Complete Abelian integrals for polynomials whose generic fiber is biholomorphic to \mathbb{C}^{*}

Salomón Rebollo-Perdomo
Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

ARTICLE INFO

Article history:

Received 5 December 2011
Available online 14 May 2012
Submitted by Willy Sarlet

Keywords:

Abelian integrals
Weak Hilbert's 16th problem

Abstract

Let H be a polynomial of degree $m+1$ on \mathbb{C}^{2} such that its generic fiber is biholomorphic to \mathbb{C}^{*}, and let ω be an arbitrary polynomial 1 -form of degree n on \mathbb{C}^{2}. We give an upper bound depending only on m and n for the number of isolated zeros of the complete Abelian integral defined by H and ω.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction and statement of the results

Let $H: \mathbb{C}^{2} \rightarrow \mathbb{C}$ be a polynomial whose generic fiber is irreducible, and let ω be a polynomial 1 -form on \mathbb{C}^{2}. By the complete Abelian integral defined by H and ω, we mean the function

$$
I(c)=\int_{\left[\gamma_{c}\right]} \omega
$$

where the parameter c varies over the set of generic values of H, and $\left[\gamma_{c}\right]$ is a cycle of H : [γ_{c}] is the homology class of a loop $\gamma_{c} \subset H^{-1}(c)$, and $\left[\gamma_{c}\right]$ is non-trivial in the first homology group $H_{1}\left(H^{-1}(c), \mathbb{Z}\right)$ of the generic fiber $H^{-1}(c)$ of H.

From the classical Poincaré-Pontryagin-Andronov criterion we know that the isolated zeros of $I(c)$ are related to the limit cycles of the infinitesimal perturbed Hamiltonian system

$$
d H-\varepsilon \omega=0 \quad \text { with } 0 \neq \varepsilon \in(\mathbb{C}, 0) \text { fixed, }
$$

that arise from the cycles of the Hamiltonian system $d H=0$, which are precisely the cycles of H. In this sense, the problem of finding the upper bound $Z(m, n) \in \mathbb{N}$, depending on $m=\operatorname{deg}(H)-1$ and $n=\operatorname{deg}(\omega)$ for the number of isolated zeros of $I(c)$, counting multiplicities, is referred to as the weak infinitesimal Hilbert's 16th problem (see [1]). Of course, in this problem we must consider all polynomials H of degree $m+1$ and all the 1 -forms ω of degree n.

Khovanskiĭ [2] and Varchenko [3] proved that $Z(m, n)$ is finite. Petrov and Khovanskiĭ claimed that $Z(m, n) \leq A(m) n+$ $B(H)$, where $A(m)$ is an explicit constant depending only on m while $B(H)$ is independent of ω but depends on H. The proof of this assertion was given by Żoła̧dek [4, Theorem 6.26]. Recently Binyamini et al. [5] proved that $Z(n, n) \leq 2^{2^{\text {Poo(n) }}}$, where $\operatorname{Po}(n)=O\left(n^{p}\right)$ stands for an explicit polynomially growing term with the exponent p not exceeding 61 .

A difficulty in finding an explicit upper bound for $Z(m, n)$ is that even though $I(c)$ is a locally single-valued function, globally it can be multi-valued since its analytic continuation depends on the monodromy of the polynomial H (see Section 2).

If $\operatorname{dim} H_{1}\left(H^{-1}(c), \mathbb{Z}\right)=1$ for a generic value c of H, then the generic fiber of H is irreducible and biholomorphic to \mathbb{C}^{*}; therefore, H is called a primitive polynomial of type \mathbb{C}^{*}. This is the simplest non-trivial case for studying $I(c)$ because there

[^0]
[^0]: E-mail address: srebollo@mat.uab.cat.
 0022-247X/\$ - see front matter © 2012 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jmaa.2012.05.014

