

Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and Applications

journal homepage: www.elsevier.com/locate/jmaa

Complete Abelian integrals for polynomials whose generic fiber is biholomorphic to \mathbb{C}^\ast

Salomón Rebollo-Perdomo

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

ARTICLE INFO

Article history: Received 5 December 2011 Available online 14 May 2012 Submitted by Willy Sarlet

Keywords: Abelian integrals Weak Hilbert's 16th problem

ABSTRACT

Let *H* be a polynomial of degree m + 1 on \mathbb{C}^2 such that its generic fiber is biholomorphic to \mathbb{C}^* , and let ω be an arbitrary polynomial 1-form of degree *n* on \mathbb{C}^2 . We give an upper bound depending only on *m* and *n* for the number of isolated zeros of the complete Abelian integral defined by *H* and ω .

© 2012 Elsevier Inc. All rights reserved.

1. Introduction and statement of the results

Let $H : \mathbb{C}^2 \to \mathbb{C}$ be a polynomial whose generic fiber is irreducible, and let ω be a polynomial 1-form on \mathbb{C}^2 . By the *complete Abelian integral* defined by H and ω , we mean the function

$$I(c) = \int_{[\gamma_c]} \omega,$$

where the parameter *c* varies over the set of generic values of *H*, and $[\gamma_c]$ is a *cycle* of *H*: $[\gamma_c]$ is the homology class of a loop $\gamma_c \subset H^{-1}(c)$, and $[\gamma_c]$ is non-trivial in the first homology group $H_1(H^{-1}(c), \mathbb{Z})$ of the generic fiber $H^{-1}(c)$ of *H*.

From the classical Poincaré–Pontryagin–Andronov criterion we know that the isolated zeros of I(c) are related to the limit cycles of the infinitesimal *perturbed Hamiltonian system*

 $dH - \varepsilon \omega = 0$ with $0 \neq \varepsilon \in (\mathbb{C}, 0)$ fixed,

that arise from the cycles of the Hamiltonian system dH = 0, which are precisely the cycles of H. In this sense, the problem of finding the upper bound $Z(m, n) \in \mathbb{N}$, depending on $m = \deg(H) - 1$ and $n = \deg(\omega)$ for the number of isolated zeros of I(c), counting multiplicities, is referred to as the *weak infinitesimal Hilbert's* 16th *problem* (see [1]). Of course, in this problem we must consider all polynomials H of degree m + 1 and all the 1-forms ω of degree n.

Khovanskiĭ [2] and Varchenko [3] proved that Z(m, n) is finite. Petrov and Khovanskiĭ claimed that $Z(m, n) \le A(m)n + B(H)$, where A(m) is an explicit constant depending only on m while B(H) is independent of ω but depends on H. The proof of this assertion was given by Żołądek [4, Theorem 6.26]. Recently Binyamini et al. [5] proved that $Z(n, n) \le 2^{2^{\text{Po}(n)}}$, where $Po(n) = O(n^p)$ stands for an explicit polynomially growing term with the exponent p not exceeding 61.

A difficulty in finding an explicit upper bound for Z(m, n) is that even though I(c) is a locally single-valued function, globally it can be multi-valued since its analytic continuation depends on the monodromy of the polynomial H (see Section 2).

If dim $H_1(H^{-1}(c), \mathbb{Z}) = 1$ for a generic value c of H, then the generic fiber of H is irreducible and biholomorphic to \mathbb{C}^* ; therefore, H is called a primitive polynomial of type \mathbb{C}^* . This is the simplest non-trivial case for studying I(c) because there

E-mail address: srebollo@mat.uab.cat.

 $^{0022\}text{-}247X/\$$ – see front matter S 2012 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2012.05.014