
h
tt
p
:/
/w
w
w
.g
sd
.u
a
b
.c
a
t
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Abstract. In this paper we extend a well-known algorithm for studying
higher order Poincaré–Pontryagin–Melnikov functions of polynomial perturbed

Hamiltonian equations. We consider a family of unperturbed equations whose

associated Hamiltonian is not transversal to infinity, and its complexification
is no a Morse polynomial. We prove that the first non-vanishing Poincaré–

Pontryagin–Melnikov function of the displacement function, associated with
the perturbed equation, is an Abelian integral, and we provide the algorithm

to compute it. Our result generalizes the algorithm for the case when the

Hamiltonian is transversal to infinity, and its complexification is a Morse poly-
nomial. We apply our result to study the maximum number of zeros of the first

non-vanishing Poincaré–Pontryagin–Melnikov function associated with some

particular perturbed degenerated Hamiltonian equations.

1. Introduction

Consider the perturbed Hamiltonian differential equation

dF − εω(ε) = 0, (1ε)

where F := F (x, y) is a real polynomial, and ω(ε) = A(x, y, ε)dx+B(x, y, ε)dy is a
1-form on the real plane R2 such that A(x, y, ε) andB(x, y, ε) are real polynomials in
x and y with coefficients that depend analytically on the real parameter ε ∈ (R, 0).

Suppose that the foliation defined by the Hamiltonian differential equation (10)
has at least a continuous family of cycles (periodic orbits) γc ⊂ F−1(c). As is
widely known [12, 17, 18], for ε small enough and non-zero, (1ε) can have limit
cycles bifurcating from the cycles γc of (10). A usual tool for studying these limit
cycles is the displacement function associated with (1ε) and the family {γc}:

L(ε, c) = εL1(c) + ε2L2(c) + ε3L3(c) + · · · . (2)

The coefficient Li(c) is the i-th order Poincaré–Pontryagin–Melnikov (PPM) func-
tion.

The limit cycles of (1ε) that bifurcate from cycles of (10) are studied through
the zeros of the first non-vanishing PPM function Lk(c) with k ≥ 1. Indeed, on one
hand, the maximum number of isolated zeros, counting multiplicities, of Lk(c) is an
upper bound for the number of limit cycles of (1ε) that bifurcate from (10); on the
other hand, the number of distinct zeros of Lk(c) can provide a lower bound for the
number of these limit cycles. See for instance Proposition 26.1 and Remark 26.2
in [15]. Hence, we need to have a mechanism for knowing such a first non-vanishing
function.

The classical Poincaré–Pontryagin formula says that the first order PPM function
is given by an Abelian integral; however, if that function vanishes identically, then
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2 S. REBOLLO-PERDOMO

the PPM functions of order 2, 3, . . . have to be studied until either finding the first
non-vanishing PPM function, or concluding that (1ε) is integrable.

It is known that if F is transversal to infinity whose complexification is a Morse
polynomial, then the first non-vanishing PPM function of the displacement func-
tion, associated with (1ε), is an Abelian integral. See for instance Theorems 26.7
and 26.52 in [15]. The purpose of this paper is to show that this property remains
for a larger family of polynomials F and to apply the delivered result for studying
the maximum number of zeros of the first non-vanishing PPM function of some
particular equations (1ε).

In this paper we will assume that the polynomial F (x, y) defining (10) is of the
form F = P (H), where P = P (z) is a univariate polynomial of degree greater
than one, and H = H(x, y) is a bivariate polynomial. Under these assumptions
the complexification of F is not a Morse polynomial, because F has degenerated
singularities at H−1(Z(P ′)), where P ′ = P ′(z) denotes the derivative of P (z) with
respect to z, and Z(P ′) denotes the finite set of solutions of P ′(z) = 0.

Since the coefficients of A(x, y, ε) and B(x, y, ε) depend analytically on ε and
dF = P ′(H)dH, we can rewrite (1ε) as

P ′(H)dH − εω1 − ε2ω2 − ε3ω3 − · · · = 0, (3ε)

where ωi = Ai(x, y)dx+Bi(x, y)dy, for i = 1, 2, . . ., is a polynomial 1-form.
We are assuming that deg(P ) ≥ 2, then P ′(H) is not a constant; this implies

that (30) is a degenerated Hamiltonian differential equation. Thus, we can say that
(3ε) is a perturbed degenerated Hamiltonian differential equation.

We note that H−1(Z(P ′)) is the set of points (x, y) where P ′(H)(x, y) = 0.
Hence, in R2 \H−1(Z(P ′)) the perturbed equation (3ε) is equivalent to

dH − ε ω1

P ′(H)
− ε2 ω2

P ′(H)
− ε3 ω3

P ′(H)
− · · · = 0. (4ε)

If {γc} is a family of cycles of (30), then it does not intersect H−1(Z(P ′)). Hence,
as in the complement of Z(P ′) the polynomial P is a local invertible map, we can
reparametrize {γc} by using z = H|{γc}. We then have a family {γz}; moreover, γc
and γz are the same cycle if c = P (z). Therefore, we can write the displacement
function associated with (3ε) in terms of ε and z instead of ε and c.

The main result of this paper is the next theorem, which proves that under
generic conditions on H the first non-vanishing PPM function Lk(z) with k ≥ 2
of the displacement function of (3ε) is an Abelian integral, and we provide the
algorithm to compute it.

Theorem 1. Assume that H is transversal to infinity whose complexification is
a Morse polynomial. If Lk(z) with k ≥ 2 is the first non-vanishing PPM func-
tion of the displacement function associated with (3ε), then there are polynomials
q1, . . . , qk−1, Q1, . . . , Qk−1, q, and Q with q ≡ Q ≡ 0 if k = 2 such that

Lk(z) =

∫
γz

ωk1 + ωk2 + ωk3

(P ′(H))2k−3
,

where
ωk1 = (P ′(H))2k−3ωk,

ωk2 =

k−2∑
l=1

(P ′(H))2(k−l)−3 [P ′(H)ql + (2l − 1)P ′′(H)Ql]ωk−l,

and

ωk3 =

(
P ′(H)q + 2(k − 2)P ′′(H)Q+Rk−1(P ′(H))2k−3q1

(−Q1)k−2

(k − 2)!

)
ω1

with R1 = 1/P ′ and Ri = R1R
′
i−1 for i ≥ 2.
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POINCARÉ–PONTRYAGIN–MELNIKOV FUNCTIONS FOR HAMILTONIAN SYSTEMS 3

We observe that if the degree of P is one, then we can assume without loss of
generality that P ′ = 1, which implies that Ri = 0 for i ≥ 2. In this case Theorem 1
reduces to the formula given by Iliev [11, Lemma 2] for F = (x2 + y2)/2; therefore,
Iliev’s formula and Theorem 1 generalize the ideas of [5, 22].

As an application of Theorem 1 we study the maximum number of zeros of the
first non-vanishing PPM function of (3ε) when H = (x2 + y2)/2. Note that in such
a case dH = 0 is the linear center, the simplest planar Hamiltonian equation having
a family of cycles.

Theorem 2. Let n = sup{degωi | i ≥ 1}, p+ 1 = degP , and H = (x2 + y2)/2. If
Lk(c) is the first non-vanishing PPM function of the displacement function associ-
ated with (3ε), then an upper bound for the maximum number of isolated zeros in
(0,∞) \ Z(P ′), counting multiplicities, of Lk(c) is:

Zk(n, p) =


0, if n = 1;[
n−1

2

]
, if k = 1;

p(2k − 3) +
[
n−1

2

]
, if k ≥ 2 and 2 ≤ n ≤ 2p+ 1;

p(k − 2) +
[
k(n−1)

2

]
, otherwise.

In addition, the following statements hold.

(a) For each k ∈ {1, 2}, each p ≥ 1, and each n ≥ 2 there exists a polynomial
P (z) of degree p+ 1 and a polynomial perturbation of degree n of (30) such
that Lk(z) has exactly Zk(n, p) simple zeros in (0,∞) \ Z(P ′).

(b) For k = 3, p ∈ {1, 2}, n ≥ 2, there exists a polynomial P (z) of degree
p+ 1 and a polynomial perturbation of degree n of (30) such that L3(z) has
exactly Z3(n, p) simple zeros in (0,∞) \ Z(P ′).

Next tables give the numerical values of Zk(n, p) for k = 1, 2, 3 and p = 1, 2.

k n 1 2 3 4 5 · · · 2l 2l + 1 · · ·
1 0 0 1 1 2 · · · l − 1 l · · ·
2 0 1 2 3 4 · · · 2l − 1 2l · · ·
3 0 3 4 5 7 · · · 3l − 1 3l + 1 · · ·

Table 1. Number of zeros of Lk(z) for the case p = 1

k n 1 2 3 4 5 6 7 · · · 2l 2l + 1 · · ·
1 0 0 1 1 2 2 3 · · · l − 1 l · · ·
2 0 2 3 3 4 5 6 · · · 2l − 1 2l · · ·
3 0 6 7 7 8 9 11 · · · 3l 3l + 2 · · ·

Table 2. Number of zeros of Lk(z) for the case p = 2

Theorem 2 improves the main results of [2] where the case P (z) = zp+1 was
considered; moreover, the theorem shows that when P (z) is of degree greater than
one Lk(z) with k ≥ 2 has more zeros than when the case P (z) of degree one is
considered, which was studied by Iliev in [11]. Thus, we believe that Theorem 1
can be applied to improve lower bounds for the number of limit cycles of polynomial
differential equations by considering other polynomials H.
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4 S. REBOLLO-PERDOMO

In this paper we will study (3ε) in both real and complex planes, and it is
organized as follows. The background and definitions in the real and complex planes
are delivered in Section 2. In Section 3 we will study (3ε) in the complex setting
and we will derive the relationship between the PPM functions of the displacement
functions associated with (3ε) and (4ε), respectively. The proof of Theorem 1 will
be given in Section 4. In Section 5 we will study (3ε) with H = (x2 + y2)/2 on the
complex plane, and finally in Section 6 we will give the proof of Theorem 2.

2. Background and definitions

2.1. Background in the real case. The description of the displacement function
associated with (1ε) in the real case is as follows.

Let {γc} be a family of cycles of (10) with c varying over an open interval
D = (a, b) ⊂ R. Let Σ be a transversal section to {γc}. If Σ′ is compact subset of Σ,
then there is ε0 = ε0(Σ′) > 0 such that for each ε ∈ (−ε0, ε0) the subset Σ′ remains
transversal to the foliation defined by (1ε). That implies that the orbit through a
point σ′ ∈ Σ′, after making one round, intersects Σ at a point σ. Let γ(ε,σ′) be the
piece of the orbit joining (ε, σ′) and (ε, σ). The transversal Σ can be parametrized
by c = F |Σ; in other words we identify Σ with D, and Σ′ has an identification with
a subset D′ of D. Hence we can take c = F (σ′) and Pε(c) = F (σ); furthermore,
we can write γ(ε,c) instead γ(ε,σ′). Therefore, the first return map is defined by
(ε, c) 7→ Pε(c), and the displacement function associated with (1ε) and {γc} is

L : (−ε0, ε0)×D′ → R, (ε, c) 7→
∫
γ(ε,c)

dF = Pε(c)− c,

which is analytic and can be expressed as the power series in ε given in (2).
We know [15, Theorem 26.3] that the first order PPM function in (2) is given by

the Abelian integral

L1(c) =

∫
γc

ω1, (5)

which can be treated and understood in a better way if we consider it on the
complex plane C2 since its analytic continuation depends on the singular values
and on the monodromy of the complexification of F : by considering x and y as
complex variables.

On the other hand, although the study of limit cycles of planar differential equa-
tions was originally stated on R2, one can consider it on C2 [7–10, 12, 14, 16, 21]
because a real (limit) cycle of (1ε) is a complex (limit) cycle of its complexifica-
tion [13, p. 340]. Moreover, the first return map and the displacement function
have a natural complexification as we will show in next subsection.

2.2. Background in the complex case. From now on we will study (1ε) on C2,
that is, we will consider F as a polynomial in the ring C[x, y] of complex polynomials
in two complex variables with coefficients in C, ε as a small complex parameter,
and ω as a complex 1-form, i.e. we think A(x, y, ε) and B(x, y, ε) as complex
polynomials in x and y with coefficients that depend analytically on ε ∈ (C, 0).

For studying the (complex) limit cycles of (1ε) on the complex plane that bi-
furcate from (10) we have to recall some definitions and some properties of the
elements that define the equation (1ε). For that, we will divide this subsection into
three parts. In the first one, we will provide the notion of cycle and limit cycle in
the complex setting, as well as the definition of the holonomy map, which is the
complexification of the first return map. The second part is devoted to recalling
some properties of complex polynomials in order to know the structure of the foli-
ation defined by the Hamiltonian equation (10), and in the third one we will give
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POINCARÉ–PONTRYAGIN–MELNIKOV FUNCTIONS FOR HAMILTONIAN SYSTEMS 5

some definitions related to complex polynomial 1-forms, which link their analytical
or algebraic properties with respect to the Hamiltonian equation (10).

2.2.1. Complex cycle, complex limit cycle, and the holonomy map. We know that
for each ε ∈ (C, 0) the differential equation (1ε) defines a 1-dimensional complex
foliation with singularities Fε on C2: Fε is a foliation by Riemann surfaces with
singularities on C2.

Definition 1. Consider a leaf Γ of Fε. Let γ ⊂ Γ be a real curve homeomorphic to
the unit circle S1, and let [γ] be its free homotopy class on Γ. If γ is not homotopic
to a point on Γ, then [γ] is called a complex cycle of (1ε).

To give the definition of complex limit cycle, we need to recall the construction
of the holonomy map, which is as follows. We consider a complex cycle [γ] of (1ε0).
Let U be an annular neighborhood of γ in Γ, and let V be a tubular neighborhood
of U in (C, ε0)× C2: V ⊂ (C, ε0)× C2 is an open set containing U , and there is a
retraction π : V → U and a biholomorphism ψ : V → U × D2, where D ⊂ C is the
unit disc, such that the diagram

V U × D2

U

π

ψ

P1

commutes, where P1 : U × D2 → U is the projection on the first factor.
Let p0 be a point of γ and consider a parametrization γ : [0, 1] → Γ of γ such

that p0 = γ(0) = γ(1) (we are identifying γ(t) with its image γ). Because of the
commutativity of the previous diagram, the set L := π−1(p0) = ψ−1

(
{p0} × D2

)
is a 2-dimensional transversal section to {Fε}, for ε ∈ (C, ε0), at p0. Thus, for
each point (ε, p) ∈ L close to (ε0, p0), the curve γ may be lifted to a unique curve
γ(ε,p) : [0, 1]→ C2 that lies on the leaf Γ(ε,p) passing through (ε, p) and that covers
γ under the retraction π. In other words, π(γ(ε,p)(t)) = γ(t) for all t ∈ [0, 1], which
implies that γ(ε,p)(1) ∈ L. See [3, Ch. IV] for details. Hence, there is an open
subset L′ of L such that the map fγ : L′ → L, (ε, p) 7→ γ(ε,p)(1) is well-defined,
and it is analytic because of the analytic dependence of the leaves of {Fε} on initial
conditions.

We can identify the transversal L with (C, ε0)×D by using the parametrization

G : (C, ε0)× D→ L, (ε, c) 7→ ψ−1(p0, ε, c),

with G(ε0, 0) = (ε0, p0). Thus, the subset L′ is identified with (C, ε0)×D′, where D′

is an open subset of D. Now, since γ(ε,p)(1) = (ε, p̂) ∈ L, we can identify (ε, p) and
(ε, p̂) with (ε, c) and (ε,∆γ(ε, c)) for some c ∈ D′ and ∆γ(ε, c) ∈ D, respectively.
The holonomy map associated to γ is then defined by the analytic map

∆γ : (C, ε0)×D′ → D, (ε, c) 7→ ∆γ(ε, c).

Remark 1. The lifted curve γ(ε,c) contained in Γ(ε,c) joins the initial point (ε, c)
with the end point (ε,∆γ(ε, c)), and from the continuity of the solutions of (1ε) on
initial conditions, it follows that limε→ε0 γ(ε,c) = γ(ε0,c).

Remark 2. The map fγ does not depend, up to analytic conjugation, on the rep-
resentative of [γ], the parametrization of the representative, the point p0, or the
transversal section L (i.e. the retraction π and the biholomorphism ψ). This prop-
erty implies that if γ′ is another representative of [γ] and ∆γ′(δ, c) is the corre-
sponding holonomy map, then ∆γ(δ, c) and ∆γ′(δ, c) are analytically conjugated.



h
tt
p
:/
/w
w
w
.g
sd
.u
a
b
.c
a
t

6 S. REBOLLO-PERDOMO

Definition 2. A complex cycle [γ] of (1ε0) is a complex limit cycle if a holonomy
map ∆γ(ε, c), restricted to ε = ε0, has an isolated fixed point at c = 0.

Remark 3. Any real (limit) cycle γ of the real differential equation (1ε0) defines
a complex (limit) cycle [γ] of the complexification of (1ε0), and the holonomy map
∆γ(ε, c) is the complexification of the first return map associated with γ.

2.2.2. Properties of complex polynomials. It is well-known that for each F ∈ C[x, y]
there is a finite set ΣF ⊂ C such that

F : C2 \ F−1(ΣF )→ C \ ΣF (6)

is a locally trivial smooth fibration. See for instance [1]. This finite set ΣF is the
set of singular values of F , which is composed of the values in C coming from the
finite singular points of F and of the “singular points at infinity” of F [4]. Every
value c ∈ C \ ΣF is a generic value of F and the corresponding fiber

F−1(c) := {(x, y) ∈ C2 |F (x, y)− c = 0} ⊂ C2,

which is an affine nonsingular algebraic curve, is a generic fiber of F .
A complex polynomial is primitive if its generic fiber is irreducible; in such a

case, the generic fiber is diffeomorphic to a compact Riemann surface of genus
g ≥ 0 punctured at h ≥ 1 different points. These are the points at infinity of the
fiber, and the polynomial is called type (g, h) [20].

We know that for each F ∈ C[x, y] there are a primitive bivariate polynomial
H ∈ C[x, y] and a univariate polynomial P ∈ C[z], such that F = P (H). See for
example [6]. Note that if F = P (H) and P is of degree one, then F is primitive.
Hence, if F is not primitive, then its generic fiber is diffeomorphic to the finite
disjoint union of at least two punctured compact Riemann surfaces.

A polynomial F ∈ C[x, y] of degree n + 1 ≥ 2 is transversal to infinity, if its
homogeneous part of degree n + 1 factors out as the product of n + 1 pairwise
different linear forms; furthermore, F is a Morse polynomial, if it has n2 singular
points and n2 singular values.

The Hamiltonian foliation F0 = {dF = 0} defined by (10) is given by the fibers
of F , thus, F0 defines a foliation by punctured compact Riemann surfaces of finite
genus with singularities on C2.

2.2.3. Properties of complex polynomial 1-foms. Here we will recall two properties
that a complex polynomial 1-form ω can have with respect to the foliation F0.
Such properties will be useful in the study of the higher order PPM functions of
the displacement function associated with (1ε).

Definition 3. A 1-form ω is analytically relatively exact with respect to the
Hamiltonian foliation F0 if for each value c ∈ C and each homological cycle δ ∈
H1(F−1(c),Z) the integral of ω along δ is zero:∫

δ

ω = 0.

Definition 4. A 1-form ω is algebraically relatively exact with respect to the
Hamiltonian foliation F0, if there are polynomials Q, q ∈ C[x, y] such that

ω = dQ+ qdF.

Clearly each polynomial 1-form that is algebraically relatively exact is also ana-
lytically relatively exact with respect to F0. The inverse connection between these
two properties is given by the following result.
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POINCARÉ–PONTRYAGIN–MELNIKOV FUNCTIONS FOR HAMILTONIAN SYSTEMS 7

Theorem 3. (Ilyashenko [12], Gavrilov [7].) Suppose that F ∈ C[x, y] has
isolated critical points in C2 and that F−1(c) is connected for each c ∈ C. A
complex polynomial 1-form ω is then algebraically relatively exact with respect to
F0 if and only if it is analytically relatively exact with respect to it.

3. Perturbed degenerated Hamiltonian equations

We suppose that the polynomial F (x, y) defining the Hamiltonian system (10)
is non-primitive; hence F = P (H) for a univariate polynomial P (z) of degree
r ≥ 2 and a bivariate primitive polynomial H(x, y). Thus, we have the perturbed
degenerated Hamiltonian differential equation (3ε).

3.1. The complex displacement function. Let c0 be a generic value of F , and
consider a fixed complex cycle [γc0 ] of (10). We take γ := γc0 as a representa-
tive loop of [γc0 ]. We can transport this loop continuously into the neighboring
fibers according to the fibration (6). Let {γc} be the family of resulting loops.
The transportation depends on the representative loop, but the free homotopy
classes {[γc]} of the obtained loops are well-defined. The parameter c varies in a
small enough neighborhood D(c0) of c0 contained in the set of generic values of
F . Following the same idea as in Subsection 2.1, and abusing of the notation, we
denote by Σ a transversal section to {γc} which can be identified with D(c0) by
parametrizing Σ with c = F |Σ. If D′(c0) is a compact subset of D(c0), then there
exists ρ0 = ρ0(D′(c0)) > 0 such that for each |ε| < ρ0 the corresponding subset
Σ′ in Σ remains transversal to the foliation defined by (1ε). Thus, from Subsec-
tion 2.2 we get the well-defined analytic holonomy map ∆γ(ε, c) which is defined
in {(ε, c) | |ε| < ρ0, c ∈ D′(c0)}.

The complex displacement function associated with (1ε) and γ is defined as

LF,γ(ε, c) =

∫
γ(ε,c)

dF = ∆γ(ε, c)− c.

Since F = P (H), there are r ≥ 2 different generic values z1, . . . , zr of H such
that the generic fiber F−1(c0) of F is the disjoint union of the r generic fibers
Lz1 , . . . ,Lzr of H. Lzi , for each i = 1, . . . , r, is diffeomorphic to a finite punctured
compact Riemann surface of finite genus. Hence, the loop γ defining the fixed cycle
[γc0 ] is contained in one of the fibers Lz1 , . . . ,Lzr of H. Without loss of generality
we can suppose that γ ⊂ Lz1 ; thus, every transported loop γc is contained in a
generic fiber Lz of H, where z varies in the neighborhood D(z1) := P−1(D(c0)) of
z1 which is contained in the set of generic values of H. We can then reparametrize
the family {γc} by using z, as a result we have the family {γz} with z ∈ D(z1).
Therefore, analogous to the previous construction, the complex displacement func-
tion associated with (4ε) and γ is defined as

LH,γ(ε, z) =

∫
γ(ε,z)

dH = ∆γ(ε, z)− z.

3.2. Poincaré–Pontryagin–Melnikov functions. By construction, the displace-
ment function LF,γ(ε, c) is analytic, and it admits a power series

LF,γ(ε, c) = εL1(c) + ε2L2(c) + · · · . (7)

In addition, since we have the parametrization P : D(z1) → D(c0), we can write
LF,γ(ε, c) in terms of (ε, z); thus we have

LF,γ(ε, z) := LF,γ(ε, P (z)) = εL1(z) + ε2L2(z) + · · · . (8)

Analogously,

LH,γ(ε, z) = εl1(z) + ε2l2(z) + · · · . (9)
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8 S. REBOLLO-PERDOMO

Of course, if k ≥ 1 and Lk(z) vanishes identically on D(z1), then Lk(c) vanishes
identically on D(c0). In addition, if Lk(z) is the first non-vanishing coefficient in (8),
then its maximum number of zeros in D(z1) coincides with the maximum number
of zeros in D(c0) of the first non-vanishing coefficient Lk(c) in (7). Furthermore,
we know that the first non-vanishing PPM function of LF,γ(ε, z) depends only on
the free homotopy class [γz] of γz. See [10].

Now we will derive the relationship between the PPM functions Lk(z) and lk(z)
of LF,γ(ε, z) and LH,γ(ε, z), respectively.

From the definition of LF,γ(ε, c) it follows that

LF,γ(ε, z) = F (γ(ε,P (z))(1))− F (γ(ε,P (z))(0))

= P (H(γ(ε,P (z))(1)))− P (H(γ(ε,P (z))(0)))

= P ′(ψ(ε, z))(H(γ(ε,z)(1))−H(γ(ε,z)(0)))

= P ′(ψ(ε, z))(LH,γ(ε, z))

for an analytic function ψ(ε, z) which has the form

ψ(ε, z) = z + εψ1(z) + ε2ψ2(z) + · · · .
Hence P ′(ψ(ε, z)) can be written as

P ′(ψ(ε, z)) = P ′(z) + εψ̃1(z) + ε2ψ̃2(z) + · · · ,
whereby we obtain

LF,γ(ε, z) = εP ′(z)l1(z) + ε2
(
P ′(z)l2(z) + l1(z)ψ̃1(z)

)
+ · · · .

Thus, if Lk(z) is the first non-vanishing PPM function of LF,γ(ε, z) then

Lk(z) = P ′(z)lk(z), (10)

with lk(z) being the first PPM function of LH,γ(ε, z) that does not vanish identi-
cally. Hence, for determining the form of Lk(z) in terms of the perturbation of (30)
we will obtain a recursive formula for lk(z).

The Poincaré–Pontryagin formula says that the first coefficient in (9) is given by
the integral of ω1/P

′(H) along γz, and as P ′(H) is constant on γz it follows that

l1(z) =
1

P ′(z)

∫
[γz ]

ω1. (11)

To compute the first coefficient lk(z) in (9) that does not vanish identically with
k ≥ 2, we construct inductively a sequence of polynomial 1-forms by assuming that

• the polynomial H has only isolated critical points in C2 and that the fiber
Lz of H is connected for each z ∈ C.

The construction of the sequence is as follows.

• Let ω̃1 = ω1.
• If the 1-forms ω̃1, . . . , ω̃k−1 are already constructed and are analytically

relatively exact with respect to the Hamiltonian foliation {dH = 0}, then
from the Ilyashenko–Gavrilov theorem (Theorem 3) they are algebraically
relatively exact with respect to {dH = 0}: for i = 1, 2, . . . , k−1 there exist
polynomials Qi, qi ∈ C[x, y] such that ω̃i = dQi + qidH.
• We then define

ω̃k := (P ′)2k−2ωk +

k−1∑
i=1

(P ′)2(k−i−1) [P ′qi + (2i− 1)P ′′Qi]ωk−i, (12)

where P ′ = P ′(H) and P ′′ = P ′′(H).

The following two propositions will allow us to obtain the formula for lk(z), and
as a result the expression of Lk(z).
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Proposition 1. If ω̃k is the first non analytically relatively exact 1-form in the
sequence ω̃1, . . . , ω̃k−1, ω̃k constructed inductively by (12), then l1(z), . . . , lk−1(z)
vanish identically in D(z1), and

lk(z) =

∫
[γz ]

ω̃k
(P ′)2k−1

.

Proposition 2. Suppose k ≥ 2. If ω̃k is the first non analytically relatively exact
1-form in the sequence ω̃1, . . . , ω̃k−1, ω̃k constructed inductively by (12), then there
are polynomials q and Q with q = Q ≡ 0 if k = 2 such that

ω̃k
(P ′)2k−1

=
ωk1 + ωk2 + ωk3

(P ′)2k−2
+
Rk(−Q1)k−1

(k − 1)!
ω1

where

ωk1 = (P ′)2k−3ωk, ωk2 =

k−2∑
l=1

(P ′)2(k−l)−3 [P ′ql + (2l − 1)P ′′Ql]ωk−l, (13)

and

ωk3 =

(
P ′q + 2(k − 2)P ′′Q+

Rk−1(P ′)2k−3q1(−Q1)k−2

(k − 2)!

)
ω1 (14)

with R1 = 1/P ′ and Ri = R1R
′
i−1 for i ≥ 2.

The proof of the previous propositions and the next lemma will be given at the
end of the next section.

Lemma 1. Let P (z) be a polynomial of degree p+ 1. If we define R1(z) = 1/P ′(z)
and Ri(z) = R1(z)R′i−1(z) for i ≥ 2, then (P ′(z))2i−1Ri(z) is a polynomial of
degree (i− 1)(p− 1).

4. Proof of Theorem 1

We will prove Theorem 1 by assuming Propositions 1 and 2.

Proof of Theorem 1. By assumption H is a real polynomial transversal to infin-
ity and its complexification is a Morse polynomial, then from [15, Theorem 26.52]
it follows that we can consider the sequence ω̃1, . . . , ω̃k according to (12). More-
over, the polynomials q1, . . . , qk−1 and Q1, . . . , Qk−1 involved in the construction
of the sequence are real polynomials because H and ωi with i ≥ 1 are real objects.
Analogously, the polynomials q and Q in the definition of ωk3 (as in (14)) are real.

From (10) we know that Lk(z) = P ′(z)lk(z), and from Proposition 1 we have

lk(z) =

∫
γz

ω̃k
(P ′)2k−1

.

By assuming Proposition 2 it follows that

lk(z) =

∫
γz

ωk1 + ωk2 + ωk3

(P ′)2k−2
+

∫
γz

Rk
(−Q1)k−1

(k − 1)!
ω1,

and a simple computation shows that

Rk
(−Q1)k−1

(k − 1)!
ω1 = dQ̂k + (q̂k1 + q̂k2) dH, (15)

where

Q̂k = −Rk
(−Q1)k

(k)!
, q̂k1 = Rkq1

(−Q1)k−1

(k − 1)!
, and q̂k2 = −R′k

(−Q1)k

(k)!
. (16)

As a result, ∫
γz

Rk
(−Q1)k−1

(k − 1)!
ω1 ≡ 0. (17)
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Therefore,

Lk(z) = P ′(z)

∫
γz

ωk1 + ωk2 + ωk3

(P ′)2k−2
=

∫
γz

ωk1 + ωk2 + ωk3

(P ′)2k−3
,

where ωk1, ωk2, and ωk3 are as in (13) and (14), which are precisely the expressions
given in the statement of the theorem. �

Proof of Proposition 1. The assertion is true for k = 1 because of the Poincaré–
Pontryagin formula (11). To complete the proof we will proceed by induction on k.
We assume that the theorem is true for k − 1, and we will prove it for k.

By hypothesis, ω̃1, . . . , ω̃k−1 are analytically relatively exact 1-forms with respect
to the foliation {dH = 0}. Hence by the Ilyashenko–Gavrilov theorem there are
polynomials Qi, qi ∈ C[x, y] such that ω̃i = dQi + qidH for i = 1, 2, . . . , k − 1.

A straightforward computation shows that

ω̃i
(P ′)2i−1

= dQ̃i + q̃idH, Q̃i =
Qi

(P ′)2i−1
, q̃i =

qi
(P ′)2i−1

+
(2i− 1)P ′′Qi

(P ′)2i
. (18)

Following [5], we multiply (4ε) by
(
1 + εq̃1 + · · ·+ εk−1q̃k−1

)
. So, we have

0 =
(
1 + εq̃1 + · · ·+ εk−1q̃k−1

) (
dH − εω1

P ′
− ε2ω2

P ′
− · · ·

)
. (19)

By expanding and reordering terms we get

0 = dH − ε
(ω1

P ′
− q̃1dH

)
− ε2

(
ω2

P ′
+
q̃1ω1

P ′
− q̃2dH

)
− · · · − εk−1

(
ωk−1

P ′
+

k−2∑
l=1

q̃lωk−1−l

P ′
− q̃k−1dH

)
− εk

(
ωk
P ′

+

k−1∑
l=1

q̃lωk−l
P ′

)
− · · · .

Now by using the expression of q̃i given in (18) we obtain

ωi
P ′

+

i−1∑
l=1

q̃lωi−l
P ′

=
ωi
P ′

+

i−1∑
l=1

(
ql

(P ′)2l−1
+

(2l − 1)P ′′Ql
(P ′)2l

)
ωi−l
P ′

=
ωi
P ′

+

i−1∑
l=1

[P ′ql + (2l − 1)P ′′Ql]
ωi−l

(P ′)2l+1

=
ωi
P ′

+

∑i−1
l=1(P ′)2(i−l−1) [P ′ql + (2l − 1)P ′′Ql]ωi−l

(P ′)2i−1

=
(P ′)2i−2ωi +

∑i−1
l=1(P ′)2(i−l−1) [P ′ql + (2l − 1)P ′′Ql]ωi−l

(P ′)2i−1
.

We note that the numerator of the right-hand side of the last expression is precisely
the definition of ω̃i. Clearly (19) can be written then as

0 = dH−ε
(
ω̃1

P ′
− q̃1dH

)
−· · ·−εk−1

(
ω̃k−1

(P ′)2k−3
− q̃k−1dH

)
−εk

(
ω̃k

(P ′)2k−1

)
−· · ·

and as dQ̃i = ω̃i/(P
′)2i−1 − q̃idH because of (18) we see that

0 = dH − ε dQ̃1 − · · · − εk−1 dQ̃k−1 − εk
(

ω̃k
(P ′)2k−1

)
− · · · .
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By integrating along the curve solution γ(ε,z) of (4ε) we get

0 =

∫
γ(ε,z)

dH − εk
∫
γ(ε,z)

ω̃k
(P ′)2k−1

−
k−1∑
i=1

εi
∫
γ(ε,z)

dQ̃i +O
(
εk+1

)

= LH,γ(ε, z)− εk
∫
γ(ε,z)

ω̃k
(P ′)2k−1

−
k−1∑
i=1

εi
∫
γ(ε,z)

dQ̃i −O
(
εk+1

)
.

In addition,
∫
γ(ε,z)

dQ̃i = εkQ̂i(ε, z). Hence

0 = LH,γ(ε, z)− εk
∫
γ(ε,z)

ω̃k
(P ′)2k−1

−O
(
εk+1

)

= εk
(
lk(z)−

∫
γ(ε,z)

ω̃k
(P ′)2k−1

)
−O

(
εk+1

)
.

Finally, by multiplying by 1/εk, taking limε→0, and using Remark 1, the result
follows because the integral depends only on the free homotopy class [γz] of γz =
γ(0, z). �

Proof of Proposition 2. We proceed by induction on k. The base case is k = 2; in
such a case, from (13) and (14) it follows that

ω21 = P ′ω2, ω22 = 0, and ω23 = R1P
′q1ω1 = q1ω1

because R1P
′ = (1/P ′)P ′ = 1.

On the other hand, ω̃1 = dQ1 + q1dH for some polynomials Q1 and q1. Then

ω̃2 = (P ′)2ω2 + [P ′q1 + P ′′Q1]ω1 = P ′ (P ′ω2 + q1ω1) + P ′′Q1ω1.

Thus, as R2 = R1R
′
1 = (1/P ′)(1/P ′)′ = −P ′′/(P ′)3 we obtain

ω̃2

(P ′)3
=
P ′ω2 + q1ω1

(P ′)2
+
P ′′Q1ω1

(P ′)3
=
ω21 + ω22 + ω23

(P ′)2
−R2Q1ω1.

Hence, the proposition is true for k = 2.
Now, we assume that the result is true for k − 1, and we will prove it for k.
From (12) we know that

ω̃k = (P ′)2k−2ωk +

k−1∑
l=1

(P ′)2(k−l−1) [P ′ql + (2l − 1)P ′′Ql]ωk−l.

By using (13) it is easy to see that we can rewrite ω̃k as

ω̃k = P ′ωk1 + P ′ωk2 + (P ′qk−1 + (2k − 3)P ′′Qk−1)ω1.

If we prove that

(P ′qk−1 + (2k − 3)P ′′Qk−1)ω1 = P ′ωk3 + (P ′)2k−2R′k−1

(−Q1)k−1

(k − 1)!
ω1, (20)

then
ω̃k−1

(P ′)2k−1
=
ωk1 + ωk2 + ωk3

(P ′)2k−2
+
R′k−1

P ′
(−Q1)k−1

(k − 1)!
ω1.

We then obtain

ω̃k−1

(P ′)2k−1
=
ωk1 + ωk2 + ωk3

(P ′)2k−2
+Rk

(−Q1)k−1

(k − 1)!
ω1,

which proves that the result is true for k. Therefore, to complete the proof we must
show that (20) holds. Next we will prove it.
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Since ω̃k is the first non analytically relatively exact 1-form with respect to the
foliation {dH = 0},∫

[δz ]

ω̃k−1 = 0 for each cycle [δz] ∈ H1(H−1(z),Z).

Moreover, from the induction hypothesis we have

ω̃k−1

(P ′)2k−3
=
ω(k−1)1 + ω(k−1)2 + ω(k−1)3

(P ′)2k−4
+Rk−1

(−Q1)k−2

(k − 2)!
ω1;

it then follows that∫
[δz ]

ω̃k−1 = P ′(z)

∫
[γz ]

ω(k−1)1 + ω(k−1)2 + ω(k−1)3

+ (P ′(z))2k−3

∫
[δz ]

Rk−1
(−Q1)k−2

(k − 2)!
ω1 = 0.

In (17) the second integral in the right-hand side of the previous equation was
proven to vanish identically. Therefore,∫

[δz ]

ω(k−1)1 + ω(k−1)2 + ω(k−1)3 = 0 for each cycle [δz] ∈ H1(H−1(z),Z),

in other words, ω(k−1)1 + ω(k−1)2 + ω(k−1)3 is analytically relatively exact with
respect to the foliation {dH = 0}. The Ilyashenko-Gavrilov Theorem then implies
that

ω(k−1)1 + ω(k−1)2 + ω(k−1)3 = dQ+ qdH,

whence

ω(k−1)1 + ω(k−1)2 + ω(k−1)3

(P ′)2k−4
= d

(
Q

(P ′)2k−4

)
+

(
q

(P ′)2k−4
+

(2k − 4)QP ′′

(P ′)2k−3

)
dH,

and by using (15) and (16) we get

ω̃k−1

(P ′)2k−3
= d

(
Q

(P ′)2k−4
+ Q̂k−1

)
+

(
q

(P ′)2k−4
+

(2k − 4)QP ′′

(P ′)2k−3
+ q̂(k−1)1 + q̂(k−1)2

)
dH.

On the other hand, from (18) we know that

ω̃k−1

(P ′)2k−3
= d

(
Qk−1

(P ′)2k−3

)
+

(
qk−1

(P ′)2k−3
+

(2k − 3)P ′′Qk−1

(P ′)2k−2

)
dH.

By comparing the right-hand sides of the two previous equations, we then obtain
after a straightforward computation that

Qk−1 = P ′Q−Rk−1(P ′)2k−3 (−Q1)k−1

(k − 1)!
(21)

and

qk−1 = P ′q − P ′′Q+ (P ′)2k−3Rk−1q1
(−Q1)k−2

(k − 2)!

+ (P ′)2k−3

(
R′k−1 + (2k − 3)Rk−1

P ′′

P ′

)
(−Q1)k−1

(k − 1)!
.

Moreover, as

(P ′)2k−3

(
R′k−1 + (2k − 3)Rk−1

P ′′

P ′

)
=
(
(P ′)2k−3Rk−1

)′
,

then

qk−1 = P ′q−P ′′Q+
(P ′)2k−3Rk−1q1(−Q1)k−2

(k − 2)!
+

(
(P ′)2k−3Rk−1

)′
(−Q1)k−1

(k − 1)!
. (22)
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Therefore,

P ′qk−1 + (2k − 3)P ′′Qk−1 = P ′
(
P ′qk−1 −Qk−1P

′′ +
(P ′)2k−3Rk−1q1(−Q1)k−2

(k − 2)!

)
+ (P ′)2k−2

(
R′k−1 + (2k − 3)Rk−1

P ′′

P ′

)
(−Q1)k−1

(k − 1)!

+ (2k − 3)P ′′
(
P ′Qk−1 −Rk−1(P ′)2k−3 (−Q1)k−1

(k − 1)!

)
,

which reduces to

P ′qk−1 + (2k − 3)P ′′Qk−1 = P ′
(
P ′qk−1 + (2k − 4)Qk−1P

′′

+
(P ′)2k−3Rk−1q1(−Q1)k−2

(k − 2)!

)
+ (P ′)2k−2R′k−1

(−Q1)k−1

(k − 1)!
.

Thus, by using (14) we get (20). �

Proof of Lemma 1. Let P ′ = P ′(z) and Ri = Ri(z). Since P ′R1 = P ′(1/P ′) = 1,
the result holds for k = 1.

Now, we assume that the result is true for k−1, and we will prove it for k. By the
induction hypothesis, (P ′)2(k−1)−1Rk−1 = (P ′)2k−3Rk−1 is a polynomial of degree

(k − 2)(p− 1), then its derivative
(
(P ′)2k−3Rk−1

)′
is of degree (k − 2)(p− 1)− 1.

Hence, the degree of P ′
(
(P ′)2k−3Rk−1

)′
is (k − 2)(p− 1)− 1 + p = (k − 1)(p− 1).

As

P ′
(
(P ′)2k−3Rk−1

)′
= P ′

(
(P ′)2k−3R′k−1 + (2k − 3)Rk−1(P ′)2k−4P ′′

)
= (P ′)2k−1Rk + (2k − 3)Rk−1(P ′)2k−3P ′′

and Rk−1(P ′)2k−3P ′′ is a polynomial of degree (k−2)(p−1)+(p−1) = (k−1)(p−1),
it follows that (P ′)2k−1Rk is a polynomial of degree (k − 1)(p− 1). �

5. PPM functions of (3ε) with H = (x2 + y2)/2

In this section H will denote the polynomial H(x, y) = (x2 + y2)/2 : C2 → C.
This polynomial has the following properties: the origin of C2 is the unique singular
point of H, the fiber L0 = H−1(0) is the connected union of the two complex lines
{x−

√
−1y = 0} and {x+

√
−1y = 0}, and for z 6= 0 the map

ϕz : C \ {0} → Lz, t 7→

(
t2 + z√

2t
,

√
−1(z − t2)√

2t

)
(23)

is a parametrization of Lz. Thus, H satisfies the hypothesis of the Ilyashenko-
Gavrilov theorem (Theorem 3). Hence, we can consider the sequence of polynomial
1-forms ω̃1, ω̃2, . . . , constructed inductively in (12) with H = (x2+y2)/2. Moreover,
if we assume that ω̃k with k ≥ 2 is the first non analytically relatively exact 1-form
in the sequence ω̃1, ω̃2, . . . , ω̃k, then from Proposition 2 it follows that

ω̃k = P ′ (ωk1 + ωk2 + ωk3) + (P ′)2k−1Rk
(−Q1)k−1

(k − 1)!
ω1,

where

ωk1 = (P ′)2k−3ωk, ωk2 =

k−2∑
l=1

(P ′)2(k−l)−3 [P ′ql + (2l − 1)P ′′Ql]ωk−l,
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and

ωk3 =

(
P ′q + 2(k − 2)P ′′Q+Rk−1(P ′)2k−3q1

(−Q1)k−2

(k − 2)!

)
ω1

with R1 = 1/P ′, Ri = R1R
′
i−1 for i ≥ 2, and q ≡ Q ≡ 0 if k = 2. Moreover, the

polynomials q1, . . . , qk−1 and Q1, . . . , Qk−1 satisfy

ω̃1 = dQ1 + q1dH, ω̃2 = dQ2 + q2dH, . . . , ω̃k−1 = dQk−1 + qk−1dH.

Next, we will state a result about the degree of ω̃i for i = 1, 2, . . . , k and an-
other about the degree of ωk1, ωk2, and ωk3, which will be useful in the proof of
Theorem 2. We will prove them later on.

Proposition 3. If degωi ≤ n for i ≥ 1, degP = p + 1, and ω̃k with k ≥ 1 is the
first non analytically relatively exact 1-form in the sequence ω̃1, ω̃2, . . . , ω̃k, then for
i = 1, 2, . . . , k we have

deg ω̃i ≤

{
4p(i− 1) + n, if n ≤ 2p+ 1;

2p(i− 1) + i(n− 1) + 1, otherwise.

Proposition 4. If degωi ≤ n for i ≥ 1, degP = p + 1, and ω̃k with k ≥ 2 is the
first non analytically relatively exact 1-form in the sequence ω̃1, ω̃2, . . . , ω̃k, then

(a) degωk1 = 2p(2k − 3) + n

(b) degωk2 ≤

{
4pk − 8p+ 2n− 1, if n ≤ 2p+ 1;

(k − 1)(2p+ n− 1) + 1, if n > 2p+ 1.

(c) degωk3 ≤

{
4p(k − 2) + 2n− 1, if n ≤ 2p+ 1;

(k − 2)(2p+ n− 1) + 2n− 1, if n > 2p+ 1.

In the study of PPM functions related to (3ε), as well as in the proof of the pre-
vious two propositions, is essential the following result, which give us the structure
of a polynomial 1-form with respect to the Hamiltonian H.

Proposition 5. [11] Each polynomial 1-form ω of degree n can be written as

ω = dQ+ qdH + q̃(H)ydx,

where Q and q are polynomials of degree at most n+ 1 and n− 1, respectively, and
q̃ is a polynomial of degree at most

[
n−1

2

]
.

We will provide a proof of Proposition 5 at the end of this section, which is
different from the one given in [11].

On the other hand, since H is transversal to infinity and it is a Morse polynomial,
the first non vanishing PPM function Lk(z) of the displacement function associated
with (3ε) is an Abelian integral because of Theorem 1. This property implies that
Lk(z) depends only on the homological cycles of Lz. By abusing of the notation
we will denote by [γz] the homological class of a loop γz in Lz.

As Lz is homeomorphic to C \ {0}, then it has only one nontrivial homological
cycle. The homological cycle [γz] with γz = ϕz(α), where α is the unit circle in
C \ {0} is the generator of H1(Lz,Z).

By assuming Propositions (3), (4), and (5) we will now prove the next theorem,
which gives the maximum number of isolated zeros of the first non-vanishing PPM
function associated with (3ε).

Theorem 4. Let n = sup{deg(ωi) | i ≥ 1} and p + 1 = degP (z). If Lk(c) is the
first non-vanishing PPM function of the displacement function associated with (3ε),
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then an upper bound for the maximum number of isolated zeros in (C\{0})\Z(P ′),
counting multiplicities, of Lk(c) is

Zk(n, p) =


0, if n = 1;[
n−1

2

]
, if k = 1;

p(2k − 3) +
[
n−1

2

]
, if k ≥ 2 and 2 ≤ n ≤ 2p+ 1;

p(k − 2) +
[
k(n−1)

2

]
, otherwise.

Proof. Firstly we assume that k = 1. From (10) and (11) we then obtain the
Poincaré–Pontryagin formula:

L1(z) =

∫
[γz ]

ω1.

From Proposition 5 it follows that ω1 = dQ1+q1dH+q̃1(H)ydx with q̃1 a univariate
polynomial of degree at most [(degω1 − 1)/2], where degω1 is the degree of ω1.
Thus,

L1(z) =

∫
[γz ]

dQ1 + q1dH + q̃1(H)ydx = q̃1(z)

∫
[γz ]

ydx.

By using the parametrization ϕz(t) given by (23) we have∫
[γz ]

ydx =

∫
γz

ydx =

∫
α

ϕ∗(ydx) =

∫
α

√
−1(z − t2)√

2t

√
2(t2 − z)

2t2
dt = −2πz.

This implies that the degree of q̃1 is an upper bound for the maximum number of
isolated zeros, counting multiplicities, of L1(z) in C \ {0}.

By assumption, degω1 ≤ n. Thus, L1(z) has at most [(n− 1)/2] isolated zeros,
counting multiplicities, in C \ {0}. Therefore the result is true for k = 1.

We now assume k ≥ 2. From Theorem 1 we know that

Lk(z) =

∫
γz

ωk1 + ωk2 + ωk3

(P ′(H))2k−3
=

1

(P ′(z))2k−3

∫
γz

ωk1 + ωk2 + ωk3,

where ωk1, ωk2, and ωk3 are as in (13) and (14). Furthermore, as

ωk := ωk1 + ωk2 + ωk3 = dQk + qkdH + q̃k(H)ydx

because of Proposition 5, we then have

Lk(z) =
2πz

(P ′(z))2k−3
q̃k(z).

Proposition 5 says that q̃k is a polynomial of degree at most [(degωk − 1)/2].
Therefore, to complete the proof we must prove that

degωk ≤

{
2p(2k − 3) + n, if n ≤ 2p+ 1;

2p(k − 2) + k(n− 1) + 1, if n > 2p+ 1.

Next we will prove this assertion.
We have degωk = max{degωk1,degωk2,degωk3}. Thus, from Proposition 4 it

follows that if n ≤ 2p+ 1, then

degωk = max{2p(2k − 3) + n, 4pk − 8p+ 2n− 1, 4p(k − 2) + 2n− 1},
and if n > 2p+ 1, then

degωk = max{2p(2k− 3) +n, (k− 1)(2p+n− 1) + 1, (k− 2)(2p+n− 1) + 2n− 1}.
On the other hand, easy computations show that if n ≤ 2p+ 1, then

2p(2k − 3) + n ≥ 4pk − 8p+ 2n− 1

and
2p(2k − 3) + n ≥ 4pk − 8p+ 2n− 1;
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16 S. REBOLLO-PERDOMO

and, if n > 2p+ 1, then

2p(2k − 3) + n ≤ (k − 2)(2p+ n− 1) + 2n− 1

and
(k − 1)(2p+ n− 1) + 1 ≤ (k − 2)(2p+ n− 1) + 2n− 1.

Therefore,

degωk ≤

{
2p(2k − 3) + n, if n ≤ 2p+ 1;

(k − 2)(2p+ n− 1) + 2n− 1, if n > 2p+ 1.

Finally, since (k− 2)(2p+n− 1) + 2n− 1 = 2p(k− 2) + k(n− 1) + 1, we obtain the
desired result. �

Proof of Proposition 3. The result holds for k = 1 because deg ω̃1 = degω1 ≤ n.
We now assume that the result is true for i ≤ k − 1, and we will prove it for k.

We will split the proof in two parts: n ≤ 2p+ 1 and n > 2p+ 1.
Suppose n ≤ 2p + 1. Since ω̃1, ω̃2, . . . , ω̃k−1 are analytically relatively exact

polynomial 1-forms with respect to {dH = 0}, there are polynomials q1, . . . , qk−1

and Q1, . . . , Qk−1 such that

ω̃1 = dQ1 + q1dH, ω̃2 = dQ2 + q2dH, . . . , ω̃k−1 = dQk−1 + qk−1dH.

By induction hypothesis deg ω̃i ≤ 4p(i − 1) + n for i = 1, 2, . . . , k − 1, then from
Proposition 5 it follows that

deg qi ≤ 4p(i− 1) + n− 1 and degQi ≤ 4p(i− 1) + n+ 1.

On the other hand, by definition

ω̃k = (P ′)2k−2ωk +

k−1∑
l=1

(P ′)2(k−l−1) [P ′ql + (2l − 1)P ′′Ql]ωk−l.

As degP = p+ 1, P ′ = P ′(H), and P ′′ = P ′′(H) , then

deg(P ′)2k−2ωk ≤ 2p(2k − 2) + n = 4pk − 4p+ n,

degP ′ql ≤ 2p+ 4p(l − 1) + n− 1 = 4pl − 2p+ n− 1,

and
degP ′′Ql ≤ 2(p− 1) + 4p(l − 1) + n+ 1 = 4pl − 2p+ n− 1,

whence a simple computation shows that

deg (P ′)2(k−l−1) [P ′ql + (2l − 1)P ′′Ql]ωk−l ≤ 4pk − 10p+ 2n− 1.

Hence
deg ω̃k ≤ max{4p(k − 2) + n, 4pk − 10p+ 2n− 1}.

Since 4p(k − 2) + n− (4pk − 10p+ 2n− 1) = 2p− n+ 1 and 2p− n+ 1 ≥ 0 by
assumption, 4p(k − 2) + n ≥ 4pk − 10p+ 2n− 1; therefore,

deg ω̃k ≤ 4p(k − 2) + n.

The proof in the case n > 2p+ 1 is analogous. �

Proof of Proposition 4. The statement (a) follows easily.
For proving statements (b) and (c) we will proceed by induction on k. If k = 2,

then ω22 = 0 and ω23 = R1P
′q1ω1 = q1ω1. From Proposition 3 we get deg ω̃1 ≤ n.

Thus, deg q1 ≤ n− 1 because of Proposition 5, whence

degω22 = 0 and degω23 = 2n− 1

since degω1 ≤ n. Hence we have proved the assertion for k = 2.
Suppose now that statements (b) and (c) are true for k − 1, and we will prove

them for k.
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From Proposition 3 it follows that for i = 1, . . . , k − 1 we have

deg ω̃i ≤

{
4p(i− 1) + n, if n ≤ 2p+ 1;

2p(i− 1) + i(n− 1) + 1, if n > 2p+ 1.

Thus, by Proposition 5 we conclude that for i = 1, . . . , k − 1 either

deg qi ≤ 4p(i− 1) + n− 1 and degQi ≤ 4p(i− 1) + n+ 1, if n ≤ 2p+ 1,

or

deg qi ≤ 2p(i−1)+i(n−1) and degQi ≤ 2p(i−1)+i(n−1)+2, if n > 2p+ 1.

Hence for l = 1, . . . , k − 2 we have either

degP ′ql ≤ 4pl − 2p+ n− 1 and degP ′′Ql ≤ 4pl − 2p+ n− 1, if n ≤ 2p+ 1,

or

degP ′ql ≤ 2pl + l(n− 1) and degP ′′Ql ≤ 2pl + l(n− 1), if n > 2p+ 1.

We the obtain

deg [P ′ql + (2l − 1)P ′′Ql]ωi−l ≤

{
(4pl − 2p+ n− 1) + n, if n ≤ 2p+ 1;

2pl + l(n− 1) + n, if n > 2p+ 1.

Therefore, the degree of (P ′)2(k−l)−3 [P ′ql + (2l − 1)P ′′Ql]ωk−l is at most either
4pk − 8p+ 2n− 1, if n ≤ 2p+ 1, or 4pk − 6p+ l(n− 2p− 1) + n, if n > 2p+ 1. In
addition, by using that 1 ≤ l ≤ k − 2 we get

4pk − 6p+ l(n− 2p− 1) + n ≤ 4pk − 6p+ (k − 2)(n− 2p− 1) + n

= (k − 1)(2p+ n− 1) + 1.

This implies that

deg (P ′)2(k−l)−3 [P ′ql + (2l − 1)P ′′Ql]ωk−l

is at most 4pk − 8p+ 2n− 1, if n ≤ 2p+ 1, or (k − 1)(2p+ n− 1)+, if n > 2p+ 1.
Hence, the statement (b) follows because

deg ωk2 = max
1≤l≤k−2

{
deg (P ′)2(k−l)−3 [P ′ql + (2l − 1)P ′′Ql]ωk−l

}
.

Now, we will give the proof of statement (c). First, we recall that

ωk3 =

(
P ′q + 2(k − 2)P ′′Q+Rk−1(P ′)2k−3q1

(−Q1)k−2

(k − 2)!

)
ω1.

Thus,

deg ωk3 ≤ max
{

degP ′q,degP ′′Q,degRk−1(P ′)2k−3q1(−Q1)k−2
}

+ n.

On the other hand,

degRk−1(P ′)2k−3q1(−Q1)k−2 ≤ degRk−1(P ′)2k−3 + (n− 1) + (k − 2)(n+ 1)

because deg q1 ≤ n − 1 and degQ1 ≤ n + 1. Proving the following inequalities is
then sufficient for finishing the proof:

degRk−1(P ′)2k−3 ≤

{
(4p− n− 1)(k − 2), if n ≤ 2p+ 1;

2(k − 2)(p− 1), if n > 2p+ 1;
(24)

degP ′′Q ≤

{
4p(k − 2) + n− 1, if n ≤ 2p+ 1;

(k − 2)(2p+ n− 1) + n− 1, if n > 2p+ 1;
(25)

degP ′q ≤

{
4p(k − 2) + n− 1, if n ≤ 2p+ 1;

(k − 2)(2p+ n− 1) + n− 1, if n > 2p+ 1.
(26)
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The rest of the proof is devoted to proving (24), (25), and (26).
By Lemma 1 we have

deg Rk−1(P ′)2k−3 ≤ 2(k − 2)(p− 1); (27)

moreover, for n ≤ 2p+ 1 we have 2(p− 1) ≤ 4p− n− 1, which implies (24).
We know that degP ′′ = 2p− 2, then for proving (25) we will prove that

degQ ≤

{
4p(k − 2) + n+ 1− 2p, if n ≤ 2p+ 1;

(k − 2)(2p+ n− 1) + n+ 1− 2p, if n > 2p+ 1.
(28)

The polynomial Q satisfies (21), or equivalently,

P ′Q = Qk−1 +
Rk−1(P ′)2k−3(−Q1)k−1

(k − 1)!
.

From (27) and a simple calculation we obtain

degRk−1(P ′)2k−3(−Q1)k−1 ≤ (k − 2)(2p+ n− 1) + n+ 1;

in addition, we know that

degQk−1 ≤

{
4p(k − 2) + n+ 1, if n ≤ 2p+ 1;

(k − 2)(2p+ n− 1) + n+ 1, if n > 2p+ 1.

Moreover, if n ≤ 2p+ 1, then

4p(k − 2) + n+ 1 ≥ (k − 2)(2p+ n− 1) + n+ 1.

As a result,

degP ′Q ≤

{
4p(k − 2) + n+ 1, if n ≤ 2p+ 1;

(k − 2)(2p+ n− 1) + n+ 1, if n > 2p+ 1,

whence we can deduce (28).
For proving (26) we can proceed analogously to the previous case.
The polynomial q satisfies (22), or equivalently,

P ′q = qk−1 + P ′′Q− Rk−1(P ′)2k−3q1(−Q1)k−2

(k − 2)!
−
[
(P ′)2k−3Rk−1

]′
(−Q1)k−1

(k − 1)!
.

On the other hand, we know that

deg qk−1 ≤

{
4p(k − 2) + n− 1, if n ≤ 2p+ 1;

(k − 2)(2p+ n− 1) + n− 1, if n > 2p+ 1.

In addition, we have (25) and by using (27) it is easy to see that

degRk−1(P ′)2k−3q1(−Q1)k−2 ≤ (k − 2)(2p+ n− 1) + n− 1

and

deg
[
(P ′)2k−3Rk−1

]′
(−Q1)k−1 ≤ (k − 2)(2p+ n− 1) + n− 1.

Therefore, we it is clear that degP ′q ≤ (k − 2)(2p+ n− 1) + n− 1, if n > 2p+ 1;
furthermore, if n ≤ 2p+ 1, then

degP ′q ≤ max{4p(k − 2) + n− 1, (k − 2)(2p+ n− 1) + n− 1}.

Finally, (26) holds because for n ≤ 2p+ 1 we have

4p(k − 2) + n− 1 ≥ (k − 2)(2p+ n− 1) + n− 1.

�
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Proof of Proposition 5. Let Pn be the quotient space of Ωn modulo En + {qdH},
where Ωn the vector space of complex polynomial 1-forms of degree at most n, En
is the subspace of exact polynomial 1-forms of degree at most n, and {qdH} =
{qdH ∈ Ωn | q ∈ C[x, y]} denotes the subspace in Ωn generated by dH.

The set
{
xiyjdx, xiyjdy | i+ j = 0, 1, ..., n

}
is a basis of Ωn. En is isomorphic

to the set {F ∈ C[x, y] | 1 ≤ degF ≤ n + 1} and {qdH} is isomorphic to the set
{q ∈ C[x, y] | 0 ≤ deg q ≤ n− 1}. Thus, we have

dim Ωn = (n+1)(n+2), dimEn =
(n+ 2)(n+ 3)

2
−1, and dim{qdH} =

n(n+ 1)

2
.

Hence, the dimension of the quotient space Pn is

(n+ 1)(n+ 2)− (n+ 2)(n+ 3)

2
+ 1− n(n+ 1)

2
+ dimEn ∩ {qdH},

which after a simple computation reduces to dimEn ∩ {qdH}. In addition, from
Proposition 6 below it follows that dimEn ∩ {qdH} = [(n− 1)/2] + 1. Therefore,
dim Pn = [(n− 1)/2] + 1.

To end the proof we will show that the set Bn :=
{
Hsydx

∣∣ s = 0, 1, ..., [(n− 1)/2]
}

is a basis for the quotient space Pn. For that, seeing that the elements of Bn are
non-zero linearly independent elements in Pn is sufficient.

Firstly, that Bn ⊂ Ωn is clear, and since H is constant along γz,∫
[γz ]

Hsydx = zs

(∫
[γz ]

ydx

)
= 2π zs+1.

Hence, Hsydx for s = 0, 1, ..., [(n− 1)/2] is non-zero in Pn, and all them are linearly
independent. �

Proposition 6. If f, g ∈ C[x, y] are two polynomials, then gdf = dG for a polyno-
mial G if and only if g = q̃ ◦ f for a univariate polynomial q̃.

Proof. This is consequence of the Stein factorization theorem [19]. �

6. Proof of Theorem 2

In this section we will consider (3ε) with H(x, y) = (x2 + y2)/2 : R2 → R. The
results of previous section can then be restricted to this real case. Moreover, now
γz = H−1(z) for z ∈ (0,∞) is a circle, centering at the origin of R2 of radius

√
2z.

Proof of Theorem 2. The first part of the theorem is a corollary of Theorem 4.
Hence, proving the second part remains: statements (a) and (b).

Proof of (a). The assertion follows easily for k = 1. Indeed, considering in
(3ε) the polynomial P ′(z) = zp and the 1-form ω1 = α(H)ydx is sufficient, where

α(H) =
∏Z1(n,p)
i=1 (H − zi) with z1, z2, . . . , zZ1(n,p) a sequence of points in (0,∞).

For k = 2 we will split the proof in two cases: n ≤ 2p+ 1 and n > 2p+ 1.
Case 1. Assume n ≤ 2p+ 1. In (3ε) we take

P ′(z) =

p∏
i=1

(z−i), ω1 = d(ax)+q1dH with q1 = y, and ω2 =

[n−1
2 ]∏
i=1

(H − (p+ i)) ydx.

Thus, L1(z) ≡ 0, and from Theorem 1 we have

L2(z) =
1

P ′(z)

∫
γz

ω21 + ω22 + ω23 =
1

P ′(z)

∫
γz

P ′(H)ω2 + q1ω1.
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By using the expressions of P ′, ω1, and ω2 we obtain

L2(z) =
1

P ′(z)

p+[n−1
2 ]∏

i=1

(z − i) + a

∫
γz

ydx =
−2πz

P ′(z)

p+[n−1
2 ]∏

i=1

(z − i) + a

 .

Hence, for a small enough, L2(z) has p+
[
n−1

2

]
simple zeros in (0,∞) \ Z(P ′).

Case 2. Assume n > 2p + 1. In (3ε) we take the polynomial P ′(z) = (z + 1)p,
the 1-form ω1 = dQ1 + q1dH with q1 = yxn−2, and

Q1 =



m∑
i=1

a2i+1

2i+ 1
x2i+1, if n = 2m;

m+1∑
i=1

a2i

2i
x2i, if n = 2m+ 1.

(24)

Moreover, the 1-form ω2 = α(H) ydx with α(H) =
∑[n−1

2 ]
i=0 diH

i. Thus, L1(z) ≡ 0
and

q1ω1 = q1dQ1 + q2
1dH =



m∑
i=1

a2i+1x
2(m+i−1) ydx+ q2

1dH, if n = 2m;

m+1∑
i=1

a2ix
2(m+i−1) ydx+ q2

1dH, if n = 2m+ 1.

A simple computation gives∫
γz

x2jydx = −2πAjz
j+1 with Aj =

1

2j+1(2j + 1)

(
2(j + 1)

j + 1

)
. (25)

Hence, we get that for n = 2m

L2(z) = − 2πz

P ′(z)

(
(z + 1)p

m−1∑
i=0

diz
i +

m∑
i=1

a2i+1Am+i−1z
m+i−1

)
,

and for n = 2m+ 1

L2(z) = − 2πz

P ′(z)

(
(z + 1)p

m∑
i=0

diz
i +

m+1∑
i=1

a2iAm+i−1z
m+i−1

)
.

By using that

(z + 1)p
r∑
i=0

diz
i =

r∑
i=0

min{i,p}∑
µ=0

(
p

µ

)
di−µ

 zi +

r+p∑
i=r+1

βiz
i,

it follows that in both cases n = 2m and n = 2m + 1 the second function L2(z)
takes the form

L2(z) = − 2πz

P ′(z)
Gn−1(z),

where Gn−1 is a polynomial of degree Z2(n, p) = n− 1 with n independent coeffi-
cients, which implies that L2(z) can have Z2(n, p) simple zeros in (0,∞) \ Z(P ′).

Proof of (b). Again, we will consider two cases: n ≤ 2p+ 1 and n > 2p+ 1.
Case 1. Assume n ≤ 2p + 1. For each p ∈ {1, 2} and each 2 ≤ n ≤ 2p + 1 we

consider in (3ε) the polynomial P ′(z) = P ′p(z) =
∏2p
i=p+1(z− i) and the polynomial

1-forms ω1 = dQ1p + q1dH, where q1 = y and Q1p = y
(
ax+ P ′′p (y2)

)
, ω2 = d(bx),

and ω3 = (yxn−1 + α(H)) ydx with α(H) =
∏m
i=1 (H − i) with m =

[
n−1

2

]
.

By construction n = max1≤i≤3{degωi} and L1(z) ≡ 0. Moreover,

P ′(H)ω2 + q1ω1 = dQ+ qdH,
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where Q = P ′(H)bx+q1Q1p+
∫ x

0
as2 ds−

∫ y
0
sP ′′p (s2) ds and q = q2

1−ax−P ′′(H)bx,
which implies that L2(z) ≡ 0. From Theorem 1 we then have

L3(z) =
1

(P ′(z))
3

∫
γz

ω31 + ω32 + ω33

where ω31 = (P ′(H))
3
ω3, ω32 = P ′(H) [P ′(H)q1 + P ′′(H)Q1p]ω2, and ω33 = Tω1

with T =
[
P ′(H)q + 2P ′′(H)Q+ P ′′(H)q1Q1p

]
.

A long but easy calculation shows that

ω32 + ω33 = b (P ′(H))
2
ydx+ P ′(H)P ′′(H)d(bxQ1p) + P ′(H)(q2

1 − ax)dQ1p

+ P ′′(H)

(
3q1Q1p + 2

∫ x

0

as2 ds− 2

∫ y

0

sP ′′p (s2) ds

)
dQ1p + Tq1 dH.

In addition, a simple computation gives∫
γz

(q2
1 − ax)dQ1p = −2πza(pz + P ′′p (z))

and ∫
γz

(
3q1Q1p + 2

∫ x

0

as2 ds− 2

∫ y

0

sP ′′p (s2) ds

)
dQ1p = 2πz

(az
2

)
P ′′p (z),

whence∫
γz

ω32 + ω33 = 2πz
(
b
(
P ′p(z)

)2 − aP ′p(z) (pz + P ′′p (z)
)

+
(
P ′′p (z)

)2 (az
2

))
.

Therefore,

L3(z) =
2πz(
P ′p(z)

)3 [(P ′p(z))3 α(z) + b
(
P ′p(z)

)2 − a

2
G(z)

]
,

where G(z) =
(

2P ′p(z)
(
pz + P ′′p (z)

)
− z

(
P ′′p (z)

)2)
. Moreover,

G(z) =

{
2z2 − 3z − 4, if p = 1;

4z3 − 42z2 + 145z − 168, if p = 2.

For b small enough, (P ′(z))
2

(P ′(z)α(c) + b) has p + m simple zeros z1, . . . , zp+m
different from 1, . . . , p + m and p zeros of multiplicity 2 at the zeros of P ′(z). It
is easy to see that G(z) < 0 in [0, 2p]. Thus, for |a| � |b| small enough, L3(z) has
p+m simple zeros close to z1, . . . , zp+m and two simple zeros close to each zero of
P ′(z). Therefore, L3(z) has 3p+m = 3p+

[
n−1

2

]
simple zeros in (R \ {0}) \Z(P ′).

Case n > 2p + 1. Following [11], for each p ∈ {1, 2} and each n > 2p + 1 we
consider in (3ε) the following objects.

• The polynomial P ′(z) = z − 1 if p = 1 and P ′(z) = (z − 1)(z − 2) if p = 2.
• ω1 = d(yf(x)) + q1 dH where q1 = yxn−2 and with

f(x) =


m−1∑
i=0

b2i+1

2i+ 1
x2i+1 +

x2m

2m
, if n = 2m;

m∑
i=0

b2i+1

2i+ 1
x2i+1, if n = 2m+ 1;

(26)

• ω2 = dQ1, where Q1 is given by (24).

• ω3 = α(H) ydx, where α(H) =
∑[n−1

2 ]
i=0 diH

i.
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Thus, by construction n = max1≤i≤3{degωi} and L1(z) ≡ 0. Moreover,

P ′(H)ω2 + q1ω1 = dQ+ qdH,

where

Q = P ′(H)Q1 + yq1f(x) + (n− 1)

∫ x

0

sn−1f(s) ds− 2(n− 2)H

∫ x

0

sn−3f(s) ds

and

q = q2
1 + 2(n− 2)

∫ x

0

sn−3f(s) ds− xn−2f(x)− P ′′(H)Q1,

whence L2(z) ≡ 0.
As in the previous case, from Theorem 1 we have

L3(z) =
1

(P ′(z))
3

∫
γz

ω31 + ω32 + ω33

where now ω31 = (P ′(H))
3
ω3, ω32 = P ′(H) [P ′(H)q1 + P ′′(H)yf(x)]ω2, and

ω33 = Tω1 with T =
[
P ′(H)q + 2P ′′(H)Q+ P ′′(H)q1(yf(x))

]
.

Following the ideas of previous case, we get

ω32 + ω33 = (P ′(H))
2
q1dQ1 + P ′(H)P ′′(H)d(yf(x)Q1)

+ P ′(H)S1(x, y)d(yf(x)) + P ′′(H)S2(x, y)d(yf(x)) + Tq1 dH,

where

S1(x, y) = q2
1 + 2(n− 2)

∫ x

0

sn−3f(s) ds− xn−2f(x)

and

S2(x, y) = 3yq1f(x) + 2(n− 1)

∫ x

0

sn−1f(s) ds− 4(n− 2)H

∫ x

0

sn−3f(s) ds.

In addition, straightforward computations yield

S1(x, y)d(yf(x)) = dQ11 + q11 dH + q̃11 ydx

and

S2(x, y)d(yf(x)) = dQ22 + q22 dH + q̃22 ydx

for some polynomials Q11, q11, Q22, q22, as well as with

q̃11 = xn−3f(x)
(
2(n− 1)xn − 4(n− 2)Hxn−2 + xf ′(x)− (n− 2)f(x)

)
,

and

q̃22 =
1

2
xn−3(f(x))2

(
2(n− 2)H − (n− 1)x2

)
.

Hence∫
γz

ω32 + ω33 = (P ′(z))2

∫
γz

q1dQ1 + P ′(z)

∫
γz

q̃11 ydx+ P ′′(z)

∫
γz

q̃22 ydx.

Now if n = 2m, then from (26) we obtain f(x) = f1 + x2m/(2m), where

f1 = f1(x) =

m−1∑
i=1

b2i+1

2i+ 1
x2i+1.

Thus,

q̃11 =
x4m−3

2m

(
xf ′1 + (8m2 − 6m+ 4)f1

)
− 8(m− 1)x4m−5f1H

+ x2m−3f1 (xf ′1 − 2(m− 1)f1) +
4m2 − 2m+ 1

m2
x6m−3 − 8(m− 1)x6m−5H
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and

q̃22 =

(
x2m−3f2

1

2
+
f1x

4m−3

m
+
x6m−3

4m

)(
4(m− 1)H − (2m− 1)x2

)
.

Moreover, since f1 is an odd polynomial, x2m−3f1 (xf ′1 − 2(m− 1)f1), x6m−3, x6m−5,
and x2m−3f2

1 are odd polynomials.
On the other hand, from the symmetry of γz with respect to the y-axis it follows

that if g(x) is an odd polynomial, then
∫
γz
g(x) ydx = 0 for all z ∈ (0,∞).

Therefore, from this property and by using the expression of f1 we have∫
γz

q̃11 ydx =

m−1∑
i=0

b2i+1

2i+ 1

∫
γz

(
8m2 − 6m+ 2i+ 5

2m
x2 − 8(m− 1)H

)
x2(2m+i−2)

and ∫
γz

q̃22 ydx =

m−1∑
i=0

b2i+1

m(2i+ 1)

∫
γz

(
4(m− 1)H − (2m− 1)x2

)
x2(2m+i−1).

Moreover, by applying (25) we get∫
γz

q̃11 ydx = −2πz

m−1∑
i=0

b2i+1

2i+ 1
(Cm,iA2m+i−1 − (8m− 8)A2m+i−2) z2m+i−1,

where Cm,i = (8m2 − 6m+ 2i+ 5)/(2m), and∫
γz

q̃22 ydx = −2πz

m−1∑
i=0

b2i+1

m(2i+ 1)
((4m− 4)A2m+i−1 − (2m− 1)A2m+i) z

2m+i.

Additionally, from (24) and (25) we get

∫
γz

q1dQ1 =


−2πz

m∑
i=1

a2i+1Am+i−1 z
m+i−1, if n = 2m;

−2πz

m+1∑
i=1

a2iAm+i−1 z
m+i−1, if n = 2m+ 1.

Therefore, for n = 2m we have obtained that

L3(z) =
−2πz

(P ′(z))
3

(
(P ′(z))3

m−1∑
i=0

diz
i + (P ′(z))2

m∑
i=1

ãm,i z
m+i−1

+P ′(z)

m−1∑
i=0

b̃m,i z
2m+i−1 + P ′′(z)

m−1∑
i=0

b̂m,i z
2m+i

)
,

where ãm,i = a2i+1Am+i−1, b̃m,i = b2i+1

2i+1 (Cm,iA2m+i−1 − (8m− 8)A2m+i−2), and

b̂m,i = b2i+1

m(2i+1) ((4m− 4)A2m+i−1 − (2m− 1)A2m+i).

By reordering the terms in previous equation, we get

L3(z) =

{
−2πz

(P ′(z))3

(
β0 + β1 z + · · ·+ β3m−1z

3m−1
)
, if p = 1;

−2πz
(P ′(z))3

(
β0 + β1 z + · · ·+ β3mz

3m
)
, if p = 2,

where the coefficients β0, . . . , β3m−2+p are independent linear functions depend-
ing on the 3m parameters d0, . . . , dm−1, a3, . . . , a2m+1, and b1, . . . , b2m−1. There-
fore, for suitable 3m − 2 + p different points in (0,∞) \ Z(P ) there are values of
d0, . . . , dm−1, a3, . . . , a2m+1, and b1, . . . , b2m−1 such that L3(z) has a simple zero
at each one of the selected points. Thus, L3(z) has exactly Z3(p, 2m) = 3m− 2 + p
simple zeros.

Finally, similar ideas can be used for the case n = 2m+ 1. �
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Boston, MA, 1985, Translated from the Portuguese by Sue E. Goodman. MR 824240

(87a:57029)

[4] A. H. Durfee, Five definitions of critical point at infinity, Singularities (Oberwolfach, 1996),
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