
ASYMPTOTIC EXPANSION OF THE HETEROCLINIC BIFURCATION
FOR THE PLANAR NORMAL FORM OF THE 1:2 RESONANCE

LUCI A. F. ROBERTO, PAULO R. DA SILVA, AND JOAN TORREGROSA

Abstract. We consider the family of planar differential systems depending on two real
parameters

ẋ = y, ẏ = δ1x+ δ2y + x3 − x2y.
This system corresponds to the normal form for the 1:2 resonance which exhibits a hetero-
clinic connection. The phase portrait of the system has a limit cycle which disappears in the

heteroclinic connection for the parameter values on the curve δ2 = c(δ1) = −1

5
δ1 + O(δ21),

δ1 < 0. We significantly improve the knowledge of this curve in a neighborhood of the
origin.

1. Introduction

The theory of bifurcations is concerned to describe the variation of the qualitative behavior
of the phase portrait when we vary the parameters. The bifurcation diagram consists of a
partition of the parameter space such that, for parameters belonging to the same region,
the respective phase portraits are topologically equivalent.

Consider a two-parameter family of differential systems in the plane. Suppose that there
exists a curve such that for parameters values on this curve the systems exhibit heteroclinic
connections. Moreover, suppose that when the parameters cross this curve we have the birth
of an isolated periodic orbit, that is a limit cycle. In general, the existence of these curves
is obtained by topological methods and very few properties are known about its asymptotic
development.

For each σ = ±1, the differential system

(ẋ, ẏ) = (y, δ1x+ δ2y + σx3 − x2y)

is a versal deformation of a system with a double zero eigenvalue with a symmetry of order
2 (δ1 = δ2 = 0). These problems of codimension two were studied by Carr and Horozov in
[1, 9]. The unperturbed system is invariant under a rotation of the plane through an angle
2π/q for q = 2 and it can be proved that these are the normal forms for the 1:2 resonance,
see [2, 10]. The bifurcation diagram of this family is well known and a detailed analysis
of them can be obtained in [10, Sect. 9.5.3] or [2, Sect. 4.2]. A heteroclinic connection
appears for σ = +1. For σ = −1 a double homoclinic connection and a double limit cycle
bifurcations occur. In particular the two limit cycles that emerge from the origin from a
Hopf bifurcation disappear via a symmetric figure-eight homoclinic bifurcation.

In [7] the authors developed a method to obtain more accurate approximations of bifur-
cation curves corresponding to homoclinic and heteroclinic connections. Essentially, they
seek polynomial approximations of the saddle separatrices and evaluate the contact of the
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vector field (ẋ, ẏ) with these algebraic curves. From this analysis it is possible to decide
about the relative position of the saddle separatrix and thus determine if the parameters
are above or below the bifurcation curve. Other related works where this technique is also
applied are [4, 5, 6, 8]. In the first two the authors improve the special bifurcation value
in two 1-parameter families. In the third the Bogdanov–Takens bifurcation curve is stud-
ied globally in the 2-dimensional parameter space. The last deals with explicit upper and
lower bounds for traveling waves. Another approach where a local study of a limit cycle
bifurcation curve is done can be found in [11].

Here we restrict our attention to the case which exhibits a heteroclinic orbit connecting
two symmetric saddles s1 and s2 (σ = 1)

(ẋ, ẏ) = (y, δ1x+ δ2y + x3 − x2y). (1)

As far as we know, only the linear term of the heteroclinic bifurcation curve of the above
system is done:

C = {(δ1, δ2), δ2 = c(δ1) = −1

5
δ1 +O(δ21), δ1 < 0}. (2)

In this paper, we apply the method developed in [7] to improve the knowledge on the
heteroclinic bifurcation curve up to order 6 in a small neighborhood of the origin in the
parameter space.

In order to clarify the bifurcation phenomenon we detail the results of [1, 9] in Section 2
adding an analysis of the global phase portrait on the Poincaré disc. The bifurcation diagram
of (1) is presented in Figure 1.

δ1

δ2
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Figure 1. Phase portraits and bifurcation diagram for system (1).

The first result provides a good knowledge of the bifurcation curve for a small enough
neighborhood of the origin. The second one explicitly gives an interval in which we have
polynomial upper and lower bounds.

Theorem 1.1. Consider the 2-parameter family of differential systems given by (1). For
every d,D with d < d6 < D, there exists δ > 0 such that for −δ < δ1 < 0 the heteroclinic
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bifurcation curve δ2 = c(δ1) satisfies

5∑
i=1

diδ
i
1 + dδ61 ≤ c(δ1) ≤

5∑
i=1

diδ
i
1 +Dδ61,

with d1 =−1

5
, d2 =

16

13125
, d3 =

5536

103359375
, d4 =

26032288

8953505859375
, d5 =

355355722144

2016553357177734375
,

and d6 =
43256286929749984

3784818582252960205078125
.

For the best of our knowledge the analyticity of the bifurcation curve c(δ1) is not proved.
If it was true, then the coefficient of degree 6 of its Taylor expansion would be d6. The
necessary computations for our proof, as we will show in Section 3, are done with an algebraic
manipulator1. For higher order terms the memory of our computer was not sufficient.

Theorem 1.2. Consider the 2-parameter family of differential systems given by (1). For
every δ1 ∈ [−36/10201, 0], the bifurcation curve c(δ1) satisfies

(Nd/Dd)(
√
−δ1) < c(δ1) < (Nu/Du)(

√
−δ1),

where

Nd(δ) =− 6890625000
√

2δ2 − 2756250000δ3 − 317625000
√

2δ4

+ 50925000δ5 + 1496250
√

2δ6 − 2528200δ7 + 19360
√

2δ8 + 14641δ9,

Dd(δ) =131250(−262500
√

2− 105000δ − 10500
√

2δ2 + 160δ3 + 121
√

2δ4),

Nu(δ) =− 6890625000
√

2δ2 − 2756250000δ3 − 317625000
√

2δ4

− 76125000δ5 + 7848750
√

2δ6 − 7610200δ7 + 58080
√

2δ8 + 131769δ9,

Du(δ) =131250(−262500
√

2− 105000δ − 10500
√

2δ2 + 160δ3 + 363
√

2δ4).

We remark that the first terms of the series expansion of the functions (Nd/Dd)(δ) and
(Nu/Du)(δ) given in the above result coincide. More precisely

(Nu/Du −Nd/Dd)(δ) =
121
√

2

65625
δ5 +O(δ6).

The series expansion up to order 5 of the function c(δ1) in Theorem 1.1 together with the
lower and upper bounds in Theorem 1.2 are drawn in Figure 2.

The paper is organized as follows. In Section 2 we describe the bifurcation diagram and
the global phase portraits of system (1). In Sections 3 and 4 we prove the main results. The
proofs are done obtaining the successive approximations of the stable and unstable invariant
manifolds of the saddle equilibria.

2. Global dynamics of system (1) on the Poincaré disk

Consider the 2-parameter family of the planar differential systems (1). We remark that
this system is invariant under the rotation through the angle π, that is (x, y) 7→ (−x,−y).
Moreover it always has the equilibrium point s0 = (0, 0). Two other equilibria are s1,2 =

1The computations are done with MAPLE 18 in a Xeon computer (CPU E5-450, 3.0 GHz, RAM 32 Gb)
with GNU Linux.
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Figure 2. The green and blue curves are the lower and upper bounds in Theorem 1.2
and the red curve is the asymptotic expansion of the bifurcation curve in Theorem 1.1.

(∓
√
−δ1, 0) and bifurcate simultaneously from the trivial one via a pitchfork bifurcation

along the line F = {δ1 = 0}. The nontrivial equilibria only exist for δ1 < 0.
In region I = {δ1 ≥ 0} there is a single trivial equilibrium point s0, which is a saddle.

Crossing the lower branch of F a pitchfork bifurcation is done generating a pair of symmetric-
coupled saddles s1,2, while the trivial equilibrium point becomes a stable node. This node
turns into a focus somewhere in region II = {δ1 < 0, δ2 ≤ 0} and then loses its stability
upon crossing the half-line H = {δ1 < 0, δ2 = 0} via a nondegenerate Hopf bifurcation. In
region III = {δ1 < 0, 0 < δ2 < c(δ1)} a unique and stable limit cycle exists. Crossing
the curve C, given by (2), leads to the disappearance of the cycle through a heteroclinic
bifurcation. Due to the symmetry, the heteroclinic orbits connecting the saddles s1 and
s2 appear simultaneously, forming a heteroclinic cycle upon crossing C. In region IV =
{δ1 < 0, c(δ1) < δ2} the totally unstable trivial equilibrium D0 coexists with the saddles
s1,2. All three of these equilibria merge at the upper branch of the pitchfork bifurcation line
F as we return to region I. A more detailed analysis can be found in [10]. In the following
proposition we summarize the properties of the phase portrait of system (1) in the Poincaré
disk. See the bifurcation diagram and the phase portraits in Figure 1.

Proposition 2.1. The phase portrait of system (1) satisfies the following properties.

(a) On the infinity S1 = {(x, y) : x2 +y2 = 1} system (1) does not depend on the param-
eters δ1, δ2. There exist four equilibrium points: two stable θ1 and θ3, corresponding
to the directions θ = π/4 and θ = 5π/4, and two unstable θ2 and θ4, corresponding
to the directions θ = π/2 and θ = 3π/2.

(b) For the parameter values on region I, the stable separatrices connect the saddle and
the point θ2 and θ4. The unstable separatrices connect the saddle and θ1 and θ3.

(c) For the parameter values on region II, the stable separatrices of s1 connect s1 and θ2
and s1 and θ4. The unstable separatrices of s1 connect s1 and s0 and s1 and θ3. The
stable separatrices of s2 connect s2 and θ2 and s2 and θ4. The unstable separatrix of
s2 connects s2 and s0 and s2 and θ1.

(d) For the parameter values on region III, the stable separatrices of s1 connect s1 and
the equilibrium on the infinity θ2 and θ4. The stable separatrices of s1 connect s1
and θ2 and s1 and θ4. The unstable separatrices of s1 connect s1 and the limit cycle
and s1 and θ3. The stable separatrices of s2 connect s2 and θ2 and s2 and θ4. The
unstable separatrix of s2 connects s2 and the limit cycle and s2 and θ1.
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(e) For the parameter values on region IV, the stable separatrices of s1 connect s1 and θ2
and s1 and s2. The unstable separatrices of s1 connect s1 and s2 and s1 and θ3. The
stable separatrices of s2 connect s2 and s1 and s2 and θ4. The unstable separatrix of
s2 connects s2 and s1 and s2 and θ1.

(f) For the parameter values on region V, the stable separatrices of s1 connect s1 and θ2
and s1 and s0. The unstable separatrices of s1 connect s1 and θ1 and s1 and θ3. The
stable separatrices of s2 connect s2 and s0 and s2 and θ4. The unstable separatrix of
s2 connects s2 and θ3 and s2 and θ1.

Proof. Using the technique detailed in [3], we determine the phase portrait on the infinity
analyzing the system

θ̇ = v3(ẏ cos θ − ẋ sin θ), x =
cos θ

v
, y =

sin θ

v
, v = 0. (3)

It does not depend neither δ1 nor δ2. In fact, equation (3) for system (1) is

θ̇ = cos4 θ − cos3 θ sin θ.

Thus the equilibrium points on the infinity correspond to the directions θ = π/4, π/2, 5π/4

and 3π/2. The stability of each equilibrium is determined by the sign of θ̇. The complete
picture can be obtained using the P4 program, [3], for example. The statements follow
directly from the local analysis, the symmetry and Poincaré–Bendixon Theorem. �

3. Small neighborhood of the origin in the parameters space

This section is devoted to the proof of Theorem 1.1. It follows from two technical results.
In the first one we study the relative position of the parameter values (δ1, δ2) with respect
to the bifurcation curve from the existence of curves without contact. In the second one,
after a change of variables in the parameter space, we provide the lower and upper bounds
for the heteroclinic bifurcation curve. From now on, the vector field associated to (1) is
denoted by

(P (x, y), Q(x, y)) = (y, δ1x+ δ2y + x3 − x2y). (4)

Lemma 3.1. Consider the 2-parameter family of vector fields given by (4) and denote by
I− = (−

√
−δ1, 0] and I+ = [0,

√
−δ1). Suppose that (δ1, δ2) are parameter values satisfying

that:

(a) there exist polynomials p±(x) satisfying that p±(x) > 0 in I± and p±(±
√
−δ1) = 0;

(b) denoting by f±(x, y) = y − p±(x), then ∇f± · (P,Q) < 0 (resp. > 0) on the points
(x, p±(x)), x ∈ I± and

(c) p−(0)− p+(0) < 0 (resp. > 0).

Then the bifurcation curve (2) satisfies c(δ1) > δ2 (resp. c(δ1) < δ2).

Proof. The hypotheses imply that the curves f−(x, y) = 0 and f+(x, y) = 0 pass through
the points s1 and s2 defined in Section 2, and the graph of f−(x, y) = 0 intersects the
y-axis down the graph of f+(x, y) = 0. Furthermore (b) and (c) imply that the unstable
separatrix of s1 for x ∈ I− is under the curve f−(x, y) = 0 and the unstable separatrix of
s2 for x ∈ I+ is over the curve f+(x, y) = 0. Thus, the phase portrait corresponding to this
configuration is the one given in region III, see Figures 1 and 3. Shortly, δ2 < c(δ1). The
other configuration can be proved similarly. �
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III IV

0s1 s2 0s1 s2

Figure 3. Relative position of the saddle separatrices with respect to the algebraic
curves y = p+(x) and y = p−(x).

Lemma 3.2. Consider the 2-parameter family of vector fields given by (4) with

δ1 = −ε21, δ2 =
ε41 + 8ε21 − ε22

2ε21 + 2ε2
. (5)

With these new parameters the bifurcation curve c(δ1) defined in (2) changes to c̃(ε1). For

every A <
43256286929749984

3784818582252960205078125
< B, there exists ε0 > 0 such that

−b1ε1 − b2ε21 − . . .− b11ε111 −Bε121 < c̃(ε1) < −b1ε1 − b2ε21 − . . .− b11ε111 − Aε121 ,

for 0 ≤ ε1 < ε0 with

b1 = −2
√

2, b5 =
121

65625

√
2, b9 =

34623151

7162804687500

√
2,

b2 =
1

5
, b6 = − 5536

103359375
, b10 = − 355355722144

2016553357177734375
,

b3 = − 2

25

√
2, b7 = − 43747

516796875

√
2, b11 = − 62085189031889

201655335717773437500

√
2.

b4 =
16

13125
, b8 =

26032288

8953505859375
,

(6)

Proof of Lemma 3.2. We consider the vector field (4) under the change of parameters given
by (5). With these parameters the saddle points are located in (−ε1, 0) and (ε1, 0). Since
they are hyperbolic, the Hartman–Grobman Theorem guaranties the existence of stable and
unstable curves tangent to the stable and unstable eigenspaces respectively. The slopes of
the eigenvectors are

a+1 = −ε
2
1

2
− ε2

2
, a−1 =

4ε21
ε21 + ε2

. (7)

We start describing the procedure for determining a degree k polynomial approximation
of the function c̃(ε1) in a neighborhood of the origin

ε2 = c̃(ε1) = −b1ε1 − b2ε21 − . . .− bk−1ε
k−1
1 − bkεk1. (8)

Firstly we obtain, determining the coefficients a±i , the higher degree polynomial approxi-
mations of that stable and unstable curves

y±k+1 =
k+1∑
i=1

a±i (x∓ ε1)i,
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imposing that y±k+1 are solutions of the differential equation (1) until order k + 1. Because
of the huge size of the coefficients a±i here we only show the first

a+2 = −ε1(ε
2
1 + ε2 + 3)(ε21 + ε2)

ε41 + 4ε21 + ε22 + 2ε2ε21
, a−2 =

2ε1(5ε
2
1 − 3ε2)

ε41 + 16ε21 + ε22 + 2ε2ε21
.

Secondly we consider x = ε1 − z in the case (+) and x = −ε1 + z in the case (−). Since
0 ≤ x < ε1 and −ε1 < x ≤ 0, respectively, then 0 ≤ z < ε1.

Now we compute the following functions

w±
k+1(ε1, b, z) = (−

dy±k+1

dx
, 1) · (P,Q),

∆k+1(ε1, b) = y−k+1(0)− y+k+1(0),

(9)

using (8). The functions w±
k+1(ε1, b, z) are rational functions with strictly positive denomi-

nators

w±
k+1(ε1, b, z) =

zk+2α±
k+1(ε1, b, z)

g±k+1(ε1, b)
2

. (10)

In a neighborhood of z = 0 the principal term of the series of w±
k+1 in z is determined by

α±
k+1(ε1, b, 0). Moreover, the series expansion of α±

k+1(ε1, b) and ∆k+1(ε1, b, z) in ε1 write as

α+
k+1(ε1, b, 0) = γ+k (b)εmk

1 +O(εmk+1
1 ),

α−
k+1(ε1, b, 0) = γ−k (b)εnk

1 +O(εnk+1
1 ),

∆k+1(ε1, b) = γ0k(b)εk+1
1 +O(εk+2

1 ).

(11)

For k = 1 we obtain that

γ+1 (b) = −2(b2 − 2)(b2 − 8),

γ−1 (b) = −b(b2 − 32)(b2 − 8),

γ01(b) =
1

2

(b2 − 8)(b4 + 26b2 + 64)

b(b2 + 16)(b2 + 4)
,

with m1 = 4 and n1 = 5. Vanishing γ±1 (b) and γ01(b) simultaneously we have that b1 = ±2
√

2.
For k = 2, . . . , 11, fixing for example b1 = −2

√
2, we obtain that mk = nk, γ

±
k (b) =

c±k (b − bk), and γ0k(b) = c0k(b − bk) with c±k and c0k nonzero algebraic numbers. Hence the
expressions of the coefficients bk given in (6) can be obtained recurrently vanishing also
γ±k (b) and γ0k(b).

For k = 12 we have that m12 = n12 = 140, γ±12(b) = c±12(b− b12), and γ012(b) = c012(b− b12)
with

c+12 = 2190 · 336 · 511 · 76 · 112 · 132 ·
√

2, c−12 = 256c+12, c012 = 43 · 127 · 2−12.

We have written c012 and c±12 using their decomposition in powers of prime numbers because
of the size of them. For ε1 small enough, as the numbers c±12 and c012 are positive, the signs
of α+

k+1(ε1, b, 0), α−
k+1(ε1, b, 0), and ∆k+1(ε1, b) are determined by (b− b12). Hence the lower

bound and the upper bound given in the statement follow applying Lemma 3.1. �

Proof of Theorem 1.1. Using Lemma 3.2 and coming back to the original parameters we
conclude the proof. We remark that the coefficients dk in the statement are related with
the coefficients bk from Lemma 3.2 in the following way: dk = (−1)kb2k for k = 1, . . . , 6.
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In what follows we explain why we consider this change of coordinates. Consider the
2-parameter (δ1, δ2) family of differential systems given by (1). First of all we consider the
change of the parameters given by δ1 = −ε21. Thus the saddle points become (−ε1, 0) and
(ε1, 0) and it will facilitate next computations. With these new parameters the vector field
associated to (1) is given by (P (x, y), Q(x, y)) = (y,−ε21x+ δ2y + x3 − x2y).

In the proof of Lemma 3.2 we write the linear approximation of the stable and unstable
separatrices of the saddle point (ε1, 0) as y = a±1 (x − ε1) + O((x − ε1)2). Straightforward
computations show that

a±1 =
δ2
2
− ε21

2
∓

√
δ22 − 2δ2ε21 + ε41 + 8ε21

2
.

The same expressions are also valid for the saddle point (−ε1, 0). The computations are
easier if we eliminate all the expressions involving square roots. The proposed change of
variables (5) transforms the above expressions in the two rational ones given in (7). �

Now we comment the main difficulties to go further in the development of the func-
tion c(δ1) given in Theorem 1.1. The key point in the proof of Lemma 3.2 is the explicit
computation of γ±k (b) εmk

1 and γ0k(b) εk+1
1 in (11). Although we have obtained γ±k (b) εmk

1 for
k = 13, . . . , 25 the computation of γ013(b) ε

14
1 exceed the memory of our computer2. From

these γk(b)± we can obtain the following values

d7 =
168679322468558257992224

217371120122920355358123779296875
,

d8 =
4305872427368562628639420153568

79066218005440850312386486530303955078125
,

d9 =
37564005983311734369133435252462168672

9586472551564932017081900994164049625396728515625
,

d10 =
2766766190160174565678452208821237437436993056

9624031536171796537705606430297599867884814739227294921875
,

d11 =
8624760946313011664012747865814391868142139840873664416

9624031536171796537705606430297599867884814739227294921875;
,

d12 =
5446438458418037504482627999300013311390638864395503052380413344

321 · 533 · 711 · 119 · 138 · 176 · 195 · 233
.

However to prove that these values provide the expansion up to order 12 in δ1 we need to
know γ0k(b) for k ≥ 13.

2Intel Xeon, 2.6GHz, 32Gb RAM.
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Finally, we remark that, as in [7], the prime decompositions of the denominators of dk for
k = 1, . . . , 12 have a nice and regular structure:

5,

3 · 54 · 7,
33 · 57 · 72,

35 · 510 · 73 · 11,

37 · 512 · 74 · 112 · 13,

38 · 516 · 75 · 113 · 132,

311 · 519 · 76 · 114 · 133 · 17,

313 · 522 · 77 · 115 · 134 · 172 · 19,

314 · 525 · 78 · 116 · 135 · 173 · 192,

317 · 526 · 79 · 117 · 136 · 174 · 193 · 23,

319 · 530 · 710 · 118 · 137 · 175 · 194 · 232,

321 · 533 · 711 · 119 · 138 · 176 · 195 · 233.

where the small irregularity with the number of threes and fives could be produced by some
cancellations with the respective numerators. Unfortunately no regularity appears in the
numerators.

4. Fixed neighborhood of the origin in the parameters space

We start this section with a proposition which is essentially the version of Theorem 1.2
using the parameters ε1, ε2 introduced in (5).

Proposition 4.1. Consider the 2-parameter family of vector fields given by (4) with the
parameters given by (5). The heteroclinic bifurcation curve ε2 = c̃(ε1) satisfies

−b1 ε1 − . . .− b4 ε41 −
121

43750

√
2 ε51 < c̃(ε1) < −b1 ε1 − . . .− b4 ε41 −

121

131250

√
2 ε51

for any ε1 ∈ [0, 6/101], with coefficients bi given in equation (6).

Proof. We consider system vector field (1) with parameters given by (5). Taking k = 5 in

the proof of Lemma 3.2 we can see that, for ε1 small enough, for every A <
121

65625

√
2 < B,

there exists ε0 > 0 such that

−b1ε1 − b2ε21 − . . .− b4ε41 −Bε51 < c̃(ε1) < −b1ε1 − b2ε21 − . . .− b5ε51 − Aε51,
for 0 ≤ ε1 < ε0 with bi, i = 1, 2, 3, 4 in (6), m5 = n5 = 40,

c+5 = 250 · 311 · 52 · 72
√

2, c−5 = 266 · 311 · 52 · 72
√

2, and c05 =
127

96
.

Consequently, the functions w±
6 and ∆6 defined in (9) satisfy

w+
6 (ε1, A, z) < 0, w−

6 (ε1, A, z) < 0, ∆6(ε1, A) < 0,

w+
6 (ε1, B, z) > 0, w−

6 (ε1, B, z) > 0, ∆6(ε1, B) > 0,
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in a neighborhood of (ε1, z) = (0, 0). The proof follows from Lemma 3.1, taking B = 3b5/2 =
121
√

2/43750 and A = b5/2 = 121
√

2/131250, proving that these signs do not change for
z ∈ [0, ε1) and ε1 ∈ [0, 6/101].

According (10) the signs of w±
6 (ε1, b, z) are determined by the signs of α±

6 (ε1, b, z) that
are polynomials of degree 4 in z and degree 190 in ε1. Moreover, the function ∆6 is a given
rational function. Consider, for b = A, the following eight polynomials

p1(ε1) = α+
6 (ε1, A, 0), p5(ε1) = α−

6 (ε1, A, ε1),

p2(ε1) = α+
6 (ε1, A, ε1), p6(ε1) = disc(α−

6 (ε1, A, z), z),

p3(ε1) = disc(α+
6 (ε1, A, z), z), p7(ε1) = numer(∆6(ε1, A))/ε61,

p4(ε1) = α−
6 (ε1, A, 0), p8(ε1) = denom(∆6(ε1, A)).

The degrees of them are 190, 190, 1088, 190, 190, 1088, 164 and 164, respectively. Here
we have denoted by disc(·, z) the discriminant function with respect to z. Using the Sturm
method we can localize the small positive zero of all them and it is ρu ≈ 0.05944857762.
Thus we conclude that, for b = A, the prescribed signs of the functions w±

6 and ∆6 remain
unchanged for z ∈ [0, ε1] and ε1 < ρu. Arguing in a similar way, for b = B, we can also
prove that w+

6 (ε1, B, z) > 0, w−
6 (ε1, B, z) > 0, and ∆6(ε1, B) > 0, for z ∈ [0, ε1] and ε1 < ρd

with ρd ≈ 0.3135863722. Clearly the proof finishes because 6/101 ≤ min{ρd, ρu}. �

Proof of Theorem 1.2. The change of parameters (5) reverses the position of the upper and
lower curves given in Proposition 4.1. With this change the interval [0, 6/101] for ε1 moves
to [−36/10201, 0] for δ1. �
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