hence, we can
define a continuous branch of the logarithm on T .
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d) Let T be a tract of F . By Proposition 1.4.2, since f ◦ exp : T → W and exp :
H → W are both universal covers, they must be equivalent. That is, there exist
a homeomorphism F : T → H making the diagram commute. Since f ◦ exp|T and
exp are conformal, F must be conformal too.

e) The preimage of V under exp is compactly contained in the open band defined by
two preimages of the curve δ. Therefore, it cannot contain vertical segments of
length 2π and hence exp|T is injective.

f) This is a direct consequence of the fact that the exponential map is 2πi-periodic.

�

Figure 5.5: Logarithmic coordinates for a function f ∈ B∗.
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Definition 5.5.4 (Class B∗log). In analogy with class Blog, we denote by B∗log the class
of functions F : T → H satisfying the above properties.

Theorem 5.5.3 (Reduction to Blog). Let F ∈ B∗log be the logarithmic transform of a
function f ∈ B∗. Then the map

F∞ := F|T∞∞ : T ∞∞ → H∞

belongs to Blog. Similarly, the map

F0 := F|T 0
0

: T 0
0 → H0

is conjugated to a map F̃0 ∈ Blog by h(z) = −z.

Proof. Conditions a) to f) in the definition of class B∗log imply directly the conditions a)

to f) in the definition of class Blog for the functions F∞ and F̃0. �

5.6 Escaping set and dynamic rays

Definition 5.6.1 (Julia set for B∗log). If F ∈ B∗log, then

J(F ) = {z ∈ T : F n(z) is defined and in T for all n > 0}.

Definition 5.6.2 (Escaping set for analytic self-maps of C∗). Let f be a holomor-
phic self-map of C∗. Then we define its escaping set as

I(f) := {z ∈ C∗ : lim
n→∞

fn(z) /∈ C∗}

which contains two disjoint sets

I0(f) := {z ∈ C∗ : lim
n→∞

fn(z) = 0}
I∞(f) := {z ∈ C∗ : lim

n→∞
fn(z) =∞}.

Observe that the set
I0,∞(f) := I(f) \

(
I0(f) t I∞(f)

)
consists of the points which have {0,∞} as limit set.

Lemma 5.6.1. Let f and g are two holomorphic self-maps of C∗ conjugated via h(z) =
1/z. Then

I0(g) = I∞(f), I∞(g) = I0(f).

Proof. Recall that conjugations map orbits to orbits. If a point z0 converges to ∞ under
f necessarily h(z0) = 1/z0 converges to h(∞) = 0. �

Definition 5.6.3 (Escaping set for B∗log). If F ∈ B∗log, then we define

I(F ) := {z ∈ J(F ) : lim
n→∞

ReF n(z) = ±∞}
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which contains two disjoint sets

I0(F ) := {z ∈ J(F ) : lim
n→∞

ReF n(z) = −∞}
I∞(F ) := {z ∈ J(F ) : lim

n→∞
ReF n(z) = +∞}.

Note that again there might be a set of points which have {0,∞} as limit set and jump
infinitely many times from one side to the other.

Lemma 5.6.2. If f ∈ B∗ and F is a logarithmic transform of f , then exp(I(F )) ⊆ I(f).

Proof. Points in I(F ) are such that F n(z) ∈ T for all n ∈ N and tend to ±∞. Therefore,
the forward orbit of exp(z) is contained in W and its orbit must tend to ∞ and 0
respectively. �

Observe that here ray tails are curves connecting points to 0 or∞ such that all the points
there converge uniformly to 0 or ∞.

5.7 Functions of finite order

Definition 5.7.1 (Order of a holomorphic function on C∗). Let f be a holomorphic
self-map of C∗. The order at infinity of f is defined as

ρ∞(f) := lim
r→∞

sup
|z|=r

log log |f(z)|
log |z|

while, if h(z) = 1/z, the order at 0 of f is given by

ρ0(f) := ρ∞(h ◦ f ◦ h) = lim
r→0

sup
|z|=r

log log |1/f(z)|
log 1/|z|

.

Equivalently,

ρ∞(f) = inf{m ∈ R ∪ {∞} : f(z) = O(exp(|z|n)) as z →∞},

and
ρ0(f) = inf{m ∈ R ∪ {∞} : f(z) = O(exp(−|z|n)) as z → 0}.

We say that f has finite order if max{ρ∞(f), ρ0(f)} <∞.

Example 5.7.1. The functions of the form f(z) = exp(|z|m + |z|−n) have finite order,
while g1(z) = exp(exp(z)) or g2(z) = exp(1/ exp(z)) have not finite order. We will proof
a more general result in the next section.

Lemma 5.7.1. A function f ∈ B∗ has finite order if and only if any logarithmic transform
F ∈ B∗log of f satisfies that the functions

F∞ := F|T∞∞ : T ∞∞ → H∞

and F̃0 ∈ Blog conugated to
F0 := F|T 0

0
: T 0

0 → H0

by h(z) = −z have finite order in the sense of Definition 4.8.2.

Proof. It is clear because the notion of order is local, it only matters a neighbourhood of
0 or ∞. Therefore, the analog proof for entire transcendental maps is valid here. �
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5.8 Results and future work

Theorem 5.8.1 (Holomorphic self-maps of the punctured plane with dynamic
rays). Let f ∈ B∗ be a function of finite order or a finite composition of such maps. Then
every point z ∈ I∞(f) can be connected to ∞ by a curve γ such that fn|γ →∞ uniformly.

Similarly, every point z ∈ I0(f) can be connected to 0 by a curve γ such that fn|γ → 0
uniformly.

Proof. Let Fi ∈ B∗log be the logarithmic transform of fi ∈ B∗. By Theorem 5.5.3, Fi,∞ and

F̃i,0 are in class Blog. By Lemma 5.7.1, they have finite order. Now we can follow the same
argument in the proof of Theorem 4.9.2. The logarithmic transforms can be normalized
and by Theorem 4.8.3, the tracts of Fi have bounded slope and (uniformly) bounded
wiggling for all i. Then, by Proposition 4.7.2 each Fi satisfies a linear head-start condition.
Applying Lemma 4.9.1, there is an a > 0 such that Ga(z) := τa ◦ Fn ◦ · · · ◦ F1 ∈ Bnlog
satisfies a uniform linear head-start condition, where τa(z) = z − a. On a sufficiently
restricted domain T ⊆ H,

F := Ga ◦ τ−1
a = τa ◦ Fn ◦ · · · ◦ F1 ◦ τ−1

a : T → H

is a logarithmic transform of f = fn ◦ · · · ◦ f1 and satisfies a linear head-start condition.
Now Theorem 4.5.8 tells us that every escaping point z is eventually mapped to a ray
tail γ in J(F ) connecting F k(z) to ∞. Finally, by Proposition 3.7.3 z must be on a ray
tail.
On the other hand, the escaping points in the tracts of type T ∞0 and T 0

∞ must eventually
be mapped to a tract of the form T 0

0 or T ∞∞ . Then, by Proposition 3.7.3 they must also
be on a ray tail. �

Furthermore, by Theorem 4.11.1 the Julia set of such function f ∈ B∗ must contain two
Cantor bouquets, one attached to 0 and the other one to ∞.
In the future we plan to study what happens with the escaping points that jump between
a neighbourhood of 0 and a neighbourhood of∞. This set was called I0,∞(f) before. We
also have in mind to prove other structural theorems for this class of self-maps during
the Ph.D. of the author.

5.9 A family of self-maps of C∗

Observe that there is a huge family to which we can apply our results. Let P and Q be
two polynomials of degree degP = p and degQ = q. Consider the analytic self-map of
the punctured plane

f(z) = exp
(
P (z) +Q(1/z)

)
.

The parameters of this family are the coefficients of P and Q.

Lemma 5.9.1. Let P and Q be polynomials. The function

f(z) = exp
(
P (z) +Q(1/z)

)
is critically finite and hence belongs to B∗.
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Proof. The critical points are solutions of

f ′(z) = exp
(
P (z) +Q(1/z)

)(
P ′(z)−Q′(1/z)/z2

)
= 0

or, equivalently since z 6= 0,

zq−1
(
z2P ′(z)−Q′(1/z)

)
= 0

which is a polynomial equation on z of degree (q − 1) + 2 + (p− q) = p+ q. Thus, S(f)
contains at most p+ q critical values. Let us study the asymptotic values:

lim
z→∞

exp(P (z) +Q(1/z) = lim
z→∞

ez
p

= +∞ or 0;

lim
z→0

exp(P (z) +Q(1/z) = lim
z→0

ez
q

= +∞ or 0.

Thus, there are no asymptotic values in C∗ and S(f) is composed of a finite number of
critical values. �

Lemma 5.9.2. Let P and Q be polynomials. The function

f(z) = exp
(
P (z) +Q(1/z)

)
has finite order.

Proof. Let us compute the orders at ∞ and 0 of this function:

ρ∞(f) = lim
r→∞

sup
|z|=r

log log |f(z)|
log |z|

= lim
r→∞

sup
|z|=r

log log |ezp |
log |z|

= lim
r→∞

sup
|z|=r

log |z|p

log |z|
= p

ρ0(f) = lim
r→0

sup
|z|=r

log log 1/|f(z)|
log 1/|z|

= lim
r→0

sup
|z|=r

log log 1/|ezq |
log 1/|z|

= lim
r→0

sup
|z|=r

log |z|−q

log |z|−1
= q.

�

Therefore, we can apply our theorem to this class of functions. Finally we would like to
state a nice result about a related family of maps proved by Linda Keen.

Theorem 5.9.3. Consider the following family of functions

F := {f(z) = zn exp(P (z) +Q(1/z)) : n ∈ Z, P,Q ∈ C[Z]}.

Every function of the form

g(z) = zn exp(E(z) +H(1/z))

with E and H entire functions that is topologically conjugate to a function f ∈ F , then
g is holomorphically conjugate to some h ∈ F .

Look at [Kee89] for more properties of this type of functions.
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