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Abstract. In this paper we provide the best lower bounds, that are known up
to now, for the Hilbert numbers of polynomial vector fields of degree N , H(N),
for small values of N . These limit cycles appear bifurcating from new symmetric
Darboux reversible centers with very high simultaneous cyclicity. The considered
systems have, at least, three centers, one on the reversibility straight line and
two symmetric about it. More concretely, the limit cycles are in a three nests
configuration and the total number of limit cycles is at least 2n+m, for some values
of n and m. The new lower bounds are obtained using simultaneous degenerate
Hopf bifurcations. In particular, H(4) ≥ 28, H(5) ≥ 37, H(6) ≥ 53, H(7) ≥ 74,
H(8) ≥ 96, H(9) ≥ 120, and H(10) ≥ 142.

1. Introduction

We consider two-dimensional differential systems

ẋ = P (x, y), ẏ = Q(x, y), (1)

in which P and Q are polynomials of degree N . The maximum possible number,
H(N), of limit cycles of system (1) is known as the Hilbert number. As usual we
define limit cycle as every isolated periodic solution.

As it follows from former definition, the Hilbert number refers to the total amount
of limit cycles that system (1) exhibits and, in this sense, it is a global concept. For
instance, Shi (see [24]) and Chen and Wang (see [5]) proved that H(2) ≥ 4. For
cubics, Li, Liu, and Yang (see [18]) and Li and Liu (see [19]) proved that H(3) ≥ 13.
In our work we prove, among other new best lower bounds for the Hilbert numbers,
that H(4) ≥ 28.

The aim of this work is to obtain new lower bounds values for H(N). This
goal is attained by simultaneously perturbing some reversible centers. We proceed
studying simultaneous degenerate Hopf bifurcations of reversible centers and, to
overcome heavy computations, we use an efficient way (parallelization method) for
the Lyapunov quantities calculation.

This work strongly relies on the results of Christopher, [7], and Han, [12] and [13].
The idea is to estimate the generic cyclicity of a family of simultaneous centers from
the series expansion of the Lyapunov quantities at a point on the center variety. In
particular, if the first r linear terms of the Lyapunov quantities are independent,
then the cyclicity is bigger or equal than r, if we consider also the trace as another
independent parameter. The germ of this linearization idea can be glimpsed at the
work of Chicone and Jacobs, see [6], where, for higher order limit cycles bifurcations,
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the Lyapunov quantities are obtained from the Taylor series expansion of the per-
turbation parameters. We want to remark that, in the paper [7], Christopher studies
this symmetric simultaneous bifurcation, only up to first order perturbation, of a
quartic system obtaining 22 limit cycles in two symmetric nests of 6 cycles and one
nest of 10. For short, we say that these limit cycles are in configuration 〈6, 10, 6〉. In
Section 3 we give the precise definition of the configuration concept and we describe
de complete bifurcation mechanism.

The present work can be considered as a continuation of the Christopher’s one
since, to obtain limit cycles, we use the same mechanism to study symmetric simul-
taneous bifurcation of limit cycles but using higher order perturbation for the same
center of degree 4 and linear order for a new Darboux centers of bigger degrees. Our
main results are the following.

Theorem 1. H(4) ≥ 28, H(5) ≥ 37, H(6) ≥ 53, H(7) ≥ 74, H(8) ≥ 96,
H(9) ≥ 120, and H(10) ≥ 142. Moreover, the configurations of limit cycles for N =
4, . . . , 10, are 〈8, 12, 8〉, 〈11, 15, 11〉, 〈16, 21, 16〉, 〈23, 28, 23〉, 〈30, 36, 30〉, 〈38, 44, 38〉,
and 〈45, 52, 45〉, respectively.

Corollary 2. (a) H(13) ≥ 212, H(17) ≥ 384, H(21) ≥ 568, H(31) ≥ 1184,
H(35) ≥ 1536, H(39) ≥ 1920, and H(43) ≥ 2272.

(b) For each pair (N0, K0) ∈ {(4, 28), (5, 37), (6, 53), (7, 74), (8, 96), (9, 120), (10, 142)},
we have that

H(N) ≥ K0

(N0 + 1)2
N2

when N = 2k(N0 + 1)− 1, for k ∈ N.

The linear computational approach to estimate lower bounds for the cyclicity of
centers has, at least, two advantages. The first one is computational, and it is based
on the fact that, by shortening the length of the expressions to be manipulated, more
fast computations can be performed. The second one has to do with the functional
independence argument of the Lyapunov quantities, since this argumentation is
replaced by an study, in most of the cases, on the independence of their linear parts.

Nevertheless, sometimes, linear terms of the Lyapunov quantities are not inde-
pendent and, for studying the simultaneous bifurcation, we must take into account
higher order terms. This disadvantage was considered by Christopher and, to over-
come the setback that the computations are no longer linear and become unman-
ageable, under some generic assumptions, something specific can be proved, see [7,
Th.3.1].

The improvement for N = 4, with respect to Christopher’s work, is that we
obtain 28 limit cycles in two nests of 8 cycles and one nest of 12, i.e. in a 〈8, 12, 8〉
configuration. The key point in obtaining this new best estimation of H(4) is the
use of fifth order, instead of linear order, approximation of the Lyapunov quantities.
It is also worth mentioning that, despite having tried to use this technique in the
cubic case, we have not been able to improve the current lower bound of H(3). See,
respectively, Sections 5 and 4.

Concerning the parallelization method, roughly speaking, it is as follows. We,
one-by-one, compute the linear part of a fixed number of Lyapunov quantities of
simpler differential equations having only one perturbation monomial. Then, by
taking the summation of all the results, we obtain the corresponding linear part of
the Lyapunov quantity of the complete differential equation. If we proceed in this
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way it can be checked that the computations in each simpler equation are shorter
in size and time. See [20] for more details.

In our paper, we follow former approach and latter technique applied to families of
polynomial reversible symmetric differential systems (1) having two centers outside
the symmetry line, which will be the x-axis, plus one more extra center at the origin.
See Figure 1. Then, we force the existence of two symmetric weak foci of order n

Figure 1. Schematic phase portrait of the polynomial reversible
symmetric differential systems (1) having one center at the origin plus
two more symmetric centers.

where the symmetric centers were located, out off the x-axis. We aim to create n
limit cycles, by using only reversible perturbations, around each one of them; in this
way, 2n simultaneous limit cycles will be achieved. After that, by perturbing again
the system, but without the reversibility property, we can generate m more limit
cycles surrounding a weak focus of order m at the origin. Summing up, the total
number of limit cycles we have generated is 2n+m, in configuration 〈n,m, n〉.

The proof of Theorem 1 is done in Sections 5,6 and 7, while Corollary 2 is proved
in Section 8. We note that the supplied lower bounds for the Hilbert numbers,
H(N), for N = 4, . . . , 10, in Theorem 1 significantly improve the previous best
known Hilbert numbers. See for instance [14, 15, 20]. We also give a a new general
lower bound for the Hilbert numbers, H(N). See Corollary 2.

Even taking into account that the parallelization method has more facilities than
using other ways to proceed in finding new better lower bounds of H(N), some
obstacles are found in to go ahead for values ofN higher than those considered. Next,
we comment some of them. The first obstruction concerns the computer memory. In
spite off the usage of linear approximations, the computations of Lyapunov quantities
for higher values of N requires, increasing N , more and more memory. Another
arising problem is the necessity to get reversible differential systems providing good
seeds for bifurcating the required number of limit cycles. Finally, another problem,
for our computational approach, is how to obtain good first integrals in such a way
that, when moving to complex variables, the coefficients in the differential equations
are all rational numbers.

This paper is structured as follows. In Section 2 we recall, not only some of the
known best estimates of lower bounds for the Hilbert numbers, but also the corre-
sponding known best estimations of lower bounds for the cyclicity of non degenerated
monodromic equilibrium points. In Section 3 we describe the methodology used to
get the main results. In Section 4 we provide a detailed description of the method
applied to a cubic vector field, getting a characterization of all cubic systems having
a reversible center with two extra symmetric centers out of the symmetry axis. In
Section 5, we study some reversible quartic systems and, by considering fifth order
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terms in the Lyapunov quantities Taylor series, and we get the new best lower bound
H(4) ≥ 28. Section 6 is devoted to get some families of reversible polynomial vector
fields of degrees 5, . . . , 9 with a rational first integral having simultaneous bifurcation
of limit cycles. In this section we present, among other lower bounds for the Hilbert
numbers, the new best lower bounds H(5) ≥ 37 and H(6) ≥ 53. In Section 7 we
study some Darboux reversible centers having a curve of equilibria. In this section
we obtain the new best lower bounds H(7) ≥ 74, H(8) ≥ 96, H(9) ≥ 120 and
H(10) ≥ 142. Finally, in Section 8 we prove Corollary 2.

2. Previous estimations for M(N) and H(N)

Before to start with the global concept of the Hilbert number, H(N), a local
concept concerning the bifurcation of small limit cycles around a specific equilibrium
point is also considered. This is the case for the cyclicity of an equilibrium point.

Roughly speaking, a monodromic equilibrium point for a family of vectors fields
in (1) has finite cyclicity M(N) if, in Hausdorff distance, the maximum number of
limit cycles is M(N), and they appear in a close neighbourhood of the equilibrium
point, when the perturbation tends to zero whereas the neighbourhood shrinks to
the equilibrium point. From previous definitions it is easy to conclude that M(N) ≤
H(N), for all N .

In this section we present the known best estimations, up to now, of M(N) and
H(N). As we prove in this work, some of them will be improved from our results.

A classical bifurcation mechanism to study the existence of periodic orbits around
an equilibrium point of monodromic type is the non-degenerate Hopf bifurcation
method. This mechanism studies the limit cycles that emerge from an equilibrium
point of center-focus type when, by changing the sign of the trace in a suitable way,
its stability changes from stable to unstable or vice-versa. The non-degenerate Hopf
bifurcation method can be generalized, by computing the Lyapunov quantities, to
more degenerate critical points. This generalization is known as the degenerated
Hopf bifurcation method and it is used to give estimations of M(N), see [1], for
instance. Besides former reference, see also [13, 30] for more results on bifurcation
theory of limit cycles. Among these specialized references, a general approach to
qualitative theory of differential equation can be found in [9].

In the last decades some improvements of the lower bounds of H(N) have been
achieved by using better estimates of M(N). In fact, this is the case for some special
small values of N . At this point it is worth to mention that only for quadratic
polynomial vector fields we know the exact value of it, that is M(2) = 3. This fact
was proved by Bautin in [2]. Concerning M(N) for N ≥ 3, up to now, only lower
bounds for these numbers has been obtained, as detailed below.

In finding lower bounds of H(N) it is worth mentioning that one of the most used
techniques to create limit cycles is by perturbing Zq-equivariant polynomial Hamil-
tonian vector fields. Frequently, this technique is combined with other procedures
such as: Hopf bifurcation method, homoclinic and heteroclinic bifurcation methods,
Abelian integrals and bifurcation from infinity, . . . , see [9, 13, 23].

The known best result on M(3) was obtained by Żo la̧dek in [31], getting M(3) ≥
11. This work has been amended in [33] although the same bound for M(3) is
maintained. The proof was made, after a cubic perturbation of a cubic differential
equation having a rational first integral, by bounding the zeros of the displacement
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map. This displacement map, in first approximation, is given by a linear Poincaré-
Pontriaguin integral which is expressed in terms of twelve Abelian or Melnikov type
integrals (first order Melnikov integrals) generating the aforementioned eleven limit
cycles. Linked with the first paper of Żo la̧dek, in 2005, Christopher in [7], among
other results, confirmed the lower bound for cubic polynomial vector fields, that

is M(3) ≥ 11. He uses a family of cubic systems, C
(12)
31 according Żo la̧dek’s more

recent classification [32], having also a rational first integral and showing that the
linear part of the first Lyapunov quantities have maximal rank 11. In [4], Bondar
and Sadovsk̆ı also proved, with the same technique but with a different Darboux
center, that M(3) ≥ 11.

In the case N = 4, that is on quartics systems, in [11], Giné proved that M(4) ≥
21, by studying small limit cycles bifurcating from an elementary center-focus type
equilibrium point. In the case N = 5, i.e. concerning lower bounds of M(5), the
known best estimation is the one given by Giné in [11], where M(5) ≥ 26 was proved.
These limit cycles also bifurcate from an elementary center-focus type equilibrium
point at the origin. In this paper, Giné conjectured that the number of functionally
independent focal values, i.e. the minimum number of ideal generators of the ideal
generated by the focal values, of system (1) with an elementary center-focus type
equilibrium point at the origin is M(N) = N2 + 3N −7. We want to point out that,
regarding Giné’s conjecture, we would have M(4) = 21 and M(5) = 33.

In the cases N = 6, . . . , 13, Liang and Torregrosa in [20] proved that the cyclicity
of some holomorphic Darboux center for system (1) is, at least, N2 + N − 2, for
4 ≤ N ≤ 13. Hence, we have the lower bound H(N) ≥ M(N) ≥ N2 + N − 2, for
4 ≤ N ≤ 13. We point out that in that work, the authors say that the best center
candidate to produce high cyclicity is of Darboux type. One consequence of their
paper is that, by one hand, this result gives the highest known up to now lower
bound of M(6), M(7), . . . ,M(13), and that these numbers are smaller than those
conjectured before. In particular, for N = 6, 8, 10 are also the best lower bound for
Hilbert numbers, i.e. H(6) ≥ 40, H(8) ≥ 70, and H(10) ≥ 108.

A lower bound of M(N), for all N , was given by Movasati, see [22, Cor 4.1]. In
this paper it is proved that, the cyclicity of holomorphic centers perturbing with
polynomial degree N systems is not less than M(N) ≥ N2− 2. In regards to upper
bounds of M(N), Mardesic, in [21], proved that an upper bound for the cyclicity
of a period annulus around an equilibrium point of center-focus type, given by a
Hamiltonian polynomial of degree N differential equation, is M(N) ≤ (N4 + N2 −
2)/2. This bound was obtained as an upper bound of the number of zeros of the
corresponding Abelian integral.

Next we summarize some of the recent progress in finding lower bounds of H(N).

On H(2), Shi (see [24]) and Chen and Wang (see [5]) proved that H(2) ≥ 4. They
obtained these four limit cycles in two nests, one with 3 and another with 1.

On H(3), in 2009, Li, Liu, and Yang (see [18]), by counting the number of ze-
ros of some Abelian integrals, demonstrated that an specific planar cubic system
has H(3) ≥ 13. Later, Li and Liu (see [19]) also proved that H(3) ≥ 13, using
Z2-equivariant cubic perturbations, Hopf bifurcation and changing the stability of
infinity. These 13 limit cycles appear in two nests of 6 and one coming from infinity.

About H(4), Christopher, [7] in 2005, provided a quartic system with H(4) ≥ 22.
As we have mentioned before, he used the linear parts of the Lyapunov quantities
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for center bifurcations with symmetries, the limit cycles appear in two nests of 6 and
one nest of 10. Recently, in 2011, Johnson constructed (see [15]) a quartic system
that has 24 limit cycles, using Lyapunov quantities, in four nests of 6. Moreover, the
existence of 2 more, having each one inside two of these nests, is showed numerically.
Then, H(4) ≥ 26.

In the study of H(5), in 2008, Wu, Gao, and Han in [28] found that H(5) ≥
28, in four different configurations, by using the perturbation of a Z2-equivariant
symmetric quintic Hamiltonian system. Later, in 2010, Wu, Wang, and Tian, in
[29] proved also H(5) ≥ 28 with a Z4-equivariant symmetric quintic vector field,
by using the Hopf and polycycle bifurcation methods. Also in 2010, Johnson and
Tucker, in [17], studied the limit cycle bifurcation of a Z2-equivariant quintic planar
Hamiltonian vector field under Z2-equivariant quintic perturbation and, by computer
aided approach, proved that H(5) ≥ 27. In 2015, Sun and Han in [25] also proved
that H(5) ≥ 28 using Z4-equivariant perturbations.

Concerning H(6), in 2005, Wang and Yu, showed that H(6) ≥ 35, by using global
and local bifurcations, see [26]. In this paper the authors perturb a fifth-degree
Z2-equivariant symmetric Hamiltonian system by adding a sixth-degree polynomial
system. More recently, in 2015, Liang and Torregrosa, by computing the required
independent linear parts of the Lyapunov quantities, proved that H(6) ≥ M(6) ≥
40, see [20].

On H(N), for N ≥ 7, it is worth mentioning the relevant paper of Han and Li
[14] in 2012. The results in this work improved almost all existing lower bounds of
H(N) for such values of N , up to that moment. More concretely, they proved that
H(7) ≥ 65, H(9) ≥ 98, H(11) ≥ 153, H(12) ≥ 157,. . . In 2010, Johnson and Tucker
in [16] proved that H(7) ≥ 53, perturbing a Z2-equivariant planar Hamiltonian
vector field of degree 7. The proof follows a computer aided approach. For N = 11,
before the paper of Han and Li, the best one was the one given by Wang and Yu in
2006, in [27], proving that H(11) ≥ 121 using a Z12-equivariant vector field. With
respect to H(8), until 2012 the best lower bound for this Hilbert number was the one
given by Han and Li, as H(8) ≥ 67. Nevertheless, in 2015, Liang and Torregrosa,
in [20], obtained a new better one, that is H(8) ≥ M(8) ≥ 70. In this paper it was
also proved that H(10) ≥M(10) ≥ 108.

Concerning the rate of grow of H(N) as N increases, one of the first results in
finding a general lower bound we want to point out, is the work of Christopher
and Lloyd in 1995, see [8], where they introduced a recurrence mechanism to pro-
vide a lower bound for H(N) of type KN2 logN. Recently, in 2012, Han and Li
improved this mechanism by providing a better lower bound of the same kind, see
[14]. Concretely, for N big enough, they showed that H(N) grows at least as fast
as (N + 2)2 log(N + 2)/(2 log 2).

3. The bifurcation mechanism

The bifurcation mechanism, in short, is as follows. First, we consider a reversible
system (symmetric with respect to the x-axis) having a center at the origin and two
more at two symmetric points (xc,±yc), with x2c + y2c 6= 0. Second, we consider a
first perturbation obtaining n (simultaneously) hyperbolic limit cycles in two nests
while the origin remains as a center. Finally, we consider a second perturbation
of the system giving us m limit cycles, around this third nest, increasing the total
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number of limit cycles obtained. Then, we will say that the 2× n + m limit cycles
appear in configuration 〈n,m, n〉.

The limit cycles appear using degenerated Hopf bifurcations of some order k and
all the unperturbed polynomial systems have rational first integrals. Concerning
the Lyapunov quantities computation we use linear or higher order developments
of Lyapunov quantities, as in the works of Christopher ([7]) and Han ([12]). In
this paper, reversible differential systems in the (x, y)-plane means invariant under
the change of variables (x,−y,−t) → (x, y, t). Moreover, all the centers are non
degenerate.

As all the computations are quite hard to do and the obtained expressions are
too big to be written here, we will describe only the bifurcation mechanism more
in detail. This bifurcation scheme is the same followed by Christopher (see also [7])
but we use higher instead of first order. In some simple cases and for lower degrees
we will also show which are the Taylor series of the Lyapunov quantities.

3.1. Degenerated Hopf bifurcation. An analytic system with a non-degenerate
equilibrium point of center-focus type can be transformed to the system

x′ = λx− y + f(x, y),

y′ = x+ λy + g(x, y),
(2)

where f and g are analytic functions with lower order terms of degree 2 in x, y,
being λ a real parameter and with the equilibrium point located at the origin.

When λ = 0 we have a weak focus or a center at the origin. The problem to distin-
guish its stability is the well-known center-focus problem. There are some classical
approaches to solve it, see [1] for instance. Here we will use the Andronov-Poincaré
method, that is the computation of the obstruction conditions for its integrabil-
ity, but using complex notation. Hence, following the approach of [24], system (2)
writes, in complex coordinates (z = x+ iy), as

z′ = (λ+ i)z + F2(z, z̄) + F3(z, z̄) + · · · , (3)

where Fj are homogeneous polynomials of degree j in z, z̄.
Now, if λ = 0, we look for the existence of a formal first integral of the form

H(z, z̄) = zz̄ +H3(z, z̄) +H4(z, z̄) + · · · ,
with Hj homogeneous polynomials of degree j in z, z̄. This can be done imposing
that the level curves of H contain solutions of equation (3). Straightforward com-
putations show that the coefficients of H3 can be uniquely determined in terms of
the coefficients of F2, by solving the diagonal linear system of equations obtained
vanishing all the coefficients in z, z̄ of the homogeneous polynomial of degree 3

z̄F2 + zF̄2 + iz
∂H3

∂z
− iz̄ ∂H3

∂z̄
.

We can not follow exactly in the same way, to fix the coefficients of H4, because the
linear system of equations obtained vanishing the coefficients of the homogeneous
polynomial of degree 4,

z̄F3 + zF̄3 + iz
∂H4

∂z
− iz̄ ∂H4

∂z̄
+
∂H3

∂z
F2 +

∂H3

∂z̄
F̄2 ≡ 0,

has not maximum rank five. This obstruction can be removed by adding an extra
term, L1z

2z̄2 for example, in the above homogeneous identity. This constant L1
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is known as the first Lyapunov quantity. Clearly, H is a Lyapunov function when
L1 6= 0 and gets the stability of the origin. When L1 = 0, we need to compute
higher degree terms of the function H for distinguishing when the equilibrium point
is a center or a focus. This constant L1 can be thought as the first obstruction for
(3) being integrable. In the recursive procedure to get Hj, for j = 3, . . . , it can be
proved that all the linear systems giving the coefficients of H2k+1, k = 1, 2, . . . , have
maximum rank. Consequently H2k+1 can be uniquely determined. But in each even
step, i.e. to determine H2k+2, k = 1, 2, . . . , we need to add a correction term of
the form Lkz

k+1z̄k+1. These quantities Lk are the well known Lyapunov quantities
associated to equation (3). Clearly, the first non-vanishing Lyapunov quantity, Lk,
gives the stability of the origin. In this case, as usual, we say that the origin is a weak
focus of order k. We would remark that the main computational difficulties to obtain
the Lyapunov quantities, applying this procedure or in general other methods, are
only because of their huge expressions.

For polynomial systems, the Lyapunov quantities can be used, besides to deter-
mine the stability of the origin and the center conditions of system (2), to obtain
periodic orbits from the origin. For example when L1 < 0 and λ = 0 the origin is
stable and for λ > 0, small enough, the stability of the origin changes to unstable
and an small stable hyperbolic periodic orbit bifurcates from the origin. This is the
well-known Hopf bifurcation. An analogous procedure can be used to create k limit
cycles from a weak focus of order k by a degenerate Hopf bifurcation. These limit
cycles are also known as small limit cycles. See [3], for instance.

Now we will describe how the small limit cycles appear in a degenerate Hopf
bifurcation. Suppose that system (2) is a polynomial system, that we call system
S, having, without loss of generality, an stable weak focus of order k at the origin.
Then, λ = 0 and the Lyapunov quantities satisfy L1 = L2 = · · · = Lk−1 = 0,
Lk < 0. Let Γ be a level curve of H which is sufficiently near the origin that the
flow is inward across it. Now we perturb system S in such a way that the perturbed
system, we call it system S1, has λ = L1 = L2 = · · · = Lk−2 = 0, Lk−1 > 0. The
origin is thus unstable. If S1 is sufficiently near S, the flow remains inward across Γ
and, if H1 is the Lyapunov function corresponding to S1, there exists a level curve
Γ1 of H1 inside Γ and sufficiently near the origin that the flow is outward across Γ1.
By the Poincaré-Bendixson Theorem, there is a limit cycle between Γ and Γ1. The
next step is to take a perturbation, S2, of system S1 so that L1 = · · · = Lk−3 = 0
and such that Lk−2 < 0. In this case, if the perturbation is sufficiently small, the
flow remains inward across Γ and outward across Γ1. Hence, S2 has a limit cycle
between Γ and Γ1 and, since the origin is stable for S2, there is also a limit cycle
inside Γ1. Proceeding in this way, k limit cycles can be generated. The necessary
conditions (denoting L0 = λ) are

LjLj+1 < 0, |Lj| � |Lj+1|, j = 0, . . . , k − 1.

When we study the degenerate Hopf bifurcation in a family of polynomial systems
(2) of fixed degree, there is a classical problem: “the existence of parameters ensuring
the independence of the Lyapunov quantities to get exactly k periodic orbits near a
weak focus of order k”. Another related question is “which is the maximum weak
focus order in a given family”. Both questions concern to Hilbert’s 16th problem,
providing lower bounds for the Hilbert number, H(N). A way to tackle this problem
is obtaining polynomial families having a weak focus of the highest order that unfold
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this number of periodic orbits. We recall that, for analytical perturbations, always
a weak focus of order k unfolds k hyperbolic limit cycles, see [23].

3.2. Cyclicity of centers. In this paper we select polynomial center families of
degree N having cyclicity at least k. We recall that the cyclicity at an equilibrium
point can be defined as the maximum number of isolated periodic orbits bifurcating
from it. In our approach this is equivalent to say that, in the parameters space,
near the origin and after perturbing the center with polynomials also of degree N ,
there will be a curve of weak foci of order k passing though the origin and unfolding
k hyperbolic periodic orbits. We remark that, in the parameters space, the origin
corresponds to the case in which the system, not perturbed, has a center. As we can
always obtain a limit cycle with the trace parameter, λ, we will restrict our analysis
to the class of zero trace perturbations. That is, to the perturbations whose lower
degree terms are of degree two. As we have mentioned before, to get the existence
of these curves in the parameters space and the corresponding unfolding from the
Taylor developments, we follow the ideas of Christopher, [7], and Han, [12]. The
existence of a curve of weak focus is obtained studying the intersection of the Taylor
developments of the varieties Lj = 0, for j = 1, . . . , k − 1 ensuring that along it
Lk is non-vanishing. The unfolding of k limit cycles (adding the trace parameter)
and their hyperbolicity is obtained from the transversality of the intersection of the
varieties. Clearly, using the implicit function theorem, if the matrix defined by the
linear terms of L1, . . . , Lk have rank k we have (adding λ) at least k hyperbolic limit
cycles bifurcating from the center point.

Consider the equation

z′ = iz + Fc(z, z̄), (4)

in complex variables (z = x+ iy), with Fc a polynomial starting with second order
terms, having a center at the origin. The Lyapunov quantities, Lj, associated with
equation

z′ = iz + Fc(z, z̄) + F (z, z̄), (5)

where F is a polynomial perturbation, also starting with second order terms in z, z̄,
can be written, using its Taylor series in the parameters space, as

Lj = L
(1)
j + L

(2)
j + L

(3)
j + · · · , (6)

where L
(`)
j are homogeneous polynomials of degree ` in the coefficients of F .

All the computations in this paper are done adapting the algorithm described
above, see also [20], for obtaining directly the Taylor series of Lj up to order `,
generally ` = 1, and in some cases ` = 2 or higher, at the selected center.

3.3. Simultaneous Hopf bifurcations. The use of previous described center bi-
furcation method, combined with symmetry techniques (reversible systems), is a
useful tool in obtaining lower bounds for the number of limit cycles in polynomial
systems, see [8]. We use this tool, with two perturbations, to obtain limit cycles
appearing simultaneously in three nests of limit cycles, two symmetric out of the
symmetry line and one on it. We are going to present the idea of combining these
two perturbations to generate limit cycles.
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Let f and g be polynomials in x, y. Consider a polynomial reversible system with
an equilibrium point of center type at the origin

x′ = −y + yfc(x, y
2),

y′ = x+ gc(x, y
2),

(7)

having two more symmetric equilibrium points, (xc,±yc), of center type out of the
symmetry line. This configuration is depicted in Figure 1. We consider a general
perturbation of degree N of system (7) in two independent steps.

First, considering that we want to preserve the center at the origin, we take a
perturbation of system (7) keeping the reversibility symmetry at the origin,

x′ = −y + yfc(x, y
2) +

N∑
k+2`+1=1

fk,2`+1 x
ky2`+1,

y′ = x+ gc(x, y
2) +

N∑
k+2`=1

fk,2` x
ky2`.

(8)

We observe that is not restrictive to assume that the origin remains as a critical
point. Then, we translate system (8) in order that the center (xc, yc) moves to
the origin. Additionally, we restrict the perturbation parameters fk,` such that the
perturbation terms in the translated system start with terms of degree 2. Then, the
method of small limit cycles generation around the origin, described in the first part
of this section, applies. Let n be the maximum number of limit cycles obtained,
around the origin, with this technique. Then, we have n small limit cycles, by a
simultaneous degenerated Hopf bifurcation, surrounding each one of the equilibrium
points (xc,±yc).

We remark that the origin of system (8) remains a center when the 2n limit cycles
have been created. Clearly, with this method we can obtain, at most, as limit cycles
as the number of free parameters, that is 2n ≤ (N+5)(N−2)/2. In the next sections
it is shown that in our best results never reach this number but, nevertheless, we
are close to it.

The second step is to consider a perturbation that completely breaks the symmetry
at the origin,

x′ = −y + yfc(x, y
2) +

N∑
k+2`+1=2

ek,2`+1 x
ky2`+1,

y′ = x+ gc(x, y
2) +

N∑
k+2`=2

ek,2` x
ky2`.

(9)

Let m be the maximum number of small limit cycles obtained using, once again,
the previous described technique to study the degenerate Hopf bifurcation, but now
applied to system (9). As above, we can obtain, at most, as many limit cycles as
the number of free parameters; that is, m ≤ N(N + 2)/2.

Finally, from the above arguments, and since the perturbation parameters in sys-
tems (8) and (9) are independent, we have that the 2n small limit cycles surrounding
the equilibria (xc,±yc) are hyperbolic and remain after the other perturbation, i.e.
they remain while m limit cycles emerging from the origin. This method is used in
detail, in the next section, for a cubic system.
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Considering all together, at least 2n+m small limit cycles has been obtained; m
small limit cycles surrounding the origin and n small limit cycles surrounding each
one of the two symmetric equilibrium points. We will say that the 2× n+m limit
cycles are in configuration 〈n,m, n〉.

4. Reversible cubic centers with two extra symmetric centers out
of the symmetry line

The aim of this section is to present the method introduced in Section 3, of
simultaneous occurrence of limit cycles via a degenerate Hopf bifurcation, through a
particular case. We introduce this method by studying some cubic reversible family
of centers. We want to remark that using other families of cubic centers and other
bifurcation techniques, more limit cycles can be obtained, see [18, 19].

First, see Proposition 3, we classify all reversible cubic systems having a non-
degenerate equilibrium point of center type at the origin plus two more non-degene-
rate centers out of the reversibility symmetry line. Clearly, up to an affine change
of variables and a time rescaling if necessary, it is not restrictive to assume that the
symmetry axis is the straight line y = 0. Hence, the reversible cubic centers family,
having two extra symmetric centers out of the symmetry line, that we consider write
as

x′ = −y + a11xy + a21x
2y + a03y

3,

y′ = x+ b20x
2 + b02y

2 + b30x
3 + b12xy

2.
(10)

Second, see Proposition 5, following the procedure described in the previous sec-
tion, we study the simultaneous degenerate Hopf bifurcation of limit cycles in con-
figuration 〈1, 7, 1〉 for family (10).

As we will see in the proof we can not provide better examples using this bifur-
cation technique for cubic vector fields. We recall that the family of cubic systems
can exhibit up to 13 limit cycles, as it is proved in [18, 19].

We finish this section showing some systems of family (10), with different phase
portraits, exhibiting the same configuration 〈1, 7, 1〉 of limit cycles.

Proposition 3. After a rescaling, if necessary, the reversible cubic system (10) has
three non-degenerate centers, one at the origin and two at (xc,±yc) with x2c +y2c 6= 0,
if and only if, the determinant of the Jacobian matrix of system (10) at (xc, yc), α,
is positive, a03 = 1,

a11 = (x2ca21 + y2c − 1)/xc,

b02 = (x4cy
2
c (a221 + 2b30) + x2cy

2
c (2− y2c )a21 + α2x2c − 2x2cy

2
c − y4c + y2c )/(2xcy

4
c ),

b12 = −(x4cy
2
c (a221 + 2b30) + 2x2cy

2
ca21 + α2x2c − y6c − 2x2cy

2
c + y2c )/(2x2cy

4
c ),

b20 = (x2cy
2
ca21 − 2x4cb30 − y4c − 2x2c + y2c )/(2x3c),

(11)

and c1 = 0 or c2 = 0, with

c1 =x2c(x
2
ca21 − y2c + 1)α2 + y2c

(
x6ca

3
21 + 3x4ca

2
21 + 2x6ca21b30

− x2c(y4c + 2x2c + y2c − 3)a21 + 2x4c(y
2
c + 1)b30 − 2x2c − y2c + 1

)
, (12)

c2 =x4cy
2
ca

2
21 − 2x2cy

2
c (y2c − 1)a21 + 2x4cy

2
c b30 + α2x2c − y6c − 2x2cy

2
c + y2c . (13)

Moreover, system (10) either has a polynomial inverse integrating factor when c1 = 0
or a polynomial first integral of degree four when c2 = 0.
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Proof. Straightforward computations show that when a03 = 0 it is not possible to
have a weak focus at (xc, yc). Hence, after a re-scaling of the (x, y) variables if
necessary, we have a03 = 1. Then, imposing that system (10) has a non-degenerate
weak focus at (xc, yc), the determinant of the Jacobian matrix at this point, that we
call α, must be positive and, furthermore, we get conditions (11).

Following the procedure described in Section 3, the first Lyapunov quantity is

L1 = −c1c2/(4α3x5cy
5
c ),

where c1 and c2 are given by expressions (12) and (13), respectively. Hence, condi-
tions c1 = 0 or c2 = 0 are required for the existence of a center at (xc, yc).

When c1 = 0, system (10) has the polynomial inverse integrating factor

V (x, y) =g1g2 x
4 + g1g3 x

2
c x

2y2 + 2g1g4 x
4
cy

2
c y

4 − g1g5 xc x3 + 2g1g6 x
3
c xy

2

+ g7 x
2
c x

2 + g8 x
4
c y

2 − g4g9g10 x3cy2c x− g24g9 x4cy4c ,

where

g1 = (x2ca21 + y2c − 1)x2cα
2 − y2c (x2ca21 − 2x2c − y2c + 1),

g2 = x2c(x
2
ca21 − y2c + 1)α2 + y2c

(
x6ca

3
21 + 3x4ca

2
21 − (y4c + 2x2c + y2c − 3)x2ca21

− 2x2c − y2c + 1
)
,

g3 = 2α2x2c + y2c
(
3x4ca

2
21 + x2c(2y

2
c + 5)a21 − y4c − 2x2c − y2c + 2

)
,

g4 = x2ca21 + y2c + 1,

g5 = 2x2c(x
2
ca21 − y2c + 1)α2 + y2c

(
x6ca

3
21 + (y2c + 4)x4ca

2
21 − x2c(y4c + 6x2c − 5)a21

− y6c − 2x2cy
2
c − 6x2c − y2c + 2

)
,

g6 = 2α2x2c + y2c
(
x4ca

2
21 + x2c(2y

2
c + 1)a21 + y4c − 2x2c − y2c

)
,

g7 = −2x4c(x
2
ca21 − y2c + 1)α4 + x2cy

2
c

(
x6ca

3
21 − x4c(4x2c − y2c + 2)a221 − 4x2cy

4
c − y6c

− x2c(8x2cy2c + y4c − 6x2c − 6y2c + 7)a21 − 2x2cy
2
c + 10x2c + 5y2c − 4

)
α2

+ (x2ca21 − 2x2c − y2c + 1)
(
x6ca

3
21 + 2x4cy

2
ca

2
21 + x2c(y

4
c + 6x2c + 3y2c − 3)a21

+ 4x2cy
2
c + y4c + 6x2c + y2c − 2

)
y4c ,

g8 = −4α4x4c − 2x2cy
2
c (x4ca

2
21 + 2x2cy

2
ca21 + 2x2ca21 + y4c − 4x2c − 2y2c + 1)α2

+ y4c (x2ca21 − 2x2c − y2c + 1)
(
x4ca

2
21 + x2c(2y

2
c + 3)a21 + y4c + 2x2c + 5y2c + 2

)
,

g9 = x2ca21 − 2x2c − y2c + 1,

g10 = −2α2x2c + y2c
(
x4ca

2
21 + x2c(2y

2
c − 1)a21 + y4c + 2x2c + y2c − 2

)
.

The proof finishes by direct calculations showing that, when c2 = 0, system (10) is
a Hamiltonian system with a degree four polynomial first integral. �

Remark 4. In the above proof, before obtaining the inverse integrating factor, two
more Lyapunov quantities can be computed. But they vanish when L1 = 0. This fact
could indicate that only one limit cycle can be obtained around the equilibrium point
lying outside the symmetry axis.
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Proposition 5. The cubic system

x′ = −(256x2 − 147y2 − 512x+ 844)y,

y′ = (4x2 − 293y2 − 8x)(x− 1).
(14)

has a center at the origin and two symmetric centers at (1,±2). Moreover, there
exists a cubic polynomial perturbation such that it unfolds 9 small limit cycles by a
simultaneous degenerate Hopf bifurcation in configuration 〈1, 7, 1〉. In detail, after
perturbing, 7 limit cycles surround the origin while each one of the 2 other limit
cycles surrounds one of the perturbed symmetric centers.

Proof. The first statement follows because system (14) has the next rational first
integral

H(x, y) =
(61x2 + 183y2 − 122x+ 211)5

(1220x2 − 14945y2 − 2440x+ 3376)4
.

The second statement follows from considering the perturbation monomials in two
steps, first the reversible perturbation monomials with respect to the origin, and then
the non reversible ones. We can proceed in this way because both perturbations are
independent. Let us expose these arguments in detail.

First, we perturb system (14) only with the cubic reversible perturbation mono-
mials as it is given in expression (8), that is

x′ = −(256x2 − 147y2 − 512x+ 844)y + f21x
2y + f03y

3 + f11xy + f01y,

y′ = (4x2 − 293y2 − 8x)(x− 1) + f30x
3 + f12xy

2 + f20x
2 + f02y

2 + f10x.
(15)

We perturb in this way because this perturbation does not break the symmetry at
the origin and, hence, we keep the center at that point. Adding the next conditions,

f10 = f30 + 8f03 + 4f12, f11 = −2f21,

f01 = f21 − 4f03, f02 = −f12,
f20 = −8f03 − 2f30 − 4f12,

the points (1,±2) remain as equilibrium points of system (15) with zero trace. That
is, they are either centers or weak foci. Now, we will study the degenerate Hopf
bifurcation and the maximum order at the equilibria (1,±2) as weak foci.

Following the notation introduced in (6), the linear part of the first three Lyapunov
quantities, after the change of variables{

f30 = y4, f21 = y3, f12 = y2, f03 =
19208

61
y1 −

1

2
y2 +

1

8
y4

}
,

write as

L
(1)
1 = y1, L

(1)
2 = −3003925

4148928
y1, L

(1)
3 =

14324144100569

15300980932608
y1.

Clearly, using these three quantities and after changing the trace, at (1,±2) we can
get only one small limit cycle surrounding each equilibrium by using the double
symmetric Hopf bifurcation. Moreover, the origin remains as a center. Computing
higher order terms, in the Lyapunov Taylor series expansion on the perturbation
coefficients, we can get no more limit cycles surrounding these equilibrium points.



14 R. PROHENS AND J. TORREGROSA

Secondly, to study the Hopf bifurcation at the origin, we consider a cubic non
reversible perturbation of system (14), independent with respect to the above one,

x′ = −(256x2 − 147y2 − 512x+ 844)y + e30x
3 + e12xy

2 + e20x
2 + e02y

2,

y′ = (4x2 − 293y2 − 8x)(x− 1) + e21x
2y + e03y

3 + e11xy.
(16)

Then, the linear parts of the first five Lyapunov quantities at the origin, L
(1)
j ,

j = 1, . . . , 5, are linearly independent with respect to the perturbation parame-
ters {e02, e03, e11, e12, e20}, because the matrix expressing these linear parts in terms
of the perturbation parameters

973
844

0 2071
1688

2 0

−314714···9820271
195243···1648896 −66227···4599

9253···83360 −211540···35229
15619···1680 −106973···61723

462662···1680 −984171···3183459
78097···55840

−200346···233733021
111263···38484480 − 62294···25129

26365···915840 − 39622···881503
44505···3937920 −575998···957887

329571···64480 −445637···9457639
22252···968960

−378263···05108291
54817···827228672

9201158864667
16237522460672

−102311···7592337
10963···4457344 −47561762093925

32475044921344
−94410143272665

685223···03584
409395075
1202423168

3583821
2849344

− 914339715
4809692672

− 206403
1424672

269741085
2404846336


has determinant different from zero. Then, by naming L

(1)
j = xj, j = 1, . . . , 5 to

these linear parts and by adding {−50723e30 +64370e21 = x6, e30 = x7}, we get that
the linear part of the next two Lyapunov quantities are

L
(1)
6 =− 66694096304772573135207068214846052608276037011880146949968106767

118456040720121071307810175534967521775273397089522308616122531840
x1

− 986857882481001983077574408738310242905679762830619750163

2969506583172454313990723467150121014703569791340500746240
x2

− 368672592894986791238956153658592848962867997427877

1823801029483205625394394663302399350773808685383680
x3

− 137091470959965151517258036957371407797436275

64007751590654046173238284436782619114217472
x4

+
20142243532513229363034276626368334529

11232015437703212769893400803269562944
x5,

L
(1)
7 =− 605442557589991878553884569125575916881324522829664632170711489980338597

337522008889632653804481076799506498365244602356647852921497039363112960
x1

− 4681103927192298270535681990962679610902010473387521657386808069

3384458306289173465937433586713357765007811345414923103317786624
x2

− 130456147973103575784262647445829365947450177664718011212431

166292368657657441583480514160406776823399908315068041789440
x3

− 64452346898380758995060611894437235640368695062374433

14590408235865645003155157306419194806190469483069440
x4

+
234977057189451422295127519143367170772214655

256031006362616184692953137747130476456869888
x5.

Clearly, up to first order perturbation of the Lyapunov quantities and adding the
trace parameter, we can only get 5 small limit cycles surrounding the origin, and no
more. Considering all together, using only the first order Lyapunov quantities and
the trace parameter, we have 7 limit cycles in configuration 〈1, 5, 1〉 for some cubic
systems near system (14).

If we want more limit cycles we can compute, up to order three, the first seven
Lyapunov quantities. From the above first order study, using the implicit function
theorem, up to a change of variables (in the parameters space), if necessary, we can
write Lj = xj +OK(x) for j = 1, . . . , 5 with x = (x1, . . . , x7) and K ≥ 2. Here OK(x)
denotes all the terms of degree at least K on the coordinates of x. It is clear that,

when Lj = 0 for j = 1, . . . , 5, we have L
(1)
6 = L

(1)
7 = 0. But, in this case, we have also
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L
(2)
6 = L

(2)
7 = 0. Then, up to order two we have no more limit cycles. Computing

the third order and evaluating on L1 = · · · = L5 = 0 we have

L
(3)
j (x6, x7) = C

(3)
j x36 p2(x7/x6), for j = 6, 7,

with

p2(λ) = 3695279045405753944λ2 + 271388730148261λ+ 10087769971

and

C
(3)
6 =

14810743699301227153984257377365779343617

2167350437458050857073941269092541778503862023955797053468443248160
,

C
(3)
7 =

422529517425810659146496535729952424790939892023

24702107859473889845193968445764877445317232939145226398071951833940828160
.

Finally, as the above homogeneous parts of degree three are also multiple one from

the other and since L
(4)
7 = 0, we need compute up to order five the first seven Lya-

punov quantities. If we proceed in this way, doing the same simplification procedure
as in the previous steps, we get

L
(5)
7 (x6, x7) = C

(5)
7 x56 p4(x7/x6)

with

C
(5)
7 =

9

19645876735529840 · · · 17973196784896000000
and

p4(λ) =211148735150868711498020 · · · 214462220974330859217λ4

+ 153229267494841185603714 · · · 695050974950207558339λ3

− 278673331636981994254986 · · · 869624591189537981617λ2

− 130937529746819089567596 · · · 578679565217539087419λ

− 227414742460144672742349 · · · 215962576056358409128.

Then, after some necessary arrangements because of the linear dependence of the
first order terms, the Lyapunov quantities up to order five can be written as

L1 =x1 +O6(x1, . . . , x7),

L2 =x2 +O6(x1, . . . , x7),

L3 =x3 +O6(x1, . . . , x7),

L4 =x4 +O6(x1, . . . , x7),

L5 =x5 +O6(x1, . . . , x7),

L6 =C
(3)
6 x36p2(x7/x6) +O6(x1, . . . , x7),

L7 =C
(5)
7 x56p4(x7/x6) +O6(x1, . . . , x7).

The polynomial p2 has two simple real zeros, λ1 and λ2, and the resultant of p2 and
p4 is different from zero. Hence, for every x6 small enough and different from zero,
there exist two curves near x1 = x2 = · · · = x5 = 0 and x7 = λ`x6, ` = 1, 2 such that
Lj = 0, j = 1, . . . , 6 and L7 6= 0. Moreover, over these curves, the intersection of the
varieties Lj is transversal. Consequently, as in [7], they define two families of weak
foci of order seven that unfold, perturbing also the parameter that defines the trace
at the origin, seven small limit cycles via a degenerate Hopf bifurcation. Hence,
by computing the Lyapunov quantities up to order five in terms of the perturba-
tion parameters, we have proved the existence of cubic polynomial perturbations
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of system (14) unfolding 9 small limit cycles by a simultaneous degenerate Hopf
bifurcation in configuration 〈1, 7, 1〉, as we wanted prove.

Finally, we would like to remark that the homogeneous terms of degree 2 and 4
for all the computed Lyapunov quantities corresponding to the origin of system (16)
vanish identically. This explains why, in the above computations, only appear the
terms of degrees 1, 3 and 5. Additionally, we have not write down all the figures of
all the involved integer numbers in the previous expressions because of their size. �

Under the assumptions of Proposition 3 there are other cubic systems with the
same configuration of two symmetric centers and one more on the symmetry line
and exhibiting the same bifurcation phenomenon. All of them with 9 limit cycles,
but having different type of first integrals or inverse integrating factors. We show
some of them in the next examples skipping the explicit computations.

The cubic system

x′ = y3 − y,

y′ = 2x3 +
1

6
xy2 − 3x2 − 1

12
y2 + x,

(17)

has the inverse integrating factor

V = (12x2 − 8y2 − 12x+ 9)(12x2 + 9y2 − 12x− 8),

and the polynomial first integral

H = (12x2 − 8y2 − 12x+ 9)9(12x2 + 9y2 − 12x− 8)8.

Not all the systems with the described configuration have a polynomial or rational
first integral. For example the cubic system

x′ = −6yx2 + y3 + 3xy − y,

y′ = −3

4
xy2 − 5

8
x3 +

21

4
y2 − 147

8
x2 + x,

(18)

with an integrating factor

V = 205x4−1722x2y2+328y4+14678x3−2460xy2−12050x2+1612y2+2376x−176

has the next first integral

H = log
(
205x4 − 1722y2x2 + 328y4 + 14678x3 − 2460xy2 − 12050x2 + 1612y2

+ 2376x− 176
)

+
54√
401

arctanh

(√
401 (−1722x2 + 656y2 − 2460x+ 1612)

32882x2 − 65764x+ 33684

)
.

Inside this cubic family, after perturbation, there are also systems sharing this
configuration with polynomial first integral. For example, systems

x′ = 448x2y + 64y3 − 80xy − y,
y′ = 312x3 − 448xy2 + 17x2 + 40y2 + x,

(19)

and
x′ = y3 − y,
y′ = −8x3 − 3x2 + x,

(20)

have

H = 468x4 − 1344x2y2 − 96y4 + 34x3 + 240xy2 + 3x2 + 3y2
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and

H = −8x4 − y4 − 4x3 + 2x2 + 2y2

as first integrals, respectively.
Moreover, all the considered systems have different phase portraits in the Poincaré

disk. In Figure 2 we depict all of them. The finite equilibrium points are all of them
of center or saddle type, meanwhile at infinity the equilibrium points, when they
exist, all are of node or saddle type.

Figure 2. The qualitative phase portraits of cubic systems (14), (17),
(18), (19), and (20), on the Poincaré sphere.

Finally, we remark that system (20) belongs to the family studied in [18] where
13 limit cycles appear bifurcating simultaneously from different period annulus.

5. Reversible quartic systems

Christopher, in [7], study the simultaneous bifurcation of limit cycles in config-
uration 〈n,m, n〉 for a quartic Darboux center given by Żo la̧dek in [32]. Using the
method described in Section 3, up to first order, i.e. calculating the linear parts of
the Lyapunov quantities, he provides 22 limit cycles in configuration 〈6, 10, 6〉.

In this section we extend this study to some reversible quartic systems having
rational first integrals, using linear and higher order developments of the Lyapunov
quantities. More concretely, let us consider rational first integrals of the type

HN,d(x, y) =
(y2 + pN,d−1(x))

d

(xy2 + qN,d(x))d−1
. (21)
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The given polynomials pN,d−1 and qN,d are of degree d− 1 and d, respectively. The
corresponding differential system writes as

x′ = −∂HN,d

∂y
VN,d(x, y),

y′ =
∂HN,d

∂x
VN,d(x, y),

(22)

for a suitable inverse integrating factor VN,d(x, y). All the reversible systems pre-
sented in this section are symmetric with respect to the x-axis having a center at
the origin and two more at (xc,±yc). All of them are non degenerate.

In the first subsection, using first order of Lyapunov quantities and simultaneous
bifurcations, we obtain different configurations with 16, 19, and 22 limit cycles,
increasing with d. The last one, H4,5, is in the same class as Christopher’s center
and we recover his result. In the second subsection, using fifth order developments,
we get the new lower bound H(4) ≥ 28, in a simultaneous bifurcation and in a
〈8, 12, 8〉 configuration. See Proposition 6. As in the cubic family studied in the
previous section, only the developments of odd order are useful for obtaining more
limit cycles.

5.1. Configurations found in the class H4,d. Next table shows the results on
simultaneous bifurcation of limit cycles for system (22), of degree four, and d =
3, 4, 5, using the linear parts of the Lyapunov quantities. In the second row we
indicate, at the top, the found configuration and, at the bottom, the total number
of small limit cycles.

H4,3 H4,4 H4,5

〈4, 8, 4〉 〈5, 9, 5〉 〈6, 10, 6〉
(16) (19) (22)

Because of the size of the expressions of the Lyapunov quantities and as we are
following exactly the procedure described in Section 3 we only list the polynomials
that define the rational first integrals (21):

p4,2 (x) = −24961

24336
x2 + 2x− 1,

q4,3 (x) =
84551

36504
x3 − 3x2 + 3x− 1,

p4,3 (x) =
2230433

473616
x3 +

259

198
x2 − 67

66
x− 1,

q4,4 (x) =
2230433

631488
x4 +

259

198
x3 +

50

33
x2 − 134

99
x− 1,

p4,4 (x) = −3

4
x4 + 2x2 +

4

3
x+

4

3
,

q4,5 (x) = −3

5
x5 + 2x3 +

4

3
x2 +

2

3
x+

8

15
.

A more detailed study of the last family is done in Proposition 6 below.
We point out that the number of limit cycles strictly increases, with d, in each

studied example. We have not shown the results done for higher d because they are
worse than those presented.
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5.2. Higher order studies for a quartic system. In Proposition 5 we have seen
how higher order developments of the Lyapunov quantities can be used to increase
the number of small limit cycles. In that case only from the center on the symmetry
line we can get more limit cycles, passing from the configuration 〈1, 5, 1〉, with a
first order study, to the configuration 〈1, 7, 1〉, with a fifth order development.

In this subsection, we get the new lower bound of H(4) ≥ 28 by proceeding in a
similar manner to the previously exposed. Due to the difficulties on the computa-
tions we have only check how the number of limit cycles increases for a system of
degree four which is of type H4,5. As we have mentioned above, we have selected a
Darboux center which is in the same class as the one studied by Christopher.

Proposition 6. The quartic differential system associated to the rational first inte-
gral

H(x, y) =
(2x4 − x2 + y2 − 2x− 2)5

(8x5 − 5x3 + 5xy2 − 10x2 − 5x− 4)4
(23)

has one reversible center at the origin and two more centers at the points (1,±2).
Perturbing with polynomials of degree four, from these centers bifurcate 22, 27, and
28 limit cycles in configuration 〈6, 10, 6〉, 〈8, 11, 8〉, and 〈8, 12, 8〉, using the series
expansion of the Lyapunov quantities on the perturbation coefficients up to order 1,
3, and 5, respectively.

Proof. It is easy to check that the reversible differential equation associated to the
rational first integral (23) has a center at (0, 0), on the symmetry axis which is the
straight line {y = 0}, and two more symmetric centers at (1,±2).

The limit cycles appear via a simultaneous degenerate Hopf bifurcation, following

the procedure described in Section 3. More concretely, let us denote by L̃
(`)
j and L̂

(`)
j

the Taylor series expansion of order ` of the j Lyapunov quantities at the equilibrium
points obtained perturbing the differential equation, i.e. near the centers at (0, 0)
and (1,±2), respectively. We notice that, by the symmetric perturbation procedure,
the j Lyapunov quantities at (1, 2) and (1,−2) coincide.

We will follow the same scheme described in the proof of Proposition 5.
Straightforward computations provide, after some linear changes in the param-

eters space, the first Lyapunov quantities up to order 1. We can write them as

L̃
(1)
j = xj + O2(x), for j = 1, . . . , 10 and L̂

(1)
j = yj + O2(y), for j = 1, . . . , 6. We

have denoted by O2(x) and O2(y) all the terms of degree two in variables xj and yj,

respectively. Moreover, we observe that L̃
(1)
11 , L̃

(1)
12 , L̂

(1)
7 , and L̂

(1)
8 are linear combina-

tions of the first ten and six Lyapunov quantities up to order 1, respectively. From
these expressions, adding the perturbation parameters that control the traces at the
critical points after the perturbation, we get the same configuration of limit cycles,
〈6, 10, 6〉, given by Christopher in [7]. For obtaining more limit cycles, before using
the “trace parameters”, we need to compute the Taylor series expansion of higher
order of the next Lyapunov quantities, L̃j, for j = 11, 12, and L̂j, for j = 7, 8.

The second order terms in the Taylor developments of the Lyapunov quantities
are zero when the parameters that control first order developments vanish, i.e. when
x1 = · · · = x10 = y1 = · · · = y6 = 0. Then, third order of Taylor developments of the
Lyapunov quantities are necessary to be computed so that more limit cycles could
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be obtained. If we compute them, we obtain the expressions

L̃
(3)
11 = C1x11x

2
12 p2(x11/x12),

L̃
(3)
12 = C2x11x

2
12 p2(x11/x12),

L̂
(3)
7 = C3y

3
8 p3(y7/y8),

L̂
(3)
8 = C4y

3
8 p̂3(y7/y8),

for some constants C1, C2, C3, and C4 and polynomials

p2(λ) =7837649339589516 + 3741225987316λ+ 431335779λ2,

p3(λ) =20932383446945199488077206112653

+ 42671630228676522212733338314426λ

+ 27681018968522683495059877708953λ2

+ 5653958549111204034021495620096λ3

p̂3(λ) =46246307507579267760260412353597030559

+ 94264434217259234279967744936711259963λ

+ 61137236767015531358857109782475722749λ2

+ 12482954391842688462988145099794265513λ3.

We want to remark that we have four functions but only three polynomials. From
previous expressions, we only have, up to order three, one extra limit cycle surround-

ing the origin. This is so because L̃
(3)
11 is different from zero and the polynomial p2

appears in the two expressions L̃
(3)
11 and L̃

(3)
12 . Surrounding each one of the critical

points (1,±2) we have two more limit cycles, because the polynomials p3 and p̂3
are of degree three and they have no common zeros, as it follows from the fact that
the resultant of them is not zero. Consequently, up to order three, we have the
configuration 〈8, 11, 8〉 of limit cycles.

Finally, the development up to order four of L̃11 and L̃12 coincides but not the

corresponding to order five and it writes as L̃
(5)
12 = C5x12p4(x11/x12) with

p4(λ) = 34144153 · · · 7015797λ4 + 64857960 · · · 8874396λ3

+ 45819614 · · · 9678048λ2 + 14251184 · · · 3436944λ+ 16440049 · · · 2184112.

We have not written completely the above polynomial of degree four, because each
coefficient is an integer number with more than 200 figures.

Moreover, the resultant of the polynomials p3 and p4 is non zero, then the existence
of an extra hyperbolic limit cycle is guaranteed. Consequently, we get, at least,
twenty-eight small limit cycles in configuration 〈8, 12, 8〉. This finishes the proof. �

We have not computed higher order Lyapunov quantities to find more limit cycles
because to get the maximum, 28 limit cycles, we have exhausted all the perturbation
parameters. To get more limit cycles, if they exist, other mechanisms should be
applied.

6. Simultaneous bifurcation of higher degree systems

This section is devoted to the perturbation of vector field (22), for degrees N =
5, . . . , 9. Here we provide the new best lower bounds H(5) ≥ 37 and H(6) ≥ 53,
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among others lower bounds. To reach them we use linear developments of Lyapunov
quantities, following the way introduced in the previous sections; that is, by the
simultaneous bifurcation of limit cycles in differential systems having the rational
first integrals (21).

In the next subsections we only provide the polynomials pN,d−1 and qN,d, all with
rational coefficients, and the number of simultaneous limit cycles in configuration
〈n,m, n〉 for degrees N = 5, . . . , 9. Due to the size of the expressions we have only
listed the systems and the configurations. As it can be seen, for every degree N,
the sequence of the number of limit cycles in each configuration is increasing with
d, up to the maximal value obtained for d = 2N − 3. We have not shown the
configurations for greater values of d because the total number of limit cycles is less
than the previous maximal value. Moreover, when we increase the degree N we get
better results in next sections using other type of systems. These are the reasons
why we stop the computations at these values.

All the systems are chosen so that the involved rational numbers be as small as
possible. We observe that the method described in Section 3 needs a normal form
transformation where the square root of the determinant of the Jacobian matrix at
the equilibrium points appears in the computations. In most of the cases, we achieve
that the determinant of the Jacobian matrix at the equilibrium points be a perfect
square. This fact simplifies significantly the involved calculations. Alternatively,
when a square root of an integer number appears we look for a system that has this
number as small as possible.

For the sake of brevity, we omit all the computations because of their size and
since they are similar to the ones shown in the previous sections.

6.1. Configurations found in the class H5,d. Next table shows the results on si-
multaneous bifurcation of limit cycles for system (22) of degree five, and d = 4, 5, 6, 7.
The total number of limit cycles obtained for each system is given in parentheses.

H5,4 H5,5 H5,6 H5,7

〈8, 12, 8〉 〈9, 13, 9〉 〈10, 14, 10〉 〈11, 15, 11〉
(28) (31) (34) (37)

As in the previous degree four case, the sequences of the number of limit cycles in
each period annulus also is strictly increasing. Here the polynomials defining the
rational first integrals (21) are:

p5,3(x) =
1431

286
x3 − 1,

q5,4(x) =
27617

6864
x4 +

23

24
x3 +

1

48
x2 − 1,

p5,4(x) =
316801

7040
x4 − 96

5
x2 − 104

5
x− 1,

q5,5(x) =
316801

8800
x5 − 96

5
x3 +

71

5
x2 − 26x− 1,

p5,5(x) = −512

205
x5 + 8x3 − 3x2 +

15

8
x− 1,

q5,6(x) = −256

123
x6 + 8x4 − 3x3 − 11

16
x2 +

9

4
x− 1,

p5,6(x) =
961

686
x6 +

31

7
x3 − 31

42
x2 +

1

7
x− 1,
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q5,7(x) =
2883

2401
x7 +

31

7
x4 − 31

42
x3 +

1

7
x2 +

1

6
x− 1.

6.2. Configurations found in the class H6,d. Next table shows the results on
simultaneous bifurcation of limit cycles for system (22) of degree six, and d =
6, 7, 8, 9. As in the previous case, the total number of limit cycles obtained for each
system is also given in parentheses.

H6,6 H6,7 H6,8 H6,9

〈13, 18, 13〉 〈14, 19, 14〉 〈15, 21, 15〉 〈16, 21, 16〉
(44) (47) (51) (53)

In the above sequences we observe that not all of them are strictly increasing in each
period annulus. Here the polynomials defining the rational first integrals (21) are:

p6,5(x) = −6

5
x5 − 54x4 + 243x3 − 5103x2 + 2510x− 1,

q6,6(x) = −x6 − 54x5 − 9921

2
x2 + 3012x− 1,

p6,6(x) = −1232

577
x6 +

1232

577
x4 − 3152

577
x3 +

1822

577
x2 +

1232

577
x+

1232

577
,

q6,7(x) = −1056

577
x7 +

1232

577
x5 − 3152

577
x4 +

5158

1731
x3 +

5272

1731
x2 +

1294

1731
x+

2588

4039
,

p6,7(x) =
13

7
x7 + 4x4 + 2x3 − 261

104
x2 − 35

104
x− 1,

q6,8(x) =
13

8
x8 + 4x5 + 2x4 − 261

104
x3 +

29

104
x2 − 5

13
x− 1,

p6,8(x) =
25

8
x8 + 10x4 − 40

9
x3 − 32

9
x2,

q6,9(x) =
25

9
x9 + 10x5 − 40

9
x4 − 32

9
x3 + 2x− 16

9
.

6.3. Configurations found in the class H7,d. Next table shows the results on
simultaneous bifurcation, and total number in parentheses, of limit cycles for sys-
tem (22) of degree seven, and d = 8, 9, 10, 11.

H7,8 H7,9 H7,10 H7,11

〈19, 25, 19〉 〈20, 25, 20〉 〈21, 26, 21〉 〈22, 27, 22〉
(63) (65) (68) (71)

Besides the above sequences are increasing but not strictly, they are less than ex-
pected values comparing with the previous degrees. This fact could be indicate that,
for higher values of N , the proposed rational first integral (21) will not allow us to
improve our results. Here the polynomials p7,d−1, q7,d in (21) are:

p7,7(x) =
32

7
x7 − 8x5 + 10x3 + 10x2 − 16x+

32

7
,

q7,8(x) = 4x8 − 8x6 + 11x4 + 10x3 − 18x2 + 8x− 2,

p7,8(x) = −9

4
x8 − 2x5 + 12x4 − 3x3 − 16

3
x2 +

13

3
,

q7,9(x) = −2x9 − 2x6 + 12x5 − 3x4 − 49

9
x3 +

4

3
x2 +

26

9
,

p7,9(x) = −10

9
x9 + 4x5 − 2x4 − 3

10
x3 +

151

90
x2 +

16

9
x− 16

45
,
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q7,10(x) = −x10 + 4x6 − 2x5 − 3

10
x4 +

151

90
x3 +

44

45
x2 +

4

9
x− 2

25
,

p7,10(x) = −5

8
x10 − 5

2
x5 +

25

22
x4 +

125

484
x3 − 3337

484
x2 + 10x+

5

2
,

q7,11(x) = −25

44
x11 − 5

2
x6 +

25

22
x5 +

125

484
x4 − 3337

484
x3 + 10x2 + 2x+

5

11
.

6.4. Configurations found in the classes H8,13 and H9,15. Next table shows the
results on simultaneous bifurcation of limit cycles for system (22), for degree N = 8
and d = 13, and degree N = 9 and d = 15. The total number of limit cycles obtained
for each system is given in parentheses.

H8,13 H9,15

〈28, 34, 28〉 〈35, 41, 35〉
(8, 90) (9, 111)

Here the polynomials defining the rational first integrals (21) are:

p8,12 (x) =
13

2
x12 + 13x6 − 6x5 − 18

13
x4 − 108

169
x3 − 2305

2028
x2 +

1

13
x− 1,

q8,13 (x) = 6 x13 + 13x7 − 6x6 − 18

13
x5 − 108

169
x4 − 2305

2028
x3 +

1

13
x2 +

1

12
x− 1,

p9,14 (x) = −583200

34969
x14 +

16200

187
x7 − 7560

187
x6 − 1764

187
x5 − 4116x4

935
− 2401

935
x3

− 109

5
x2 + 26x− 195

14
,

q9,15 (x) = −544320

34969
x15 +

16200

187
x8 − 7560

187
x7 − 1764

187
x6 − 4116

935
x5 − 2401

935
x4

− 109

5
x3 + 26x2 − 30x+ 15.

For these degrees we only consider the highest value d = 2N−3 because looking at
the sequences of degrees 6 and 7 and comparing with degrees 4 and 5, the observed
values for the number of limit cycles are less than the expected ones. In next section
we present better results for systems with these degrees.

7. Systems having an algebraic curve of equilibria

In this section, we consider the system (22) adding curves of equilibrium points.
Of course, the first integrals are the same but the degree is increased. We will see
that, for some degrees, this approach provides better Hilbert numbers than the ones
obtained in the previous section. The degrees considered are N = 5, . . . , 10. More
concretely, we consider the unperturbed system

x′ = −∂HN,d

∂y
VN,d(x, y)FM(x, y),

y′ =
∂HN,d

∂x
VN,d(x, y)FM(x, y),

(24)

where HN,d is defined in (21), VN,d is a given polynomial and the polynomials FM ,
for M = 1, 2, 3, 4, are

F1(x, y) = 1− 2x, F3(x, y) = 1− 2x− 2xy2,

F2(x, y) = 1− 2x− 2 y2, F4(x, y) = 1− 2x− 2xy2 − 3x2y2.
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In this section we provide the new best lower bounds: H(7) ≥ 74, H(8) ≥ 96,
H(9) ≥ 120, and H(10) ≥ 142.

The number and configurations of limit cycles obtained, using the bifurcation
mechanism described in Section 3, are given in the next table. We remark that, as
in the previous section, we get the Lyapunov quantities only up to first order.

F1 F2 F3 F4

H4,5 〈6, 10, 6〉 〈10, 15, 10〉 〈16, 21, 16〉 〈22, 27, 22〉 〈28, 34, 28〉
(4, 22) (5, 35) (6, 53) (7, 71) (8, 90)

H5,7 〈11, 15, 11〉 〈15, 21, 15〉 〈23, 28, 23〉 〈29, 35, 29〉 〈36, 41, 36〉
(5, 37) (6, 51) (7, 74) (8, 93) (9, 113)

H6,9 〈16, 21, 16〉 〈21, 28, 21〉 〈30, 36, 30〉 〈37, 43, 37〉 〈45, 52, 45〉
(6, 53) (7, 70) (8, 96) (9, 117) (10, 142)

H7,11 〈22, 27, 22〉 〈28, 35, 28〉 〈38, 44, 38〉 〈45, 52, 45〉
(7, 71) (8, 91) (9, 120) (10, 142)

The first column shows the results obtained in the previous section. The rest of the
columns display the results obtained for system (24), according FM . In each cell
of the table we have indicated the limit cycles configuration (at the top) and the
degree of the system and the total number of small limit cycles (at the bottom in
parentheses).

For every degree N, we observe that, in almost all cases, the biggest values of
the lower bounds for the Hilbert numbers have been obtained perturbing a good
Darboux system giving a vector field of degree N, instead of choosing other Darboux
systems with lower degree multiplied by a line of equilibria. This is the case for
degree 5 and 6.

8. Lower bounds for the Hilbert numbers using double symmetry

This section is devoted to prove Corollary 2. Its proof follows part of the approach
introduced in [8] to get an asymptotic lower bound of the form H(N) > C N2 logN,
for some constant C. Even though there are lower bounds that asymptotically behave
like this one, and that we do not improve, they do not give better results for small
values of N , see for instance [14].

Let us consider a polynomial system with c limit cycles. It is not restrictive to
assume that all of them are located at the first quadrant, by performing a translation
if necessary. Assuming that the polynomial degree N differential system, (x′, y′) =
(f(x, y), g(x, y)), satisfies these hypotheses, the change of variables (u, v) = (x2, y2)
transforms this system to another one of degree 2N + 1 with 4c limit cycles. Using
this method forN = 2, 3, 4 we get the valuesH(5) ≥ 16, H(7) ≥ 52, andH(9) ≥ 112.
These lower bounds are smaller than the ones obtained in the previous sections, in
configuration 〈n,m, n〉. Nevertheless, using this algorithm in a recursive way from
the new lower bounds given in Theorem 1, we can easily improve some known
results on the Hilbert numbers. Using the new values for N = 6, 7, 8, 9, 10, we
get H(13) ≥ 212, H(15) ≥ 296, H(17) ≥ 384, H(19) ≥ 480, and H(21) ≥ 568,
in a first step, and H(27) ≥ 848, H(31) ≥ 1184, H(35) ≥ 1536, H(39) ≥ 1920,
and H(43) ≥ 2272, in a second step. But not all these values provide better lower
bounds, comparing with the results in [14]. The new ones are the detailed in the
first statement of the corollary.
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Following the algorithm explained above, in a recursive way, Gasull, in [10], pro-
vides a lower bound for the Hilbert number of the form H(N) > KNN

2, where KN =
cN/(N

2 +1)2 and cN is the number of limit cycles of the starting system. Hence, the
second statement of the corollary follows using the results presented in this work for
N = 2, . . . , 10. We remark that for every cN in 4, 13, 28, 37, 53, 74, 96, 120, 142, the
corresponding KN value is

4

9
,
13

16
,
28

25
,
37

36
,
53

49
,
37

32
,
32

27
,
6

5
,
142

121
,

being 6/5 the biggest one.
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