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ABSTRACT

DE LIMA, C. A. B. R. Invariant curves on differential systems defined in Rn, n ≥ 2. 2018.
179 p. Tese (Doutorado em Ciências – Matemática) – Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, São Carlos – SP, 2018.

Differential systems appear modelling many natural phenomena in different branches of science,
in biological and physical applications among other areas. Differential systems usually have
invariant curves and we can obtain a better description of the qualitative behaviour of their
solutions using them. Such invariant curves can be algebraic or not and, in the case where they
are closed and isolated, they are called limit cycles. There is a very famous problem, proposed
by David Hilbert in 1900 what ask about the maximum number of limit cycle that a polynomial
differential system could present. In this thesis we investigate the existence of some invariant
curves in quadratic polynomial differential systems and in discontinuous piecewise differential
systems (they are known as Filippov’s systems).

Even after hundreds of studies on the topology of real planar quadratic vector fields the complete
characterization of their phase portraits is a quite complex task, they depends on twelve param-
eters, after affine transformations and time rescaling, we have families with five parameters,
which is still a large number. So many subclasses have been considered instead of the complete
system. In this thesis we investigate conditions under the parameters of the system for a planar
quadratic differential system present invariant algebraic curve of degree 3 (a cubic curve) and a
Darboux invariant and obtain the topological classification of these systems.

The increasing interest in the theory of non–smooth vector fields has been mainly motivated by
its strong relation with physics, engineering, biology, economy, and other branches of science.
In the study of the Filippov’s systems, we investigate the number of periodic orbits that they can
present. In this study we apply the averaging theory. Such theory is used to study some classical
models and we also present generalization of such technique for a class of non–smooth systems.
In addition, we also show how the Lyapunov–Schmidt reduction can be used to consider cases
where the averaging theory is not sufficient to study periodic solutions.

Keywords: Algebraic invariant curve, Darboux invariant, Averaging method, Filippov’s systems,
Lyapunov-Schmidt reduction.





RESUMO

DE LIMA, C. A. B. R. Curvas invariantes em sistemas diferenciais definidos em Rn, n ≥ 2.
2018. 179 p. Tese (Doutorado em Ciências – Matemática) – Instituto de Ciências Matemáticas e
de Computação, Universidade de São Paulo, São Carlos – SP, 2018.

Sistemas diferenciais aparecem na modelagem de muitos fenômenos naturais em diferentes ramos
da ciência, em aplicações biológicas e físicas, entre outras áreas. Sistemas diferenciais geralmente
possuem curvas invariantes e podemos obter uma melhor descrição do comportamento qualitativo
de suas soluções utilizando-as. Tais curvas invariantes podem ser algébricas ou não e, no caso
de serem fechadas e isoladas, são chamadas de ciclos limites. Há um problema muito famoso,
proposto por David Hilbert em 1900, que questiona o número máximo de ciclos limites que
um sistema polinomial diferencial poderia apresentar. Nesta tese investigamos a existência de
algumas curvas invariantes em sistemas diferenciais polinomiais quadráticos e em sistemas
diferenciais contínuos por partes (eles são conhecidos como sistemas de Filippov).

Mesmo após centenas de estudos sobre a topologia dos campos vetoriais reais planares e
quadráticos, a caracterização completa de seus retratos de fase é uma tarefa bastante complexa.
Eles dependem de doze parâmetros e após transformações afins e reescalonamento de tempo,
temos famílias com cinco parâmetros, o que ainda é um grande número. Assim muitas subclasses
tem sido consideradas em vez do sistema completo. Nesta tese investigamos condições sob
os parâmetros do sistema para que um sistema diferencial planar quadrático apresente uma
curva algébrica invariante de grau 3 (curva cúbica) e um invariante de Darboux e obtemos a
classificação topológica destes sistemas.

O crescente interesse na teoria dos campos de vetores suaves por partes tem sido motivado,
principalmente, por sua forte relação com a física, engenharia, biologia, economia e outros ramos
da ciência. No estudo dos sistemas de Filippov, investigamos o número de órbitas periódicas que
eles podem apresentar. Para este estudo, aplicamos a teoria do averaging. Tal teoria é usada para
estudar alguns modelos clássicos e também apresentamos a generalização de tal técnica para
uma classe de sistemas suaves por partes. Além disso, mostramos também como a redução de
Lyapunov - Schmidt pode ser usada para considerar casos em que a teoria do averaging sozinha
não é suficiente para estudar soluções periódicas.

Palavras-chave: Curva algébrica invariante, Invariante de Darboux, Método do averaging,
Sistemas de Filippov, Redução de Lyapunov-Schmidt.
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CHAPTER

1
INTRODUCTION

The first ordinary differential equation (ODE) appeared in the works of Leibniz (1646–
1716) and Newton (1642–1727) and since that it was used in the modelling of many natural
phenomena and their laws, Astronomy, Mechanics, Physics, Chemistry, Engineering, Economicy,
Ecology, Epidemiology, Neuroscience, among others. An ODE is an equation of the form

dx
dt

= ẋ = f (t,x), (1.1)

where f : D×R→Rn, D is a subset of Rn and the dot denotes the differentiation with respect to
the independent variable t. A solution of (1.1) is a curve x : I ⊂R→D⊂Rn, where I is an interval,
that satisfy the equation. Given the knowledge of other types of equations, the first plausible
attempt would be to develop a method to obtain the solution of an ODE. However, if the function
involved is a little more complicated, finding the solution curve in fact becomes a problem that
can not be solved analytically. Indeed J. Liouville (1809-1882) proved that not all equations
admit solutions that can be expressed terms of elementary functions (sinx, cosx, ex, . . .). So at
the end of 19th century, Poincaré inaugurates a new direction in the study and understanding
of ODEs. Thanks to Poincaré perspective, the solutions began to be considered as geometric
elements (orbits). Instead of finding the explicit solution of (1.1), qualitative theory studies the
behavior of its solutions.

In other words, this new approach studies the dynamics of an ODE without to find an
explicit expression of their solutions. The qualitative theory of differential equations leads to
the description of the phase portraits of families of ODEs, introducing an equivalence relation
between and the ODEs and their phase portraits. The analyze of the ODEs is done considering
the description of the changes in these phase portraits which occur when there are changes in
the parameters of the ODE. The phase portrait of an ODE is the union of all its orbits. Usually
only a finite number of orbits of an ODE is enough to determine its phase portrait, these orbits
are the singular points and some non–singular solutions. If and ODE does not depend explicitly
of the parameter t it is known as autonomous ODE. In this case the invariant solutions are
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homeomorphic either to the straight line R or to the circle S1.

The local phase portrait a singular points can be described by important results from qual-
itative theory of differential equations, for instance Hartman–Grobman Theorem (HARTMAN,
1964) for hyperbolic singular points. But the complete description of global phase portraits of an
ODE, even in the plane, is not a easy task. In order to solve such challenge many research have
been developed recently.

Concerning about the investigation of algebraic invariant curves of ODEs in the plane we
can mentioned the works (LLIBRE; MESSIAS; REINOL, 2014; LLIBRE; OLIVEIRA, 2015)
and (LLIBRE; OLIVEIRA, 2018) where the authors classify planar polynomial differential
systems having algebraic invariant curves of degree 2 and a Darboux invariant.

Another subject of great interesting related with invariant curves is the existence of
isolated and closed solutions, known as limit cycles. In 1900, during a congress in Paris, the
mathematician David Hilbert (HILBERT, 1900; HILBERT, 2000) proposed a list with 23
problems, which would guide the mathematics of the twentieth century. Among them, we
highlight the sixteenth, which is divided in two parts: the first of them of interest of the algebraic
geometry and the second one concerns about to determine the maximum number of limit
cycles that a planar polynomial differential system of degree n can have and what the relative
position between these cycles. Until recently this problem was open. Écalle (ÉCALLE, 1992) e
Il’Yashenko (YASHENKO, 1991) showed that this number, denoted by H(n) is finite, but proof
of the result is not accessible, even for renowned mathematicians. In (LLIBRE; PEDREGAL,
2015), Llibre and Pedregal work to give an estimate for the Hilbert number H(n). Such work
has been improved over the lasy years. The averaging method has been used to provide lower
bounds for the Hilbert number H(n) see, for instance, (LLIBRE; MEREU; TEIXEIRA, 2010).

The interest on this topic extends to what we call discontinuous piecewise vector fields.
The increasing interest in the theory of nonsmooth vector fields has been mainly motivated by
its strong relation with Physics, Engineering, Biology, Economy, and other branches of science.
In fact, their associated differential systems are very useful to model phenomena presenting
abrupt switches such as electronic relays, mechanical impact, and neuronal networks, see for
instance (BERNARDO et al., 2008; VARIUS, 2012). The extension of the averaging theory to
discontinuous piecewise vector field has been the central subject of investigation of the following
works (ITIKAWA; LLIBRE; NOVAES, 2017; LLIBRE; MEREU; NOVAES, 2015; LLIBRE
JAUME NOVAES, 2015; LLIBRE; NOVAES; TEIXEIRA, 2015).

The main objective of this thesis is to contribute to the investigation of the planar
differential systems having algebraic invariant curves of degree 3 (from now on we only say
invariant cubic) and the existence of limit cycles for some families of continuous and non–smooth
piecewise differential systems defined in Rn,n ≥ 2.

The chapters of this thesis are organized as follows. In chapter 2 we classify the planar
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polynomial differential systems of degree 2 having an invariant cubic. We present their normal
forms and draw the phase portrait in the Poincaré disc of such systems which has a Darboux
invariant. The next result summarizes the investigation done in this chapter

Theorem 1.0.1. There exists 110 distinct and realizable phase portraits for planar polynomial
differential systems of degree 2 having invariant cubic and a Darboux invariant. Such phase
portraits are presented in Figures 1–7.

This is the main result of the preprint

J. LLIBRE, R. D. S. OLIVEIRA, C. A. B. RODRIGUES, Quadratic systems with an invariant

algebraic curve of degree 3 and a Darboux invariant, Preprint 2018.

In chapter 3 using the classic averaging theory of first order for non–smooth differential
systems, two classes of systems are investigated. The first class studied is the Michelson sys-
tem. Such study has two parts, the investigation about the existence of periodic orbits for the
continuous Michelson system

ẋ = y,

ẏ = z,

ż =−y+ ε(2d2 −|x|),

(1.2)

and the existence of periodic orbits in the discontinuous piecewise Michelson system

ẋ = y,

ẏ = z,

ż =−y+ ε(2d2 −|x|− signx).

(1.3)

The following results are proved

Theorem 1.0.2. For all d > 0 and ε = ε(d) > 0 sufficiently small the Michelson continuous
piecewise linear differential system (1.2) has a periodic solution of the form

x(t) =−π d2 +O(ε), y(t) = π d2 sin t +O(ε), z(t) = π d2 cos t +O(ε).

Moreover this periodic solution is linearly stable.

Theorem 1.0.3. For ε > 0 sufficiently small the Michelson discontinuous piecewise linear
differential system (1.3) satisfies the following statements.

(a) If (−1+2d2)π < 0 then system (1.3) has two periodic solutions (x(t,ε),r(t,ε),θ(t,ε))
of the form

(x(t,ε),y(t,ε),z(t,ε)) = (x0,r0 sin t,r0 cos t)+O(ε), (1.4)

where

r0 =
2
√

1−a2

a
√

1−a2 + arcsin a
, x0 =−r0(1+a),
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and a takes the value of the two unique zeros of the function

g(a) =
2a2 −2+πa

√
1−a2d2 + arcsin a

(
πd2 + arcsin a−a

√
1−a2

)
a
√

1−a2 + arcsin a
,

in the interval (−1,1).

(b) If (−1+2d2)π > 0, then system (1.3) has a periodic solution of the form (1.4) given by
the unique zero of the function g(a) in the interval (−1,1).

These results are published in

J. LLIBRE, R. D. S. OLIVEIRA, C. A. B. RODRIGUES, On the periodic solutions of the

Michelson continuous and discontinuous piecewise linear differential system, Computational
and Applied Mathematics, 37 (2018): pp 1550–1561.

The second class studied using the classic averaging theory is

ẋ = A0x+ ε
(
Ax+ϕ(x1)b

)
, (1.5)

where |ε| ≠ 0 a sufficiently small real parameter, A0 is the 2n×2n matrix having on its principal
diagonal the following 2×2 matrices

0 −(2k−1)

2k−1 0

 for k = 1, . . . ,n,

and zeros in the complement, A is an arbitrary 2n×2n matrix and b ∈ R2n ∖{0} and ϕ : R→ R
is the continuous piecewise linear function

ϕ(x1) =


−1 if x1 ∈ (−∞,−1),

x1 if x1 ∈ [−1,1],

1 if x1 ∈ (1,∞),

(1.6)

where x = (x1, . . . ,xm)
T . Note that for ε = 0 system (1.5) becomes

ẋ1 =−x2, ẋ2 = x1, . . . , ẋ2n−1 =−(2n−1)x2n, ẋ2n = (2n−1)x2n−1. (1.7)

For such family we obtain the next result.

Theorem 1.0.4. For |ε|> 0 sufficiently small and if the conditions for applying the averaging
theory of first order hold, then at most one limit cycle γε of the continuous piecewise linear
differential system (1.5) bifurcates from the periodic orbits of system (1.7), i.e. γε tends to a
periodic solution of system (1.7) when ε → 0. Moreover there are systems (1.5) with |ε| > 0
sufficiently small having a such limit cycle.
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In a similar way we consider the discontinuous piecewise linear differential systems

ẋ = A0x+ ε
(
Ax+ψ(x1)b

)
, (1.8)

where

ψ(x1) =

−1 if x1 ∈ (−∞,0),

1 if x1 ∈ (0,∞).
(1.9)

So for system (1.8) we have the following result

Theorem 1.0.5. For |ε|> 0 sufficiently small and if the conditions for applying the averaging
theory of first order hold, then at most one limit cycle γε of the discontinuous piecewise linear
differential system (1.8) bifurcates from the periodic orbits of system (1.7). Moreover there are
systems (1.8) with |ε|> 0 sufficiently small having a such limit cycle.

Theorems 1.0.4 and 1.0.5 are the main results of the following preprint

J. LLIBRE, R. D. S. OLIVEIRA, C. A. B. RODRIGUES, Limit cycles for two classes of control

piecewise linear differential, arXiv:1804.08179.

Chapter 4 is dedicated to extend the averaging theory presented in chapter 3. We present
the high order averaging for continuous systems and show that this tool can also be used to
estimate the number of limit cycles in a big class of nonsmooth systems. Indeed the main
result of the chapter concern about the existence of isolated periodic solutions of the following
discontinuous nonautonomous 2π-periodic piecewise smooth differential equation

r′(θ) =
k

∑
i=0

ε
iFi(θ ,r)+ ε

k+1R(θ ,r,ε), (1.10)

where

Fi(θ ,r) =
n

∑
j=1

χ[α j−1,α j](θ)F
j

i (θ ,r), i = 0,1, ...,k, and

R(θ ,r,ε) =
n

∑
j=1

χ[α j−1,α j](θ)R
j(θ ,r,ε).

(1.11)

In this case the set of discontinuity is given by Σ = ({θ = 0 ≡ 2π}∪{θ = α1}∪ · · · ∪ {θ =

αn−1})∩S1 ×D. Considering the averaged functions

fi(ρ) =
yi(2π,ρ)

i!
, (1.12)

where yi :R×D→R for i= 1,2, . . . ,k, are defined recurrently by the following integral equations
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y1(θ ,ρ) =
∫

θ

0

(
F1 (φ ,ϕ(φ ,ρ))+∂F0(φ ,ϕ(φ ,ρ))y1(φ ,ρ)

)
dφ ,

yi(θ ,ρ) = i!
∫

θ

0

(
Fi (φ ,ϕ(φ ,ρ))+

i

∑
l=1

∑
Sl

1
b1!b2!2!b2 · · ·bl!l!bl

·∂ LFi−l (φ ,ϕ(φ ,ρ))
l

∏
j=1

y j(φ ,ρ)
b j
)

dφ , for i = 2, . . . ,k.

(1.13)

and the hypothesis

(H1) For each ρ ∈D the solution ϕ(θ ,ρ) is defined for every θ ∈ S1, it reaches Σ only at crossing
points, and it is 2π-periodic.

In such context we prove the following

Theorem 1.0.6. Assume that (H1) holds and that for some l ∈ {1,2, . . . ,k} the functions defined
in (1.12) satisfy fs = 0 for s= 1,2, . . . , l−1 and fl ̸= 0. If there exists ρ* ∈D such that fl(ρ

*) = 0
and f ′l (ρ

*) ̸= 0, then for |ε| ̸= 0 sufficiently small there exists a 2π-periodic solution r(θ ,ε) of
system (1.10) such that r(0,ε)→ ρ* when ε → 0.

This result is in the following paper

J. LLIBRE, D. D. NOVAES, C. A. B. RODRIGUES, Averaging theory of any order for com-

puting limit cycles of discontinuous piecewise differential systems with many zones, Physica D:
Nonlinear Phenomena, 353/354 (2017): pp 1–10.

In chapter 5 we use the Lyapunov-Schmidt Reduction together with the averaging theory
for estimate the number of limit cycles in a class of nonsmooth systems which can not be studied
only using the tool developed in chapter 4. In short we define the bifurcation funcions that are
given in terms of the averaged functions and we prove that their simple zeros control the number
of limit cycles of system (1.10) when the hyphotesis (H1) is not valid. The main result of such
study is Theorem 4.4.1 of chapter 5 and can be found in the preprint:

J. LLIBRE, D.D. NOVAES, C. A. B. RODRIGUES, Branching of limit cyles from families of

periodic solutions in piecewise differential systems, arXiv:1804.08175.

Finally, in appendix A, we present the final version of the paper

A. C. MEREU, R. D. S. OLIVEIRA, C. A. B. RODRIGUES, Limit cycles for a class of

discontinuous piecewise generalized Kukles differential systems, Nonlinear Dynamics, (2018):
pp 1–12.

This work studies a particular discontinuous differential system, which we call the
generalized Kukles polynomial differential system. The investigation of such family of systems
started during my master degree (RODRIGUES, 2015) and it was improved after that. Here we
present the final version.
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CHAPTER

2
QUADRATIC SYSTEMS HAVING INVARIANT

ALGEBRAIC CURVE OF DEGREE 3 AND
DARBOUX INVARIANTS

Even after hundreds of studies on the topology of real planar quadratic vector fields the
complete characterization of their phase portraits is a quite complex task. This family of systems
depends on twelve parameters but, after affine transformations and time rescaling, we arrive
at families with five parameters, which is still a big number of parameters. Many subclasses
have been considered in order to reach such characterization. The main objetives of this chapter
are to present a classification of the quadratic differential systems having invariant algebraic
curves of degree 3 (invariant cubics) and to present the global phase portraits of such systems
with a Darboux invariant. More precisely, using the normal forms of the quadratic system
having invariant cubics we investigate which ones that admit a Darboux invariant of the form
est f λ1

1 f λ2
2 f λ3

3 if the cubic is the product of three straight lines fi = 0 for i = 1,2,3, of the form
est f λ1

1 f λ2
2 if the cubic is the product of one straight line f1 = 0 and an irreducible conic f2 = 0,

and of the form est f λ1
1 if f1 = 0 is an irreducible cubic.

2.1 Basic concepts

Definition 2.1.1. A Ck vector field (k ≥ 0 or k = ∞) is a Ck-map F : U → Rn, where U ⊂ Rn+1

is an open subset of Rn+1.

To the field F is associated the ordinary differential equation (ODE)

ẋ = F(t,x). (2.1)

, where dot denotes derivative with respect to the time t. If F = F(x) (it does not depends on t)
system (2.1) is called an autonomous system.
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A function x : I ⊂ R→U satisfying

dx
dt

(t) = F(t,x(t)) for all t ∈ I,

is called a solution of the ODE (2.1). The largest interval I such that a solution is defined is
called maximal solution.

The existence and uniqueness of a solution are determined by conditions imposed on the
function F (the Existence and Uniqueness Theorem).

Definition 2.1.2. Let x : Ix0 →U be a maximal solution of the initial value problemẋ = F(t,x),

x(t0) = x0.
(2.2)

The image of the curve γϕ = {x(t); t ∈ Ix0} ⊂U with the induced orientation by x is called of
orbit.

Definition 2.1.3. The phase portrait of the vector field F : U → R2 is the set of oriented orbits.
It consists of singular points and regular orbits, oriented according to the maximal solutions that
described the system.

Let be

ẋ = P(x,y), ẏ = Q(x,y). (2.3)

an autonomous system where P and Q are polynomials on the real variables x and y. We define
m = max{degP,degQ} as the degree of the system. Moreover when m = 2 we say that system
(2.3) is a quadratic polynomial differential system or simply a quadratic system.The quadratic
systems appear in the modeling of many natural phenomena described in different branches of
science, in biological and physical applications. Besides the applications the quadratic systems
became a matter of interest for the mathematicians.

In this thesis we assume that the polynomials P and Q are coprime, otherwise system
(2.3) can be reduced to a linear or constant system doing a rescaling of the time variable.

2.1.1 Invariants

A nonconstant C1 function H : U → R, defined in the open and dense set U ⊂ R2 is a
first integral of system (2.3) on U if H(x(t),y(t)) is constant for all of the values of t for which
(x(t),y(t)) is a solution of system (2.3) contained in U . In other words H is a first integral of
system (2.3) if and only if

P
∂H
∂x

+Q
∂H
∂y

= 0, (2.4)

for all (x,y) ∈U
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An invariant of system (2.3) on the open subset U of R2 is a nonconstant C1 function I

in the variables x,y and t such that I(x(t),y(t), t) is constant on all solution curves (x(t),y(t)) of
system (1) contained in U , i.e.

∂ I
∂x

P+
∂ I
∂y

Q+
∂ I
∂ t

= 0, (2.5)

for all (x,y) ∈U . In short, I is a first integral of system (2.3) depending on the time t.

On the other hand given f ∈ C[x,y] we say that the curve f (x,y) = 0 is an invariant

algebraic curve of system (2.3) if there exists K ∈ C[x,y] such that

P
∂ f
∂x

+Q
∂ f
∂y

= K f . (2.6)

The polynomial K is called the cofactor of the invariant algebraic curve f = 0. When K = 0, f

is a polynomial first integral. Note that if a real polynomial differential system has a complex
invariant algebraic curve then it has also its conjugate. It is important to consider the complex
invariant algebraic curves of the real systems because sometimes these force the real integrability
of the system. More details can be found in the subsection 2.1.2 or in Chapter 8 of (DUMORTIER;
LLIBRE; ARTÉS, 2006).

Remark 2.1.4. Note that if f is an algebraic invariant curve and (x0,y0) is a point on the
curve f = 0 so P∂ f

∂x +Q∂ f
∂y (x0,y0) = 0, i.e, if F = (P,Q) then ⟨F,∇ f ⟩(x0,y0) = 0 and hence

F(x0,y0)⊥∇ f (x0,y0). Therefore if the orbit of (x0,y0) intersects the curve f = 0 then it is
contained on the curve. This justify the name “invariant”.

Let f ,g ∈ C[x,y] and assume that f and g are relatively prime in the ring C[x,y], or that
g = 1. Then the function exp( f/g) is called a exponential factor of system (2.3) if for some
polynomial L ∈ C[x,y] of degree at most m−1 we have

P
∂ exp( f/g)

∂x
+Q

∂ exp( f/g)
∂y

= L exp( f/g). (2.7)

As previously we say that L is the cofactor of the exponential factor exp( f/g). We
observe that in the definition of exponential factor exp( f/g) if f ,g ∈C[x,y] then the exponential
factor is a complex function. Again when we look for a complex exponential factor of a real
polynomial system we are thinking the real polynomial system as a complex polynomial system.

2.1.2 Darboux invariants

An invariant I is called a Darboux invariant if it can be written into the form

I(x,y, t) = f λ1
1 · · · f λp

p Fµ1
1 · · ·Fµq

q est , (2.8)

where fi = 0 are invariant algebraic curves of system (2.3) for i = 1, . . . p, and Fj are exponential
factors of system (2.3) for j = 1, . . . ,q, λi,µ j ∈ C and s ∈ R∖{0}.
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Observe that if among the invariant algebraic curves a complex conjugate pair f =

Re( f )+ Im( f )i = 0 and f̄ = Re( f )− Im( f )i = 0 occurs, then the Darboux invariant has a factor
of the form f λ f̄ λ̄ , which is the real multi-valued function(

(Re( f ))2 +(Im( f ))2
)Re(λ )

e−2Im(λ )arctan(Im( f )/Re( f )).

So if system (2.3) is real then the Darboux invariant is also real, independently of the fact of
having complex invariant curves or complex exponential factors.

The next result is proved in Proposition 8.4 of (DUMORTIER; LLIBRE; ARTÉS, 2006).

Proposition 2.1.5. Suppose that f ∈ C[x,y] and let f = f n1
1 . . . f nr

r be its factorization into
irreducible factors over C[x,y]. Then for a polynomial differential system (2.3), f = 0 is an
invariant algebraic curve with cofactor k f if and only if fi = 0 is an invariant algebraic curve for
each i = 1, . . . ,r with cofactor k fi . Moreover k f = n1k f1 + . . .+nrk fr .

The next result, proved in (CHRISTOPHER; LLIBRE, 2000), explain how to obtain a
Darboux invariant using the algebraic invariant curves of a polynomial differential system.

Proposition 2.1.6. Suppose that a polynomial system (2.3) of degree m admits p invariant
algebraic curves fi = 0 with cofactors ki for i = 1, ..., p, q exponential factors exp(g j/h j) with
cofactors L j for j = 1, ...,q, then, if there exist λi and µ j ∈ C not all zero such that

p

∑
i=1

λiki +
q

∑
j=1

µ jL j =−s, (2.9)

for some s ∈ R∖{0}, then substituting f λi
i by | fi|λi if λi ∈ R, the real (multi-valued) function

f λ1
1 . . . f λp

p

(
exp
(

g1

h1

))µ1

. . .

(
exp
(

gq

hq

))µq

est

is a Darboux invariant of system (2.3).

The search of first integrals is a classic tool in order to describe the phase portraits of a
2–dimensional differential system. As usual the phase portrait of a system is the decomposition
of the domain of definition of this system as union of all its orbits.

It is well known that the existence of a first integral or an a invariant for a planar
differential system allow to draw its phase portrait. Here we investigate the existence of invariants
of the form f (x,y)est , called Darboux invariants, see section 2.1.2 for details. Such invariants
describe the asymptotic behavior of the solutions of the system.

Indeed let φp(t) be the solution of system (2.3) passing through the point p ∈R2, defined
on its maximal interval (αp,ωp) such that φp(0) = p. If ωp = ∞ we define the ω-limit set of p as

ω(p) = {q ∈ R2 : ∃{tn} with tn = ∞ and φp(tn) = q when n = ∞}.
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In the same way, if αp =−∞ we define the α-limit set of p as

α(p) = {q ∈ R2 : ∃{tn} with tn =−∞ and φp(tn) = q when n = ∞}.

For more details on the ω– and α–limit sets see for instance section 1.4 of (DU-
MORTIER; LLIBRE; ARTÉS, 2006).

The existence of a Darboux invariant of system (2.3) provides information about the
ω– and α–limit sets of all orbits of system (2.3). More precisely, we have the following result,
where the definition of Poincaré compactification and Poincaré disc is given in subsection 2.2.
Its proof can be found in (LLIBRE; OLIVEIRA, 2015).

Proposition 2.1.7. Let I(x,y, t) = f (x,y)est be a Darboux invariant of system (2.3). Let p ∈ R2

and φp(t) the solution of system (2.3) with maximal interval (αp,ωp) such that φp(0) = p.

1. If ωp = ∞ then ω(p)⊂ { f (x,y) = 0}∪S1,

2. If αp =−∞ then α(p)⊂ { f (x,y) = 0}∪S1.

Here S1 denotes the infinity of the Poincaré disc.

2.2 Poincaré compactification
Let X = P(x,y) ∂

∂x +Q(x,y) ∂

∂y be the planar polynomial vector field of degree m associ-
ated to the polynomial differential system (2.3). The Poincaré compactified vector field π(X )

corresponding to X is an analytic vector field induced on S2 as follows (for more details, see
(DUMORTIER; LLIBRE; ARTÉS, 2006)).

Let S2 = {y = (y1,y2,y3) ∈ R3; y2
1 + y2

2 + y2
3 = 1} and TyS2 be the tangent plane to S2 at

point y. We identify R2 with T(0,0,1)S2 and we consider the central projection f : T(0,0,1)S2 = S2.
The map f defines two copies of X on S2, one in the southern hemisphere and the other in
the northern hemisphere. Denote by X ′ the vector field D( f ∘X ) defined on S2 ∖S1, where
S1 = {y ∈ S2; y3 = 0} is identified with the infinity of R2.

For extending X ′ to a vector field on S2, including S1, X must satisfy convenient
conditions. Since the degree of X is m, π(X ) is the unique analytic extension of ym−1

3 X ′ to S2.
On S2 ∖S1 there is two symmetric copies of X , and once we know the behavior of π(X ) near
S1, we know the behavior of X in a neighborhood of the infinity. The Poincaré compactification
has the property that S1 is invariant under the flow of π(X ). The projection of the closed
northern hemisphere of S2 on y3 = 0 under (y1,y2,y3) ↦→ (y1,y2) is called the Poincaré disc, and
its boundary is S1.

Two polynomial vector fields X and Y on R2 are topologically equivalent if there exists
a homeomorphism on S2 preserving the infinity S1 carrying orbits of the flow induced by π(X )

into orbits of the flow induced by π(Y ) preserving or not the orientation of all the orbits.
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As S2 is a differentiable manifold, in order to compute the explicit expression of π(X ),
we consider six local charts Ui = {y ∈ S2; yi > 0} and Vi = {y ∈ S2; yi < 0}, where i = 1,2,3,
and the diffeomorphisms Fi : Ui = R2 and Gi : Vi = R2, for i = 1,2,3, which are the inverses
of the central projections from the tangent planes at the points (1,0,0), (−1,0,0), (0,1,0),
(0,−1,0), (0,0,1) and (0,0,−1), respectively. We denote by z = (u,v) the value of Fi(y) and
Gi(y), for any i = 1,2,3, therefore z means different things depending on the local charts where
we are working. So after some computations π(X ) is given by:

vm
∆(z)

(
Q
(

1
v
,
u
v

)
−uP

(
1
v
,
u
v

)
,−vP

(
1
v
,
u
v

))
in U1, (2.10)

vm
∆(z)

(
P
(

u
v
,
1
v

)
−uQ

(
u
v
,
1
v

)
,−vQ

(
u
v
,
1
v

))
in U2, (2.11)

∆(z)(P(u,v),Q(u,v)) in U3, (2.12)

where ∆(z) = (u2 + v2 +1)−(m−1)/2. The expressions for Vi’s are the same as that for Ui’s but
multiplied by the factor (−1)m−1. In these coordinates v = 0 always denotes the points of the
infinity S1.

2.3 Invariant algebraic curves of degree 3

As mentioned in the introduction, one of the objective of this thesis is to study vector
fields having invariant algebraic curves of degree 3. So it is necessary to classify all the cubics
f : R2 → R. If f (x,y) is a polynomial function of degree 3 it can be irreducible on the ring
R[x,y] or it can be reducible and consequently written either as f = f1 f2, with f1 an irreducible
conic and f2 a polynomial of degree one, or as f = f1 f2 f3, with fi has degree one, i = 1,2,3.

Since the cubic curves can be classified as reducible and irreducible curves (according to
the polynomial defining the curve admits factorization or not), we split the obtained results in
two subsections. In the first one we consider planar quadratic systems having irreducible cubics
and in the second one, the reducible ones.

2.3.1 Irreducible invariant cubics

According to (BIX, 2006) we can classify an irreducible cubic using its flex points. Let p

be a nonsingular point of the algebraic curve f = 0 and l the tangent straight line of f = 0 at
p. The point p is called a flex point or inflexion of f if the contact between f = 0 and l at p is
greater or equal to 3. For example the curve y = x3 has a flex point at the origin.

The next results characterize all irreducible cubics, their proofs can be found in (BIX,
2006).
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Proposition 2.3.1. A cubic is non–singular and irreducible and has a flex point if and only if it
can be transformed with affine transformations into either

y2 = x(x−1)(x− r) with r > 1,

or
y2 = x(x2 + sx+1) with −2 < s < 2.

Proposition 2.3.2. A cubic is singular and irreducible if and only if it can be transformed with
affine transformations into one of the forms

y2 = x3, y2 = x2(x+1), y2 = x2(x−1).

Moreover in (BIX, 2006) it is proved that every non-singular and irreducible curve has a
flex point. So we have the complete characterization of the irreducible cubics.

2.3.2 Reducible invariant cubics

Proposition 2.3.3. A real quadratic system having an invariant conic after an affine change of
coordinates can be written in one of the following forms

(real ellipse) ẋ = (A/2)(x2 + y2 −1)+2y(p+qx+ r y),

ẏ = (B/2)(x2 + y2 −1)−2x(p+qx+ r y),

(complex ellipse) ẋ = (A/2)(x2 + y2 +1)+2y(p+qx+ r y),

ẏ = (B/2)(x2 + y2 +1)−2x(p+qx+ r y),

(hyperbola) ẋ = (A/2)(x2 − y2 −1)−2y(p+qx+ r y),

ẏ =−(B/2)(x2 − y2 −1)−2x(p+qx+ r y),

(parabola) ẋ = A(y− x2)− (p+qx+ r y),

ẏ = B(y− x2)−2x(p+qx+ r y),

(Lotka-Volterra) ẋ = x(p1 +q1 x+ r1 y)

ẏ = y(p2 +q2 x+ r2 y),

(two parallel real lines) ẋ = x2 −1

ẏ = Q(x,y),

(double line) ẋ = x2

ẏ = Q(x,y),

(two parallel complex lines) ẋ = x2 +1

ẏ = Q(x,y),

(two non-parallel complex lines) ẋ = (A/2)(x2 + y2)+(C/2)x+2y(p+qx+ r y),

ẏ = (B/2)(x2 + y2)+(C/2)y−2x(p+qx+ r y).

Here Q(x,y) denotes an arbitrary polynomial of degree 2.
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The proof of the previous result can be found in (CAIRÓ; LLIBRE, 2002), except
to the normal form of the system with a parabola that is proved in (LLIBRE; MESSIAS;
REINOL, 2014). The next result is due to Christopher, Llibre, Pantazi, Zhang and Zholadek, see
(CHRISTOPHER, 1994; CHRISTOPHER et al., 2002; ŻOŁĄDEK, 1995). An algebraic proof
of it also can be found in (CHRISTOPHER et al., 2002).

Theorem 2.3.4. Let fi = 0 for i = 1, . . . ,q be q irreducible algebraic curves in C2, and let

k =
q

∑
i=1

deg fi. We assume

(i) there are no points at which fi and its first derivatives all vanish,

(ii) the highest order terms of fi have no repeated factors,

(iii) no more than two curves meet at any point in the finite plane and are not tangent at these
points,

(iv) no two curves have a common factor in their highest order terms, then any polynomial
vector field X of degree m tangent to all fi = 0 is of the form describe bellow.

(a) If m > k−1 then

X = Y

(
q

∏
i=1

fi

)
+

q

∑
i=1

(
q

∏
j=1, j ̸=i

f j

)
X fi, (2.13)

where X fi = (−∂ fi/∂y,∂ fi/∂x) is a Hamiltonian vector field, the hi are polynomials
of degree ≤ m− k+1 and Y is a polynomial vector field of degree ≤ m− k.

(b) If m = k−1 then

X =
q

∑
i=1

αi

(
q

∏
j=1, j ̸=i

f j

)
X fi, (2.14)

where αi ∈ C. In this case a Darboux first integral exists.

(c) If m < k−1 then X ≡ 0.

Theorem 2.3.5. [Lemma 7 of (CHRISTOPHER et al., 2002)] Assume that f = 0 and g = 0 are
different irreducible invariant algebraic curves of system (2.3) of degree m, and that they satisfy
conditions (i) and (iii) of Theorem 2.3.4. If gcd( fx, fy) = 1 and gcd(gx,gy) = 1, then system
(2.3) has the normal form

ẋ = A f g−h1 fyg−h2 f gy ẏ = B f g+h1 fxg+h2 f gx, (2.15)

where A,B and h j are polynomials, for i = 1,2.
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2.4 Classification of quadratic systems having irreducible
invariant cubics

2.4.1 Normal forms

The objective of this subsection is to describe the differential systems as in Proposition
2.3.3 and Theorems 2.3.4, 2.3.5, in terms of normal forms. In this sense we present the first result
of this thesis

Theorem 2.4.1. Each quadratic system admitting an irreducible invariant cubic after an affine
change of coordinates and a rescaling of the time variable can be written as one of the following
systems.

(i) ẋ = 2(ax+by+dxy+ cx2),

ẏ = 3(ay+bx2 + cxy+dy2),

(ii) ẋ = 2(ax+by+(3b−2c)xy+ax2),

ẏ = 2bx+2ay+2cx2 +3axy+(9b−6c)y2,

(iii) ẋ = 2(ax−by+(3b+2c)xy−ax2),

ẏ = 2bx+2ay+2cx2 −3axy+(9b+6c)y2,

(iv) ẋ = 2y(a+bx),

ẏ = ar−2(ar+a+br)x+(3a+br+b)x2 +3by2,

(v) ẋ = 2y(b+ cx),

ẏ = b+2(br− c)x+(3b− cr)x2 +3cy2.

Proof. First of all we write

P(x,y) = a00 +a01y+a02y2 +a10x+a11xy+a20x2,

Q(x,y) = b00 +b01y+b02y2 +b10x+b11xy+b20x2.

If a quadratic system (2.3) has a singular irreducible invariant cubic f (x,y) = 0 by Proposition
2.3.2 the function f can be written as f (x,y) = y2 − x3 or f (x,y) = y2 − x2(x+1) or f (x,y) =

y2−x2(x−1). The curve f (x,y) = y2−x3 = 0 is an invariant cubic for system (2.3) if and only if
equation (2.6) is satisfied. The solution of this equation in terms of the parameters of the system
is

a00 = a02 = b00 = b10 = 0, b01 = 3a10/2, b02 = 3a11/2, b11 = 3a20/2, b20 = 3a01/2.

So the cofactor of f is K = 3(a10 +a20x+a11y). Doing a10 = a, a20 = b, a01 = c, a11 = d and
a rescaling of the time we obtain system (i) of Theorem 2.4.1.

When f (x,y) = y2 − x2(x±1) we obtain the normal forms given in (ii) and (iii) of the
theorem following similar steps.
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Now if a quadratic system (2.3) has an invariant non–singular irreducible cubic f (x,y) =

0 then by Proposition 2.3.1 we can write f (x,y) = y2 − x(x−1)(x− r) with r > 1 or f (x,y) =

y2 − x(x2 + sx+ 1) with −2 < s < 2. In the first case solving equation (2.6) we obtain three
solution but fixing r > 1 only one solution can hold a00 = a02 = a10 = a20 = b01 = b11 = 0, b00 =

a01r/2, b02 = 3a11/2, b10 = −a01(r+ 1)− a11r, b20 = (3a01 + a11r+ a11)/2. It corresponds
to system (iv) of Theorem 2.4.1.

For f (x,y) = y2 − x(x2 + sx+1) we obtain only one solution corresponding to system
(v) of the theorem.

2.4.2 Darboux invariants and phase portrait on the Poincaré disc

Using the normal forms described in Theorem 2.4.1 we investigate when these systems
admit a Darboux invariant of the form I(x,y, t) = est f (x,y).

Theorem 2.4.2. Each quadratic system admitting an irreducible invariant cubic having a Darboux
invariant can be written after an affine change of coordinates and a rescaling of the time variable
as

ẋ = x+ y, ẏ =
3
2

y+ x2. (2.16)

In this case y2 = x3 is the invariant algebraic curve and the Darboux invariant is given by
I1(x,y, t) = e−6t(y2 − x3). The global phase portrait of such system is given in Figure 1.

Figure 1 – Phase portrait of system (2.16).

Proof. First of all is easy to see that the cofactor K of f in systems (ii)− (v) of Theorem 2.4.1
has no constant terms. Then equation (2.9) becomes λK+ s = 0 which never holds if s ∈R∖{0}
and λ ∈C∖{0}. Therefore we conclude that systems (ii)− (v) do not admit a Darboux invariant
of such form.

Now considering system (i) of Theorem 2.4.1 we have f (x,y) = y2 − x3 = 0 as invariant
curve with cofactor K = 6(a+ cx+dy). In this case the solution of equation (2.9) is given by
{c = 0, d = 0, s =−6aλ}. Taking λ =−s/(6a) we obtain the system

ẋ = 2(ax+by), ẏ = 3(ay+bx2),

with Darboux invariant I1(x,y, t) = e−6at(y2 − x3).
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The normal form described in Theorem 2.4.2 is obtained doing the following change of

coordinates and rescaling of the time x =
2a2

3b2 X , y =
2a3

3b3Y, t =
1

2a
T .

Now it remains to study the phase portrait of system (2.16). This system has two singular
points, namely z1 = (0,0) yperbolic unstable node, and z2 = (3/2,−3/2) a hyperbolic saddle.
Applying the Poincaré compactification in the local chart U1 and on the line v = 0 the compacti-
fied system has no singular points. However in the local chart U2 the origin (0,0) is a nilpotent
singularity. With the notation of Theorem 3.5 of (DUMORTIER; LLIBRE; ARTÉS, 2006) the
compactified system has F(u) =−u5 − (3/2)u6 and G(u) =−4u2 − (7/2)u3. Hence the origin
of U2 is a nilpotent stable node. By the previous statements it follows that the phase portrait of
system (2.16) is the one described in Figure 1.

2.5 Classification of quadratic systems having reducible
invariant cubics

2.5.1 Normal forms

Each reducible cubic can be written as the product of two polynomials one of degree
two and the other of degree one (i.e, a conic and a straight line respectively). The conics can be
classified in ellipses (E), complex ellipses (CE), hyperbolas (H), parabolas (P), two real straight
lines intersecting in a point , two real parallel straight lines (PL), one double invariant real
straight line (DL), two complex straight lines intersecting in a real point (p), and two complex
parallel straight lines (CL). So the normal forms of the reducible cubics, except to an affine
transformation, are

(E) (x2 + y2 −1)(ax+by+ c) = 0,

(CE) (x2 + y2 +1)(ax+by+ c) = 0,

(H) (x2 − y2 −1)(ax+by+ c) = 0,

(P) (y− x2)(ax+by+ c) = 0,

(LV) xy(ax+by+ c) = 0,

(PL) (x2 −1)(ax+by+ c) = 0,

(DL) x2(ax+by+ c) = 0,

(CL) (x2 +1)(ax+by+ c) = 0,

(p) (x2 + y2)(ax+by+ c) = 0.
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We shall say that a quadratic system is of type (E) if it has a real ellipse and a straight line
as invariant irreducible algebraic curves; of type (CE) if it has a complex ellipse and a straight
line as invariant irreducible algebraic curves, and respectively with all the nine types of conics
described above.

Again we first classify the systems with respect to their invariant cubics.

Theorem 2.5.1. If a quadratic system (2.3) has a reducible invariant cubic then it can be written,
after an affine change of coordinates, into one of the following forms

(CE) ẋ =−(x2 + y2 +1)−2α1 y(y+ax+ c),

ẏ = a(x2 + y2 +1)+2α1 x(y+ax+ c),

(E.1) ẋ =−(x2 + y2 −1)−2α1y(y+ax+ c),

ẏ = a(x2 + y2 −1)+2α1x(y+ax+ c),

(E.2) ẋ = (β1/2)(x2 + y2 −1)− y(β2 y−α2 x+ cβ2),

ẏ = (y+ c)(α2 y+β2cx+α2), with α2(c+1) = 0,

(H.1) ẋ = (β1/2)(x2 − y2 −1)+β2 y(y+ c),

ẏ = β2 y(y+ c),

(H.2) ẋ = (x+ c)(α2 x+ γ2y+α2),

ẏ =−(γ1/2)(x2 − y2 −1)+ x(γ2 x+α2 y+ cγ2), with α2(c+1) = 0,

(H.3) ẋ = (A/2)(x2 − y2 −1)− y(α − cβ + x(β − cα)+ y(γ − cα)),

ẏ = (A/2)(x2 − y2 −1)− x(α − cβ +βx+ y(γ − cα))+ cα(y2 +1), with c(γ +β ) = 0,

(H.4) ẋ = (A/2)(x2 − y2 −1)+ y(aα −β
√

d + x(aβ −α
√

d)+βy),

ẏ = (−Aa/2)(x2 − y2 −1)+ x(aα −β
√

d +aβx+βy)−α
√

d(y2 +1), with d = a2 −1,

(H.5) ẋ =−(x2 − y2 −1)+2α1y(y+ax+ c),

ẏ = a(x2 − y2 −1)+2α1x(y+ax+ c), with c2 ̸= a2 −1,

(P.1) ẋ = x(α2 +β2 x+ γ2 y),

ẏ = α1(y− x2)+2α2x2 +2y(β2 x+ γ2 y),

(P.2) ẋ =−β1(y− x2)+ y(β2 + γ2x)+(α2 + γ2c)x+ cβ2,

ẏ = 2(y+ c)(α2 +β2x+ γ2y), with cα2 = 0,

(P.3) ẋ =−(y− x2)−α(y+ax+ c),

ẏ = a(y− x2)−2α x(y+ax+ c), with c ̸= a2/4,

(LV.1) ẋ = x(α + r y+β x),

ẏ = y(α +(r−q+β )y+qx),

(LV.2) ẋ = x(p+qx+ r y),

ẏ = y(y+ c), with c(c+1) = 0,
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(LV.3) ẋ =−x(y+α(y+ax+ c)),

ẏ = y(ax+β (y+ax+ c)), with ac ̸= 0,

(RPL) ẋ = x2 −1,

ẏ = y(α +β x+ γ y),

(DL) ẋ = x2,

ẏ = y(α +β x+ γ y),

(CPL) ẋ = x2 +1,

ẏ = y(α +β x+ γ y),

(p.1) ẋ = (β/2)(x2 + y2)−β3 y2 + x(α3 + γ3 y),

ẏ = y(α3 +β3 x+ γ3 y),

(p.2) ẋ =−(x2 + y2)+(β x−α y)(y+ax+ c),

ẏ = a(x2 + y2)+(β y+α x)(y+ax+ c),with c ̸= 0,

where a,c,A, p,q,r,α,β ,α1,α2,β1,β2,γ1 and γ2 are the parameters of the system.

Proof. The proof is done according to the conic that appears in the expression of the reducible
cubic.

Systems of type (E)

If system (2.3) has an invariant cubic of the form f (x,y) = f1(x,y) f2(x,y) with f1 =

x2 + y2 − 1 and f2 = ax+ by+ c, then applying a rotation we can assume b = 1. Therefore it
follows from Proposition 2.1.5 that f j is an invariant curve with cofactor k j = α j +β jx+ γ jy,
j = 1,2. Consider two cases: a = 0 and a ̸= 0.

If a = 0 then using equation (2.6) we have Q = k2 f2 and P = (k1 f1 −2yk2 f2)/(2x). As
P is a polynomial the parameters of the system must satisfy on the of following conditions

s1 = {c =−1, α1 = 0, γ1 = 2α2, γ2 = α2},

s2 = {c = 1, α1 = 0, γ1 =−2α2, γ2 =−α2},

s3 = {α1 = 0, γ1 = 0, γ2 = 0}.

Moreover the solutions s1 and s2 provide equivalent systems, and we can summarize the solutions
s1 and s3 writing the system

ẋ = (β1/2)(x2 + y2 −1)− y(β2 y−α2 x+ cβ2),

ẏ = (y+ c)(α2 y+β2cx+α2),

(2.17)

with α2(c+1) = 0. This is exactly system (E.1) of Theorem 2.5.1.
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When a ̸= 0 we check when the hypotheses of Theorem 2.3.4 are satisfied. Clearly f1

and f2 satisfies (i),(ii) and (iv). Condition (iii) is not satisfied when c2 = a2 + 1 because the
line f2 = 0 is tangent to the real ellipse f1 = 0. Indeed if the straight line f2 = y+ax+ c = 0
is tangent to the real ellipse f1 = x2 + y2 −1 = 0 at the point (x0,y0), then their gradients are
parallel in such point, what means that x0 − ay0 = 0. Replacing y0 = x0/a in the ellipse we
conclude that x0 =±a/

√
a2 +1. From f2 = 0 we get c =∓

√
a2 +1. Therefore the condition for

the tangency is c2 = a2 +1. In this case applying a rotation we can get f2 = y−1. Again we are
in system (2.17) with c =−1.

Now assuming c2 ̸= a2 +1 it follows from Theorem 2.3.4 that our system is given by

ẋ =−α2(x2 + y2 −1)−2α1y(y+ax+ c), ẏ = aα2(x2 + y2 −1)+2α1x(y+ax+ c), (2.18)

where α1, α2 ∈ C and a, c ∈ R. As we are looking for a real system, then α1, α2 ∈ R, and doing
a rescaling of the time we can assume α2 = 1. Note that system (2.18) is exactly system (E.2)
of Theorem 2.5.1.

Systems of type (CE)

In this case we can follow the same steps applied previously. If system (2.3) has an
invariant cubic of the form f = f1 f2 with f1 = x2 + y2 + 1 and f2 = ax+ by+ c we suppose,
without loss of generality, b = 1. Since the coefficients a,b and c are real numbers the straight
line f2 = 0 cannot be tangent to the complex ellipse f1 = 0. So we get

ẋ =−α2(x2 + y2 +1)−2α1 y(y+ax+ c), ẏ = aα2(x2 + y2 +1)+2α1 x(y+ax+ c), (2.19)

where α1, α2 ∈ C and a, c ∈ R. Applying a rescaling we have α2 = 1 in (2.19), and we get the
normal form for the systems of type (CE).

Systems of type (H)

Let f1 = x2−y2−1 and f2 = ax+by+c be two real algebraic invariant curves of system
(2.3), so a2 +b2 ̸= 0. Proceeding as before if a = 0 then we can assume b = 1 and the system
can be written in the form

ẋ = (β1/2)(x2 − y2 −1)+β2 y(y+ c), ẏ = β2 y(y+ c), (2.20)

with β1β2 ̸= 0. This is system (H.1) of Theorem 2.5.1.

If a ̸= 0 and b = 0 we take a = 1 and system (2.3) satisfies P = k2 f2 and 2yQ =

2xP− k1 f1, where k j = α j +β j x+ γ j y, for j = 1,2. Since Q is a polynomial in the parameters
of the system it must satisfy one of the following conditions

s1 = {c =−1, α1 = 0, β1 = 2α2, β2 = α2},

s2 = {c = 1, α1 = 0, β1 =−2α2, β2 =−α2},

s3 = {α1 = 0, α2 = 0, β1 = 0, β2 = 0}.



2.5. Classification of quadratic systems having reducible invariant cubics 41

Applying the change of coordinates x = −X ,y = Y we conclude that case s1 and s2 provide
equivalent systems. Moreover we can summarize solutions s1 and s3 in the unique system

ẋ = (x+ c)(α2 x+ γ2y+α2), ẏ =−(γ1/2)(x2 − y2 −1)+ x(γ2 x+α2 y+ cγ2), (2.21)

with α2(c+1) = 0. System (2.21) corresponds to system (H.2) of Theorem 2.5.1.

If ab ̸= 0 we assume b = 1 and consider three cases, according to the conditions of
Theorem 2.3.4. Note that condition (i) of Theorem 2.3.4 holds because ∇ f1(x,y) = (2x,−2y)

and ∇ f2(x,y) = (a,1), where ∇ indicates the gradient. Condition (ii) also holds. However
condition (iv) is not verified when a2 − 1 = 0. Indeed in this case f1 = (x + y)(x − y)− 1
and f2 = (y± x)+ c. Condition (iii) does not hold when c2 = a2 − 1 since the straight line
f2 = y+ ax+ c = 0 is tangent to the hyperbola. The proof of this last statement can be done
analogously as for the systems of type (E). Hence when a2−1 = 0 or c2 = a2−1 Theorem 2.3.4
does not hold and we split the study of systems of type (H) for ab ̸= 0 in three cases: a2 −1 = 0,
c2 = a2 −1 and (a2 −1)(c2 −a2 +1) ̸= 0.

For the first two cases we apply Propositions 2.1.5 and 2.3.3 to conclude that f1 is an
algebraic invariant curve of a quadratic system (2.3) and it can be written as

ẋ = (A/2)(x2 − y2 −1)−2y(p+qx+ r y), ẏ =−(B/2)(x2 − y2 −1)−2x(p+qx+ r y),

(2.22)
where A,B, p,q,r ∈ R. Fixing the cofactor of f2 = 0 as k2 = α +β x+ γ y , where α,β ,γ ∈ R
and using system (2.22) we solve (2.6). First considering a =−1 (the case a = 1 is analogous
except by a reflection) equation (2.6) has two possible solutions

s1 = {B =−A, c = 0, p = α/2, q = β/2, r = γ/2},

s2 = {B =−A+2cα, p = (αc−β )/2, q = (β − cα)/2,r =−(β + cα)/2, γ =−β}.

Using the two above solutions we get the system

ẋ = (A/2)(x2 − y2 −1)− y(α − cβ + x(β − cα)+ y(γ − cα)),

ẏ = (A/2)(x2 − y2 −1)− x(α − cβ +βx+ y(γ − cα))+ cα(y2 +1),

with c(γ +β ) = 0. This is system (H.3) of Theorem 2.5.1.

Now considering c2 = a2 −1 we investigate the conditions that must be satisfied by the
parameters of system (2.22) in order that f2 = y+ax±

√
a2 −1 be an invariant curve. Without

loss of generality we can assume c =
√

a2 −1. Equation (2.6) has one solution, namely

B = aA−2α
√

d, p = (β
√

d −aα)/2,r =−β/2,q = (α
√

d −aβ )/2,γ = aβ −α
√

d,
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where d = a2 −1. Replacing it in (2.22) we get

ẋ = (A/2)(x2 − y2 −1)+ y(aα −β
√

d + x(aβ −α
√

d)+βy),

ẏ = (−Aa/2)(x2 − y2 −1)+ x(aα −β
√

d +aβx+βy)−α
√

d(y2 +1),

(2.23)

where d = a2 −1, and this systems corresponds to system (H.4) of Theorem 2.5.1.

Finally if (a2 −1)(c2 −a2 +1) ̸= 0 applying Theorem 2.3.4 we obtain the system

ẋ = −α2(x2 − y2 −1)+2α1y(y+ax+ c),

ẏ = aα2(x2 − y2 −1)+2α1x(y+ax+ c),

(2.24)

which is system (H.5) of Theorem 2.5.1.

Systems of type (P)

Let f = (y− x2)(ax+ by+ c) = 0 be an invariant cubic of system (2.3). When b = 0
we can assume f = x(y− x2). Indeed if b = 0 we take a = 1 and do the change of coordinates
x = X −c, y =Y −2cX +c2. Using that f2 = x = 0 is an invariant straight line we have P = k2 f2

with k2 = α2 +β2 x+ γ2 y, and a quadratic system (2.3) can be written as

ẋ = x(α2 +β2 x+ γ2 y), ẏ = α1(y− x2)+2α2x2 +2y(β2 x+ γ2 y). (2.25)

If b ̸= 0 and a = 0 we can take b = 1 and proceed as in systems of type (H) and (E), then we
get the system

ẋ =−β1(y− x2)+ y(β2 + γ2x)+(α2 + γ2c)x+ cβ2, ẏ = 2(y+ c)(α2 +β2x+ γ2y), (2.26)

with cα2 = 0. Observe that when c = 0 the invariant line is y = 0 and when α2 = 0 it is y+c = 0.

If ab ̸= 0 and f2 = y±ax+a2/4, f2 = 0 is tangent to the parabola. In this case we can
assume f2 = y+ax+a2/4 (the other case is a reflection). Applying the change of coordinates x =

−X −a/2 and y =Y +aX +a2/4 the cubic f = (y−x2)(y+ax+a2/4) becomes f = (Y −X2)Y ,
which already has been studied above. Indeed it corresponds to system (2.25) with c = 0.

Otherwise there is no tangency between the straight line and the parabola, and we apply
Theorem 2.3.4 to get the differential system

ẋ =−(y− x2)−α(y+ax+ c), ẏ = a(y− x2)−2α x(y+ax+ c). (2.27)

Systems (2.25), (2.26) and (2.27) correspond to systems (P.1),(P.2) and (P.3) of Theorem 2.5.1,
respectively.
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Systems of type (LV )

In this case f = xy(ax+by+ c) = 0 is the invariant curve and except by a rotation we
can assume b = 1. We consider different cases according to ac = 0 or ac ̸= 0. Note that if c = 0
hypothesis (iii) of Theorem 2.3.4 is not valid, whereas a = 0 breaks the hypothesis (iv).

When c = 0 and a ̸= 0, doing the change of coordinates x =− Y
3√a2

, y = 3
√

aX the cubic
becomes F = X Y (Y −X). So using Proposition 2.3.3 the differential system can be written as

ẋ = x(p1 +q1 x+ r1 y) ẏ = y(p2 +q2 x+ r2 y). (2.28)

If (2.28) has f3 = y− x as an invariant curve with cofactor k = α +β x+ γ y, then equation (2.6)
must be satisfied. Solving it we get

s1 = {p2 = α, r2 = β −q2 + r1, q1 = β , p1 = α, γ = β −q2 + r1}.

Replacing in (2.28) and writing q = q2, r = r1 we obtain system (LV.1) of Theorem 2.5.1.

Now if c = a = 0 then f2 = y = 0 is a double line, and it is not difficult to see that we
can write the system as

ẋ = x(p+qx+ r y), ẏ = y2. (2.29)

Finally, when a = 0 and c ̸= 0, doing the change of coordinates x = X/c2, y = cY − c

the cubic f = 0 becomes F = X Y (Y − 1). So without loss of generality we can work with
f3 = y−1. Again the idea is to write the system as in (2.28), and see what are the conditions in
order that f3 = 0 to be an invariant curve for such system. Solving equation (2.6) and replacing
the solutions in (2.28) we get

ẋ = x(p+qx+ r y), ẏ = y(y−1). (2.30)

Systems (2.29) and (2.30) can be summarized as

ẋ = x(p+qx+ r y), ẏ = y(y+ c),

with c = 0 or c =−1. This is exactly system (LV.2) of Theorem 2.5.1.

In the last case, ac ̸= 0 the invariant cubic is f = xy(y+ax+c) = 0 and by the geometry
to the curves we can assume a < 0 and c < 0. Applying Theorem 2.3.4 we get the system

ẋ =−α2 x(y+ax+ c)−α3 xy, ẏ = α1 y(y+ax+ c)+aα3 xy.

Note that we can take α3 = 1. Doing α = α2, β = α1 we obtain system (LV.3) of Theorem 2.5.1.

Systems of type (RPL)

Here the invariant cubic is f = f1 f2 f3 = 0 where f1 = x + 1, f2 = x − 1 and f3 =

ax+by+ c. When b = 0 we apply Proposition 2.3.3 (case (RPL)), then it is easy to see that the
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corresponding normal form has one additional invariant curve f3 = 0 as invariant straight line if
and only if it is a multiple of f1 or f2. However we cannot consider any of these cases because if
the system has f2 as an invariant double straight line for example, then there would be a change
of coordinates so that the system would be written as

ẋ = (x−1)(x+1)2, ẏ = Q(x,y),

then having degree 3 instead of 2.

When b ̸= 0 we can fix b = 1. In this case the cubic f = (x2 − 1)(y+ ax+ c) = 0 can
be reduced to F = y(x2 −1) by change of coordinates x = X ,y = Y −aX − c. If the quadratic
differential system (2.3) has the invariant curve f = y(x2 −1) = 0, then f1 = 0 and f2 = 0 are
invariant curves and by Proposition 2.3.3 such system can be written as

ẋ = x2 −1, ẏ = Q(x,y), (2.31)

where Q(x,y) is an arbitrary polynomial of degree 2. Imposing that f3 = y = 0 is an additional
invariant curve with cofactor k3 = α +β x+ γ y, the above system must satisfy Q(x,y) = y(α +

β x+ γ y). This expression justify the normal form given in (RPL) of Theorem 2.5.1.

Systems of type (DL)

These systems have a double straight line as invariant curve which can be taken as f1 = x.
We write f2 = ax+ by+ c and use the normal form of a system having f = f1 f2 = 0 as an
invariant cubic. For such normal form, if b = 0 then f2 = 0 is an invariant straight line if and
only if c = 0 but in this case the system cannot have a triple invariant straight line.

If b ̸= 0 we can take b= 1 and f = x2(y+ax+c). Doing the change x=X ,y=Y −aX−c

the function f can be written as F = X2Y . Hence it is enough to consider f2 = y. By Proposition
2.3.3 a quadratic system (2.3) can be written as

ẋ = x2, ẏ = Q(x,y),

where Q(x,y) is an arbitrary polynomial of degree 2. Imposing that f2 = 0 is an additional
invariant curve with cofactor k2 = α +β x+ γ y, we conclude that Q(x,y) = y(α +β x+ γ y).
This expression justify the normal form given in (DL) of Theorem 2.5.1.

Systems of type (CPL)

The proof for this case is analogous to the case (DL) so we will omit some details. In
short the cubic is given by f = f1 f2 f3 = 0 where f1 = x+ i, f2 = x− i and f3 = ax+by+ c. In
order to f3 = 0 to be an invariant curve with b = 0 it is necessary that c =±i. So b ̸= 0 and we
assume b = 1. This reduce f to the cubic F = y(x2 +1) and then we get the normal form (CPL)

described in Theorem 2.5.1.
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Systems of type (p)

In this case the cubic is given by f = (x2+y2)(ax+by+c) = 0 and except by a rotation
we can assume b = 1. When c = 0 the three curves intersect at the same point and the conditions
of Theorem 2.3.4 are not satisfied. But if c = 0 doing the change of coordinates

x =− X
3
√

(a2 +1)2
+

aY
3
√

(a2 +1)2
, y =

aX
3
√
(a2 +1)2

+
Y

3
√

(a2 +1)2
,

the cubic f = (x2 + y2)(y+ax) = 0 is reduced to f = Y (X2 +Y 2). Now using that system (2.3)
has f3 = y = 0 as a third invariant curve it follows that Q(x,y) = k3 f3 where k3 = α3+β3 x+γ3 y

is the cofactor of f3. Moreover f1 f2 = 0 is also an invariant curve then we must have

2xP(x,y)+2yQ(x,y) = k(x,y)(x2 + y2),

with k(x,y) = α +β x+ γ y being the sum of the cofactors of f1 and f2. So a quadratic system
(2.3) can be written as

ẋ = (β/2)(x2 + y2)−β3 y2 + x(α3 + γ3 y), ẏ = y(α3 +β3 x+ γ3 y),

which is exactly system (p.1) of Theorem 2.5.1.

When c ̸= 0 we apply Theorem 2.3.4 and conclude that a quadratic system (2.3) can be
written as

ẋ =−α3(x2 + y2)− ((α2 +α1)y− i(α2 −α1)x)(y+ax+ c),

ẏ = aα3(x2 + y2)+((α2 +α1)x− i(α2 −α1)y)(y+ax+ c),

(2.32)

with α1,α2 and α3 ∈ C. Writing α j = m j + in j with m j,n j ∈ R and using that such system have
real parameters we conclude that m2 = m1, n2 =−n1 and n3 = 0. Replacing this conditions in
(2.32) we get the system

ẋ =−m3(x2+y2)+2(n1 x−m1 y)(y+ax+c), ẏ = am3(x2+y2)+2(m1 x+n1 y)(y+ax+c).

(2.33)
Note that if m3 = 0 then the system has a common factor, so we can take m3 = 2. Applying a
rescaling of the time and writing α = m1, β = n1 we obtain system (p.2) of Theorem 2.5.1.
It follows from the previous study the proof of Theorem 2.5.1

2.5.2 Darboux invariants and phase portrait on the Poincaré disc

Using the normal forms described in Theorem 2.5.1 we can make a topological classfica-
tion of the systems, that is, to draw its phase portraits on the Poincaré disc when the system has a
Darboux invariant.
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Theorem 2.5.2. The global phase portrait in the Poincaré disc of each quadratic differential
system admitting a reducible invariant cubic f (x,y) = 0 and having a Darboux invariant of the
form I(x,y, t) = e−st f (x,y) is topologically equivalent to one of the phase portraits presented in
Figures 2-7. Their normal forms according to Theorem 2.5.1 is labelled in the corresponding
figure.

The proof of Theorem 2.5.2 will be done using nine Propositions (2.5.3–2.5.12).

Figure 2 – Phase portraits of systems of type (E) and (H) when they have a Darboux invariant.

Proposition 2.5.3 (E). Each real planar quadratic differential system with a real ellipse and a
straight line having a Darboux invariant can be written, after an affine change of coordinates, as
system (E.2) with c =−1, α2 ̸= 0. Moreover, such system has the Darboux invariant

I2(x,y, t) = e−t(y−1)1/α2(x2 + y2 −1)−
1

2α2 .

and, these systems have only 2 non–equivalent phase portraits, see phase portraits EL.2.1 and
EL.2.2 of Figure 2.

Proof. If follows from the reducible cubic classification that we can fix f1 = x2 + y2 − 1 = 0
as the real ellipse and by Theorem 2.5.1 there are only two families of systems having f1 = 0
and a straight line as invariant curves (E.1) and (E.2). We shall prove later that (E.1) does not
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Figure 3 – Phase portraits of systems of type (P) when they have a Darboux invariant.
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Figure 4 – Phase portraits of systems of type (P) when they have a Darboux invariant.

admit a Darboux invariant. Now we study system (E.2). By Proposition 2.1.6 system (E.2) has
a Darboux invariant if there exist λ1,λ2 ∈ R not both equal to zero such that (2.9) holds with
s ∈ R ∖ {0} and k1,k2 being the cofactors of f1 = 0 and f2 = y+ c = 0, respectively. But for
system (E.2) we must have α2 = 0 or c =−1. If α2 = 0 the cofactors are k1 = β1 x and k2 = β2 x

and the equation λ1k1 +λ2k2 + s = 0 has no solution for s ̸= 0. Hence if α2 = 0 system (E.2)
has no Darboux invariant.

If α2 ̸= 0 and c =−1 then the cofactors are k1 = β1 x+2α2 y and k2 = α2 +β2 x+α2 y

and the unique solution of (2.9), with s ̸= 0 is

β1 = 2β2, s =−α2λ2, λ1 =−λ2/2. (2.34)
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Figure 5 – Phase portraits of systems of type (LV ) when they have a Darboux invariant.
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Figure 6 – Phase portraits of systems of type (RPL) and (DL) when they have a Darboux invariant.

Taking λ1 = 1/α2 and replacing (2.34) in system (E.2) we obtain the system

ẋ = β2(y−1)+ x(β2 x+α2 y), ẏ = (y−1)(α2 +β2 x+α2 y), (2.35)

which has the Darboux invariant

I2(x,y, t) = e−t(y−1)1/α2(x2 + y2 −1)−
1

2α2 .

In order to study the global phase portrait of system (E.2) we start considering its
finite singularities. Note that (2.35) has at most three finite singularities, namely z1 = (0, 1),
z2 = (−1/β2, 1) and z3 =

(
− 2β2

β 2
2 +1

,
β 2

2 −1
β 2

2 +1

)
. The eigenvalues associated to z1 are 2 and 1, if

β2 ̸= 0, the eigenvalues associated to z2 are −1 and 1 and the eigenvalues of z3 are −1 and −2.
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Figure 7 – Phase portraits of systems of type (CPL) and (p) when they have a Darboux invariant.

So for β2 ̸= 0 z1, z2 and z3 are an unstable node, a saddle and a stable node, respectively. When
β2 = 0 we have only z1 and z3 as finite singularities.

In the local chart U1 the compactified system is

u̇ =−v(β2 +β2u2 −β2uv+ v), v̇ =−v(β2 +β2uv+u−β2v2), (2.36)

so v = 0 is a common factor, this means that v = 0 is a line of singular points. Eliminating the
common factor v, system (2.36) has no singular points if β2 ̸= 0. Otherwise u1 = (0,0) is a
singular point with eigenvalues −1 and 1 which implies that the origin is a hyperbolic saddle
besides the line of singular points.

In the local chart U2 the compactified system is written as

u̇ = v(β2 +β2u2 +uv−β2v), v̇ = v(v−1)(β2u+ v+1).

Eliminating the common factor v the origin is not a singular point of the compactified system.

Note that if β2 = 0 there are an additional invariant straight line given by y+1 = 0. From
the study of the finite and infinite behavior of system (E.2) we conclude that such system has
two non–equivalent phase portraits when c = −1: phase portrait EL.2.1, if β2 ̸= 0 and phase
portrait EL.2.2, if β2 = 0. See Figure 2.

Proposition 2.5.4 (H). Each real planar quadratic differential system with a hyperbola and a
straight line having a Darboux invariant can be written, after an affine change of coordinates, as
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(i) system (H.2) with α2 ̸= 0 and c =−1. Its Darboux invariant is

I3(x,y, t) = e−α2t(x2 − y2 −1)−1/2(x−1).

ii) system (H.3) with Aα ̸= 0, c = 0 and β =−γ . Its Darboux invariant is

I4(x,y, t) = e−Aαt(x2 − y2 −1)γ(y− x)A.

(iii) system (H.3) with α ̸= 0 and β = γ = 0. Its Darboux invariant is

I5(x,y, t) = eαt(y− x+ c)−1.

(iv) system (H.4) with α ̸= 0 and A = 2β . Its Darboux invariant is

I6(x,y, t) = e−αt(x2 − y2 −1)−1/2(y+ax−
√

a2 −1).

Moreover the are 12 non–equivalent phase portrait in the Poincaré disc of these systems. They
are in Figure 2 HL.2.1–HL.2.3, HL.3.1–HL.3.9.

Proof. Fixing f1 = x2 − y2 − 1 = 0, Proposition 2.1.6 says that system (H.2) has a Darboux
invariant if equation (2.9) holds for λ1,λ2 not both zero, where s ∈ R ∖ {0}, and k1,k2 are
cofactors of f1 = 0 and f2 = x+c = 0, respectively. Moreover c =−1 or α2 = 0 in system (H.2).
For α2 = 0 we have k1 = γ1 y and k2 = γ2 y and the equation λ1k1 +λ2k2 + s = 0 has no solution
with s ̸= 0. So in this case system (H.2) has no Darboux invariant. If α ̸= 0 and c = −1 then
k1 = 2α2 x+ γ1 y and k2 = α2 +α2 x+ γ2 y and (2.9) has a unique solution

s =−α2λ2, γ1 = 2γ2, λ1 =−λ2/2.

The proof of (i) follows taking λ2 = 1 and replacing γ1 = 2γ2 in system (H.2), from that we have
the system

ẋ = (x−1)(α2 +α2 x+ γ2 y), ẏ =−γ2(x2 − y2 −1)+ x(−γ2 + γ2 x+α2 y), (2.37)

having the Darboux invariant

I3(x,y, t) = e−α2t(x2 − y2 −1)−1/2(x−1).

To prove (ii) and (iii) we study system (H.3) where we consider two cases: c = 0 and
β =−γ . It is easy to see that if c = 0 (H.3) has a Darboux invariant when α ̸= 0 and β =−γ .
In this case we have the differential system

ẋ = (A/2)(x2 − y2 −1)− y(α − γx+ γy), ẏ = (A/2)(x2 − y2 −1)− x(α − γx+ γy), (2.38)

having the Darboux invariant

I4(x,y, t) = e−Aαt(x2 − y2 −1)γ(y− x)A.
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If β =−γ system (H.3) has a Darboux invariant only when γ = 0 and α ̸= 0. In this case the
system is

ẋ = (A/2)(x2−y2−1)−α y(1−cx−cy), ẏ = (A/2)(x2−y2−1)−α x(1−cy)+cα(y2+1),
(2.39)

and it has the Darboux invariant

I5(x,y, t) = eαt(y− x+ c)−1.

The study of (iv) follows from system (H.4) where the invariant line is f2 = y+ax−√
a2 −1 = 0. In this case the unique solution of equation (2.9) is

s =−αλ2, A = 2β , λ1 =−λ2/2. (2.40)

So taking λ2 = 1 we obtain the Darboux invariant

I6(x,y, t) = e−αt(x2 − y2 −1)−1/2(y+ax−
√

a2 −1).

We start the study of the phase portraits of system (2.37). Since α2 ̸= 0 we can take
α2 = 1 and the transformation x = X ,y =−Y takes the system with parameter γ2 to the system
with parameter −γ2. So we may also assume γ2 ≥ 0.

Considering the finite singularities, if γ2 ̸∈ {0,1} system (2.37) has three finite singulari-
ties, namely z1 = (0, 1), z2 = (1,−1/γ2) and z3 =

(
γ2

2+1
γ2

2−1
,− 2γ2

γ2
2−1

)
. The eigenvalues associated

to z1 are 2 and 1, if β2 ̸= 0, the eigenvalues associated to z2 are −1 and 1 and the eigenvalues of
z3 are −1 and −2. So for γ2 ̸∈ {0,1} z1, z2 and z3 are respectively, an unstable node, a saddle
and a stable node. When β2 = 0 we have only z1 and z3 as finite singularities.

In the local chart U1 the compactified system is

u̇ = v(−γ2 + γ2u2 +uv+ γ2v), v̇ = v(v−1)(γ2u+ v+1), (2.41)

so v is a common factor, this means that v = 0 is a line of singular points. Eliminating the
common factor v, system (2.41) has no singular points if γ2 ̸= 1. Otherwise u1 = (−1,0) is a
singular point with eigenvalues −2 and −1, which implies that u1 is a hyperbolic stable node.
Moreover if γ2 = 0 there an additional invariant straight line given by x+1 = 0.

In the local chart U2 the compactified system is written as

u̇ =−v(γ2 − γ2u2 + γ2uv+ v), v̇ =−v(γ2 + γ2v2 − γ2uv+u).

So after eliminating the common factor v the origin is a singular point of the compactified system
if and only if γ2 = 0. In this case (0,0) is a hyperbolic saddle.

It is easy to see that if γ2 ∈ (0,1) the singulatities z1 and z3 are in distinct branches of the
hyperbola, and if γ2 ∈ (1,+∞) they are in the same branch as shows Figure 8.
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Figure 8 – Possible phase portraits of sytem (2.37) when γ2 ̸∈ {0,1}.

From Theorem 1.43 of (DUMORTIER; LLIBRE; ARTÉS, 2006) (Markus-Neumann-
Peixoto Theorem) we conclude that these two phase portraits are topologically equivalent. By
continuity and the study done previously we conclude that system of type (H.2) having a
Darboux invariant can have three non–equivalent phase portrait. The case γ2 ̸= 0,1 corresponds
to HL.2.1 in Figure 2 and when γ2 = 1 or γ2 = 0 we have the phase portraits HL.2.2 and HL.2.3
of Figure 2, respectivelly.

Now we study the global phase portrait of system (H.3). Remember that the parameters
of (H.3) must satisfies c(γ +β ) = 0. We start considering c = 0, then the differential system is

ẋ = (A/2)(x2 − y2 −1)− y(α − γx+ γy), ẏ = (A/2)(x2 − y2 −1)− x(α − γx+ γy), (2.42)

that has f1 = x2 − y2 −1 = 0 and f2 = y− x = 0 as invariant algebraic curves. Since α ̸= 0 we
can take α = 1 and the transformation x =−X ,y =−Y allows to assume A > 0.

If γ ̸= 0 then z1 = (−A/2,−A/2) and z2 =
(
(γ2 +1)/(2γ),(γ2 −1)/(2γ)

)
are the two

finite singular points. If γ = 0 exists only one finite singular point.

The eigenvalues associated to z1 are −1 and 1 so z1 is a saddle. The eigenvalues associated
to z2 are A/γ and −1, so z2 is a stable node if γ < 0, and a saddle if γ > 0. Moreover z1 is on the
straight line and z2 is on the hyperbola.

In the local chart U2 we have the system

u̇ = (1/2)(u−1)(Av2 − (A+2γ)u2 +2uv+2v+A+2γ),

v̇ = (1/2)v(Av2 − (A+2γ)u2 +2γu+2uv+A),

and the origin is a singular point only when A+2γ = 0 but in this case the line v = 0 is filled up
of singular points.

In the local chart U1 we have system

u̇ = (1/2)(u−1)((A+2γ)u2 +Av2 +2uv+2v−A−2γ),

v̇ = (1/2)v((A+2γ)u2 +Av2 +2uv−2γu−A),
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which has the infinity filled up by singularities when A+ 2γ = 0, otherwise, there are two
singularities u1 = (−1,0) and u2 = (1,0).

Assuming A+2γ ̸= 0. The point u1 has eigenvalues 2γ and 2(A+2γ), and u2 is linearly
zero because the Jacobian matrix of the linear part of the system evaluated in u2 is null. To decide
the local behavior of u2 we must do blow up. From now on we fix l1 = γ, l2 = A+2γ .

After translate the singular point u2 to the origin, making the change of coordinates
u =U,v =UW and rescaling the common factor U we get the differential system

U̇ = (1/2)U(AUW 2 +(A+2γ)U +2UW +4W +2A+4γ), Ẇ =−W (W + γ).

Note that such system have two singularities when l1l2 ̸= 0, namely, U1 = (0,0) and U2 = (0,−γ);
one singular point when l1 = 0 and l2 ̸= 0, namely U1 =U2. The eigenvalues of U1 are −γ and
A+2γ , whereas the eigenvalues of U2 are A and γ . From the combination of the signs of l1 and
l2, as described in Figure 9, we get the possible local behavior of U1 and U2.

Figure 9 – The possible combination of signs of l1 and l2 describe the cases to be considered for system
(H.3) when c = 0.

Applying the blow down we get all possible phase portraits for system (H.3) when
c = 0. Note that each one is realizable, indeed, the phase portrait HL.3.2 corresponds to subcase
(1.1) which is realizable with A = 4 and γ =−1; HL.3.3 corresponds to subcase (1.2) which
is realizable with A = 1 and γ =−1. Notice that if γ ̸= 0 there is a third invariant straight line,
given by f3 = γ(x− y)−1 = 0 so HL.3.3 is the only possible phase portrait for subcase (1.2).
The phase portraits HL.3.4 and HL.3.5 correspond, respectively, to subcases (2.1) and (3.1).
The phase portrait HL.3.4 is realizable with A = 1 and γ = 1, and HL.3.5 is realizable with A = 1
and γ = 0.

It remains to consider the case l2 = 0. With this condition the infinity is filled up of
singular points. After eliminating the common factor v we have only one singular point at the
local chart U1. The eigenvalues associated to this point are 2 and 1, so this is a unstable node. By
continuity the only possible phase portrait in this case is HL.3.1 of Figure 2, which is realizable
with A = 2 and γ =−1.

Now considering system (H.3) with β + γ = 0 we have seen above that the system has a
Darboux invariant when β = γ = 0 and α ̸= 0. Under these conditions the differential system is

ẋ = (A/2)(x2 − y2 −1)−α y(1− cx− cy),

ẏ = (A/2)(x2 − y2 −1)+ cα(y2 +1)−α x(1− cy).

(2.43)
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Figure 10 – On the left the local phase portrait after blow up. Here they are indexed according to the signs
of l1 and l2. On the right the local behavior at origin after the Blow down for system (H.3).

Such system has f1 = x2 − y2 − 1 = 0 and f2 = y− x+ c = 0 as algebraic invariant curves. If
c = 0 then we get system (2.42) when γ = 0, so we can take c ̸= 0 here. Moreover, doing the
transformation x =−X , y =−Y in the algebraic cubic we can assume c > 0. Finally, since α is
different from zero we can take α = 1 in (2.43).

System (2.43) has two finite singular points, namely z1 = ((2c − A)/2,−A/2) and
z2 = ((c2 +1)/(2c),(1− c2)/(2c)). Defining l1 = c2 −Ac−1, l2 = A− c and l3 = A−2c, we
have z1 coalesces with z2 if and only if l1 = 0. Moreover the eigenvalues associated to z1 are l1
and 1, and the eigenvalues associated to z2 are −l1 and 1. So we conclude that z1 is a unstable
node and z2 is a saddle if l1 > 0; z1 is a saddle and z2, an unstable node, if l1 < 0 and, if l1 = 0,
z1 = z2 is a saddle-node.
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In the local chart U1 the system becomes

u̇ = (1/2)((A−2c)u3 −Au2 +Auv2 −Au−Av2 +2cu+2cv2 +2u2v−2v+A),

v̇ = (1/2)v((A−2c)u2 +Av2 −2cu+2uv−A),

(2.44)

which has three singularities u1 = (−1,0) and u2 = (1,0) and u3 = ( A
A−2c ,0), if A ̸= 2c. Note

that when l3 = 0 the point u3 does not exist and u1 = u3 when l2 = 0. The eigenvalues associated
to u1 are 2l2 and 0, the point u2 has both eigenvalues equal to −2c, and u3 has eigenvalues 0 and
2cl2/l3. It is not difficult to see that when l2 ̸= 0, u1 and u3 are saddle–nodes. In the local chart
U2 the origin (0,0) is a singular point if and only if l3 = 0.

Assuming l1l2 ̸= 0 and considering all possible combinations of the sign of l1, l2 and
l3 we observe that there are some impossible combinations, for instance when l2 < 0 we have
l3 < 0. In Figure 11 we describe the possible combinations and introduce a label for each one.

Figure 11 – The possible combinations of signs of l1, l2 and l3 for system (H.3) when c ̸= 0.

The case (2.2.1) presents a unique phase portrait, HL.3.6 of Figure 2 and it is realizable
with A = 1/2 and c = 1.

In case (2.1.1) we have three possibilities for the finite saddle separatrix ω-limit set:
we can have a connection of separatrix as in HL.3.7; the separatrix can go to the stable node,
generating a phase portrait equivalent to HL.3.6, or the separatrix can go to the parabolic sector
of the saddle node u3 which corresponds to HL.3.8. Moreover HL.3.8 is realizable with A = 2
and c = 1/2, and as we see above, HL.3.6 is realizable with A = 1/2 and c = 1. Since HL.3.6
and HL.3.8 are realizable then by continuity of the parameters we conclude that HL.3.7 is also
realizable.

The analysis of case (2.1.2) can be done as the case (2.1.1) and it has the phase portraits
equivalent to them.

The possible phase portraits of (2.1.3) are also equivalent to the phase portraits of (2.1.1).
Also the case (1.1.1) has a phase portrait equivalent to (2.2.1).

When l2 = 0 it follows that l1, l3 < 0 and in the local chart U1 the singular point u1 = u3 is
non–elementary. After translate this singular point to the origin, making the change of coordinates
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u =U, v =UW and rescaling the common factor U we get

U̇ = (U/2)(AUW 2 −AU +2UW −4W +2A), Ẇ =W (W −A).

This system has two singularities U1 = (0,0) and U2 = (0,A) being both saddles. Figure 12
shows the blow down.

Figure 12 – The local phase portrait of system (2.44) when l2 = 0. On the left the local phase portrait after
blow up. On the right the local behavior at the origin after blow down.

To obtain the phase portrait for system (2.43) with l2 = 0 we note that there is more two
invariant straight lines, given by f3 = x+ y = 0 and f4 = Ax+Ay−1. The finite saddle z1 is on
f3 = 0 and the finite node is on the intersection of f2 = 0 and f4 = 0 so by continuity there is
only one phase portrait, which is topologically equivalent to HL.3.3.

Finally it remains to study the case l1 = 0. Here l2 < 0 and l3 < 0 so the only possibility
is the phase portrait HL.3.9 of Figure 2, which is realizable with A = 0 and c = 1.

To conclude the proof of Proposition 2.5.4 it remains to study the global phase portrait
of system (H.4) when A = 2β and α ̸= 0. In this case we assume α = 1, so (H.4) is written as

ẋ = βx2 +(aβ −
√

a2 −1)xy+(a−
√

a2 −1β )y−β ,

ẏ = (aβ −
√

a2 −1)y2 +βxy+(a−
√

a2 −1β )x+(aβ −
√

a2 −1).

Denoting δ = aβ −
√

a2 −1 and η = a−
√

a2 −1β there are at most three finite singularities
z1 =(−δ/η ,β/η), z2 =((δη−β )/(β 2−δ 2),(δη−β )/(β 2−δ 2)) and z3 =((β +δη)/(β 2−
δ 2),−(β +δη)/(β 2−δ 2)). We observe that such singular points never coalesce but if η = 0, z1

does not exist and if β 2−δ 2 = 0 the same happens with z2 or z3. With respect to the localization
of these points, z3 is the intersection of the hyperbola and the straight line, z1 is on the straight
line and z2 is on the hyperbola. Moreover is not difficult to check that z1,z2 and z3 are hyperbolic
points, being z1 a saddle, z2 a stable node and z3 an unstable node.

Concerning to the behavior at infinity, in the local chart U1 the compactified system is
given by

u̇ = v(η −ηu2 +βuv+δv), v̇ =−v(β −βv2 +ηuv+δu),

so v is a common factor what means that v = 0 is a line of singular points. Eliminating this
common line it remains singularities if and only if η = 0 or β 2 −δ 2 = 0. When η = 0 the point
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u1 = (−a,0) is a saddle. When δ = β the point u2 = (−1,0) is a node with eigenvalues η and
2η . Finally if δ =−β then the point u3 = (1,0) has eigenvalues −η and −2η so it is a node.

In the local chart U2 the system becomes

u̇ =−v(−η +βv+ηu2 +δuv), v̇ = v(δ +βu+ηuv+δv2).

So eliminating the common factor v the origin is not a singular point.

By the previous study and continuity of the solutions we conclude that there exist three
possible phase portraits and they are topologically equivalent to the ones obtained from system
(H.2) and described in Figure 2. Indeed when η ,β 2 −δ 2 ̸= 0 we have the phase portrait HL.2.1,
when β 2−δ 2 = 0 we have HL.2.2, and the case η = 0 corresponds to phase portrait HL.2.3.

Before to study the systems of type (P), we present two lemmas that will help to show
the realization or not of the phase portraits that follow.

Lemma 2.5.5. On any straight line which is not composed of orbits the total number of contact
points is at most two for any quadratic system. If there are two such points p1 and p2, then the
orbits intersecting the segment ∞p1 cross in the same sense as the orbits intersecting p2∞, and
the opposite sense to the path intersecting p1 p2.

Lemma 2.5.6. The straight line connecting one finite singular point and a pair of infinite singular
points in a quadratic system is either formed by trajectories or a line with exactly one contact
point. If this contact point is the finite singular point, the flow goes in different directions on
each half straight line.

The proof of Lemma A.1.2 can be founded in (COPPEL, 1966). Lemma 2.5.6 in the case
that the pair of infinite singular points are saddles was proved in (SOTOMAYOR; PATERLINI,
1983). When such a pair are saddle-nodes, the proof appeared in (ARTES, 1990).

Proposition 2.5.7 (P). Each real planar quadratic differential system with a parabola and a
straight line having a Darboux invariant can be written, after an affine change of coordinates, as

(i) (P.1) with α1 −2α2 ̸= 0 and Darboux invariant

I7(x,y, t) = e(α1−2α2)t(y− x2)−1x2.

(ii) (P.2) with α2(β1 −β2) ̸= 0, c = 0 and Darboux invariant

I8(x,y, t) = e2α2(β1−β2)t(y− x2)β2y−β1,

(iii) (P.2) with cγ2 ̸= 0, β1 = β2, α2 = 0 and Darboux invariant

I9(x,y, t) = e−2cγ2t(y− x2)(y+ c)−1,

Moreover there are 41 non–equivalent phase portrait in the Poincaré disc for these systems.
They are in Figures 3 and 4.
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Proof. We fix the invariant parabola as f1 = y− x2 = 0. Here we describe in details the proof
of the existence of a Darboux invariant for system (P.2), the other cases are analogous. System
(P.2) is given by

ẋ =−β1(y− x2)+ y(β2 + γ2x)+(α2 + γ2c)x+ cβ2, ẏ = 2(y+ c)(α2 +β2x+ γ2y),

where cα2 = 0. If c = 0 then the additional invariant line is written as f2 = y = 0 and if α2 = 0,
such line is f2 = y+ c = 0.

System (P.2) has a Darboux invariant if there exist λ1,λ2 not all zero satisfying equation
(2.9) with s ∈R∖{0}, and k1,k2 being the cofactors of f1 = 0 and f2 = 0, respectively. For c = 0,
k1 = 2(α2 +β1x+ γ2 y) and k2 = 2(α2 +β2 x+ γ2 y). Equation (2.9), with s ̸= 0 has the solution

s =−2α2(λ1 +λ2), β2 =−β1λ1/λ2, γ2 = 0, (2.45)

Taking λ1 = β2 and λ2 =−β1 the solution can be rewritten as

s =−2α2(β2 −β1), λ1 = β2, λ2 =−β1, γ2 = 0, (2.46)

and the Darboux invariant is

I8(x,y, t) = e2α2(β1−β2)t(y− x2)β2y−β1 .

In this case we assume β2 −β1 ̸= 0 otherwise system (P.2) has a common factor. Moreover if
α2 = c = 0 (P.2) does not admit a Darboux invariant.

When α2 = 0 then f2 = y+ c and the cofactors of f1 = 0 and f2 = 0 are, respectively,
k1 = 2(cγ2 +β1x+ γ2y) and k2 = 2(β2x+ γ2y). In this case equation (2.9) has only one solution

s =−2cγ2λ1, β2 = β1, λ2 =−λ1.

So taking λ1 = 1 we get the Darboux invariant

I7(x,y, t) = e−2cγ2t(y− x2)(y+ c)−1.

From now on we study the possible global phase portraits for systems (P) when they
have a Darboux invariant. We start studying system (P.1). Remember that such system is given
by

ẋ = x(α2 +β2 x+ γ2 y), ẏ = α1(y− x2)+2α2x2 +2y(β2 x+ γ2 y).

We consider two cases: γ2 ̸= 0 and γ2 = 0. If γ2 ̸= 0 we assume γ2 = 1. In this last case system
(P.1) have at most four singular points, given by

z1 = (0,0), z2 = (0,−α1/2),

z3 =
(
−(β2 +

√
β 2

2 −4α2)/2, (β 2
2 −2α2 +β2

√
β 2

2 −4α2)/2
)
,

z4 =
(
−(β2 −

√
β 2

2 −4α2)/2, (β 2
2 −2α2 −β2

√
β 2

2 −4α2)/2
)
.
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Observe that unless of the change x =−X , y = Y we can assume β2 ≥ 0. Let l1 = α1, l2 = α2,
l3 = β 2

2 −4α2−β2

√
β 2

2 −4α2 and l4 = α1−2α2 be. It follows from Proposition 2.5.7 (i) l4 ̸= 0.
Moreover

∙ z1 has eigenvalues l1 and l2;

∙ z2 has eigenvalues −l1 and −l4;

∙ z3 has eigenvalues l4 and (β 2
2 −4α2 +β2

√
β 2

2 −4α2)/2;

∙ z4 has eigenvalues l3 and l4,

so l2
1 + l2

2 ̸= 0 and the topological type of the finite singular points can be studied using the
Hartman-Grobman Theorem and Theorem 2.19 of (DUMORTIER; LLIBRE; ARTÉS, 2006).

With respect to the position of the finite singularities, z1 is on the intersection of the
parabola and the straight line, z2 is on the straight line, and z3,z4 are on the parabola.

In the local chart U1 system (P.1) is written as

u̇ = u2 +β2u+(α1 −α2)uv+2α2 −α1, v̇ =−v(α2v+u+β2),

which has at most two singular points when v = 0, namely

u1 = (−β2 −
√

β 2
2 +4(α1 −2α2)/2, 0), u2 = (−β2 +

√
β 2

2 +4(α1 −2α2)/2, 0).

The eigenvalues associated to u1 are −
√

β 2
2 +4l4 and −(β2 −

√
β 2

2 +4l4)/2 while the eigenval-

ues associated to u2 are
√

β 2
2 +4l4 and −(β2 +

√
β 2

2 +4l4)/2.

Since we are assuming β2 ≥ 0 it follows that when β 2
2 +4l4 > 0 the point u2 is a saddle

and it is not difficult to see that if l4 > 0, then u1 is a saddle, and if l4 < 0, u1 is a stable node.
When β 2

2 +4l4 = 0 u1 and u2 coalesce and we conclude that this point is a saddle-node, using
Theorem 2.19 (DUMORTIER; LLIBRE; ARTÉS, 2006). When β 2

2 +4l4 < 0 there is no infinite
points in the local chart U1.

In the local chart U2 the origin (0,0) is a stable node.

Observe that l1, l2, l3, l4,β 2
2 −4α2 and β 2

2 +4l4 are bifurcation surfaces, i.e. where topo-
logical changes in the global phase portrait of (P.1) can happen. To draw all non–equivalent
phase portraits of system (P.1) we split the study in three cases: β 2

2 −4α2 > 0, β 2
2 −4α2 = 0 and

β 2
2 −4α2 < 0.

Choosing a representative of each region defined by such surfaces we have a configuration
of finite and infinite points. Considering the behavior of the separatrices of these systems we
obtain all possible phase portraits when β 2

2 − 4α2 > 0, thus we obtain the 40 phase portraits
described in Figures 13 and 14 and the phase portraits 41−50 of Figure 18. We study all these
cases bellow.
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Figure 13 – Phase portraits of system (P.1) when γ2 = 1 and β 2
2 −4α2 > 0.
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Figure 14 – Phase portraits of system (P.1) when γ2 = 1 and β 2
2 −4α2 > 0.
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Among the phase portraits 1−18 of Figure 13, we claim that 1 and 3, as well as 7 to
18, are not realizable. Indeed these 18 phase portraits, 1−3 present the possible combinations
when the singular points in the local chart U1 are both saddles. In the finite part we have z1 and
z3 unstable nodes, z2 is a stable node and z4 is a saddle. So we have l1, l2, l4 > 0 and l3 < 0. In
phase portrait 1 of Figure 13, consider the straight line joining the finite singular point z3 to the
infinity singular point u1 as shows Figure 15. We can see that near the singular point z3 but on
opposite sides, the vector field has the same direction, which contradicts Lemma 2.5.6. So the
phase portrait 1 of Figure 13 is not realizable. With the same argument the portrait 3 of Figure
13 is also not realizable. So phase portrait 2 of Figure 13 is the only realizable and corresponds
to phase portrait PL.1.1 of Figure 3.

Figure 15 – The straight line joining the finite singular point z3 to the infinity singular point u1 in phase
portrait 1 of Figure 13.

Considering the phase portraits 4−18 of Figure 13 we shall prove that 7−18 are not
realizable. First consider the phase portrait 7 and the straight line joining the middle point
between the infinity singular points u1 and u2 and the middle point between the finite singular
points z3 and z4 as shows Figure 16. By Lemma A.1.2 this line should have at most two points
of contact with the vector field, which does not occur. In Figure 16 we can see at least four
contact points, represented by the smaller points that are not singularities of the system. This
fact guarantees that the ω−limit set of u2 is the finite point z4 on the parabola. So phase portraits
7−18 are not realizable using similar arguments. So among the phase portraits 4−18 only 4,5
and 6 are realizable, which correspond, respectively to phase portraits PL.1.2, PL.1.3 and PL.1.4
of Figure 3. The values of the parameters that realize these systems can be found in Table 2.

Figure 16 – The straight line joining the middle point between the infinity singular points u1 and u2 and
the middle point between the finite singular points z3 and z4 in phase portrait 7 of Figure 13.

The phase portraits 19− 20 in Figure 13 and 21− 26 in Figure 14 are topologically
equivalent to one of the phase portraits 1− 18 in Figure 13 so they can be realizable or not,
depends on their configuration. In Table 1 we present the relation among the equivalent phase
portraits of system (P.1) when c ̸= 0. In the case where they are topologically equivalent to a
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realizable phase portrait, we need not consider the study again. However if they are topologically
equivalent to a phase portrait which was not realizable, we need to study it.

Considering the same straight line used to prove the non-realization of phase portraits
7−18 of Figure 13 we apply Lemma A.1.2 to conclude that 21,22,25 and 26 of Figure 14 are
not realizable.

The phase portraits 27−31 in Figure 14 present all the possibilities when there are four
finite singular points and one infinite singular point on the local chart U1. Phase portraits 27, 28
and 29 are realizable and correspond to phase portraits PL.1.5, PL.1.6 and PL.1.7 of Figure 3.
The values of the parameters that realize these systems can be found in Table 2. Moreover 30
and 31 are topologically equivalent to one of these three phase portraits.

Phase portrait Topologicaly equivalent to

19 2

20 6

21 12

22 9

23 2

24 6

25 12

26 9

30 29

31 29

35 34

36 34

60 50

Table 1 – Table of relations among all the possible phase portraits of system (P.1) when c ̸= 0.

Finally if there are four finite singular points and the local chart U1 has no singular point
we get the phase portraits 32−36 in Figure 14. For phase portraits 32 and 33 of Figure 14 we
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consider the straight line x = z1
4 where the finite singualarity z4 is z4 = (z1

4,z
2
4), and apply Lemma

2.5.6 to see that they are not realizable (see Figure 17).

Figure 17 – The straight line x = z1
4 =−(β2 −

√
β 2

2 −4α2)/2 in phase portrait 32 of Figure 14.

Moreover the phase portraits 35 and 36 are topologically equivalent to the phase portrait
34 which is the only realizable phase portrait for this case and it is represented by PL.1.8 in
Figure 3. The values of the parameters that realize this system can be found in Table 2.

For β 2
2 −4α2 > 0 we consider the cases with three finite singular points. When z1 = z2

the origin is a saddle-node and there are ten possible phase portraits, namely 37−40 in Figure
14 and 41−46 in Figure 18. But since the nodal sector of the saddle node must have its orbits
tangent to its separatrix, the phase portraits 37 and 38 in Figure 14 are not realizable. In other
words the separatrices of the saddle-node z1 must be on the invariant parabola. With the same
argument the phase portraits 41,42,45 and 46 of Figure 18 also are not realizable. So when
z1 = z2 the realizable phase portraits are 39,40, 43 and 44 of Figure 18, corresponding to PL.1.9,
PL.1.10, PL.1.11 and PL.1.12, in Figure 3, respectively. The values of the parameters that realize
these systems can be found in Table 2.

When there are three finite singularities with z1 = z4 then by continuity we have the
phase portraits 47,48,49 and 50 of Figure 18. All these for phase portraits are realizable and
correspond, to PL.1.13, PL.1.14, PL.1.15 and PL.1.16 in Figure 3, respectively. The values of
the parameters that realize these systems can be found in Table 2

For β 2
2 − 4α2 = 0 there is another case with three finite singularities that correspond

to the case z3 = z4. Here we can have ten phase portraits, given by 51−60 in Figure 18. The
phase portraits 51,52 and 55 are realizable and corresponds, respectively, to PL.1.17, PL.1.18
and PL.1.19 in Figure 3. The values of the parameters that realize these systems can be found in
Table 2. The phase portraits 53 and 54 are not realizable. The ideia again is to use Lemma 2.5.6
with the straight line joining the origin of the local chart U3 to the singular point u2 of the local
chart U1. By Figure 19 and this lemma the phase portraits 53 and 54 are not realizable.

Considering the phase portraits 56 and 57 we will show that they are not realizable. Take
the straight line passing through the origin of the local chart U1 and the infinite singular point
u1 = u2 (see Figure 20). The contact points on this straight line contradicts Lemma 2.5.6 so the
phase portraits 56 and 57 are not realizable. About the phase portraits 58 and 59, considering the
straight line passing through the points z1 and z3 we have Figure 21 that is a contradiction with
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Figure 18 – Phase portraits 41− 50 corresponds to phase portraits of system (P.1) when γ2 = 1 and
β 2

2 −4α2 > 0;
Phase portraits 51− 60 corresponds to phase portraits of system (P.1) when γ2 = 1 and
β 2

2 −4α2 = 0.

Figure 19 – The straight line connecting the origin of the local chart U3 with the singular poin u2 of the
local chart U1 in phase portrait 53 of Figure 18.
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Lemma A.1.2. So they are not realizable. The phase portrait 60 is topologically equivalent to 50
of Figure 18.

Figure 20 – The straight line connecting the origin of the local chart U3 with the singular poin u1 = u2 of
the local chart U1 in phase portrait 56 of Figure 18.

Figure 21 – The straight line passing through the points z1 and z3 in phase portrait 58 of Figure 18.

If z3 = z4 and z1 = z2 we have the phase portraits 61,62 and 63 of Figure 22. But using
the straight line joining z1 and z3 as done in Figure 21 and applying Lemma A.1.2 we see that
61 and 62 are not realizable. The phase portrait 63 is realizable and corresponds to PL.1.20 in
Figure 3. The values of the parameters that realize this system can be found in Table 2.

For β 2
2 − 4α2 < 0 the points z3 and z4 are complex. The possible phase portraits are

described by 64− 72 of Figure 22. The phase portraits 64,65,68 and 71 are realizable and
corresponds, respectively, to PL.1.21, PL.1.22, PL.1.23 and PL.1.24 of Figure 3. The values
of the parameters that realize these systems can be found in Table 2. To prove that the phase
portraits 66,67,69 and 70 are not realizable, it is enough to consider the straight line passing
through the origin of the local chart U3 and the infinity singularity u1 = u2 of the local chart
U1 (see Figure 23). This straight line generates a contradition with Lemma 2.5.6 so the phase
portraits 66,67,69 and 70 are not realizable.

To end the case γ2 = 1 we consider the case where there is only one finite singular point.
Using Theorem 2.19 of (DUMORTIER; LLIBRE; ARTÉS, 2006) we can see that the point is
a saddle, which generates phase portrait 72 of Figure 22 which corresponds to phase portrait
PL.1.25 of Figure 4. The values of the parameters that realize this system can be found in Table
2.

Now we consider the case γ2 = 0. The system is

ẋ = x(α2 +β2 x), ẏ = α1(y− x2)+2x(α2x+β2 y). (2.47)

When α1 = 0 such system has a common factor so assume α1 = 1. By the change x =−X ,y =Y

it is enough to consider the case β2 ≥ 0.
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Figure 22 – Phase portraits 61− 63 corresponds to phase portraits of system (P.1) when γ2 = 1 and
β 2

2 −4α2 = 0;
Phase portraits 64− 72 corresponds to phase portraits of system (P.1) when γ2 = 1 and
β 2

2 −4α2 < 0.

Figure 23 – The straight line connecting the origin of the local chart U3 with the singular poin u1 = u2 in
the local chart U1 in phase portrait 66 of Figure 22.

Assuming β2 > 0. In the finite part the points z1 = (0,0) and z2 =
(
−α2/β2,(α2/β2)

2)
are the singular points and the system has an additional invariant straight line, given by f3 =

x+α2/β2 = 0. Defining l1 = α2 and l2 = 1−2α2 the eigenvalues associated to z1 are 1 and l1,
while the eigenvalues associated to z2 are −l1 and l2. We assume l2 ̸= 0 (otherwise such system
has a common factor and it is equivalent to a linear system).

In the local chart U1 the unique singular point is u1 = (l2/β2, 0) and it is a saddle. In the
local chart U2 the compactified system is

u̇ = u((1−2α2)u2 +(α2 −1)v−β2u), v̇ = v((1−2α2)u2 −2β2u− v).

The origin (0,0) is a linearly zero singularity. Doing the blow up u =UV, v =V and rescaling
by V we get the system

U̇ =U(α2 +β2U), V̇ =V ((1−2α2U2V )−2β2U −1).
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When V = 0 the singularities are u1 = (0,0) and u2 = (−α2/β2,0). The eigenvalues associated to
u1 are −1 e l1 while the eigenvalues of u2 are −l1 e −l2. The blowing down process is described
in Figure 24 (1)-(4) according to the signs of l1 and l2.

When β2 = 0 the point z1 is the unique finite singular point, being a saddle or an unstable
node depending on the sign of l1. In the local chart U1 there is no singular point and the origin
(0,0) of U2 is linearly zero. To study such point we apply blow ups, in Figure 24 is described the
blowing down (5) and (6).

Summarizing the study done previously we get the local behaviour at origin of U2:

1. β2 > 0, l1 > 0 and l2 > 0: the origin of U2 has two elliptic sectors;

2. β2 > 0, l1 > 0 and l2 < 0: the origin of U2 has two hyperbolic sectors;

3. β2 > 0, l1 < 0 and l2 > 0: the origin of U2 has two elliptic sectors;

4. β2 > 0, l1 = 0 and l2 > 0: the origin of U2 has two elliptic sectors.

5. β2 = 0, l1 > 0: the origin of U2 has two hyperbolic sectors;

6. β2 = 0, l1 < 0: the origin of U2 has two elliptic sectors;

By continuity and the above analysis we conclude that the case (3) is topologically
equivalent to case (1) and the cases (1),(2),(4),(5) and (6) correspond, respectively, to the
phase portraits PL.1.26, PL.1.27, PL.1.28, PL.1.29 e PL.1.30 of Figure 4. Table 4 has the values
of the parameters that realizes the phase portraits of system (P.1)

System (P.2) with c ̸= 0 has a Darboux invariant if γ2 ̸= 0, and it can be written as

ẋ = β1 (x2 + c)+ γ2 x(y+ c), ẏ = 2(y+ c)(β1x+ γ2 y).

Note that if β1 = 0 such system has a common factor so we can assume β1 = 1. Applying
the change of coordinates x =−X ,y = Y and rescaling the time we can assume γ2 > 0.

If c < 0 the system has three finite singular points z1 = (−1/γ2,1/γ2
2 ), z2 = (−

√
−c,−c)

and z3 = (
√
−c,−c). Otherwise, only z1.

Defining l1 = c ̸= 0 and l2 = 1+cγ2
2 the eigenvalues associated to z1 are 2γ2l1 and l2/γ2,

the eigenvalues associated to z2 are −2
√
−c and −2(γ2 c+

√
−c); the eigenvalues associated to

z3 are 2
√
−c and −2(γ2 c−

√
−c). So when c < 0 the point z3 exists and it is an unstable node.

In the local chart U1 we have two singular points u1 = (0,0) being a hyperbolic saddle
and u2 = (−1/γ2,0) being a saddle-node. In the local chart U2 the origin is a stable node.

When l2 = 0 then z1 = z3 is a semi-hyperbolic node and the infinity part does not change.
Note that z1 is a saddle-node in this case. So by continuity and the reasoning above, if c > 0
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Figure 24 – Blow down of system (P.1) when γ2 = 0.
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γ2 β2 α2 α1

PL.1.1 1 1 1/8 1

PL.1.2 1 1 1/16 1/16

PL.1.3 by continuity

PL.1.4 1 1 1/16 1/150

PL.1.5 1 1/2 3/64 1/32

PL.1.6 by continuity

PL.1.7 1 1 -3/8 -1

PL.1.8 1 1 3/16 1/16

PL.1.9 1 1 1/16 0

PL.1.10 1 1 -1 0

PL.1.11 1 1 1/18 0

PL.1.12 1 1 3/16 0

PL.1.13 1 1 0 1

PL.1.14 1 1 0 -1/8

PL.1.15 1 1 0 -1/4

PL.1.16 1 1 0 -1

PL.1.17 1 1 1/4 1

PL.1.18 1 1 1/4 3/8

PL.1.19 1 1 1/4 1/4

PL.1.20 1 1 1/4 0

PL.1.21 1 1 2 5

PL.1.22 1 3 4 6

PL.1.23 1 1 9/8 2

PL.1.24 1 1 2 13/4

PL.1.25 1 1 2 0

PL.1.26 0 1 1/4 1

PL.1.27 0 1 3/2 1

PL.1.28 0 1 0 1

PL.1.29 0 0 1 1

PL.1.30 0 0 -1 1

Table 2 – Table of values for the parameters of system (P.1).
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Figure 25 – Local phase portraits

we have phase portrait PL.2.1 of Figure 4 which is realizable with c = γ2 = 1. When c < 0 and
l2 ̸= 0 the system has two possible phase portraits, also described in Figure 4: PL.2.2 (realizable
with c =−1/2 and γ2 = 1) and PL.2.3 (realizable with c =−2 and γ2 = 1).

Finally if c < 0 and l2 = 0, we see that the line y+ c = 0 is one of the separatix of the
saddle-node. So the only possible phase picture is PL.2.4 (realizable with c =−1 and γ2 = 1).

Now we study the global phase portraits of systems (P.2) when c = 0 and they have a
Darboux invariant. The differential system is

ẋ =−β1(y− x2)+β2 y+α2 x, ẏ = 2y(β2 x+α2).

Since α2 ̸= 0 we take α2 = 1. Moreover doing the change of coordinates x = −X ,y = Y we
can assume β2 ≥ 0. The system has at most three finite singular points, namely, z1 = (0,0)
and z2 = (−1/β1,0) and z3 = (−1/β2,1/β 2

2 ). The point z1 has eigenvalues 2 and 1, so it is an
unstable node. On the other hand the topological type of z2 and z3 depends on the numbers
l1

.
= β1 and l2

.
= β1 −β2 ̸= 0. Indeed the point z2 has eigenvalues −1 and 2l2/l1 and z3 has the

eigenvalues −1 and −2l2/l1.

In the local chart U1 the system has u1 = (0,0) as a singularity with eigenvalues −l1 and
−l3, where l3

.
= β1 −2β2.

In the local chart U2 the compactified system has the origin as a nilpotent singularity. This
mean that the linear part of the system, evaluated in (0,0), is not null but their eigenvalues are
both equal to zero. To classify this type of singular point we use Theorem 3.5 of (DUMORTIER;
LLIBRE; ARTÉS, 2006). This result use two functions, F(u) = aMuM + o(uM) and G(u) =

bNuN +o(uN), defined from the differential system. In short the caracterization is done using
aM,bN and the natural numbers M,N.

For the compactified system in the local chart U2 these functions are

G(u) =−2(β2 −3β2)

l2
u+

5l3
l2
2

u2, F(u) =
2β2l3

l2
2

u3 +
2l2

3

l3
2

u4.

So when l3 > 0 the origin (0,0) is a saddle as in (b) of Figure 25. If l3 < 0 the origins consists
of one hyperbolic and one elliptic sector as in (a) of Figure 25. By continuity, when l1 > 0 and
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l3 > 0 we have the phase portrait PL.2.5 of Figure 4 (realizable with β1 = 4 and β2 = 1). If l3 < 0
we have the phase portraits PL.2.6 (realizable with β1 = 3/2 and β2 = 1) and PL.2.7 (realizable
with β1 = 1/2 and β2 = 1) of Figure 4. Now if l1 < 0 the only possibility is l3 < 0 and we have
the phase portrait PL.2.8 (realizable with β1 =−1 and β2 = 1) of Figure 4.

If l1 = 0 the point z2 goes to the infinity and collide with u1 becoming a saddle-node.
Moreover l1 = 0 implies l3 < 0, so the origin of U2 has a hyperbolic and one elliptic sector. This
case corresponds to phase portrait PL.2.9 of Figure 4, realizable with β1 = 0 and β2 = 1.

If β2 = 0 the point z3 goes to the infinity and collide with the origin of U2 becoming
(0,0) a nilpotente saddle-node as (c) or (d) in Figure 25. Moreover the only possible phase
portrait is given by PL.2.10 of Figure 4, realizable with β1 = 1 and β2 = 0).

Finally when l3 = 0 then the infinity if filled of singular points, without special singu-
larities and the corresponding phase portrait is PL.2.11 of Figure 4 (realizable with β1 = 2 and
β2 = 1).

Proposition 2.5.8 (LV). Each real polynomial differential system having two real lines that
intersect at a single point and a third straight line having a Darboux invariant can be written,
after an affine change of coordinates, as

(i) (LV.1) with α(q−β ) ̸= and Darboux invariant

I10(x,y, t) = eα(q−β ) t yβ xβ−q+r(y− x)−(β+r),

(ii) (LV.2) with c = q = 0, p ̸= 0 and Darboux invariant

I11(x,y, t) = e−ptxy−r,

(iii) (LV.2) with c =−1 and Darboux invariant

I12(x,y, t) = et y(y−1)−1,

(iv) (LV.3) with α =−(β +1), cβ ̸= 0 and Darboux invariant

I13(x,y, t) = e−cβ t y(y+ax+ c)−1.

Moreover there are 27 non–equivalent phase portraits in the Poincaré disc. They are in Figure 5.

Proof of Proposition 2.5.8 (LV). Let f1 = x = 0, f2 = y = 0 be the two real straight lines in-
tersecting in a point. Considering system (LV.1) the third line is f3 = y− x and the cofactors
associated to f1, f2 and f3 are, respectivelly, k1 = α + ry+βx, k2 = α + y(β −q+ r)+qx and
k3 = α + y(β −q+ r)+βx. One solution for equation λ1k1 +λ2k2 + s = 0 is

λ2 =
βλ1

β −q+ r
, λ3 =−(β + r)λ1

β −q+ r
, s =

α(q−β )λ1

β −q+ r
,
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Taking λ1 = β −q+ r we obtain the Darboux invariant

I10(x,y, t) = eα(q−β ) t yβ xβ−q+r(y− x)−(β+r).

Now we analize system (LV.2) that has f3 = y+ c as the third invariant straigh line(remember
that c = 0 or c =−1). Here the cofactors are k1 = p+qx+ ry, k2 = y+ c and k3 = y. If c = 0
then equation (2.9) has only one the solution

q = 0, λ3 =−rλ1 −λ2, s =−pλ1.

Taking λ1 = 1 we get the Darboux invariant

I11(x,y, t) = e−ptxy−r.

Otherwise if c =−1 then the more general solution is

λ1 = 0, λ3 =−λ2, s = λ2.

Taking λ2 = 1 we obtain the Darboux invariant

I12(x,y, t) = ety(y−1)−1.

The last case to be considered is system (LV.3) that has f3 = y+ax+ c = 0 as the third straight
line. The cofactors are k1 =−α(y+ax+ c)− y, k2 = β (y+ax+ c)+ax and k3 = β y−aα x.
Solving equation (2.9) we get the solution

α =−(β +1), λ2 =−λ1 −λ2, s =−c(λ1 +β (λ1 +λ2)).

Taking λ1 = 0 and λ2 = 1 then we obtain the Darboux invariant

I13(x,y, t) = e−cβ t y(y+ax+ c)−1.

We begin the study of the global phase portraits with systems (LV.1) when they have a Darboux
invariant. Remember that if system (LV.1) has a Darboux invariant then β −q ̸= 0 and α ̸= 0 so
we can take α = 1 getting

ẋ = x(1+β x+ r y), ẏ = y(1+qx+(β −q+ r)y). (2.48)

Define l1 =(β −q)/(β −q+r), l2 =(β −q)/β and l3 =(β −q)/(β +r). The finite part presents
at most four singularities

∙ z1 = (0,0) with eigenvalues both equal to 1;

∙ z2 = (0,−1/(β −q+ r)) with eigenvalues −1 and l1;

∙ z3 = (−1/β ,0) with eigenvalues −1 and l2;
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∙ z4 = (−1/(β + r),−1/(β + r)) with eigenvalues −1 and −l3.

.

In the local chart U1 the compactified system has two singular points, being u1 = (0,0)
with eigenvalues −β and −(β − q) and u2 = (1,0) with eigenvalues β − q and −(β + r).
Moreover in the local chart U2 the origin (0,0) is a singular point with eigenvalues −(β −q) and
−(β −q+ r). Thus when one of the finite singularities goes to infinity, it collides with u1,u2, or
the origin of the local chart U2.

When l1, l2 and l3 are non-zero, the combinations between their signs generate the
possible phase portraits of system (2.48). There are exactally three possible phase portraits, all
of them described in Figure 5: LVL.1.1, realizable for β = 1,q = r = 0; LVL.1.2, realizable for
β = 1,q = r =−2; LVL.1.3, realizable for β = 1,q =−r = 3/4.

Now we consider the case β =−r ̸= 0. Here only the point z4 goes to the infinity and
collides with u2 making it a semi hyperbolic saddle-node. There are two possible phase portraits,
given by LVL.1.4 of Figure 5 (realizable with β = 1,q = r = −1) and LVL.1.5 of Figure 5
(realizable with β = 2,q = 1,r = −2). The cases where z2 or z3 goes to the infinity generate
phase portraits equivalent to the previous ones.

Finally when two finite singular points go to the infinity (for example when β = −r

and q = 0), then there is only one phase portrait, given by LVL.1.6 of Figure 5. This last phase
portrait is realizable for β = 1,q = 0 and r =−1.

Now consider the systems (LV.2) when they have a Darboux invariant we split in two
cases. First we consider the case c =−1, when the system is given by

ẋ = x(p+qx+ r y), ẏ = y(y−1).

If q ̸= 0 unless of the change x = X/q we can assume q = 1. Considering q = 1 and defining
l1 = p, l2 =−(p+ r) and l3 = r−1 the system has at most four finite singular points, namely

∙ z1 = (0,0) with eigenvalues −1 and l1;

∙ z2 = (0,1) with eigenvalues 1 and −l2;

∙ z3 = (−p,0) with eigenvalues −1 and −l1;

∙ z4 = (−p− r,1) with eigenvalues 1 and l2.

In the local chart U2 the origin (0,0) is a singularity with eigenvalues −1 and l3. In the local
chart U1 the sytem has two singularities if l3 ̸= 0: u1 = (0,0) being a hyperbolic unstable node
and u2 = (1/l3,0) with eigenvalues 1 and 1/l3. Hence if l3 = 0 the point u2 collides with the
origin of U2 making it a semi-hyperbolic singularity of type saddle node. By continuity and
using all the possible combinations of the signs of l1, l2 and l3 when q = 1 and l3 ̸= 0 we obtain
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the phase portraits LVL.2.1- LVL.2.7 of Figure 5. When l3 = 0, i.e., r = 1 has three possible
phase portraits: LVL.2.8, LVL.2.9 and LVL.2.10 of Figure 5. The values of the parameters that
realize these systems can be found in Table 3. Now it remains to study the case q = 0. Note that
since the system cannot have commom factors it follows that l1 and l2 are different from zero.
When q = 0 both the finite part and the analyzes in the local chart U2 remain almost the same.
The only difference in the finite part is that the singularities z3 and z4 go to infinity. However in
the local chart U1 the compactified system is

u̇ =−u((r−1)u+(p+1)v), v̇ =−v(pv+ ru).

So the origin is a linearly zero singular point if l3 ̸= 0 and we apply the blow up doing the change
of coordinates u =U,v =UW . The new system is

U̇ =−U2((p+1)W + r−1), Ẇ =UW (W −1).

After eliminating the common factor U it remains two singular points on U = 0: u1 = (0,0) with
eigenvalues −1 and −l3, and u2 = (0,1) with eigenvalues 1 and l2. Hence they are hyperbolic
points and doing the blow down the origin of U2 has (for l3 ̸= 0)

∙ two elliptic sectors if u1 is a saddle and u2 is a unstable node. This case corresponds to
phase portrait LVL.2.11 of Figure 5;

∙ two elliptic sectors if u1 is a stable node and u2 is a saddle. This case corresponds to phase
portrait LVL.2.12 of Figure 5;

∙ two parabolic sectors if u1 and u2 are both saddles and there is a saddle and a node as
singular finite points. This case corresponds to phase portrait LVL.2.13 of Figure 5;

∙ two parabolic sectors if u1 and u2 are both saddles and there are two nodes as singular
finite points. This case corresponds to phase portrait LVL.2.14 of Figure 5;

∙ six parabolic sectors if u1 and u2 are both saddles and there are two nodes as singular finite
points. This case corresponds to phase portrait LVL.2.15 of Figure 5.

The last possibility when c = −1 is q = 0 and l3 = 0. But when this happens the system has
the infinity line v = 0 filled up of singular points. After eliminating the common factor v, in the
local chart U1 the point u1 = (0,0) is a singular point, with eigenvalues −l1 and l2. In the local
chart U2, After eliminating the common factor v, the origin is a singularity. By continuity the
possible phase portraits are LVL.16 and LVL.2.17 of Figure 5. In Table 3 we put the values of
the parameters that realizes each one of the phase portraits described in Figure 5.

Finally when c = 0 we get the differential system

ẋ = x2, ẏ = y(p+ r x), (2.49)
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q r p

LVL.2.1 1 -1 1/2

LVL.2.2 1 2 1

LVL.2.3 1 -1 2

LVL.2.4 1 -1 1

LVL.2.5 1 2 -2

LVL.2.6 1 1/2 -1/2

LVL.2.7 1 0 0

LVL.2.8 1 1 1

LVL.2.9 1 1 -1/2

LVL.2.10 1 1 -1

LVL.2.11 0 -2 1

LVL.2.12 0 2 1

LVL.2.13 0 0 1

LVL.2.14 0 2 -1

LVL.2.15 0 3/4 -1/4

LVL.2.16 0 1 1

LVL.2.17 0 1 -1/2

Table 3 – Table of values for the parameters of system (LV.2) when c =−1.



2.5. Classification of quadratic systems having reducible invariant cubics 79

with p ̸= 0. So we can take p = 1 and the system becomes a particular case of system (DL) of
Theorem 2.5.1. The global phase portraits of this system will be done in the proof of Proposition
2.5.10 and the correponding phase portraits of system (2.49) are described by DL.1, DL.2 and
DL.3 of Figure 6.

To end the proof of Proposition 2.5.8 we study the glogal phase portraits of systems
(LV.3). When (LV.3) has a Darboux invariant the parameter α must be equal to −(β +1) so the
differential system is

ẋ = x(ax+β (y+ax+ c)+ c), ẏ = y(ax+β (y+ax+ c)).

In the finite part there are three singular points, namely z1 = (0,0), z2 = (0,−c) and z3 =

(−c/a,0) (remember that ac ̸= 0). Defining l1 = cβ ̸= 0 and l2 = c(β + 1) ̸= 0, then the
eigenvalues of the z1 are l1 and l2; the eigenvalues of z2 are c and −l1, and the eigenvalues
associated to z3 are −c and −l2.

In the local chart U1 the compactified system becomes

u̇ =−cuv, v̇ =−v(cv+β (u+ cv+a)+a).

Hence the line v = 0 is filled of singular points after eliminating the common factor v there are
no singular points. The same happens in the local chart U2. So by continuity the only possible
phase portrait is LVL.3.1 of Figure 5, which is realizable for β = 1 and a = c =−1.

Proposition 2.5.9 (RPL). Each real planar quadratic differential system with two parallel real
straight lines and a third straight line having a Darboux invariant can be written, after an affine
change of coordinates, as system (RPL) and it has the Darboux invariant

I14(x,y, t) = e2t(x+1)(x−1)−1.

Moreover there are 17 non–equivalent phase portraits in the Poincaré disc for this system. They
are described by RPL.1–RPL.17 in Figure 6.

Proof. Let f1 = x+ 1 = 0, f2 = x− 1 = 0 and f3 = y = 0 be the three invariant straight lines.
The cofactors of f1, f2 and f3 are, respectivelly, k1 = x−1,k2 = x+1,k3 = α +β x+ γ y. With
these cofactors equation (2.9) with s ∈ R∖{0} has two solutions, namely

s1 = {γ = 0, s = 2λ1 +(β −α)λ3, λ2 =−(λ1 +βλ3)}

s2 = {s = 2λ1, λ2 =−λ1, λ3 = 0}.

Since the second solution s2 is more general we conclude that every quadratic system that has
two real parallel straight lines and a third real straight line as invariant straight lines also has a
Darboux invariant. Taking λ1 = 1 we get the invariant

I14(x,y, t) = e2t(x+1)(x−1)−1.
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To draw the possible global phase portraits, remember that the system is

ẋ = x2 −1, ẏ = y(α +β x+ γ y).

When γ ̸= 0 we can take γ = 1 (indeed, just do the change x = X ,y = Y/γ). So the system can
present at most four finite singularities, namely, z1 = (−1,0), z2 = (−1,β −α), z3 = (1,0) and
z4 = (1,−β −α). Define l1 = α −β and l2 = α +β . The eigenvalues associated to z1 are −2
and l1 while the eigenvalues associated to z2 are −2 and −l1. Moreover z1 = z2 when l1 = 0.
Analogously the eigenvalues of z3 are 2 and l2, while the eigenvalues associated to z4 are 2
and −l2, with z3 = z4 when l2 = 0. So in the finite part the system can have two, three or four
singulaties, depending on the values of l1 and l2.

In the local chart U1 the compactified system has at most two singularities on the infinity
line: u1 = (0,0) and u2 = (1−β ,0). Defining l3 = β −1 we see that u1 = u2 when l3 = 0 and
the topological type of these singularities depends on the sign of l3. Indeed the eigenvalues
associated to u1 are −1 and l3 while the associated to u2 are −1 and −l3.

In the local chart U2 we just need to check if the origin (0,0) is a singularity, which is
true. It is a node, with the two eigenvalues equal to −1.

So considering γ ̸= 0 and combining all the possibilities of the signs of l1, l2 and l3
we obtain the phase portraits RPL.1–RPL.10 of Figure 6. In Table 3 we put the values of the
parameters that realizes each one of the phase portraits described in Figure 6.

If γ = 0 then z2 and z4 goes to the infinity and the compactified system in the local chart
U2 becomes

u̇ = (1−β )u2 −αuv− v2, v̇ =−v(βu+αv).

Note that when l3 = 0(β = 1) the line v = 0 is filled up of singular points, and when l3 ̸= 0 the
origin (0,0) is a linearly zero singularity. Considering this case first and applying the blow up

u =U,v =UW and dividing by U we get the system

U̇ =−U(β +W 2 +αW −1), Ẇ =W (W −1)(W +1). (2.50)

When U = 0 the singularities of (2.50) are u1 = (0,−1) with eigenvalues 2 and l1, u2 = (0,0)
with eigenvalues −1 and −l3, and u3 = (0,1) with eigenvalues 2 and −l2.

After blow-down we get the local phase portraits of the origin of U2 which depend on
the signs of l1, l2 and l3. Doing all the combinations the origin of U2 consists of:

∙ two elliptic sectors and parabolic sectors, see phase portraits RPL.11 and RPL.12 of Figure
6;

∙ two hyperbolic sectors and parabolic sectors, see phase portraits RPL.13 and RPL.14 of
Figure 6;

∙ six hyperbolic sectors, see phase portrait RPL.15 of Figure 6.
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α β γ

RPL.1 -5/4 1/4 1

RPL.2 0 -1 1

RPL.3 -3 2 1

RPL.4 -2 1 1

RPL.5 0 1 1

RPL.6 -1/2 1/2 1

RPL.7 1/2 -1/2 1

RPL.8 -2 2 1

RPL.9 -1 1 1

RPL.10 0 0 1

RPL.11 -3 2 0

RPL.12 0 -1 0

RPL.13 -1 0 0

RPL.14 -1 2 0

RPL.15 -1/4 3/4 0

RPL.16 -2 1 0

RPL.17 0 1 0

Table 4 – Table of values for the parameters of system (RPL).

Finally if we consider β = 1 and after eliminating the common factor v the origin of the local
chart U2 is either a hyperbolic node or a hyperbolic saddle, described respectively by the phase
portraits RPL.16 and RPL.17 of Figure 6. The Table 4 has the values of the parameters that
realizes the phase portraits of Figure 6.

Proposition 2.5.10 (DL). Each real planar quadratic differential system with a double real
straight line and a third straight line having a Darboux invariant can be written, after an affine
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change of coordinates, as system (DL), with γ = 0 and α ̸= 0, and the Darboux invariant is

I15(x,y, t) = e−α tyx−β .

Moreover there are 3 non–equivalent phase portraits in the Poincaré disc for this systems. They
are described by DL.1–DL.3 in Figure 6.

Proof. Let f1 = x = 0 be the double real invariant straight line. By the proof of Proposition 2.3.3
we know that the second invariant straight line is f2 = y = 0. The cofactors of f1 and f2 are,
respectivelly, k1 = x,k2 = α +β x+ γ y. Equation (2.9) with s ∈ R∖{0} has only one solution
γ = 0, s =−αλ2, λ1 =−βλ2.

Taking λ2 = 1 and using this solution we get

ẋ = x2, ẏ = y(α +β x),

with Darboux invariant I15(x,y, t) = e−α tyx−β .

In order to study the global phase portraits of systems (DL), since α ̸= 0 we can take
α = 1. The origin of the system is the only finite singularity, which is a saddle-node. For the
infinity singularities we assume first that β −1 ̸= 0. In the local chart U1 the origin is a saddle if
β −1 > 0, and a stable node if β −1 < 0. In the chart U2 the system becomes

u̇ =−u((β −1)u+ v), v̇− v(βu+ v),

and the origin is a linearly zero singularity. Applying the blow up u =U, v =UW we get the
system

U̇ =−U2(β −1+W ), Ẇ =−UW,

which after eliminating the common factor U has the origin as only singular point. If β −1 > 0
the origin is a hyperbolic stable node and if β −1 < 0 the origin is a saddle.

After blow down we get the local phase portraits of the origin of U2 which depend on β .
When β −1 > 0 the origin has two elliptic sectors and parabolic sectors, see phase portrait DL.1
of Figure 6. If β −1 < 0 then there are two hyperbolic sectors and parabolic ones, see phase
portrait DL.2 of Figure 6.

When β = 1 the infinity is filled up of singular points and the origin in the local chart U2

is a hyperbolic stable node. The phase portrait of this case can be found and it is described by
DL.3 of Figure 6.

Proposition 2.5.11 (CPL). Each real planar quadratic differential system with two parallel
complex straight line and a third straight line having a Darboux invariant can be written, after an
affine change of coordinates, as system (CPL). A Darboux invariant is given by

I16(x,y, t) = etearctan(1/x)

Moreover there are 7 non–equivalent phase portraits in the Poincaré disc for this system. They
are described by CPL.1–CPL.7 in Figure 7.
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Proof. Let f1 = x+ i = 0, f2 = x− i = 0 be the two complex parallel straight lines. By the proof
of Proposition 2.3.3 we know that the third invariant straight line is f3 = y = 0. The cofactors of
f1, f2 and f3 are, respectivelly, k1 = x− i,k2 = x+ i,k3 = α +β x+ γ y. The equation (2.9) with
s ∈ R∖{0} has two solutions, namely

s1 = {γ = 0, s = i(2λ1 +(β + iα)λ3), λ2 =−βλ3 −λ1}

s2 = {s = 2iλ1, λ2 =−λ1, λ3 = 0}.

Using s2 (which is more general) we conclude that all systems with two parallel complex straight
lines and a real straight line as invariants curves have a Darboux invariant. Moreover taking
λ1 =−i/2 we get

I16(x,y, t) = et(x− i)i/2(x+ i)−i/2.

Using the polar form of the complex numbers it follows that (x− i)i/2(x+ i)−i/2 = earctan(1/x) so
the Darboux invariant is I16(x,y, t) = earctan(1/x)+t .

In (GASULL; LI-REN; LLIBRE, 1986) the authors already study the quadratic systems
with f = x2 +1 = 0 as invariant curve, given by

ẋ = x2 +1, ẏ = Q(x,y),

with Q an arbitrary polynomial of degree 2. In this paper we have Q(x,y) = y(α +β x+ γ y). So
the system studied here is a subcase of systems (V I) of the article (GASULL; LI-REN; LLIBRE,
1986). In that article the study of those systems is divided in six cases and since we have the
invariant straigh line y = 0 there are seven possible phase portraits. The case (V I.1) provides the
phase portraits 1 and 2 of (GASULL; LI-REN; LLIBRE, 1986)(Fig. 1), i.e. the phase portraits
CPL.1 and CPL.2 of Figure 7; the case (V I.2) gives the phase portrait 6 of (GASULL; LI-REN;
LLIBRE, 1986)(Fig. 1), i.e. the phase portrait CPL.3 of Figure 7; the case (V I.4) generates
the phase portraits 16 and 17 of (GASULL; LI-REN; LLIBRE, 1986)(Fig. 1), i.e. the phase
portraits CPL.4 and CPL.5 of Figure 7; the case (V I.5) gives the phase portrait 20 of (GASULL;
LI-REN; LLIBRE, 1986)(Fig. 1), i.e. the phase portrait CPL.6 of Figure 7. Finally the case
(V I.6) provides the phase portrait 21 of (GASULL; LI-REN; LLIBRE, 1986)(Fig. 1), i.e. the
phase portrait CPL.7 of Figure 7.

Proposition 2.5.12 (p). Each real planar quadratic differential system with two complex straight
lines that intersects in a real point and a third straight line having a Darboux can be written, after
an affine change of coordinates, as

(i) (p.1) with α3(β −2β3) ̸= 0 and Darboux invariant

I17(x,y, t) = eα3(β−2β3) t e−2γ3 arctan(y/x) (x2 + y2)β3 y−β .
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(ii) (p.2) with c ̸= 0, α =−1 and Darboux invariant

I18(x,y, t) = e−arctan(y/x)−ct

Moreover there are 5 non–equivalent phase portraits in the Poincaré disc for this system. They
are described by p.1.1–p.1.3 and p.2.1, p.2.2 in Figure 7.

Proof. Let f1 = x+ iy = 0 and f2 = x− iy = 0 be the two complex straight lines that intersect at
a real point. We have two systems, (p.1), with f3 = y, and (p.2) with f3 = y+ax+ c. We shall
do the calculations for (p.1), and for system (p.2) the computations are analogous.

Consider system (p.1) the cofactors of f1, f2 and f3 are, respecively,

k1 = (1/2)(β x+2γ3 y+2α3 − i(β −2β3)y),

k2 = (1/2)(β x+2γ3 y+2α3 + i(β −2β3)y),

k3 = α3 +β3 x+ γ3 y.

(2.51)

Solving equation (2.9) the most general solution is

λ1 = β3 + iγ3, λ2 = β3 − iγ3, λ3 =−β , s = α3(β −2β3).

Hence assuming α3(β −2β3) ̸= 0 system (p.1) of Theorem 2.5.1 has the Darboux invariant

I17(x,y, t) = eα3(β−2β3) ty−β (x− iy)β3−iγ3(x+ iy)β3+iγ3 . (2.52)

Using the polar form of the complex numbers it follows that (x− i)i/2(x− iy)β3−iγ3(x+

iy)β3+iγ3 = e−2γ3 arctan(y/x) (x2 + y2)β3 and we get the Darboux invariant

I17(x,y, t) = eα3(β−2β3) t e−2γ3 arctan(y/x) (x2 + y2)β3 y−β

For system (p.2) the third invariant straight line is f3 = y+ax+ c with c ̸= 0. In this
case the system has a Darboux invariant if and only if α = −1, and with the same reasoning
applied above we get the invariant

I18(x,y, t) = e−arctan(y/x)−ct .

We start the study of the global phase portraits with systems (p.1). Since α3 ̸= 0 we
can take α3 = 1. Systems (p.1) have at most two finite singularities, namely z1 = (0,0) and
z2 = (−2/β ,0). When β = 0 the point z2 goes to infinity. The point z1 is an unstable node and
the eigenvalues associated to z2 are −1 and (β −2β3)/β . So the point z2 is either a stable node
or a saddle.
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In the local chart U2 the origin is not a singularity for the compactfied system. In the local
chart U1 the system compactified has only one infinity singularity u1 = (0,0) with eigenvalues
−β/2 and −(β −2β3)/2.

Then if β (β −2β3)> 0, z2 is a saddle and u1 is a stable node and the only phase portrait
is p.1.1 of Figure 7, realizable for β = 1, γ3 = 1 and β3 =−1/2. If β (β −2β3)< 0, z2 is a stable
node and u1 is a saddle and the corresponding phase portrait of this case is p.1.2 of Figure 7,
realizable for β = 1, γ3 = 1 and β3 = 3/2. Finally if β = 0 then z2 goes to the infinity and u2

becomes a semi hyperbolic saddle-node generating the phase portrait p.1.3 of Figure 7, which is
realizable for β = 0, γ3 = 1 and β3 = 2.

In order to study the global phase portraits of systems (p.2) we start with the infinity
singular points. In the local chart U1 system (p.2) becomes

u̇ =−cv(u2 +1), v̇ =−v(aβ +au+ cuv+βcv+βu−1).

So the line v = 0 is filled up of singular points. The same happens in the local chart U2. In the
finite part the point (0,0) is the only singularity, with complex eigenvalues. So the origin can be
a node or a center. Both cases are described, respectively, by the phase portraits p.2.1 ,realizable
with a = β = 1 and c = 2, and p.2.2, realizable with a = 1, β = 0 and c = 2, of Figure 7.

To end this first chapter we study the systems that do not a Darboux invariant.

Theorem 2.5.13. Systems of type (CE),(E.1),(H.1),(H.5),(P.3) do not admit Darboux invari-
ants of the form e−st f (x,y).

Proof. First we consider systems of type (CE), i.e, the ones which has an invariant cubic of
the form f = f1 f2 = 0 where f1 = x2 + y2 +1 and f2 = ax+by+ c. By Theorem 2.5.1 these
systems can be written as

ẋ =−(x2 + y2 +1)−2α1 y(y+ax+ c), ẏ = a(x2 + y2 +1)+2α1 x(y+ax+ c),

with f1 = x2+y2+1 and f2 = y+ax+c. The cofactors of f1 and f2 are k1(x,y) = 2(ay+x) and
k2(x,y) =−2α1(ay− x), respectively. So the cofactors have no constant terms, i.e, k1(0,0) =
k2(0,0) = 0. The consequence of this is that equation (2.9) has no solution considering s ̸= 0.
Hence these systems do not have a Darboux invariant of the form est f λ1

1 f λ2
2 .

The proofs for other systems are very similar. In fact it suffices to observe that the
cofactors of the invariant curves never have a constant term.
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CHAPTER

3
AVERAGING THEORY FOR NONSMOOTH

SYSTEMS

The purpose of this chapter is to present applications of the classic averaging theory
of first order to nonsmooth differential systems. Averaging theory is a very useful technique
to investigate the existence of periodic orbits in differential systems. We start this chapter
introducing the nonsmooth differential systems and the classic averaging theory of first order.

3.1 Piecewise smooth differential systems

Definition 3.1.1. A piecewise smooth vector field defined on an open bounded set U ⊂ Rn is
a function F : U → Rn which is continuous except on a set Σ of measure 0, called the set of
discontinuity of the vector field F .

Here we assume that U ∖Σ is a finite collection of disjoint open sets Ui, i = 1,2, . . . ,m,

such that the restriction Fi = F
∣∣
Ui

is continuously extendable to the compact set Ui. The local
trajectory of F at a point p ∈Ui is given by the usual notion. However the local trajectory of F

at a point p ∈ Σ needs to be given with some care. In (FILIPPOV, 1988), taking advantage of
the theory of differential inclusion (see (AUBIN; CELLINA, 1984)), Filippov established some
conventions for what would be a local trajectory at points of discontinuity where the set Σ is
locally a codimension one embedded submanifold of Rn. For a such point p ∈ Σ, we consider a
sufficiently small neighborhood Up of p such that Σ splits Up ∖Σ in two disjoint open sets U+

p

and U−
p and denote F±(p) = F

∣∣
U±

p
(p). In short, if the vectors F±(p) point at the same direction

then the local trajectory of F at p is given as the concatenation of the local trajectories of F± at
p. In this case we say that the trajectory crosses the set of discontinuity and that p is a crossing
point. If the vectors F±(p) point in opposite directions then the local trajectory of F at p slides
on Σ. In this case we say that p is a sliding point. For more details on the Filippov conventions
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see (FILIPPOV, 1988; GUARDIA; SEARA; TEIXEIRA, 2011).

The first objective is to estabilish conditions for the existence of crossing limit cycles for
a class of discontinuous piecewise smooth vector fields, that is limit cycles which only cross the
set of discontinuity Σ.

Remark 3.1.2. If Σ is locally described as h−1(0), being h : U → R a smooth function and 0
a regular value, then ⟨∇h(p),F+(p)⟩⟨∇h(p),F−(p)⟩ > 0 is the condition in order that p is a
crossing point. For nonautonomous system the same definition can be applied considering the
extended phase space where the system becomes autonomous by taking the time as a new space
variable with constant velocity equal 1.

3.2 The averaging theory of first order
The averaging theory is one of the best tools to provide sufficient conditions for the

existence of isolated periodic solutions of a differential system. In chapter 4 we shall present
a background on this theory and the new results obtained. But in this chapter we deal with the
averaging theory of first order.

The thecnique is applied in systems on the form

ẋ(t) =
k

∑
i=0

ε
iFi(t,x)+ ε

k+1R(t,x,ε), (3.1)

The form presented above is related to an expansion that is made around ε = 0 and when k = 1
we call first order averaging. So considering k = 1 and a continuous piecewise differential system
we have the result(Theorem B of (LLIBRE; NOVAES; TEIXEIRA, 2014b))

Theorem 3.2.1. Consider the following system

ẋ(t) = F0(t,x)+ εF1(t,x)+ ε
2R(t,x,ε), (3.2)

where D ⊂Rn is an open subset, ε is a small parameter, the functions Fi : R×D →Rn for i = 0,1
and R : R×D× (−ε0,ε0)→Rn are T –periodic in the variable t, and for each t ∈R the functions
F0(t, .) ∈ C1, F1(t, .) ∈ C0, DxF0 and R ∈ C0 are locally Lipschitz in the second variable. We
denote by x(t,z,ε) the solution of system (3.2) such that x(0,z,ε) = z. Assume that there exists
an open and bounded subset V of D with its closure V ⊂ D such that for each z ∈V , the solution
x(t,z,0) is T - periodic. We denote by Mz(t) the fundamental matrix solution of the variational
equation hgh

ẋ(t) = DxF0(t,x(t,z,0)),

associated to the periodic solution x(t,z,0) such that Mz(0) is the identity.

If a ∈V is a zero of the map f : V → Rn defined by

f (z) =
∫ T

0
M−1

z (t)F1(t,x(t,z))dt (3.3)
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and det(Dz f (a)) ̸= 0, then for ε > 0 sufficiently small, system (3.2) has a T –periodic solution
x(t,aε ,ε) such that aε → a as ε → 0. Moreover the linear stability type of the periodic solution
x(t,aε ,ε) is given by the eigenvalues of the matrix Dz f (a).

Now considering the averaging of first order (k = 1) and a special case of discontinuous
piecewise differential system there is also a result, similar to Theorem 3.2.1. Let D ⊂ Rn be
an open subset and h : R×D → R a C1 function having 0 as regular value. Consider F1,F2 :
R×D → Rn continuous functions and Σ = h−1(0) and the Filippov’s system

ẋ(t) = F(t,x) =

{
F1(t,x) if (t,x) ∈ Σ+,

F2(t,x) if (t,x) ∈ Σ−,
(3.4)

where Σ+ = {(t,x) ∈ R×D : h(t,x)> 0} and Σ− = {(t,x) ∈ R×D : h(t,x)< 0}.

Consider the differential system associated to system (3.4)

ẋ(t) = F(t,x) = χ+(t,x)F1(t,x)+χ−(t,x)F2(t,x), (3.5)

where χ+,χ− are the characteristic functions defined as

χ+(t,x) =

1 if h(t,x)> 0,

0 if h(t,x)< 0.

and

χ−(t,x) =

0 if h(t,x)> 0,

1 if h(t,x)< 0.

Systems (3.4) and (3.5) do not coincide in Σ, but applying the Filippov’s convention
for the solutions of systems (3.4) and (3.5) (see (FILIPPOV, 1988)) passing through a point
(t,x) ∈ Σ we have that these solutions do not depend on the value of F(t,x), so the solutions are
the same.

Let P be the space formed by the periodic solutions of (3.5). If dimP = dimD = d then
the following result follows directly from Theorem B of (LLIBRE JAUME NOVAES, 2015).

Theorem 3.2.2. Consider the differential system

ẋ(t) = F0(t,x)+ εF1(t,x)+ ε
2R(t,x,ε). (3.6)

where

Fi(t,x) = χ+F1
i (t,x)+χ−F2

i (t,x), for i = 0,1, and

R(t,x) = χ+R1(t,x)+χ−R2(t,x),
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with F1
i ∈C1, for i = 0,1 and R1,R2 are continuous functions which are Lipschitz in the second

variable, and all these functions are T -periodic functions in the variable t ∈ R.

For z ∈ D and ε > 0 sufficiently small denote by x(t,z,ε) the solution of system (3.6)
such that x(0,z,ε) = z.

Define the averaged function

f (z) =
∫ T

0
M(s,z)−1F1(s,x(s,z,0))ds (3.7)

where x(s,z,0) is a periodic solution of (3.6) with ε = 0 such that x(0,z,0) = z, and M(s,z)

is the fundamental matrix of the variational system ẏ = DxF0(t,x(t,z,0))y associated to the
unperturbed system evaluated on the periodic solution x(s,z,0) such that M(0,z) = Id. Moreover
we assume the following hypotheses.

(H−) There exists an open bounded subset C ⊂ D such that, for ε sufficiently small, every orbit
starting in C reaches the set of discontinuity only at its crossing region.

(H+) For a ∈C with f (a) = 0 there exists a neighborhood U ⊂C of a such that f (z) ̸= 0, for
all z ∈ Ū∖{a} and det(Dz f (a)) ̸= 0.

Then for ε > 0 sufficiently small there exists a T –periodic solution x(t,aε ,ε) of (3.6) such that
aε → a as ε → 0. Moreover the linear stability of the periodic solution x(t,ε) is given by the
eigenvalues of the matrix Dz f (a).

Remark 3.2.3. If f (x) is a C1 function such that f (a) = 0 and f ′(a) ̸= 0 there exist a neigh-
borhood U ⊂C of a such that f (z) ̸= 0 for all z ∈ Ū∖{a} and dB( f ,U,0) ̸= 0. For more details
about the Brouwer degree see for instance (BROWDER, 1983).

Using the results above we put two applications. The first one is published in Compu-
tational & Applied Mathematics (see (LLIBRE; OLIVEIRA; RODRIGUES, 2018)) and the
second is a preprint (see (LLIBRE; OLIVEIRA; RODRIGUES, 2018)).

3.2.1 The Michelson differential system

The Michelson differential system is given by

ẋ = y,

ẏ = z,

ż = c2 − y− x2

2
,

(3.8)

with (x,y,z) ∈ R3 and the parameter c ≥ 0. The dot denotes derivative with respect to an
independent variable t, usually called the time. This system is due to Michelson (MICHELSON,
1986) for studying the traveling solutions of the Kuramoto-Sivashinsky equation.
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This system has been largely investigated from the dynamical point of view. Michelson
in (MICHELSON, 1986) proved that if c > 0 is sufficiently large, then system (3.8) has a unique
bounded solution which is a transversal heteroclinic orbit connecting the two finite singular-
ities (−

√
2c,0,0) and (

√
2c,0,0). When c decreases there will appear a cocoon bifurcation

(see (KOKUBU; WILCZAK; ZGLICZYŃSKI, 2007; LAU, 1992; MICHELSON, 1986)). In
(LLIBRE; ZHANG, 2011) there is an analytical proof of the existence of a zero-Hopf bifurcation
for system (3.8).

In (CARMONA; FERNÁNDEZ-SÁNCHEZ; TERUEL, 2008; CARMONA et al., 2010)
the authors consider a continuous piecewise linear version of Michelson differential system
changing the non linear function x2 in (3.8) by the piecewise linear function |x|. For such system
they proved that some dynamical aspects of the Michelson system remains as the existence of a
reversible T–point heteroclinic cycle.

Doing the change of variable (x,y,z,c)→ (2εX ,2εY,2εZ,2εd) with d ≥ 0 and ε > 0
sufficiently small to the Michelson differential system (3.8), followed by the change of the
function X2 → |X |, and denoting again X , Y , Z by x, y, z, we obtain the system

ẋ = y,

ẏ = z,

ż =−y+ ε(2d2 −|x|),

(3.9)

that we call the Michelson continuous piecewise linear differential system . We note that
this system is reversible because it is invariant under the change of variables (x,y,z, t) ↦→
(−x,y,−z,−t).

If in the continuous Michelson differential system (3.8) we change the continuous
function |x| by the discontinuous one |x|+ sign(x), where

signx =


−1 if x < 0,

0 if x = 0,

1 if x > 0.

we obtain the Michelson discontinuous piecewise linear differential system given by

ẋ = y,

ẏ = z,

ż =−y+ ε(2d2 −|x|− signx).

(3.10)

The first objective is studying analytically the periodic solutions of the Michelson
continuous and discontinuous piecewise linear differential systems. The result is presented
bellow.
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Theorem 3.2.4. For all d > 0 and ε = ε(d) > 0 sufficiently small the Michelson continuous
piecewise linear differential system (3.9) has a periodic solution of the form

x(t) =−π d2 +O(ε), y(t) = π d2 sin t +O(ε), z(t) = π d2 cos t +O(ε).

Moreover this periodic solution is linearly stable.

Proof. Doing to the Michelson continuous piecewise linear differential system (3.9) the change
to cylindrical coordinates x = x, y = r sinθ and z = r cosθ , the system becomes

ẋ = r sinθ ,

ṙ = ε(2d2 −|x|)cosθ ,

θ̇ = 1− ε

r
(2d2 −|x|)sinθ .

(3.11)

Taking θ as the new independent variable we can write the previous differential system as

dx
dθ

= x′ = r sinθ + ε(2d2 −|x|)sin2
θ +O(ε2),

dr
dθ

= r′ = ε(2d2 −|x|)cosθ +O(ε2).

(3.12)

The unperturbed system is

x′ = r sinθ ,

r′ = 0.
(3.13)

For each (x0,r0) the solution (x(θ ,x0,r0),r(θ ,x0,r0)) such that (x(0,x0,r0),r(0,x0,r0))= (x0,r0)

is

(x(θ ,x0,r0),r(θ ,x0,r0)) = (x0 + r0(1− cosθ),r0),

which is 2π–periodic for all (x0,r0) ̸= (0,0). When r0 = 0 we have a straight line of equilibrium
points. Now note that the function F0(θ ,(x,r)) = (r sinθ ,0) is C∞ and in particular C1, and that
the function

F1(θ ,(x,r)) = (2d2 −|x|)(sin2
θ ,cosθ)

is C0, and both are Lipschitz. So the differential system (3.11) satisfies the assumptions of
Theorem 3.2.1. Then, by Theorem 3.2.1, we need to calculate the averaged function

f (x0,r0) =
∫ 2π

0
M(θ)−1F1(θ ,x(θ ,(x0,r0)))dθ ,

where

M(θ) =


1 1− cosθ

0 1
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is the fundamental matrix of the variational differential system associated to system (3.13)
evaluated on the periodic solution (x0 + r0(1− cosθ),r0) such that M(0) is the identity matrix.
Therefore we have

f (x0,r0) =
∫ 2π

0
(2d2 −|x0 + r0(1− cosθ)|)


1 cosθ −1

0 1




sin2
θ

cosθ

dθ

=
∫ 2π

0
(2d2 −|x0 + r0(1− cosθ)|)


1− cosθ

cosθ

dθ

=
∫ 2π

0
g(θ)dθ .

Note that g(θ) = g(−θ) and g(θ) is 2π-periodic. So∫ 2π

0
g(θ)dθ =

∫
π

−π

g(θ)dθ = 2
∫

π

0
g(θ)dθ .

To calculate this integral we need to study the zeros of the function G(θ) = x0 + r0(1− cosθ).

As G(θ) = 0 if and only if θ = ±arccos
(

x0 + r0

r0

)
and the function arccos(x) takes

real values when x ∈ [−1,1] we have to consider the following three cases.

Case 1: x0 ≤−2r0 or equivalently
x0 + r0

r0
≤−1. Then r0 + x0 − r0 cosθ ≤ 0 in [0,π].

Case 2: x0 ∈ (−2r0,0) or equivalently
∣∣∣∣x0 + r0

r0

∣∣∣∣< 1. Then

(i) r0 + x0 − r0 cosθ < 0 if θ ∈
(

0,arccos
(

r0 + x0

r0

))
,

(ii) r0 + x0 − r0 cosθ > 0 if θ ∈
(

arccos
(

r0 + x0

r0

)
,π

)
.

Case 3: x0 ≥ 0 or equivalently
x0 + r0

r0
≥ 1. Then r0 + x0 − r0 cosθ ≥ 0 in [0,π].

In the computation of the integral
∫

π

0
g(θ)dθ we distinguish the previous three cases.

Case 1. In this case the averaged function is

f (x0,r0) = 2
∫ 2π

0
(2d2 −|x0 + r0(1− cosθ)|)


1− cosθ

cosθ

dθ

= 2π(4d2 +3r0 +2x0,−r0),
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whose unique zero is (x0,r0) = (−2d2,0). Since this initial condition corresponds to an equilib-
rium point of the unperturbed system (3.13), the averaging theory in this case does not provide
periodic solutions.

Case 3. Analogously to Case 1 we have

f (x0,r0) = 2
∫ 2π

0
(2d2 −|x0 + r0(1− cosθ)|)


1− cosθ

cosθ

dθ

= 2π(4d2 −3r0 −2x0,r0),

whose unique zero is (x0,r0) = (2d2,0). The conclusion follows as in Case 1.

Case 2. Here

f (x0,r0) =2
∫ arccos

(
r0+x0

r0

)
0

(2d2 +(x0 + r0(1− cosθ)))


1− cosθ

cosθ

dθ

+2
∫

π

arccos
(

r0+x0
r0

)(2d2 − (x0 + r0(1− cosθ)))


1− cosθ

cosθ

dθ

=


f1(x0,r0)

f2(x0,r0)

 ,

where

f1(x0,r0) = 4πd2 −
√
−x0(2r0 + x0)

r0
(6r0 +2x0)−2(3r0 +2x0)arcsin

(
r0 + x0

r0

)
,

f2(x0,r0) = 2(r0 + x0)

√
−x0(2r0 + x0)

r0
+2r0 arcsin

(
r0 + x0

r0

)
.

In order to solve the system f1(x0,r0) = f2(x0,r0) = 0 we do the change of variables

x0 → X where x0 = −r0 −Xr0 with −1 < X < 1, recall that
∣∣∣∣x0 + r0

r0

∣∣∣∣< 1. Then the system

becomes

2πd2 +
(
(X −2)

√
1−X2 +(1−2X)arcsinX

)
r0 = 0,

r0

(
X
√

1−X2 + arcsinX
)
= 0.
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Since r0 must be positive, from the second equation it follows that X = 0, and from the first that
r0 = πd2. So we have the solution (x0,r0) = (−πd2,πd2).

The Jacobian of the map ( f1, f2) evaluated at (x0,r0) = (−πd2,πd2) is 4. It follows from
Theorem 3.2.1 and for any d > 0 and ε = ε(d) > 0 sufficiently small that system (3.12) has
a periodic solution ϕ(θ ,ε) = (x(θ ,ε),r(θ ,ε)) = (−d2π +O(ε),d2π +O(ε)). Moreover the
eigenvalues of the Jacobian matrix of the map ( f1, f2) at the solution (−d2π,d2π) are ±2i, so
the periodic solution is linearly stable.

Now we must identify the periodic solution of system (3.9) which corresponds to the
periodic solution found. Going back to system (3.11) with the independent variable t we obtain
the periodic solution

(x(t,ε),r(t,ε),θ(t,ε)) = (−d2
π,d2

π, t(mod 2π))+O(ε).

Finally coming back to system (3.9) we find the periodic solution

(x(t,ε),y(t,ε),z(t,ε)) = (−d2
π , d2

π sin t , d2
π cos t)+O(ε).

This concludes the proof of Theorem 3.2.4.

Remark 3.2.5. 1. A periodic solution is asymptotically stable if all the eigenvalues corre-
sponding to the fixed point of the Poincaré map associated to this solution have negative
real part, then this periodic solution is locally asymptotically stable. If one of the eigenval-
ues has positive real part the periodic solution is unstable. If all the eigenvalues have zero
real parts, then we say that the periodic solution is linearly stable, in this case the linear
stability does not provide any information on the kind of stability that the periodic solution
has when we take into account the nonlinear terms.

2. The stability of the periodic solutions of system (3.2) when it is applied to the Michelson
continuous piecewise linear differential system can be obtained from the stability of a
differential system associated to it. In fact given the continuous system (3.8) consider
a band of amplitude ε > 0 around the plane x = 0 and a differentiable extension of the
continuous system (3.8) to this band. Studying the limit of this extended differentiable
system when ε → 0 we conclude that the linear stability of system (A.2) is given by the
eigenvalues of DzF (a).

Remark 3.2.6. The periodic orbit obtained in Theorem 3.2.4 is not reversible because their
dominant terms (−d2π , d2π sin t , d2π cos t) are not invariant under the change of variables
(x,y,z, t) ↦→ (−x,y,−z,−t). So this periodic orbit has no relation with the periodic orbit of the
noose bifurcation studied by the Michelson continuous piecewise linear differential system (1.2)
of (CARMONA et al., 2015) which is reversible. We also note that our Michelson continuous
piecewise linear differential system (3.9) and system (1.2) of (CARMONA et al., 2015) do not
coincide.
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With respect to the number of periodic solutions of system (3.10) we have the following
result

Theorem 3.2.7. For ε > 0 sufficiently small the Michelson discontinuous piecewise linear
differential system (3.10) satisfies the following statements.

(a) If (−1+2d2)π < 0 then system (3.10) has two periodic solutions (x(t,ε),r(t,ε),θ(t,ε))
of the form

(x(t,ε),y(t,ε),z(t,ε)) = (x0,r0 sin t,r0 cos t)+O(ε), (3.14)

where

r0 =
2
√

1−a2

a
√

1−a2 + arcsin a
, x0 =−r0(1+a),

and a takes the value of the two unique zeros of the function

g(a) =
2a2 −2+πa

√
1−a2d2 + arcsin a

(
πd2 + arcsin a−a

√
1−a2

)
a
√

1−a2 + arcsin a
,

in the interval (−1,1).

(b) If (−1+2d2)π > 0, then system (3.10) has a periodic solution of the form (3.14) given
by the unique zero of the function g(a) in the interval (−1,1).

Proof. Doing the change to cylindrical coordinates x = x, y = r sinθ and z = r cosθ the Michel-
son discontinuous piecewise linear differential system becomes

ẋ = r sinθ ,

ṙ = ε(2d2 −|x|− signx)cosθ ,

θ̇ = 1− ε

r
(2d2 −|x|− signx)sinθ .

(3.15)

Now taking as new independent variable the angle θ we get the system

x′ = r sinθ + ε(2d2 −|x|− signx)sin2
θ +O(ε2),

r′ = ε(2d2 −|x|− signx)cosθ +O(ε2),
(3.16)

where the prime denotes the derivative with respect to θ . This differential system satisfies the
assumptions of Theorem 3.2.2, so we shall apply it for finding some of its periodic solutions.
Using the notation of Theorem 3.2.2 we have that

F1(θ ,x,r) = (2d2 −|x|− signx)


sin2

θ

cosθ

 .
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As in Theorem 3.2.4 the unperturbed system is given by (3.13) and the fundamental

matrix is M(θ) =


1 1− cosθ

0 1

. Then by Theorem 3.2.2 we need to calculate

f (x0,r0) =
∫ 2π

0
M(θ)−1F1(θ ,x(θ ,(x0,r0)),r(θ ,(x0,r0)))dθ =

∫ 2π

0
g(θ)dθ .

where g(θ) =
(
2d2 −|x0 + r0(1− cosθ)|− sign(x0 + r0(1− cosθ))

)


1− cosθ

cosθ

 .

Since g(θ) is 2π–periodic and g(θ) = g(−θ) then

∫ 2π

0
g(θ)dθ = 2

∫
π

0
g(θ)dθ .

As in the study of the continuous differential system, we separate the calculation of the
averaged function corresponding to the discontinuous system (3.16) in the same three cases that
appear in the proof of Theorem 3.2.4.

Case 1. In this subcase r0 + x0 − r0 cosθ < 0 in [0,π]. Then the averaged function is

f (x0,r0) = π
(
2+4d2 +3r0 +2x0,r0

)
.

This function has no zeros with r0 > 0, so the averaging theory in this case does not detect any
periodic solution.

Case 2. Now we have

f (x0,r0) = π(−2+4d2 −3r0 −2x0,r0).

The conclusion follows as in Case 1.

Case 3. Here r0+x0− r0 cosθ < 0 when θ ∈
(

0,arccos
(

r0 + x0

r0

))
, and r0+x0− r0 cosθ > 0,

when θ ∈
(

arccos
(

r0 + x0

r0

)
,π

)
, so

f (x0,r0) =


f1(x0,r0)

f2(x0,r0)

 ,
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with

f1(x0,r0) =

√
−x0(2r0 + x0)

r2
0

(3r0 + x0 +2)+
π

2
(
4d2 −3r0 −2x0 +2

)
+(3r0 +2x0 +2)arccos

(
r0 + x0

r0

)
,

f2(x0,r0) =
πr0

2
− arccos

(
r0 + x0

r0

)
r0 +(r0 + x0 +2)

√
−x0(2r0 + x0)

r2
0

.

Again for solving the system f1(x0,r0) = f2(x0,r0) = 0 we do the change of variables
x0 → X where

x0 =−r0 −Xr0, (3.17)

with −1 < X < 1. Then the system becomes

2πd2 +
√

1−X2((X −2)r0 −2)+(2−2Xr0 + r0)arcsin X = 0,

√
1−X2(2−Xr0)− r0 arcsin X = 0.

From the second equation we get

r0 =
2
√

1−X2

X
√

1−X2 + arcsin X
. (3.18)

Substituting r0 in the first equation we obtain g(X) = 0, where g(X) is

2X2 −2+πX
√

1−X2d2 + arcsin X
(

πd2 + arcsin X −X
√

1−X2
)

X
√

1−X2 + arcsin X
.

It is easy to compute that

limX↘−1 g(X) = (−1+2d2)π,

limX↗0 g(X) = +∞,

limX↘0 g(X) =−∞,

limX↗1 g(X) = (1+2d2)π.

So, by continuity of the function g(X) in the intervals (−∞,0) and (0,∞), it follows that g(X)

has one zero in the interval (−∞,0) if (−1+2d2)π < 0, and that g(X) always has one zero in
the interval (0,∞). Moreover, since the derivative g′(X)> 0 in those two intervals, such zeros
are the unique zeros of the function g(X).
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Since for each zero of g(X) we have a unique zero (x0,r0) of system
f1(x0,r0) = f2(x0,r0) = 0 (see (3.18) and (3.17)), we obtain two solutions of the system
f1(x0,r0) = f2(x0,r0) = 0 if (−1+ 2d2)π ≤ 0, and only one if (−1+ 2d2)π > 0. Computing
the Jacobian of the map ( f1(x0,r0), f2(x0,r0)) at (3.18) and (3.17) we get

X4 −5X2 +6X
√

1−X2 arcsin X +
(
4X2 −1

)
(arcsin X)2 +4

1−X2 ≥ 4,

if X ∈ (−1,1). Therefore, by Theorem 3.2.2 we obtain two periodic solutions of the differential
system (3.16) if (−1+2d2)π < 0, and one periodic solution if (−1+2d2)π > 0. Such periodic
solutions are of the form

(x(θ ,ε),r(θ ,ε)) = (x0 +O(ε),r0 +O(ε)),

where x0 and r0 are given by (3.18) and (3.17) when X is a zero of g(X).

Going back to system (3.15) with the independent variable t we obtain the periodic
solution

(x(t,ε),r(t,ε),θ(t,ε)) = (x0,r0, t(mod 2π))+O(ε).

Finally coming back to system (3.9) we find the periodic solution

(x(t,ε),y(t,ε),z(t,ε)) = (x0,r0 sin t,r0 cos t)+O(ε).

This concludes the proof of Theorem 3.2.7

3.2.2 Limit cycles of control piecewise linear differential systems

In control theory are relevant the continuous piecewise linear differential systems of the
form

ẋ = Ax+ϕ(x1)b, (3.19)

with A a m×m matrix, x,b ∈ Rm, ϕ : R→ R is the continuous piecewise linear function

ϕ(x1) =


−1 if x1 ∈ (−∞,−1),

x1 if x1 ∈ [−1,1],

1 if x1 ∈ (1,∞),

(3.20)

where x = (x1, . . . ,xm)
T , and the dot denotes the derivative with respect to the independent

variable t, the time.

Also in control theory are important the discontinuous piecewise linear differential
systems of the form (3.19) where instead of the function ϕ we have the discontinuous piecewise
linear function

ψ(x1) =

−1 if x1 ∈ (−∞,0),

1 if x1 ∈ (0,∞).
(3.21)
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For more details on these continuous and discontinuous piecewise linear differential systems see
for instance the books (AIZERMAN, 1963) and (BARNETT; CAMERON, 1985).

The goal of this subsection is to study analytically the existence of limit cycles for a class
of continuous and a class of discontinuous piecewise linear differential of the form (3.19).

More precisely, first we consider the class of continuous piecewise linear differential
systems

ẋ = A0x+ ε
(
Ax+ϕ(x1)b

)
, (3.22)

with |ε| ̸= 0 a sufficiently small real parameter, where A0 is the 2n× 2n matrix having on its
principal diagonal the following 2×2 matrices

0 −(2k−1)

2k−1 0

 for k = 1, . . . ,n,

and zeros in the complement, A is an arbitrary 2n×2n matrix and b ∈ R2n ∖{0}. Note that for
ε = 0 system (3.22) becomes

ẋ1 =−x2, ẋ2 = x1, . . . , ẋ2n−1 =−(2n−1)x2n, ẋ2n = (2n−1)x2n−1. (3.23)

Moreover, the origin of (3.23) is a global isochronous center in R2n, i.e. all its orbits different
from the origin are periodic with period 2π .

In a similar way we consider the discontinuous piecewise linear differential systems

ẋ = A0x+ ε
(
Ax+ψ(x1)b

)
. (3.24)

The main results on the limit cycles of the continuous and discontinuous piecewise linear
differential systems (3.22) are described below.

Theorem 3.2.8. For |ε|> 0 sufficiently small and if the conditions for applying the averaging
theory of first order hold, then at most one limit cycle γε of the continuous piecewise linear
differential system (3.22) bifurcates from the periodic orbits of system (3.23), i.e. γε tends to a
periodic solution of system (3.23) when ε → 0. Moreover there are systems (3.22) with |ε|> 0
sufficiently small having a such limit cycle.

The main tool for proving Theorem 3.2.8 is the averaging theory of first order for
continuous differential systems presented in Theorem 3.2.1. In order to use this theorem we need
to write the differential system (3.22) in the normal form (3.1), and for obtaining this we need to
some changes of variables.
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Lemma 3.2.9. Doing the change of variables (x1,x2, . . . ,x2n) ↦→ (θ ,r,θ1,r1, . . . ,θn−1,rn−1) de-
fined by

x1 = r cosθ ,

x2 = r sinθ ,

x2 j−1 = r j−1 cos((2 j−1)θ +θ j−1),

x2 j = r j−1 sin((2 j−1)θ +θ j−1),

for j = 2, . . . ,n system (3.22) is transformed into the system

dr
dθ

= εH1(θ ,r,θ1,r1, . . . ,θn−1,rn−1)+O(ε2),

dr j−1

dθ
= εH2( j−1)(θ ,r,θ1,r1, . . . ,θn−1,rn−1)+O(ε2),

dθ j−1

dθ
= εH2 j−1(θ ,r,θ1,r1, . . . ,θn−1,rn−1)+O(ε2),

(3.25)

where

H1 =
n

∑
l=1

rl−1

(
F1,l cosθ +F2,l sinθ

)
+ϕ(r cosθ)(b1 cosθ +b2 sinθ),

and for j = 2,3, . . . ,n we have

H2( j−1) =
n

∑
l=1

rl−1

(
F2 j−1,l cos((2 j−1)θ +θ j−1)+F2 j,l sin((2 j−1)θ +θ j−1)

)

+ϕ(r cosθ)
[
b2 j−1 cos((2 j−1)θ +θ j−1)+b2 j sin((2 j−1)θ +θ j−1)

]
,

H2 j−1 =
n

∑
l=1

rl−1

r j−1

(
F2 j,l cos((2 j−1)θ +θ j−1)−F2 j−1,l sin((2 j−1)θ +θ j−1)

)

+(2 j−1)
n

∑
l=1

rl−1

r

(
F1,l sinθ −F2,l cosθ

)

+ϕ(r cosθ)

(
b2 j

r j−1
cos((2 j−1)θ +θ j−1)−

b2 j−1

r j−1
sin((2 j−1)θ +θ j−1)

)
−(2 j−1)ϕ(r cosθ)

(
b2

r
cosθ − b1

r
sinθ

)
,

with

Fi,l = Fi,l(r,θ ,θl−1) = ai(2l−1) cos((2l −1)θ +θl−1)+ai(2l) sin((2l −1)θ +θl−1).

We take ε0 sufficiently small, m arbitrarily large and

Dm =

{
(r,θ1,r1, . . . ,θn−1,rn−1) ∈

(
1
m
,m
)
×
[
S1 ×

(
1
m
,m
)]n−1}

.
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Then the vector field of system (3.25) is well defined and continuous on S1 ×Dm × (−ε0,ε0).
Moreover the system is 2π-periodic with respect to variable θ and locally Lipschitz with respect
to variables (r,θ1,r1, . . . ,θn−1,rn−1).

Proof. In the variables (θ ,r,θ1,r1, . . . ,θn−1,rn−1) the differential system (3.22) becomes

θ̇ = 1+
ε

r

[ n

∑
l=1

rl−1

(
F2,l cosθ −F1,l sinθ

)
+ϕ(r cosθ)(b2 cosθ −b1 sinθ)

]
,

ṙ = εH1(θ ,r,θ1,r1, . . . ,θn−1,rn−1),

ṙ j−1 = εH2( j−1)(θ ,r,θ1,r1, . . . ,θn−1,rn−1),

θ̇ j−1 = εH2 j−1(θ ,r,θ1,r1, . . . ,θn−1,rn−1),

for j = 2,3, . . . ,n. Note that for ε = 0 , θ̇(t) > 0 and hence for |ε| ̸= 0 sufficiently small this
property remains valid for each t when (θ ,r,θ1,r1, . . . ,θn−1,rn−1) ∈ S1 ×Dm. Now we take θ

as the new independent variable. The right-hand side of the new system is well defined and
continuous in S1 ×Dm × (−ε0,ε0) and it is 2π-periodic with respect to the new variable θ and
locally Lipschitz with respect to (r,θ1,r1, . . . ,θn−1,rn−1). Now system (3.25) can be obtained
doing a Taylor series expansion in the parameter ε around ε = 0.

The next step is to find the corresponding average function (3.3) of system (3.25) that
we denoted by f = ( f1, f2, . . . , f2(n−1), f2n−1) : Dm → Rn−1 and it is defined by

f1 = f1(r,θ1,r1, . . . ,θn−1,rn−1) =
∫ 2π

0
H1(r,θ1,r1, . . . ,θn−1,rn−1)dθ ,

f2( j−1) = f2( j−1)(r,θ1,r1, . . . ,θn−1,rn−1) =
∫ 2π

0
H2( j−1)(r,θ1,r1, . . . ,θn−1,rn−1)dθ ,

f2 j−1 = f2 j−1(r,θ1,r1, . . . ,θn−1,rn−1) =
∫ 2π

0
H2 j−1(r,θ1,r1, . . . ,θn−1,rn−1)dθ ,

for j = 1,2, . . . ,n. To calculate these integrals we will use the following equalities

∫ 2π

0
cos((2 j−1)θ +θ j−1)sin((2l −1)θ +θl−1)dθ = 0 for all integers l, j > 1,

∫ 2π

0
cos((2 j−1)θ +θ j−1)cos((2l −1)θ +θl−1)dθ =

π if l = j,

0 if l ̸= j,

∫ 2π

0
sin((2 j−1)θ +θ j−1)sin((2l −1)θ +θl−1)dθ =

π if l = j,

0 if l ̸= j,
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and the next lemma.

For r > 0 and j = 1,2, . . . ,n we denote

I j(r) =
∫ 2π

0
ϕ(r cosθ)cos((2 j−1)θ)dθ ,

J j(r) =
∫ 2π

0
ϕ(r cosθ)sin((2 j−1)θ)dθ ,

where ϕ is the piecewise linear function (3.20).

Lemma 3.2.10. The integrals I j and J j(r) satisfy

I j(r) =



πr if j = 1 and 0 < r ≤ 1,

0 if j > 1 and 0 < r ≤ 1,

K(r) if j = 1 and r > 1,

L j(r) if j > 1 and r > 1;

J j(r) = 0 for all j = 1,2, . . . ,n and r > 0.

where

L j(r) =
2

j(2 j−1)2

(
(2 j−1)

√
r2 −1cos((2 j−1)arctan

√
r2 −1)

−sin((2 j−1)arctan
√

r2 −1)
)
,

K(r) = πr+
2
r

√
r2 −1−2r arctan(

√
r2 −1).

Proof. We consider two cases: 0 < r ≤ 1 and r > 1.

Case 1: 0 < r ≤ 1 In this case |r cosθ | ≤ 1 and hence ϕ(r cosθ) = r cosθ for all θ ∈ [0,2π].
Then if j = 1 ∫ 2π

0
ϕ(r cosθ)cosθdθ = r

∫ 2π

0
cos2

θdθ = πr,

and ∫ 2π

0
ϕ(r cosθ)sinθdθ = r

∫ 2π

0
cosθ sinθdθ = 0.

And if j > 1 then

∫ 2π

0
ϕ(r cosθ)cos((2 j−1)θ)dθ = r

∫ 2π

0
cosθ cos((2 j−1)θ)dθ = 0,

∫ 2π

0
ϕ(r cosθ)sin((2 j−1)θ)dθ = r

∫ 2π

0
cosθ sin((2 j−1)θ)dθ = 0.
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Case 2: r > 1 In this case choose θc ∈ (0,π/2) such that cosθc = 1/r. If j = 1 we have

I1(r) =
∫

θc

0
cosθdθ + r

∫
π−θc

θc

cos2
θdθ −

∫
π+θc

π−θc

cosθdθ + r
∫ 2π−θc

π+θc

cos2
θdθ +

∫ 2π

2π−θc

cosθdθ

= πr+
2
r

√
r2 −1−2r arctan(

√
r2 −1).

The same reasoning can be applied to see that J1(r) = 0. If j > 1 then

I j(r) =
∫

θc

0
cos((2 j−1)θ)dθ + r

∫
π−θc

θc

cosθ cos((2 j−1)θ)dθ −
∫

π+θc

π−θc

cos((2 j−1)θ)dθ

+r
∫ 2π−θc

π+θc

cosθ cos((2 j−1)θ)dθ +
∫ 2π

2π−θc

cos((2 j−1)θ)dθ

=
2

j(2 j−1)2

(
(2 j−1)

√
r2 −1cos((2 j−1)arctan

√
r2 −1)− sin((2 j−1)arctan

√
r2 −1)

)
,

and J j(r) = 0.

With the results presented previously we are able to prove Theorem 3.2.8. Since we can
choose m sufficiently large to find the zeroes of the average function f in Dm it is sufficient to
look for them in (0,∞)× [S1 × (0,∞)]n−1. To calculate the expression of the average function
we consider again two cases.

Case 1: 0 < r ≤ 1. In this case the system whose zeros can provide limit cycles of system (3.22)
is

f1 = (a11 +a22 +b1)πr,

f2 = (a33 +a44)πr1,

f3 = (a43 −a34 +3(a12 −a21 −b2))π,

...

f2(n−1) = (a(2n−1)(2n−1)+a(2n)(2n)))πrn−1,

f2n−1 = (a(2n)(2n−1)−a(2n−1)(2n)+(2n−1)(a12 −a21 −b2)π.

(3.26)

Note that the variables θ1,θ2, . . . ,θn−1 does not appear explicitly into system (3.26). Hence, if
this system has zeros, it has a continuum of zeros. Therefore the assumption det(Dz f (a)) ̸= 0
of the averaging theory, presented in Theorem 3.2.1, is not satisfied and this theorem does not
provide any information about the limit cycles of system (3.25).
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Case 2: r > 1. Now the system whose zeros can provide limit cycles of system (3.25) is

f1 = (a11 +a22)πr+b1K(r),

f2 = (a33 +a44)πr1 +(b3 cosθ1 +b4 sinθ2)L2(r),

f3 = (a43 −a34 +3(a12 −a21))π − 3b2r1K(r)− r(b4 cosθ1 −b3 sinθ1)L2(r)
rr1

,

...

f2(n−1) = (a(2n−1)(2n−1)+a(2n)(2n))πrn−1 +(b2n−1 cosθn−1 +b2n sinθn−1)Ln(r),

f2n−1 = (a(2n)(2n−1)−a(2n−1)(2n)+(2n−1)(a12 −a21))π−

(2n−1)b2rn−1K(r)− r(b2n cosθn−1 −b2n−1 sinθn−1)Ln(r)
rrn−1

,

(3.27)

For each j ∈ {2,3, . . . ,n} we will study the zeros of the system

f1 = (a11 +a22)πr+b1K(r),

f2( j−1) = (a(2 j−1)(2 j−1)+a(2 j)(2 j))πr j−1 +(b2 j−1 cosθ j−1 +b2 j sinθ j−1)L j(r),

f2 j−1 = (a(2 j)(2 j−1)−a(2 j−1)(2 j)+(2 j−1)(a12 −a21))π−

(2 j−1)b2r j−1K(r)− r(b2 j cosθ j−1 −b2 j−1 sinθ j−1)L j(r)
rr j−1

,

Note that the function K : (1,∞)→ (π,4) is a diffeomorphism. Indeed note that K is
twice differentiable with

K′(r) = π −2

√
r2 −1
r2 −2arctan

√
r2 −1,

and

K′′(r) =− 4
r3
√

r2 −1
< 0

which implies that K′ is a strictly decreasing function. Moreover limr→∞ K′(r) = 0 what means
that K′(r) has a horizontal asymptote given by the axis r and then K′(r) ≥ 0. Suppose that
there exists an r0 ∈ (1,∞) such that K′(r0) = 0. Then for all r > r0 we have K′(r)< K′(r0) = 0,
contradiction. Therefore it follows that K′(r) ̸= 0 for all r ∈ (1,∞) and the Inverse Function
Theorem guarantees that K is a local diffeomorphism and since that K is a injective function we
obtain the global diffeomorphism, ending the proof of this claim.
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First we note that in order that the equation f1 = 0 has solutions with r > 1 it is necessary
that b1(a11 +a22)< 0. Moreover K′′(r)< 0 implies that the graph of K is convex. In the plane
of the graph of K(r) the graph of (a11 +a22)πr is a straight line passing through the origin and
then both graphs can intersect at most in two points.

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1

2

3

4

Figure 26 – The graphic of the function K(r).

But if some straight line intercept the graph of K(r) in two points then it cannot pass
through the origin, as we can see in Figure 26. Then the equation f1 = 0 has at most one solution
if r > 1, and since that K(r) is a diffeomorphism we can choose the coefficients a11,a22 and b1

so that this solution exists. We denote this solution by r0 and we substitute it into the equations
f2( j−1) = 0 and f2 j−1 = 0. Defining

A j = (a(2 j−1)(2 j−1)+a(2 j)(2 j))π, B j = b2 j−1L j(r0), C j = b2 jL j(r0),

D j = (a(2 j)(2 j−1)−a(2 j−1)(2 j)+(2 j−1)(a12 −a21))π − 1
r0
(2 j−1)b2K(r0),

u j = cosθ j−1, v j = sinθ j−1,

the system f2( j−1) = f2 j−1 = 0 is equivalent to the system

A jr j−1 +B ju j +C jv j = 0,

D jr j−1 +C ju j −B jv j = 0,

u2
j + v2

j −1 = 0.

Using the two first equations we obtain

u j =−
(A jB j +C jD j)r j−1

B2
j +C2

j
, v j =

(B jD j −A jC j)r j−1

B2
j +C2

j
.
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Substituting these two expressions in the third equation we get

(A2
j +D2

j)r
2
j−1 −B2

j −C2
j = 0.

Therefore at most there is one solution r j−1 > 0, which provide a unique u j and v j. Since we
fixed an arbitrarily j to solve this system, the same reasoning can be applied to each pair of
equations f2( j−1) = 0 and f2 j−1 = 0, concluding that system (3.27) has at most one solution.
Moreover taking conveniently the parameters of the initial system (3.22) this solution exists and
its Jacobian is not zero. Hence at most one limit cycle can bifurcate from the periodic orbits of
the center of system (3.23) when we perturbe it as in system (3.22), and there are systems for
which a such limit cycles exist. This completes the proof of Theorem 3.2.8.

Replacing the function ϕ by ψ we get the discontinuous differential system (3.24) and
the next result.

Theorem 3.2.11. For |ε|> 0 sufficiently small and if the conditions for applying the averaging
theory of first order hold, then at most one limit cycle γε of the discontinuous piecewise linear
differential system (3.24) bifurcates from the periodic orbits of system (3.23). Moreover there
are systems (3.24) with |ε|> 0 sufficiently small having a such limit cycle.

Proof. According to Theorem 3.2.2 the same kind of arguments used for proving Theorem
3.2.8 can be applied to the discontinuous system (3.24), obtaining that the average function
f = ( f1, f2, . . . , f2(n−1), f2n−1) : Dm → Rn−1 defined in (3.7) is

f1 = (a11 +a22)πr+b1Ĩ1,

f2( j−1) = (a(2 j−1)(2 j−1)+a(2 j)(2 j))πr j−1 +(b2 j−1 cosθ j−1 +b2 j sinθ j−1)Ĩ j,

f2 j−1 = (a(2 j)(2 j−1)−a(2 j−1)(2 j)+(2 j−1)(a12 −a21))π−

(2 j−1)b2r j−1Ĩ1 − r(b2 j cosθ j−1 −b2 j−1 sinθ j−1)Ĩ j

rr j−1
,

(3.28)

for j = 2,3, . . . ,n, where

Ĩ j =


− 4
(2 j−1)

if j is even,

4
(2 j−1)

if j is odd.

In fact if we define

Ĩ j =
∫ 2π

0
ψ(r cosθ)cos((2 j−1)θ)dθ , J̃ j =

∫ 2π

0
ψ(r cosθ)sin((2 j−1)θ)dθ ,
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where ψ is the piecewise linear function given by (3.21). Then we have that

Ĩ j =
∫ 2π

0
ψ(r cosθ)cos((2 j−1)θ)dθ

=
∫

π/2

0
cos((2 j−1)θ)dθ −

∫ 3π/2

π/2
cos((2 j−1)θ)dθ +

∫ 2π

3π/2
cos((2 j−1)θ)dθ

= − 4
(2 j−1)

cos( jπ),

and

J̃ j =
∫ 2π

0
ψ(r cosθ)sin((2 j−1)θ)dθ

=
∫

π/2

0
sin((2 j−1)θ)dθ −

∫ 3π/2

π/2
sin((2 j−1)θ)dθ +

∫ 2π

3π/2
sin((2 j−1)θ)dθ

= − 4
(2 j−1)

sin(2 jπ)cos( jπ) = 0.

Note that Ĩ j is a constant real number different from zero, and hence f1 is a straight line,
and then system (3.28) has at most one positive zero. Moreover if we choose conveniently the
coefficients b1 a11 and a22 we can find a simple positive zero of system (3.28). This completes
the proof of Theorem 3.2.11.

Now we present an explicit example of a continuous piecewise linear differential system
(3.22) in R4, and repeating for it the proof of Theorem 3.2.8 we will show it has one limit cycle.

Example 3.2.12. Consider the following differential system

ẋ = A0x+ ε(Ax+ϕ(x1)b), (3.29)

where

A0 =



0 −1 0 0

1 0 0 0

0 0 0 −3

0 0 3 0


,A =



2 1 0 0

0 2 0 0

0 0 −2 −1

0 0 0
18π −

√
3

9π


,b =



− 24π

3
√

3+2π

1

9(3−2
√

3π)

2

−1


.
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Doing the change or variables x1 = r cosθ , x2 = r sinθ , x3 = r1 cos(3θ +θ1), x4 = r1 sin(3θ +θ1)

and taking θ as the new independent variable we obtain the system

r′(θ) =
dr
dθ

= εH1(θ ,r,θ1,r1)+O(ε2),

r′1(θ) =
dr1

dθ
= εH2(θ ,r,θ1,r1)+O(ε2),

θ
′
1(θ) =

dθ1

dθ
= εH3(θ ,r,θ1,r1)+O(ε2),

H1(θ ,r,θ1,r1) = 2r+ϕ(r cosθ)sinθ + cosθ

(
r sinθ − 24πϕ(r cosθ)

3
√

3+2π

)
,

H2(θ ,r,θ1,r1) = − 1
18π

(
18πϕ(r cosθ)sin(3θ +θ1)+9πr1 sin(2(3θ +θ1))

+
√

3r1 +81π(2
√

3π −3)ϕ(r cosθ)cos(3θ +θ1)−

(
√

3−36π)r1 cos(2(3θ +θ1))

)
,

H3(θ ,r,θ1,r1) = sin2(3θ +θ1)+2sin(2(3θ +θ1))−
sin(2(3θ +θ1))

6
√

3π
+3sin2

θ

−72πϕ(r cosθ)sinθ

3
√

3r+2πr
− ϕ(r cosθ)cos(3θ +θ1)

r1
− 3ϕ(r cosθ)cosθ

r

+
9π

√
3ϕ(r cosθ)sin(3θ +θ1)

r1
− 27ϕ(r cosθ)sin(3θ +θ1)

2r1
.

(3.30)

After some computations the average function f = ( f1, f2, f3) is

f1(r,θ1,r1) = 4πr− 24π

3
√

3+2π

(
πr+

2
√

r2 −1
r

−2r arctan(
√

r2 −1)
)
,

f2(r,θ1,r1) =

√
3

3
sinθ1 +

3
2
(2
√

3π −3)
√

3cosθ1 −
√

3
9

r1,

f3(r,θ1,r1) =
9
√

3sinθ1

2r1
− 9π sinθ1

r1
+

√
3cosθ1

3r1
− 3

2

(√
3+

2π

3

)
+4π.

In order to solve the system f1 = f2 = f3 = 0 we can use the same reasoning applied in the
proof of Theorem 3.2.8 obtaining that (r*,θ *

1 ,r
*
1) = (2,π/2,3) is a zero of the average function.

Moreover if J = J(r,θ1,r1) is the Jacobian matrix of h, then detJ(2,π/2,3) ̸= 0 which implies
that we have a simple zero. By Theorem 3.2.2 system (3.30) and consequently system (3.29) has
one limit cycle for |ε|> 0 sufficiently small.

If instead of the matrix A0 we consider the matrix A1 where A1 is the 2n× 2n matrix
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having on its principal diagonal the following 2×2 matrices
0 −k

k 0

 for k = 1, . . . ,n,

and zeros in the complement, then the averaging theory of first order does not provide any
information about the limit cycles of the systems. Indeed we have the following results.

Proposition 3.2.13. Assume that the conditions for applying the averaging theory of first order
hold. Then this theory does not provide any information about the limit cycles of the continuous
piecewise linear differential system

ẋ = A1x+ ε
(
Ax+ϕ(x1)b

)
. (3.31)

Proof. Doing the change of coordinates

x1 = r cosθ , x2 = r sinθ ,

x2 j−1 = r j−1 cos( jθ +θ j−1), x2 j = r j−1 sin( jθ +θ j−1) j ∈ {2,3, . . . ,n},

for j = 2,3, . . . ,n, to the continuous piecewise linear differential system (3.31), and working as
in the proof of Theorem 3.2.8 we obtain that the average function f = ( f1, f2, . . ., f2n−1) now is
given by

f1 = (a11 +a22)πr+b1I1(r),

f2( j−1) = (a(2 j−1)(2 j−1)+a(2 j)(2 j))πr j−1 +(b2 j−1 cosθ j−1 +b2 j sinθ j−1)I j(r),

f2 j−1 = (a(2 j)(2 j−1)−a(2 j−1)(2 j)+ j(a12 −a21))π−

jb2r j−1I1(r)− r(b2 j cosθ j−1 −b2 j−1 sinθ j−1)I j(r)
rr j−1

,

(3.32)

where

I j(r) =
∫ 2π

0
ϕ(r cosθ)cos( jθ)dθ .

Using exactly the same arguments than in the proof of Lemma 3.2.10 is possible to prove that

I j(r) =


πr if j = 1 and 0 < r ≤ 1,

0 if j is even and 0 < r ≤ 1,

L j(r) if j is odd and r > 1,

where

L j(r) =
4

j( j2 −1)

(
j
√

r2 −1cos( j arctan(
√

r2 −1))− sin( j arctan(
√

r2 −1))
)
.
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The simple zeros of system (3.32) provide the existence of limit cycles for system (3.31)
but since I j(r) = 0 if j is even and r > 1, the variables θ j−1, for j = 2,4,6, ... do not appear in
the system f1 = f2 = . . .= f2n−1 = 0, so either this system has no zeros, or if it has zeros, then
it has a continuum of zeros, and consequently the averaging theory cannot say anything about
the limit cycles of system (3.31). The same occurs for the case 0 < r ≤ 1. So we conclude that,
using the averaging theory of first order, we can say nothing about the number of the limit cycles
of system (3.31).

Proposition 3.2.14. Assume that the conditions for applying the averaging theory of first
order hold. Then this theory does not provide any information about the limit cycles of the
discontinuous piecewise linear differential system

ẋ = A1x+ ε
(
Ax+ψ(x1)b

)
. (3.33)

Proof. Now if we consider the discontinuous piecewise linear differential system (3.33), then its
average function f = ( f1, f2, . . . , f2n−1) is

f1 = (a11 +a22)πr+b1Ĩ1,

f2( j−1) = (a(2 j−1)(2 j−1)+a(2 j)(2 j))πr j−1 +(b2 j−1 cosθ j−1 +b2 j sinθ j−1)Ĩ j,

f2 j−1 = (a(2 j)(2 j−1)−a(2 j−1)(2 j)+ j(a12 −a21))π−

jb2r j−1Ĩ1 − r(b2 j cosθ j−1 −b2 j−1 sinθ j−1)Ĩ j

rr j−1
,

(3.34)

where

Ĩ j =
∫ 2π

0
ψ(r cosθ)cos( jθ)dθ .

Again we have that

Ĩ j =
∫ 2π

0
ψ(r cosθ)cos( jθ)dθ =


0 if j is even,

± 4
(2 j−1)

if j is odd,

and we can see that again either no zeros of the function f , or a continuum of zeros, concluding
that the averaging theory of first order given by Theorem 3.2.2 does not say anything about the
limit cycles of system (3.33).

Remark 3.2.15. Note the difference between the matrices A0 and A1, in the matrix A0 the
non-zero entries are only the odd numbers 1,3, . . . ,2n−1, while in the matrix A1 the non-zero
entries are the numbers 1,2, . . . ,n. This difference provides that the continuous and discontinuous
piecewise linear differential systems (3.22) and (3.24) can have limit cycles detected by the
averaging theory, while for the continuous and discontinuous piecewise linear differential systems
(3.31) and (3.33) the averaging theory cannot detect limit cycles.
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CHAPTER

4
AN EXTENSION OF THE AVERAGING

THEORY FOR NONSMOOTH SYSTEMS

The main goal of this chapter is present an extension of the high order averaging to
nonsmooth differential systems defined in Rn, n ≥ 2. The first sections of this chapter are
dedicated to described the previous results about high order averaging and the class of systems
where the theory shall be developed. After that the averaged functions for nonsmooth differential
systems are defined and the main result is presented. It is worth to mentioned that the averaged
functions defined in this chapter can be implemented in algebraic manipulators as Mathematica
and Maple. To finish this chapter, the proof of the main result is given as well applications.

4.1 Background on the averaging theory
Let D be an open bounded subset of R+ and denote S1 ≡ R/(2πZ). Consider Ck+1

functions Fi : S1 × D → R for i = 0,1,2, . . . ,k, and R : S1 × D × (−ε0,ε0) → R. Note that
θ ∈ S1 ≡ R/(2πZ) means that the above functions are 2π-periodic in the variable θ . Now
consider the following differential equation

r′(θ) =
k

∑
i=0

ε
iFi(θ ,r)+ ε

k+1R(θ ,r,ε), (4.1)

and assume that the solution ϕ(θ ,ρ) of the unperturbed system r′(θ) = F0(θ ,r), such that
ϕ(0,ρ) = ρ, is 2π-periodic for every ρ ∈ D. Here the prime denotes the derivative in the variable
θ .

A central question in the study of system (4.1) is to understand which periodic orbits of
the unperturbed system r′(θ) = F0(θ ,r) persists for |ε| ≠ 0 sufficiently small. In others words
to provide sufficient conditions for the persistence of isolated periodic solutions. The averaging
theory is one of the best tools to track this problem. Summarizing, it consists in defining a
collection of functions fi : D → R, for i = 1,2, . . . ,k, called averaged functions, such that their
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simple zeros provide the existence of isolated periodic solutions of the differential equation (4.1).
In (LLIBRE; NOVAES; TEIXEIRA, 2014b; LLIBRE; NOVAES; TEIXEIRA, 2014a) it was
proved that these averaged functions are

fi(ρ) =
yi(2π,ρ)

i!
, (4.2)

where yi :R×D→R for i= 1,2, . . . ,k, are defined recurrently by the following integral equations

y1(θ ,ρ) =
∫

θ

0

(
F1 (φ ,ϕ(φ ,ρ))+∂F0(φ ,ϕ(φ ,ρ))y1(φ ,ρ)

)
dφ ,

yi(θ ,ρ) = i!
∫

θ

0

(
Fi (φ ,ϕ(φ ,ρ))+

i

∑
l=1

∑
Sl

1
b1!b2!2!b2 · · ·bl!l!bl

·∂ LFi−l (φ ,ϕ(φ ,ρ))
l

∏
j=1

y j(φ ,ρ)
b j
)

dφ , for i = 2, . . . ,k.

(4.3)

Here ∂ LG(φ ,ρ) denotes the derivative order L of a function G with respect to the variable ρ , and
Sl is the set of all l-tuples of non-negative integers (b1,b2, . . . ,bl) satisfying b1+2b2+ · · ·+ lbl =

l, and L = b1 +b2 + · · ·+bl .

When we consider the above problem in the world of discontinuous piecewise smooth
differential systems it is not always true that the higher averaged functions (4.2) allow to study the
persistence of isolated periodic solutions. In (LLIBRE; NOVAES; TEIXEIRA, 2015; LLIBRE;
MEREU; NOVAES, 2015) this problem was considered for general Filippov systems when
F0(θ ,r)≡ 0 and it was proved that the averaged function of first order can provide information
on the existence of crossing isolated periodic solutions. Furthermore the authors have found
conditions on those systems in order to assure that the averaged function of second order also
provides information on the existence of crossing isolated periodic solutions. When F0(θ ,r) ̸≡ 0
but the solutions of the unperturbed system ṙ = F0(θ ,r) are 2π-periodic the authors in (LLIBRE
JAUME NOVAES, 2015) have found conditions on those systems in order to assure that the
averaged function of first order provides information on the existence of crossing isolated periodic
solutions.

4.2 Standard form
In what follows we introduce a class of discontinuous nonautonomous piecewise smooth

differential equations for which the averaged functions (4.2) at any order provide informations
on the existence of isolated periodic solutions.

Let n> 1 be a positive integer, α0 = 0, αn = 2π and α = (α1, . . . ,αn−1)∈Tn−1 a (n−1)-
tuple of angles such that 0 = α0 < α1 < α2 < · · · < αn−1 < αn = 2π . For i = 0,1, . . . ,k and
j = 1,2, . . . ,n, let F j

i : S1 ×D → R and R j : S1 ×D× (−ε0,ε0)→ R be Ck+1 functions, where
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D is an open bounded interval of R+ and S1 ≡ R/(2πZ). Denote

Fi(θ ,r) =
n

∑
j=1

χ[α j−1,α j](θ)F
j

i (θ ,r), i = 0,1, ...,k, and

R(θ ,r,ε) =
n

∑
j=1

χ[α j−1,α j](θ)R
j(θ ,r,ε),

(4.4)

where χA(θ) denotes the characteristic function of an interval A:

χA(θ) =

1 if θ ∈ A,

0 if θ ̸∈ A.

We note that θ ∈ S1 ≡ R/(2πZ) means that the above functions are 2π-periodic in the variable
θ .

The main result of this chapter concern about the existence of isolated periodic solu-
tions of the following discontinuous nonautonomous 2π-periodic piecewise smooth differential
equation

r′(θ) =
k

∑
i=0

ε
iFi(θ ,r)+ ε

k+1R(θ ,r,ε). (4.5)

In this case the set of discontinuity is given by Σ = ({θ = 0 ≡ 2π}∪{θ = α1}∪ · · · ∪ {θ =

αn−1})∩S1×D. In short, we shall provide sufficient conditions in order to show that, for |ε| ̸= 0
sufficiently small, the averaged functions (4.2) at any order can be used to ensure the existence of
crossing limit cycles. It is worth to mention that the Lth derivative of the discontinuous function
Fi with respect to the second variable, ∂ LFi(θ ,r), which appears in the averaged functions (4.2),
is given by

∂
LFi(θ ,r) =

n

∑
j=1

χ[α j−1,α j](θ)∂
LF j

i (θ ,r), i = 0,1, ...,k.

Denote by ϕ(θ ,ρ) the solution of the system r′(θ) = F0(θ ,r) such that ϕ(0,ρ) = ρ .
From now on this last system will be called unperturbed system. We assume the following
hypothesis:

(H1) For each ρ ∈ D the solution ϕ(θ ,ρ) is defined for every θ ∈ S1, it reaches Σ only at
crossing points, and it is 2π-periodic.

4.3 The averaged functions

In this section we develop a recurrence to compute the averaged function (4.2) in
the particular case of the discontinuous differential equation (4.5). So consider the functions
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z j
i : (α j−1,α j]×D → R defined recurrently for i = 1,2, . . . ,k and j = 1,2, . . . ,n, as:

z1
1(θ ,ρ) =

∫
θ

0

(
F1

1 (φ ,ϕ(φ ,ρ))+∂F1
0 (φ ,ϕ(φ ,ρ))z

1
1(φ ,ρ)

)
dφ ,

z1
i (θ ,ρ) = i!

∫
θ

0

(
F1

i (φ ,ϕ(φ ,ρ))

+
i

∑
l=1

∑
Sl

1
b1!b2!2!b2 · · ·bl!l!bl

·∂ LF1
i−l(φ ,ϕ(φ ,ρ))

l

∏
m=1

z1
m(φ ,ρ)

bm

)
dφ ,

z j
i (θ ,ρ) = z j−1

i (α j−1,ρ)+ i!
∫

θ

α j−1

(
F j

i (φ ,ϕ(φ ,ρ))

+
i

∑
l=1

∑
Sl

1
b1!b2!2!b2 · · ·bl!l!bl

·∂ LF j
i−l(φ ,ϕ(φ ,ρ))

l

∏
m=1

z j
m(φ ,ρ)

bm

)
dφ .

(4.6)

Thus we have the next result.

Proposition 4.3.1. For i = 1,2, . . . ,k, the averaged function (4.2) of order i, is

fi(ρ) =
zn

i (2π,ρ)

i!
. (4.7)

Proof. For each i = 1,2, · · · ,k, define

zi(θ ,ρ) =
n

∑
j=1

χ[α j−1,α j](θ)z
j
i (θ ,ρ). (4.8)

Given θ ∈ [0,2π] there exists a positive integer k̄ such that θ ∈ (αk̄−1,αk̄] and, therefore
zi(θ ,ρ) = zk̄

i (θ ,ρ). Moreover using the expressions (4.17) and (4.8) we can write (4.6) into the
form

z1
1(θ ,ρ) =

∫
θ

0

(
F1(φ ,ϕ(φ ,ρ))+∂F0(φ ,ϕ(φ ,ρ))z1(φ ,ρ)

)
dφ ,

z1
i (θ ,ρ) = i!

∫
θ

0

(
Fi(φ ,ϕ(φ ,ρ))

+
i

∑
l=1

∑
Sl

1
b1!b2!2!b2 · · ·bl!l!bl

∂
LFi−l(φ ,ϕ(φ ,ρ))

l

∏
m=1

zm(φ ,ρ)
bm

)
dφ ,

zk̄
i (θ ,ρ) = zk̄−1

i (αk̄−1,ρ)+ i!
∫

θ

αk̄−1

(
Fi(φ ,ϕ(φ ,ρ))

+
i

∑
l=1

∑
Sl

1
b1!b2!2!b2 · · ·bl!l!bl

∂
LFi−l(φ ,ϕ(φ ,ρ))

l

∏
m=1

zm(φ ,ρ)
bm

)
dφ .

(4.9)
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In the above equality we are denoting

∂
LFi−l(φ ,ϕ(φ ,ρ)) =

n

∑
j=1

χ[α j−1,α j](φ)∂
LF j

i−l(φ ,ϕ(φ ,ρ)).

Proceeding recursively on k̄ we obtain

z1(θ ,ρ) =
∫

θ

0

(
F1(φ ,ϕ(φ ,ρ))+∂F0(φ ,ϕ(φ ,ρ))z1(φ ,ρ)

)
dφ ,

zi(θ ,ρ) =
k̄−1

∑
p=1

∫
αp

αp−1

(
F p

i (φ ,ϕ(φ ,ρ))+
i

∑
l=1

∑
Sl

1
b1!b2!2!b2 · · ·bl!l!bl

·∂ LF p
i−l(φ ,ϕ(φ ,ρ))

l

∏
m=1

zp
m(φ ,ρ)

bm

)
dφ +

∫
θ

αk̄−1

(
F k̄

i (φ ,ϕ(φ ,ρ))

+
i

∑
l=1

∑
Sl

1
b1!b2!2!b2 · · ·bl!l!bl

∂
LF k̄

i−l(φ ,ϕ(φ ,ρ))
l

∏
m=1

zk̄
m(φ ,ρ)

bm

)
dφ

= i!
∫

θ

0

(
Fi(φ ,ϕ(φ ,ρ))+

i

∑
l=1

∑
Sl

1
b1!b2!2!b2 · · ·bl!l!bl

·∂ LFi−l(φ ,ϕ(φ ,ρ))
l

∏
m=1

zm(φ ,ρ)
bm

)
dφ .

(4.10)

Computing the derivative in the variable θ of the expressions (4.10) and (4.3) for i= 1 we
see that the functions z1(θ ,ρ) and y1(θ ,ρ) satisfy the same differential equation. Moreover for
each i = 2, · · · ,k, the integral equations (4.3) and (4.10) which provides respectively yi and zi are
defined by the same recurrence. Therefore we conclude that yi and zi satisfy the same differential
equations for i = 1,2, · · · ,k, which are linear with variable coefficients (that is the Existence
and Uniqueness Theorem holds). Now, it only remains to prove that their initial conditions
coincide. Let i ∈ {1,2, . . . ,k}, since yi(0,ρ) = 0 and, by (4.9), zi(0,ρ) = 0, it follows that the
initial conditions are the same. Hence yi(θ ,ρ) = zi(θ ,ρ), which concludes the Proposition.

Note that when F0 ̸= 0 the recurrence defined in (4.6) is actually an integral equation.
Moreover in order to implement an algorithm to compute the averaged function, it may be easier
to write each z j

i in terms of the partial Bell polynomials, which are already implemented in
algebraic manipulators as Mathematica and Maple. For each pair of nonnegative integers (p,q),
the partial Bell polynomial is defined as

Bp,q(x1,x2, . . . ,xp−q+1) = ∑
S̃p,q

p!
b1!b2! · · ·bp−q+1!

p−q+1

∏
j=1

(
x j

j!

)b j

, (4.11)

where S̃p,q is the set of all (p−q+1)-tuple of nonnegative integers (b1,b2, . . . ,bp−q+1) satisfying
b1 +2b2 + · · ·+(p−q+1)bp−q+1 = p, and b1 +b2 + · · ·+bp−q+1 = q. In the next proposition,
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following (NOVAES, 2017), we solve the integral equation (4.6) to provide the explicit recurrence
formula for z j

i in terms of the Bell polynomials.

Proposition 4.3.2. For each j = 1,2, . . . ,n let η j(θ ,ρ) be defined as

η j(θ ,ρ) =
∫

θ

α j−1

∂F j
0 (φ ,ϕ(φ ,ρ))dφ .

Then for i = 1,2, . . . ,k and j = 1,2, . . . ,n the recurrence (4.6) can be written as follows

z1
1(θ ,ρ) = eη1(θ ,ρ)

∫
θ

0
e−η1(φ ,ρ)F1

1 (φ ,ϕ(φ ,ρ))dφ ,

z j
1(θ ,ρ) = eη j(θ ,ρ)

(
z j−1

1 (α j−1,ρ)+
∫

θ

α j−1

e−η j(φ ,ρ)F j
1 (φ ,ϕ(φ ,ρ))dφ

)
, for j = 2, . . .

z1
i (θ ,ρ) = eη1(θ ,ρ)i!

∫
θ

0
e−η1(φ ,ρ)

[
F1

i (φ ,ϕ(φ ,ρ))

+
i−1

∑
l=1

l

∑
m=1

1
l!

∂
mF1

i−l(θ ,ϕ(θ ,ρ))Bl,m(z1
1,z

1
2, . . . ,z

1
l−m+1)

+
i

∑
m=2

1
i!

∂
mF1

0 (θ ,ϕ(θ ,ρ))Bi,m(z1
1,z

1
2, . . . ,z

1
i−m+1)

]
dφ , for i = 2, . . .

z j
i (θ ,ρ) = eη j(θ ,ρ)

(
z j−1

i (α j−1,ρ)+ i!
∫

θ

α j−1

e−η j(φ ,ρ)

[
F j

i (φ ,ϕ(φ ,ρ))

+
i−1

∑
l=1

l

∑
m=1

1
l!

∂
mF j

i−l(θ ,ϕ(θ ,ρ))Bl,m(z
j
1,z

j
2, . . . ,z

j
l−m+1)

+
i

∑
m=2

1
i!

∂
mF j

0 (θ ,ϕ(θ ,ρ))Bi,m(z
j
1,z

j
2, . . . ,z

j
i−m+1)

]
dφ

)
, for i, j = 2, . . . .

Proof. We shall prove this proposition for i = 1,2, . . . ,k, and j = 1. The other cases will follow
in a similar way.

For i = j = 1, the integral equation (4.6) is equivalent to the following Cauchy problem:

∂ z1
1

∂θ
(θ ,ρ) = F1

1 (θ ,ϕ(θ ,ρ))+∂F1
0 (θ ,ϕ(θ ,ρ))z1

1 with z1
1(0,ρ) = 0.

Solving the above linear differential equation we get

z1
1(θ ,ρ) = eη1(θ ,ρ)

∫
θ

0
e−η1(φ ,ρ)F1

1 (φ ,ϕ(φ ,ρ))dφ .
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Now for i = 2, . . . ,k and j = 1 the recurrence (4.6) can be written in terms of the partial
Bell polynomials as (for more details, see (NOVAES, 2017)):

z1
i (θ ,ρ) = i!

∫
θ

0

(
F1

i (φ ,ϕ(φ ,ρ))

+
i

∑
l=1

l

∑
m=1

1
l!

∂
mF1

i−l(φ ,ϕ(φ ,ρ))Bl,m(z1
1,z

1
2, . . . ,z

1
l−m+1)

)
dφ .

(4.12)

We note that the function z1
i appears in the right hand side of (4.12) only if l = i and m = 1.

In this case Bi,1(z1
1,z

1
2, . . . ,z

1
i ) = z1

i for every i ≥ 1. So we can rewrite (4.12) as the following
integral equation

z1
i (θ ,ρ) = i!

∫
θ

0

(
F1

i (φ ,ϕ(φ ,ρ))

+
i−1

∑
l=1

l

∑
m=1

1
l!

∂
mF1

i−l(φ ,ϕ(φ ,ρ))Bl,m(z1
1,z

1
2, . . . ,z

1
l−m+1)

+
i

∑
m=2

1
i!

∂
mF1

0 (φ ,ϕ(φ ,ρ))Bi,m(z1
1,z

1
2, . . . ,z

1
i−m+1)

+
1
i!

∂F1
0 (φ ,ϕ(φ ,ρ))Bi,1(z1

1,z
1
2, . . . ,z

1
i )

)
dφ ,

which is equivalent to the following Cauchy problem:

∂ z1
i

∂θ
(θ ,ρ) = i!

[
F1

i (θ ,ϕ(θ ,ρ))+
1
i!

∂F1
0 (θ ,ϕ(θ ,ρ))z

1
i

+
i−1

∑
l=1

l

∑
m=1

1
l!

∂
mF1

i−l(θ ,ϕ(θ ,ρ))Bl,m(z1
1,z

1
2, . . . ,z

1
l−m+1)

+
i

∑
m=2

1
i!

∂
mF1

0 (θ ,ϕ(θ ,ρ))Bi,m(z1
1,z

1
2, . . . ,z

1
i−m+1)

]
,

z1
i (0,ρ) = 0.

Solving the above linear differential equation we obtain the expressions of z1
i (θ ,ρ), for i =

2, . . . ,k, given in the statement of the proposition.

4.4 Statement and Proof of the Main Result

Considering the study presented above we present the next theorem. In short, it says that
the averaged functions still controlling the number of 2π-periodic solution r(θ ,ε) of system
(4.5).
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Theorem 4.4.1. Assume that (H1) holds and that for some l ∈ {1,2, . . . ,k} the functions defined
in (4.2) satisfy fs = 0 for s = 1,2, . . . , l−1 and fl ̸= 0. If there exists ρ* ∈ D such that fl(ρ

*) = 0
and f ′l (ρ

*) ̸= 0, then for |ε| ̸= 0 sufficiently small there exists a 2π-periodic solution r(θ ,ε) of
system (4.5) such that r(0,ε)→ ρ* when ε → 0.

Remark 4.4.2. The assumption D ⊂ R+ is not restrictive. In fact, if one consider D as being an
open subset of Rn the conclusion of Theorem 4.4.1 still holds by assuming that the Jacobian
matrix J fl(ρ

*) is nonsingular, that is det(J fl(ρ
*)) ̸= 0. In this case the derivative ∂ LG(φ ,ρ) is

a symmetric L-multilinear map which is applied to a “product” of L vectors of Rn, denoted as

∏
L
j=1 y j ∈ RnL (see (LLIBRE; NOVAES; TEIXEIRA, 2014b)).

For the particular class of systems (4.5) Theorem 4.4.1 generalizes the main results of
(LLIBRE; MEREU; NOVAES, 2015; LLIBRE JAUME NOVAES, 2015; LLIBRE; NOVAES;
TEIXEIRA, 2015), increasing the order of the averaging theory. It also generalizes the main
results of (ITIKAWA; LLIBRE; NOVAES, 2017; WEI; ZHANG, 2018) dealing now with
nonvanishing unperturbed systems and allowing more zones of continuity. For piecewise smooth
systems (4.5), the first return map is given, necessarily, by a composition of several maps.
When one consider only two zones of continuity, the displacement function can be studied
straightforwardly and then used, instead of the first return map, to obtain the averaged functions
(4.2). In this case, dealing with composition of maps can be avoided. However when one consider
more zones of continuity, as we shall see, it is inevitable.

Before to prove Theorem 4.4.1 we introduce a class of autonomous piecewise smooth
differential system that can be studied via it. More specifically, we shall see that this class of
autonomous systems can be transformed into the standard form (4.5). The construction performed
in the sequel has been done in (LLIBRE; MEREU; NOVAES, 2015) for a particular class of
systems.

Let n > 1 be a positive integer, α0 = 0, αn = 2π and α = (α1, . . . ,αn−1) ∈ Tn−1 a
(n−1)-tuple of angles such that 0 = α0 < α1 < α2 < · · ·< αn−1 < αn = 2π . Let X (x,y;ε) =

(X1,X2, . . . ,Xn) be a n-tuple of smooth vector fields defined on an open bounded neighborhood
U ⊂ R2 of the origin and depending on a small parameter ε in the following way

X j(x,y;ε) =
k

∑
i=0

ε
iX j

i (x,y) for j = 1,2, . . . ,n. (4.13)

For j = 1, . . . ,n let L j be the intersection between the domain U with the ray starting at the
origin and passing through the point (cosα j,sinα j), and take Σ =

⋃n
j=1 L j. We note that Σ splits

the set U∖Σ ⊂ R2 in n disjoint open sectors. We denote the sector delimited by L j and L j+1, in
counterclockwise sense, by C j, for j = 1,2, . . . ,n−1, and by Cn the sector delimited by Ln and
L1.

Now let ZX ,α : U → R2 be a discontinuous piecewise smooth vector field defined as
ZX ,α(x,y;ε) = X j(x,y;ε) when (x,y) ∈ C j, and consider the following planar discontinuous
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piecewise smooth differential system

(ẋ, ẏ)T = ZX ,α(x,y;ε). (4.14)

The above notation means that at each sector C j we are considering the smooth differential
system

(ẋ, ẏ)T = X j(x,y;ε). (4.15)

As our main hypothesis we shall assume that there exists a period annulus A surround-
ing the origin, fulfilled by crossing periodic solutions of the unperturbed system (ẋ, ẏ)T =

ZX ,α(x,y;0).

Theorem 4.4.1 deals with periodic nonautonomous differential systems in the standard
form (4.1). Therefore in order to use the averaging theory for studying system (4.14) it has
to be written in the standard form. A possible approach for doing this is to consider the polar
change of variables x = r cosθ and y = r sinθ . However the appropriate change of variables may
depend on the initial system (4.14). In general, for each j = 1,2, . . . ,n, after a suitable change of
variables system (4.15) reads

r′(θ) =
ṙ(t)
θ̇(t)

=
k

∑
i=0

ε
iF j

i (θ ,r)+ ε
k+1R j(θ ,r,ε). (4.16)

Now θ ∈ [α j−1,α j], F j
i : S1 ×D → R and R j : S1 ×D× (−ε0,ε0) → R are Ck+1 functions

depending on the vector fields X j
i , and they are 2π-periodic in the first variable, being D an open

bounded interval of R+ and S1 ≡ R/(2πZ). Therefore denoting

Fi(θ ,r) =
n

∑
j=1

χ[α j−1,α j](θ)F
j

i (θ ,r), i = 0,1, ...,k, and

R(θ ,r,ε) =
n

∑
j=1

χ[α j−1,α j](θ)R
j(θ ,r,ε),

(4.17)

system (4.14) reads like (4.5).

Proof of Theorem 4.4.1

The proof of Theorem 4.4.1 is based on a preliminary result (see Lemma 4.4.3) which
expands the solutions of the discontinuous differential equation (4.5) in powers of ε .

From hypothesis (H1) the solution ϕ(θ ,ρ) of the unperturbed system reads

ϕ(θ ,ρ) =



ϕ1(θ ,ρ) if 0 = α0 ≤ θ ≤ α1,
...

ϕ j(θ ,ρ) if α j−1 ≤ θ ≤ α j,
...

ϕn(θ ,ρ) if αn−1 ≤ θ ≤ αn = 2π,
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such that, for each j = 1,2, . . . ,n, ϕ j is the solution of the unperturbed system with the initial
condition ϕ j(α j−1,ρ) = ϕ j−1(α j−1,ρ).

Now for j = 1,2, . . . ,n let ξ j(θ ,θ0,ρ0,ε) be the solution of the discontinuous differential
equation (4.16) such that ξ j(θ0,θ0,ρ0,ε) = ρ0. We then define the recurrence

r j(θ ,ρ,ε) = ξ j(θ ,α j−1,r j−1(α j−1,ρ,ε),ε), j = 2, . . . ,n,

with initial condition r1(θ ,ρ,ε) = ξ1(θ ,0,ρ,ε). From hypothesis (H1) it is easy to see that
each r j(θ ,ρ,ε) is defined for every θ ∈ [α j−1,α j]. Therefore r(·,ρ,ε) : [0,2π]→ R defined as

r(θ ,ρ,ε) =



r1(θ ,ρ,ε) if 0 = α0 ≤ θ ≤ α1,

r2(θ ,ρ,ε) if α1 ≤ θ ≤ α2,
...

r j(θ ,ρ,ε) if α j−1 ≤ θ ≤ α j,
...

rn(θ ,ρ,ε) if αn−1 ≤ θ ≤ αn = 2π,

is the solution of the differential equation (4.5) such that r(0,ρ,ε) = ρ . Moreover the equalities
hold

r1(0,ρ,ε) = ρ and r j(α j−1,ρ,ε) = r j−1(α j−1,ρ,ε), (4.18)

for j = 1,2, . . . ,n. Clearly r j(θ ,ρ,0) = ϕ j(θ ,ρ) for all j = 1,2, . . . ,n.

Lemma 4.4.3. For j ∈ {1,2, . . . ,n} and θ
j

ρ > α j, let r j(·,ρ,ε) : [α j−1,θ
j

ρ) be the solution of
(4.16). Then

r j(θ ,ρ,ε) = ϕ j(θ ,ρ)+
k

∑
i=1

ε i

i!
z j

i (θ ,ρ)+O(εk+1),

where z j
i (θ ,ρ) is defined in (4.6).

Proof. Fix j ∈ {1,2, . . . ,n}, from the continuity of the solution r j(θ ,ρ,ε) and by the compact-
ness of the set [α j−1,α j]×D× [−ε0,ε0] it is easy to obtain that

∫
θ

α j−1

R j(φ ,r j(φ ,ρ,ε),ε)dφ = O(ε), θ ∈ [α j−1,α j].

Thus integrating the differential equation (4.16) from α j−1 to θ , we get

r j(θ ,ρ,ε) = r j(α j−1,ρ,ε)+
k

∑
i=0

ε
i
∫

θ

α j−1

F j
i (φ ,r j(φ ,ρ,ε))dφ +O(εk+1). (4.19)

Note that in the above expression the value of the initial condition r j(α j−1,ρ,ε) is not substituted
yet.
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In the sequel we shall expand the right hand side of the above equality in Taylor series in
ε around ε = 0. To do that we first recall the Faá di Bruno’s Formula about the l-th derivative of
a composite function. Let g and h be sufficiently smooth functions then

dl

dα l g(h(α)) = ∑
Sl

l!
b1!b2!2!b2 · · ·bl!l!bl

g(L)(h(α))
l

∏
j=1

(
h( j)(α)

)b j
,

where Sl is the set of all l-tuples of non-negative integers (b1,b2, · · · ,bl) satisfying b1 +2b2 +

· · ·+ lbl = l, and L = b1 + b2 + · · ·+ bl . So expanding F j
i (φ ,r j(φ ,ρ,ε)) in Taylor series in ε

around ε = 0 we obtain

F j
i (φ ,r j(φ ,ρ,ε)) = F j

i (φ ,r j(φ ,ρ,0))

+
k−i

∑
l=1

ε l

l!

(
∂ l

∂ε l F j
i (φ ,r j(φ ,ρ,ε))

)∣∣∣
ε=0

+O(εk−i+1).

(4.20)

From the Faá di Bruno’s Formula we compute

∂ l

∂ε l F j
i (φ ,r j(φ ,ρ,ε))

∣∣∣
ε=0

= ∑
Sl

l!
b1!b2!2!b2 · · ·bl!l!bl

·∂ LF j
i (φ ,ϕ j(φ ,ρ))

l

∏
m=1

w j
m(φ ,ρ)

bm,

(4.21)

where
w j

m(φ ,ρ) =
∂ m

∂εm r j(φ ,ρ,ε)
∣∣∣
ε=0

.

Substituting (4.21) in (4.20) we have

F j
i (φ ,r j(φ ,ρ,ε)) = F j

i (φ ,ϕ j(φ ,ρ))

+
k−i

∑
l=1

∑
Sl

ε l

b1!b2!2!b2 · · ·bl!l!bl
∂

LF j
i (φ ,ϕ j(φ ,ρ))

l

∏
m=1

w j
m(φ ,ρ)

bm,

(4.22)
for i = 0,1, ...,k−1. Moreover for i = k we have that

F j
k (φ ,r j(φ ,ρ,ε)) = F j

k (φ ,ϕ j(φ ,ρ))+O(ε). (4.23)

Substituting (4.22) and (4.23) in (4.19) we get

r j(θ ,ρ,ε) = r j(α j−1,ρ,ε)+
∫

θ

α j−1

(
k

∑
i=0

ε
iF j

i (φ ,ϕ j(φ ,ρ))dφ

+
k−1

∑
i=0

k−i

∑
l=1

ε
l+i

∑
Sl

1
b1!b2!2!b2 · · ·bl!l!bl

·∂ LF j
i (φ ,ϕ j(φ ,ρ))

l

∏
m=1

w j
m(φ ,ρ)

bm

)
dφ +O(εk+1).

(4.24)
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Denote

Q j(φ ,ρ,ε) =
k−1

∑
i=0

k−i

∑
l=1

ε
l+i

∑
Sl

1
b1!b2!2!b2 · · ·bl!l!bl

∂
LF j

i (φ ,ϕ j(φ ,ρ))
l

∏
m=1

w j
m(φ ,ρ)

bm.

After some transformations of the indexes i and l we obtain

Q j(φ ,ρ,ε) =
k

∑
i=1

ε
i

i

∑
l=1

∑
Sl

1
b1!b2!2!b2 · · ·bl!l!bl

∂
LF j

i−l(φ ,ϕ j(φ ,ρ))
l

∏
m=1

w j
m(φ ,ρ)

bm . (4.25)

Therefore from (4.24) and (4.25) we have

r j(θ ,ρ,ε) = r j(α j−1,ρ,ε)+
k

∑
i=0

ε
iI j

i (θ ,ρ)+O(εk+1), (4.26)

where for i = 0, . . . ,k and j = 1,2, . . . ,n we are taking

I j
0(θ ,ρ) =

∫
θ

α j−1

F j
0 (φ ,ϕ j(φ ,ρ))dφ , j = 1,2, . . .

I j
i (θ ,ρ) =

∫
θ

α j−1

(
F j

i (φ ,ϕ j(φ ,ρ))+
i

∑
l=1

∑
Sl

1
b1!b2!2!b2 · · ·bl!l!bl

·∂ LF j
i−l(φ ,ϕ j(φ ,ρ))

l

∏
m=1

w j
m(φ ,ρ)

bm

)
dφ , i, j = 1,2, . . .

(4.27)

Note that for i = 1, . . . ,k and j = 2, . . . ,n the following recurrence holds

w j
i (θ ,ρ) =

∂ i

∂ε i r j(θ ,ρ,ε)
∣∣∣
ε=0

=
∂ i

∂ε i r j−1(α j−1,ρ,ε)
∣∣∣
ε=0

+ i!I j
i (θ ,ρ)

= w j−1
i (α j−1,ρ)+ i!I j

i (θ ,ρ),

(4.28)

with the initial condition

w1
i (θ ,ρ) =

∂ ir1

∂ε i (θ ,ρ,ε)
∣∣∣
ε=0

=
∂ i

∂ε i

(
ρ +

k

∑
q=0

ε
qI1

q (θ ,ρ)

)∣∣∣∣∣
ε=0

= i!I1
i (θ ,ρ). (4.29)

Putting (4.28) and (4.29) together we obtain

w j
i (θ ,ρ) = i!

(
I1
i (α1,ρ)+ I2

i (α2,ρ)+ · · ·+ I j−1
i (α j−1,ρ)+ I j

i (θ ,ρ)
)
.

for i = 1,2, . . . ,k and j = 1,2, . . . ,n.

Claim 1. For j = 1,2, . . . ,n we have

r j(θ ,ρ,ε) = ϕ j(θ ,ρ)+
k

∑
i=1

ε i

i!
w j

i (θ ,ρ)+O(εk+1).
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This claim will be proved by induction on j. Let j = 1. Since ϕ1 is the solution of (4.16)
for ε = 0 and j = 1 with the initial condition ϕ1(0,ρ) = ρ we get

ϕ1(θ ,ρ) = ρ +
∫

θ

0
F1

0 (θ ,ϕ1(φ ,ρ))dφ .

Hence from (4.26), (4.18) and (4.29) it follows that

r1(θ ,ρ,ε) = ρ +
k

∑
i=0

ε
iI1

i (θ ,ρ)+O(εk+1)

= ρ +
∫

θ

0
F1

0 (θ ,ϕ1(φ ,ρ))dφ +
k

∑
i=1

ε i

i!
w1

i (θ ,ρ)+O(εk+1)

= ϕ1(θ ,ρ)+
k

∑
i=1

ε i

i!
w1

i (θ ,ρ)+O(εk+1).

Therefore the claim is proved for j = 1.

Now using induction we shall prove the claim for j = j0 assuming that it holds for
j = j0 −1, that is

r j0−1(θ ,ρ,ε) = ϕ j0−1(θ ,ρ)+
k

∑
i=1

ε i

i!
w j0−1

i (θ ,ρ)+O(εk+1). (4.30)

Since ϕ j0 is the solution of (4.16) for ε = 0 and j = j0 with the initial condition
ϕ j0(α j0−1,ρ) = ϕ j0−1(α j0−1,ρ) we get

ϕ j0(θ ,ρ) = ϕ j0−1(α j0−1,ρ)+
∫

θ

α j0−1

F1
0 (θ ,ϕ j(φ ,ρ))dφ = ϕ j0−1(α j0−1,ρ)+ I j0

0 (θ ,ρ). (4.31)

From (4.26), (4.18) and (4.28) we have

r j0(θ ,ρ,ε) = r j0−1(α j0−1,ρ,ε)+
k

∑
i=0

ε
iI j0

i (θ ,ρ)+O(εk+1)

= r j0−1(α j0−1,ρ,ε)+ I j0
0 (θ ,ρ)+

k

∑
i=1

ε
i w

j0
i (θ ,ρ)−w j0−1

i (α j−1,ρ)

i!
+O(εk+1).

Finally using (4.30) and (4.31) the above expression becomes

r j0(θ ,ρ,ε) = ϕ j0−1(α j0−1,ρ)+ I j0
0 (θ ,ρ)+

k

∑
i=1

ε i

i!
w j0−1

i (α j0−1,ρ)

+
k

∑
i=1

ε i

i!
(w j0

i (θ ,ρ)−w j0−1
i (α j0−1,ρ))+O(εk+1)

= ϕ j0(θ ,ρ)+
k

∑
i=1

ε i

i!
w j0

i (θ ,ρ)+O(εk+1).

This proves Claim 1.

The proof of Lemma 4.4.3 ends by proving the following claim.
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Claim 2. The equality w j
i = z j

i holds for i = 1,2, . . . ,k and j = 1,2, . . . ,n.

Computing the derivative in the variable θ of the expressions (4.6) and (4.29), for i =

j = 1, we see, respectively, that the functions z1
1(θ ,ρ) and w1

1(θ ,ρ) satisfy the same differential
equation. Moreover for each i = 1,2, . . . ,k the integral equations (4.6) and (4.28) (and the
equivalent differential equations), which provides respectively z j

i and w j
i , are defined by the

same recurrence for j = 2, . . . ,n. Therefore we conclude that the functions z j
i (θ ,ρ) and w j

i (θ ,ρ)

satisfy the same differential equations for i = 1,2, . . . ,k and j = 1,2, . . . ,n.

It remains to prove that their initial conditions coincide. Let i ∈ {1,2, . . . ,k}. For j = 1
we have from (4.29) and (4.6) that w1

i (0,ρ) = 0 = z1
i (0,ρ). For j = 2, . . . ,n the initial conditions

are defined by the recurrence z j
i (α j−1,ρ) = z j−1

i (α j−1,ρ) (see (4.6)), which is the same recur-
rence for the initial conditions of w j

i (α j−1,ρ). Indeed from (4.28) and (4.27) we see that for
j = 2, . . . ,n we have w j

i (α j−1,ρ) = w j−1
i (α j−1,ρ)+ i!I j

i (α j−1,ρ) = w j−1
i (α j−1,ρ). Therefore

z j
i (α j−1,ρ) = w j

i (α j−1,ρ) for every i = 1,2, . . . ,k and j = 1,2, . . . ,n.

Hence Claim 2 follows from the uniqueness property of the solutions of the differential
equations.

Using the results above the proof of Theorem 4.4.1 follows easily:

Proof of Theorem 4.4.1. Since ϕ(θ ,ρ) is 2π-periodic, using Lemma 4.4.3 we have

rn(2π,ρ,ε) = ϕn(2π,ρ)+
k

∑
i=1

ε i

i!
zn

i (2π,ρ)+O(εk+1)

= ρ +
k

∑
i=1

ε i

i!
zn

i (2π,ρ)+O(εk+1).

Therefore from (4.7) the following equality holds

rn(2π,ρ,ε) = ρ + ε f1(ρ)+ ε
2 f2(ρ)+ · · ·+ ε

k fk(ρ)+O(εk+1). (4.32)

Consider the displacement function

f (ρ,ε) = r(2π,ρ,ε)−ρ = rn(2π,ρ,ε)−ρ.

Clearly for some ε = ε̄ ∈ (−ε0,ε0) discontinuous differential equation (4.5) admits a periodic
solution passing through ρ̄ ∈ D if and only if f (ρ̄, ε̄) = 0. From (4.32) we have that

f (ρ,ε) =
k

∑
i=1

ε
i fi(ρ)+O(εk+1).

By hypotheses fl(ρ
*) = 0 and f ′l (ρ

*) ̸= 0. Using the Implicit Function Theorem for the
function F (ρ,ε) = f (ρ,ε)/ε l we guarantee the existence of a differentiable function ρ(ε) such
that ρ(0) = ρ* and f (ρ(ε),ε) = 0 for every |ε| ≠ 0 sufficiently small. This completes the proof
of Theorem 4.4.1.
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4.4.1 Three applications for Theorem 4.4.1

In this subsection we present three applications of Theorem 4.4.1). In the first two
examples we use the averaged functions (4.7) up to order 7 to provide lower bounds for the
maximum number of limit cycles admitted by some piecewise linear systems with four zones.
The first system is a piecewise linear perturbation of the linear center (ẋ, ẏ) = (−y,x), and the
second one is a piecewise linear perturbation of a discontinuous piecewise constant center. As
usual, the expressions of the higher order averaged functions are extensive (see (ITIKAWA;
LLIBRE; NOVAES, 2017; LLIBRE; NOVAES; TEIXEIRA, 2014b)), so we shall omit them
here. We emphasize that our goal in these first two examples, by taking particular classes of
perturbations, is to illustrate the using of the higher order averaged functions.

In the third example we study the quadratic isochronous center (ẋ, ẏ) = (−y+ x2,x+ xy)

perturbed inside a particular family of piecewise quadratic system with n zones. Using the first
order averaged function (4.7) we provide lower bounds, depending on n, for the maximum
number of limit cycles admitted by this system. We emphasize that our goal in this last example,
again by taking a particular class of perturbation, is to illustrate the using of Theorem 4.4.1 to
study discontinuous piecewise smooth nonlinear system with many zones.

The next proposition, proved in (COLL; GASULL; PROHENS, 2005), is needed to deal
with our examples.

Proposition 4.4.4. Consider n linearly independent functions hi : I → R, i = 1,2, . . . ,n.

(i) Given n − 1 arbitraries values of ai ∈ I, i = 1,2, . . . ,n − 1 there exist n constants βk,
i = 1,2, . . . ,n such that

h(x) .
=

n

∑
k=1

βkhk(x), (4.33)

is not the zero function and h(ai) = 0 for i = 1,2, . . . ,n−1.

(ii) Furthermore, if all hi are analytical functions on I and there exists j ∈ {1,2, . . . ,n} such
that h j|I has constant sign, it is possible to get an h given by (4.33), such that it has at least
n−1 simple zeroes in I.

Example 4.4.5 (Nonsmooth perturbation of the linear center). The bifurcation of limit cycles
from smooth and nonsmooth perturbations of the linear center (ẋ, ẏ) = (−y,x) is a fairly studied
problem in the literature, see for instance (BUZZI; PESSOA; TORREGROSA, 2013; CARDIN;
TORREGROSA, 2016). Here we apply Theorem 4.4.1 to study these limit cycles when the linear
center is perturbed inside a particular of piecewise linear system with 4 zones. Following the
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notation introduced in (4.13) we take

X j
0 (x,y) =

(
− y,x

)
, for j = 1, . . . ,n, and

X j
i (x,y) =

(
ai jx+b j,0

)
, for j = 1, . . . ,n, and i = 1, . . . ,k.

(4.34)

with ai j,bi j ∈ R for all i, j. We consider the discontinuous piecewise smooth differential
system (ẋ, ẏ)T = ZX ,α(x,y;ε) (see (4.14)) where X =

(
X1, . . . ,X4) (see (4.13)) and α =

(α0,α1,α2,α3) = (0,π/2,π,3π/2).

First of all, in order to apply Theorem 4.4.1 to study the limit cycles of (ẋ, ẏ)T =

ZX ,α(x,y;ε), we shall write it into the standard form (4.5). To do that we consider the polar
coordinates x = r cosθ , y = r sinθ . So the set of discontinuity becomes Σ = {θ = 0}∪{θ =

α1}∪ {θ = α2}∪ {θ = α3} and in each sector C j (see (4.15)), j = 1,2,3,4, the differential
system (ẋ, ẏ)T = ZX ,α(x,y;ε) reads

ṙ(t) =
7

∑
i=1

ε
i(ai jr cos2

θ +bi j cosθ),

θ̇(t) = 1− 1
r

7

∑
i=1

ε
i(ai jr cosθ sinθ +bi j sinθ).

Note that θ̇(t) ̸= 0 for |ε| sufficiently small, thus we can take θ as the new independent time
variable by doing r′(θ) = ṙ(t)/θ̇(t). Then

r′(θ) =
ṙ(t)
θ̇(t)

=
7

∑
i=1

ε
iF j

i (θ ,r)+ ε
k+1R j(θ ,r,ε), for j = 1,2,3,4, (4.35)

where F j
i is the coefficient of ε i in the Taylor series in ε of ṙ(t)/θ̇(t) around ε = 0.

From here we shall use the averaged functions (4.7) up to order 7 to study the isolated
periodic solutions of the piecewise smooth differential equation defined by (4.35) or, equivalently,
the limit cycles of the piecewise smooth differential system (ẋ, ẏ)T = ZX ,α(x,y;ε) defined by
(4.34). As we have said before, due to the complexity of the expressions of the higher order
averaged functions we shall not provided them explicitly. So we first describe the methodology
to obtain lower bounds for the number of their zeros, and consequently for the number of limit
cycles of (4.34).

Assume that one have computed the list of averaged functions fi, i = 1, . . . ,k, and
that they are polynomials. The first step is to established a lower bound for the number of
zeros that f1 can have. To do that, one can build a vector M1 where each entry s of M1 is
given by the coefficient of rs of the function f1. Clearly M1 is a function on the parameter
variable v1 = {a1 j : j = 1, . . . ,4}∪{b1 j : j = 1, . . . ,4}, M1 = M1(v1). Let v*1 be an election of
the parameters such that M1(v*1) vanishes. So taking the derivative Dv1M1(v*1), a lower bound



4.4. Statement and Proof of the Main Result 129

for the number of zeros of fi will be given by the rank of the matrix Dv1M1(v*1) decreased by 1.
For this case, v*1 can be taken as being the null vector. In our first example system (4.35), the
averaged function f1 reads

f1(r) =
∫ π

2

0
F1

1 (θ ,r)dθ +
∫

π

π

2

F2
1 (θ ,r)dθ +

∫ 3π

2

π

F3
1 (θ ,r)dθ +

∫ 2π

3π

2

F4
1 (θ ,r)dθ

=
π

4
r(a11 +a12 +a13 +a14)+b11 −b12 −b13 +b14.

Clearly f1 has at most one positive root and there exist parameters a1 j’s and b1 j’s for which this
zero exists. The analysis of the rank of the matrix Dv1M1(v*1) is not needed here. However, since
it is not the case for averaged functions of higher order, we shall performed this analysis here.
Accordingly

M1(v1) =
(

b11 −b12 −b13 +b14 ,
1
4

π(a11 +a12 +a13 +a14)
)
,

Dv1M1 =


0 0 0 0 1 −1 −1 1

π

4
π

4
π

4
π

4
0 0 0 0

 .

We note that the matrix Dv1M1 has maximum rank 2. Expanding f1 around v1 = v*1, we see that
f1 is written as a combination of two linear independent functions plus higher order terms in
v1 − v*1 Applying Theorem 4.4.1 for l = 1 we obtain at least one limit cycle for the differential
system (4.34).

The next step is to choose parameters to assure that f1(r) ≡ 0. In our example a11 =

−(a12 + a13 + a14) and b11 = b12 + b13 − b14. To continue the analysis we repeat the above
procedure: build a vector M2 where each entry s of M2 is given by the coefficient of rs of the
function f2; define the parameter vector v2 = {a1 j : i = 1,2, j = 1, . . . ,4}∪{b1 j : i = 1,2, j =

1, . . . ,4} such that M2 =M2(v2); let v*2 be an election of the parameters such that M2(v*2) vanishes;
and take the derivative Dv2M2(v*2). Again a lower bound for the number of zeros of f2 will be
given by the rank of the matrix Dv2M2(v*2) decreased by 1. In our example

f2(r) = r2 [π(a21 +a22 +a23 +a24)+2(a12 +a13)(a13 +a14)]

+r [π(a12 +a13)(b13 −b14)−4(a14b12 +(a12 +a14)b13

+a13(b12 +2b13 −b14)−a12b14 −b21 +b22 +b23 −b24)]

+4(b12 +b13)(b13 −b14),
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The function f2 is a polynomial of degree 2 in r. It is easy to see that we can choose v*2 such
that the matrix Dv2M2(v*2) has maximum rank again, that is 3. Expanding f2 around v2 = v*2, we
see that f2 is written as a combination of three linear independent functions plus higher order
terms in v2 − v*2. Applying Theorem 4.4.1 for l = 2 we obtain at least two limit cycles for the
differential system (4.34).

In general, after estimating a lower bound for the number of zeros of fl−1 we chose
parameters to assure that fl−1(r)≡ 0. Then we follow the above steps: build a vector Ml where
each entry s of Ml is given by the coefficient of rs of the function fl; define the parameter vector
vl = {ai j : i = 1, . . . l , j = 1, . . . ,4}∪{bi j : i = 1, . . . l , j = 1, . . . ,4} such that Ml = Ml(vl); let v*l
be an election of the parameters such that Ml(v*l ) vanishes; and take the derivative Dvl Ml(v*l ).
As above a lower bound for the number of zeros of fl will be given by the rank of the matrix
Dvl Ml(v*l ) decreased by 1.

In what follows, using the procedure described above, we provide a table showing the
lower bound N(l), l = 1, . . . ,7, for the maximum number of limit cycles of the piecewise smooth
differential system (ẋ, ẏ)T = ZX ,α(x,y;ε), defined by (4.34), obtained by studying the averaged
function of order l.

l 1 2 3 4 5 6 7

N(l) 1 2 2 3 3 3 3

Example 4.4.6 (Nonsmooth perturbation of a piecewise constant center). Consider the discon-
tinuous piecewise constant differential system

(ẋ, ẏ)T = X(x,y) =



X1(x,y) if x > 0 and y > 0,

X2(x,y) if x < 0 and y > 0,

X3(x,y) if x < 0 and y < 0,

X4(x,y) if x > 0 and y < 0,

(4.36)

where

X1(x,y) =

−1+∑
7
i=1 ε i(ai1x+bi1),

1,
X2(x,y) =

−1+∑
7
i=1 ε i(ai2x+bi2),

−1,

X3(x,y) =

 1+∑
7
i=1 ε i(ai3x+bi3),

−1,
X4(x,y) =

1+∑
7
i=1 ε i(ai4x+bi4),

1,

with ai j,bi j ∈ R for all i ∈ {1,2, . . . ,7} and j ∈ {1,2,3,4}.
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First of all, in order to apply Theorem 4.4.1 to study the limit cycles of the differential
system (4.36), we shall write it into the standard form (4.5). Again, to do that we consider polar
coordinates x = r cosθ , y = r sinθ . So the set of discontinuity becomes Σ = {θ = 0}∪{θ =

α1}∪{θ = α2}∪{θ = α3}, with α0 = 0,α1 = π/2,α2 = π,α3 = 3π/2, and α4 = 2π , and for
each j = 1,2,3,4 the differential system (ẋ, ẏ) = X j(x,y) reads

ṙ(t) = g j(θ)+
7

∑
i=1

ε
i(ai jr cos2

θ +bi j cosθ),

θ̇(t) =
1
r

(
ĝ j(θ)−

7

∑
i=1

ε
i(ai jr cosθ sinθ +bi j sinθ)

)
,

where

g1(θ) = sinθ − cosθ ĝ1(θ) = sinθ + cosθ ,

g2(θ) =−(sinθ + cosθ) ĝ2(θ) = sinθ − cosθ ,

g3(θ) =−sinθ + cosθ ĝ3(θ) =−(sinθ + cosθ),

g4(θ) = sinθ + cosθ ĝ4(θ) =−sinθ + cosθ .

Note that for each j = 1,2,3,4 and α j−1 ≤ θ ≤ α j, we have that θ̇(t) ̸= 0 for |ε| sufficiently
small, thus we can take θ as the new independent time variable by doing r′(θ) = ṙ(t)/θ̇(t). Then

r′(θ) =
ṙ(t)
θ̇(t)

=
7

∑
i=0

ε
iF j

i (θ ,r)+ ε
k+1R j(θ ,r,ε), (4.37)

where F j
i is the coefficient related to ε i in Taylor series in ε of ṙ(t)/θ̇(t) around ε = 0.

From here we shall use the averaged functions (4.7) up to order 7 to study the isolated
periodic solutions of the piecewise smooth differential equation defined by (4.37) or, equiva-
lently, the limit cycles of the piecewise smooth differential system (4.36). Following the same
methodology described in Example 4.4.5, we provide a table showing the lower bound N(l),
l = 1, . . . ,7, for the maximum number of limit cycles of (4.36) obtained by studying the averaged
function of order l.

l 1 2 3 4 5 6 7

N(k) 1 2 2 2 2 2 2

Example 4.4.7 (Nonsmooth perturbation of an isochronous quadratic center). In this section we
consider the quadratic isochronous center (ẋ, ẏ) = (−y+ x2,x+ xy) perturbed inside a class of
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piecewise quadratic system with n zones. For this system we take

X j
0 (x,y) =

(
− y+ x2,x+ xy

)
, for j = 1, . . . ,n, and

X j
i (x,y) =

(
a jx2 +b jx+ c j,0

)
, for j = 1, . . . ,n,

where a j,b j and c j are real numbers for all j ∈ {1,2, . . . ,n}. We consider the discontinuous piece-
wise smooth differential system (ẋ, ẏ)T = ZX ,α(x,y;ε) (see (4.14)) where X =

(
X1, . . . ,Xn)

(see (4.13)) and α = (α j)
n−1
j=0 = (2 jπ/n)n−1

j=0.

As before, in order to apply Theorem 4.4.1 to study the limit cycles of (ẋ, ẏ)T =

ZX ,α(x,y;ε), we shall write it into the standard form (4.5). To do that we consider a first change
of coordinates x =−u/(v−1), y =−v/(v−1) (see (CHAVARRIGA; SABATINI, 1999)). Note
that this change keeps fixed all straight lines passing through the origin and therefore does
not change the set of discontinuity. In each sector C j (see (4.15)), j = 1,2,3,4, the differential
system (ẋ, ẏ)T = ZX ,α(x,y;ε) reads

u̇ = −v+ ε

(
u
(

b j −
a j

v−1
u
)
+ c j(1− v)

)
,

v̇ = u.

(4.38)

Now, as a second change of variables, we consider the polar coordinates u = r cosθ and v =

r sinθ . Taking θ as the new independent time variable by doing r′(θ) = ṙ(t)/θ̇(t), system (4.38)
becomes

r′(θ) = εF j(θ ,r)+O(ε2),

where

F j(θ ,r) = cosθ

(
c j + r

(
− c j sinθ + cosθ

(
b j +

a jr cosθ

1− r sinθ

)))
.

for j = 1, . . . ,n.

In this new coordinates the piecewise smooth differential system (ẋ, ẏ)T = ZX ,α(x,y;ε)

reads

r′(θ) = εF(θ ,r)+O(ε2), (4.39)

where

F(θ ,r) =
n

∑
j=1

χ
[

2( j−1)π
n , 2 jπ

n ]
(θ)F j(θ ,r).

Computing the first order averaged function f1 of (4.39) we obtain
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f1(r) =
n

∑
j=1

∫ 2 jπ
n

2( j−1)π
n

F j(θ ,r)dθ

=
1
4

[(
n

∑
j=1

4(a j + c j)
(

sin
(

2 jπ
n

)
− sin

(
2( j−1)π

n

)))

+r

(
n

∑
j=1

(
4π

n
+ sin

(
4 jπ

n

)
− sin

(
4( j−1)π

n

))
b j

+(a j − c j)

(
cos
(

4( j−1)π
n

)
− cos

(
4 jπ

n

)))

+
(r2 −1)

r

(
n

∑
j=1

4a j ln
(

1− r sin
(

2( j−1)π
n

)))

+
(r2 −1)

r

(
n

∑
j=1

−4a j ln
(

1− r sin
(

2 jπ
n

)))]
.

Since sin
(

2( j−1)π
n

)
= 0 for j = 1, and sin

(
2 jπ

n

)
= 0 for j = n, the above expression simplifies

as

f1(r) =
1
4

[(
n

∑
j=1

4(a j + c j)
(

sin
(

2 jπ
n

)
− sin

(
2( j−1)π

n

)))

+r

(
n

∑
j=1

(
4π

n
+ sin

(
4 jπ

n

)
− sin

(
4( j−1)π

n

))
b j

+(a j − c j)

(
cos
(

4( j−1)π
n

)
− cos

(
4 jπ

n

)))

+
(r2 −1)

r

(
n

∑
j=2

4(a j −a j−1) ln
(

1− r sin
(

2( j−1)π
n

)))]
.

Note that f1 is written as a linear combination of n+1 functions of the family

F =

{
1,r,h j(r)

.
=

(r2 −1)
r

ln
(

1− r sin
(

2( j−1)π
n

))
: j = 2,3, . . . ,n

}
.

It is easy to see that this combination is linearly independent.

Regarding the functions h j’s we have the following properties

(1) Let j ∈ {2,3, . . . ,n}. Then h j(r)≡ 0 if and only if n is even and j = 1+n/2.

(2) Let j1, j2 ∈ {2,3, . . . ,n}. Then h j1(r)≡ h j2(r) if and only if n is even and ( j1 + j2 −2) ∈
{n/2,3n/2}.
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From the above properties we first conclude that if n is odd then the function f1 is a
linearly independent combination of n+ 1 linearly independent functions. From Proposition
4.4.4 we can find parameters such that f1 has n simple zeros.

If n = 2 then f1(r) = π(b1 +b2)r/2 which has no simple positive zeros. From now on
we assume that n is even and greater than 2. From property (1) we already know that h j0 ≡ 0
for j0 = 1+n/2. From property (2) it remains to analyze how many pairs of integers ( j1, j2),
2 ≤ j1 < j2 ≤ n, satisfy the equations 2( j1 + j2 −2) = n and 2( j1 + j2 −2) = 3n.

Let n be a positive integer. If n = 4n then both equations 2( j1 + j2 −2) = n and 2( j1 +

j2 −2) = 3n have n/4−1 solutions. If n = 4n+2 then both equations 2( j1 + j2 −2) = n and
2( j1 + j2 −2) = 3n have (n−2)/4 solutions. Therefore we conclude that:

∙ If n = 4n then #F =
n
2
+2;

∙ If n = 4n+2 then #F =
n
2
+1;

Denote by N the maximum number of limit cycles of (ẋ, ẏ)T = ZX ,α(x,y;ε). Applying
Proposition 4.4.4 and Theorem 4.4.1 we conclude that:

(i) If n is odd then N ≥ n;

(ii) If n = 2 then N ≥ 0 (no information!);

(iii) If n = 4k then N ≥ n
2
+1;

(iv) If n = 4k+2 then N ≥ n
2

.
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CHAPTER

5
AVERAGING THEORY AND

LYAPUNOV–SCHMIDT REDUCTION FOR
NONSMOOTH SYSTEMS

In chapter 4 we presented the theory for study the periodic solutions of the systems on
the form

x′ = F0(t,x)+
k

∑
i=1

ε
iFi(t,x)+ ε

k+1R(t,x,ε),

where Fi : S1 ×D → Rm and R : S1 ×D× (−ε0,ε0)→ Rm are piecewise Ck+1 functions and T -
periodic in the variable t and we assume that the solutions of the unperturbed system x′ = F0(t,x)

were all T –periodic. In other words the unperturbed system has a d-dimensional submanifold
of periodic solutions with d = m. However when d < m the averaging theory is not enough to
study the persistence of periodic solutions when |ε| ̸= 0 is small. Now, in this chapter we present
the theory for the case d < m using the Lyapunov-Schmidt reduction method and the averaging
theory.

Consider the unperturbed system x′ = F0(t,x) and its set of initial conditions whose
orbits are periodic denoted here by Z . Assume that the set Z is a d-dimensional submanifold
of Rm such that dim(Z ) = d < m. In this case only the averaging theory is not enough to study
the number of limit cycles of the systems and other techniques need to be employed together, as
the Lyapunov-Schmidt reduction method. In the case that Fi are smooth functions we have the
works (BUICA; FRANÇOISE; LLIBRE, 2007; CÂNDIDO; LLIBRE; NOVAES, 2017; GINÉ et

al., 2016). If the functions Fi are not smooth or even continuous we have the works (LLIBRE;
NOVAES, 2015; LLIBRE JAUME NOVAES, 2015), where the authors studied some classes of
these systems.

In what follows we describe how to use the averaging theory and Lyapunov-Schmidt
reduction method for computing isolated periodic solutions of the piecewise smooth differential
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systems. Then, we set the class of non-autonomous discontinuous piecewise smooth differential
equations that we are interested as well as our main result (Theorem 5.5.1).

5.1 Lyapunov-Schmidt reduction

Consider the function

g(z,ε) =
k

∑
i=0

ε
igi(z)+O(εk+1), (5.1)

where gi : D → Rm is a Ck+1 function, k ≥ 1, for i = 0,1, . . . ,k, in which D an open bounded
subset of Rm. For d < m, let V be an open bounded subset of Rd and β : V → Rm−d a Ck+1

function such that

Z = {zα = (α,β (α)) : α ∈V} ⊂ D. (5.2)

The main hypothesis is

(Hα ) the function g0 vanishes on the d-dimensional submanifold Z of D.

In (CÂNDIDO; LLIBRE; NOVAES, 2017) the authors used the Lyapunov-Schmidt
reduction method to develop the bifurcation functions of order i, for i = 0,1, . . . ,k, which for
|ε| ≠ 0 sufficiently small control the existence of branches of zeros z(ε) of system (5.1) that
bifurcate from z(0) ∈ Z . In this subsection we present the results developed in that work and
those that we shall need later on.

First we present some notation. Consider the projections onto the first d coordinates and
onto the last m−d coordinates denoted by π : Rd ×Rm−d → Rd and π⊥ : Rd ×Rm−d → Rm−d ,
respectively. Also, for a point z ∈ Z we write z = (a,b) ∈ Rd ×Rm−d .

Let L be a positive integer, let x = (x1,x2, . . . ,xm)∈D, t ∈R and y j = (y j1, . . . ,y jm)∈Rm

for j = 1, . . . ,L. Given G : R×D → Rm a sufficiently smooth function, for each (t,x) ∈ R×D

we denote by ∂ LG(t,x) a symmetric L–multilinear map which is applied to a “product” of L

vectors of Rm, which we denote as
⊙L

j=1 y j ∈ RmL. The definition of this L–multilinear map is

∂
LG(t,x)

L⊙
j=1

y j =
n

∑
i1,...,iL=1

∂ LG(t,x)
∂xi1 . . .∂xiL

y1i1 . . .yLiL .

We define ∂ 0 as the identity functional.

The bifurcation functions fi : V → Rd of order i are defined for i = 0,1, . . . ,k as

fi(α) = πgi(zα)+
i

∑
l=1

∑
Sl

1
c1!c2!2!c2 . . .cl!l!cl

∂
L
b πgi−l(zα)

l⊙
j=1

γ j(α)c j , (5.3)
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where the γi : V → Rm−d , for i = 1,2, . . . ,k, are defined recursively as

γ1(α) = −∆
−1
α π

⊥g1(zα) and

γi(α) = −i!∆−1
α

(
∑
S′i

1
c1!c2!2!c2 . . .ci−1!(i−1)!ci−1

∂
I′
b π

⊥g0(zα)
i−1⊙
j=1

γ j(α)c j

+
i−1

∑
l=1

∑
Sl

1
c1!c2!2!c2 . . .cl!l!cl

∂
L
b π

⊥gi−l(zα)
l⊙

j=1

γ j(α)c j

)
.

(5.4)

We denote by Sl the set of all l-tuples of non-negative integers (c1,c2, . . . ,cl) such that c1 +

2c2 + . . .+ lcl = l, L = c1 + c2 + . . .+ cl , and by S′i the set of all (i−1)-tuples of non-negative
integers (c1,c2, . . . ,ci−1) such that c1 +2c2 + . . .+(i−1)ci−1 = i, I′ = c1 + c2 + . . .+ ci−1 and

∆α =
∂π⊥g0

∂b
(zα).

About the zeros of the function (5.1) the authors proved in (CÂNDIDO; LLIBRE;
NOVAES, 2017) the following result.

Theorem 5.1.1. Let ∆α denote the lower right corner (m−d)× (m−d) matrix of the Jacobian
matrix Dg0(zα). Additionally to hypothesis (Hα) we assume that

(i) for each α ∈V , det∆α ̸= 0; and

(ii) f1 = f2 = . . .= fk−1 = 0 and fk is not identically zero.

If there exists α* ∈V such that fk(α
*) = 0 and det(D fk(α

*)) ̸= 0, then there exists a branch of
zeros z(ε) with g(z(ε),ε) = 0 and |z(ε)− zα* |= O(ε).

5.2 The averaging theory
In section 4.1 of Chapter 4 we present the averaged functions for systems defined in

S1 ×D with D an open subset of R. Now we deal with systems where D is an open subset of Rm,
so we present the again the averaged functions but for higher dimension. They have basically the
same expression, the difference is that now we use the “product” of L vectors of Rm, denoted by⊙L

j=1 y j ∈ RmL.

In (CÂNDIDO; LLIBRE; NOVAES, 2017), using Theorem 5.1.1, the authors studied high
order bifurcation of periodic solutions of the following T -periodic Ck+1 with k ≥ 1 differential
system

x′ = F(t,x,ε) = F0(t,x)+
k

∑
i=1

ε
iFi(t,x)+O(εk+1), (t,z) ∈ S1 ×D, (5.5)

where the prime denotes the derivative with respect to the independent variable t, usually called
the time. In their work they assumed that the manifold Z , defined in (5.2), is such that all
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solutions of the unperturbed system
x′ = F0(t,x),

starting at points of Z are T -periodic and dimZ ≤ m.

Consider the variational equation

y′ =
∂F0

∂x
(t,x(t,z,0))y, (5.6)

where x(t,z,0) denotes the solution of system (5.5) when ε = 0, and we denote a fundamental
matrix of system (5.6) by Y (t,z). The averaged function of order i of system (5.5) is defined as

gi(z) = Y−1(T,z)
yi(T,z)

i!
, (5.7)

where

y1(t,z) = Y (t,z)
∫ t

0
Y (s,z)−1F1 (s,x(s,z,0))ds,

yi(t,z) = i!Y (t,z)
∫ t

0
Y (s,z)−1

(
Fi (s,x(s,z,0))

+∑
S′i

1
b1!b2!2!b2 . . .bi−1!(i−1)!bi−1

∂
I′F0(s,x(s,z,0))

i−1⊙
j=1

y j(s,z)b j

+
i−1

∑
l=1

∑
Sl

1
b1!b2!2!b2 . . .bl!l!bl

∂
LFi−l(s,x(s,z,0))

l⊙
j=1

y j(s,z)b j

)
ds.

(5.8)

Using the functions gi stated in (5.7) are defined the functions fi and γi given by (5.3)
and (5.4), respectively. Under some assumptions and with Theorem 5.1.1 it was proved that
the simple zeros of the functions fi provide the existence of isolated periodic solutions of the
differential system (5.5). By a simple zero of a function f we mean a point a such that f (a) = 0
and det(D f (a)) ̸= 0, where D f (a) denotes the Jacobian matrix of f at the point a.

Remark 5.2.1. The functions yi(t,z) could be defined recurrently by an integral equation as done
in other works (see (ITIKAWA; LLIBRE; NOVAES, 2017; LLIBRE; NOVAES; TEIXEIRA,
2014b; LLIBRE; NOVAES; TEIXEIRA, 2014a)). Indeed, we define

y1(t,z) =
∫ t

0

(
F1 (s,x(s,z,0))+∂F0(s,x(s,z,0))y1(s,z)

)
ds,

yi(t,z) = i!
∫ t

0

(
Fi (s,x(s,z,0))+

i

∑
l=1

∑
Sl

1
b1!b2!2!b2 . . .bl!l!bl

·∂ LFi−l (s,x(s,z,0))
l⊙

j=1

y j(s,z)b j
)

ds, for i = 2, . . . ,k,

(5.9)

and it is not difficult to see that solving this integral equations we obtain the formulae (5.8).
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5.3 Standard form
Let n > 1 be a positive integer. For i = 0,1, . . . ,k and j = 1,2, . . . ,n let F j

i : S1×D →Rm

and R j : S1 ×D× (−ε0,ε0) → R be functions Ck+1 where D is an open subset of Rm and
S1 ≡ R/(TZ). We define

Fi(t,x) =
n

∑
j=1

χ[t j−1,t j](t)F
j

i (t,x), i = 0,1, ...,k, and R(t,x,ε) =
n

∑
j=1

χ[t j−1,t j](t)R
j(t,x,ε).

Consider the discontinuous and T -periodic differential system

x′ = F(t,x,ε) =
k

∑
i=0

ε
iFi(t,x)+ ε

k+1R(t,x,ε), (5.10)

and the submanifold Z of periodic solutions of the unperturbed system

x′ = F0(t,x). (5.11)

The set Σ of discontinuity of system (5.10) is given by

Σ = ({t = 0 ≡ T}∪{t = t1}∪ . . .∪{t = tn−1})∩S1 ×D,

where 0 < t1 < t2 < .. . < tn−1 < T .

For each j = 1,2, . . . ,n and t ∈ [t j−1, t j] we have the differential system

x′ =
k

∑
i=0

ε
iF j

i (t,x)+ ε
k+1R j(t,x,ε). (5.12)

To continue we need to give some definition about system (5.10). For each z ∈ D and ε

sufficiently small we denote by x(·,z,ε) : [0, t(z,ε))→ Rm the solution of system (5.10) such that
x(0,z,ε) = z, where [0, t(z,ε)) is the interval of definition for the solution x(t,z,ε).

Consider the submanifold Z = {zα = (α,β0(α)) : α ∈ V̄}, where V is an open bounded
subset of Rm, and β0 : V → Rd−m is a Ck function with k ≥ 1. Notice that for each zα ∈
Z , (ti,x(ti,zα ,0) ∈ Σc), for i ∈ {0,1, . . . ,k}. Indeed, for each j = 1,2, . . . ,n, the set of dis-
continuity can be locally described by h−1

j (0), where f : S1 × D → R is h j(t,x) = t − t j.
It is known that to show that we are in the crossing region it is sufficient to prove that
⟨∇h j(t,x),F j(t,x)⟩⟨∇h j(t,x),F j+1(t,x)⟩> 0, where ∇h j(t,x) denotes the gradient vector of the
function h j(t,x). Here, ∇h j(t,x) = (1,0) and ⟨∇h j(t,x),F j(t,x)⟩⟨∇h j(t,x),F j+1(t,x)⟩= 1 > 0.

In Chapter 4 the averaging theory was developed assuming dim(Z ) = m. Here, we are
interested in the case dim(Z )< m. Accordingly, we shall extend the averaged functions (5.7)
and the bifurcation functions (5.3) obtained in (CÂNDIDO; LLIBRE; NOVAES, 2017) to this
class of discontinuous differential system, providing then sufficient conditions in order to control
which periodic solutions of Z , with dimZ = d < m, persists to ε ̸= 0 sufficiently small.
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For system (5.11) we consider the fundamental matrix Y (t,z) of the variational system

y′ =
∂

∂x
F0(t,x(t,z,0))y, (5.13)

where Y is an m × m matrix. Notice that, for each j = 1,2, . . . ,n, if x j(t,z,ε) denotes the
solution of (5.12) for t j−1 ≤ t ≤ t j, the function t ↦→ (∂x j/∂ z)(t,z,0) is a solution of (5.13) for
t j−1 ≤ t ≤ t j. Recall that the right product of a solution of the variational equation (5.13) by
constant matrix is still a solution of (5.13). Therefore, the solution Y (t,z) can be built as follows:

Y (t,z) =



Y1(t,z) if 0 = t0 ≤ t ≤ t1,

Y2(t,z) if t1 ≤ t ≤ t2,
...

Yn(t,z) if tn−1 ≤ t ≤ tn = T ,

where

Y1(t,z) =
∂x1

∂ z
(t,z,0), and

Yj(t,z) =
∂x j

∂ z
(t,z,0)

(
∂x j

∂ z
(t j−1,z,0)

)−1

Yj−1(t j−1,z), for j = 2,3, . . . ,n.

(5.14)

The derivatives ∂ jFi(s,z), which appears in (5.3), are computed as follows:

∂ jFi

∂ z
(s,z) =

n

∑
j=1

χ[t j−1,t j](s)
∂ jF j

i
∂ z j (s,z).

The main result of this chapter says that the simple zeros of the bifurcation functions
(5.3) also controls the branching of isolated periodic solutions of the nonsmooth system (5.10).
Before we enunciate it we provide an alorithm for the bifurcation functions.

5.4 An algorithm for the bifurcation functions

In this section we will provide an algorithm for computing the averaged functions,
defined in (5.9), for the nonsmooth case. Their expressions are defined recurrently and using
Bell polynomials, which can be implemented more easily and were previously defined in (4.11).
Using them it follows that if g and h are sufficiently smooth functions, then we have that

dl

dxl g(h(x)) =
l

∑
m=1

g(m)(h(x))Bl,m(h′(x),h′′(x), . . . ,h(l−m+1)(x)),

where Bl,m is the partial Bell polynomial.
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5.4.1 Averaged Functions

In this section we develop a recurrence to compute the averaged function in the particular
case of the discontinuous differential equation (5.10). So, consider the functions w j

i : (t j−1, t j]×
D → Rm defined recurrently for i = 1,2, . . . ,k and j = 1,2, . . . ,n, as

w1
1(t,z) =

∫ t

0

(
F1

1 (s,x(s,z,0))+∂F1
0 (s,x(s,z,0))w

1
1(s,z)

)
ds,

w1
i (t,z) = i!

∫ t

0

(
F1

i (s,x(s,z,0))+
i

∑
l=1

∑
Sl

1
b1!b2!2!b2 . . .bl!l!bl

·∂ LF1
i−l(s,x(s,z,0))

l⊙
m=1

w1
m(s,z)

bm

)
ds,

w j
i (t,z) = w j−1

i (t j−1,z)+ i!
∫ t

t j−1

(
F j

i (s,x(s,z,0))+

i

∑
l=1

∑
Sl

1
b1!b2!2!b2 . . .bl!l!bl

·∂ LF j
i−l(s,x(s,z,0))

l⊙
m=1

w j
m(s,z)

bm

)
ds.

(5.15)
Since F0 ̸= 0 the recurrence defined in (5.15) is an integral equation and the next lemma solves it
using Bell polynomials.

Lemma 5.4.1. For i = 1,2, . . . ,k and j = 1,2, . . . ,n the recurrence (5.15) can be written as
follows

w1
1(t,z) = Y1(t,z)

∫ t

0
Y−1

1 (s,z)F1
1 (s,x(s,z,0))ds,

w j
1(t,z) = Yj(t,z)

(
Y−1

j (t j−1,z)w
j−1
1 (t j−1,z)+

∫ t

t j−1

Y−1
j (s,z)F j

1 (s,x(s,z,0))ds
)
,

w1
i (t,z) = Y1(t,z)

∫ t

0
Y−1

1 (s,z)
(

i!F1
i (s,x(s,z,0))+

i

∑
m=2

∂
mF1

0 (s,x(s,z,0)).Bi,m(w1
1, . . . ,w

1
i−m+1),

+
i−1

∑
l=1

l

∑
m=1

i!
l!

∂
mF1

i−l(s,x(s,z,0)).Bl,m(w1
1, . . . ,w

1
l−m+1)

)
ds,

w j
i (t,z) = Yj(t,z)

[
Y−1

j (t j−1,z)w
j−1
i (t j−1,z)+

∫ t

t j−1

Y−1
j (s,z)

(
i!F j

i (s,x(s,z,0))

+
i

∑
m=2

∂
mF j

0 (s,x(s,z,0)).Bi,m(w
j
1, . . . ,w

j
i−m+1),

+
i−1

∑
l=1

l

∑
m=1

i!
l!

∂
mF j

i−l(s,x(s,z,0)).Bl,m(w
j
1, . . . ,w

j
l−m+1)

)
ds.
]

Proof. The idea of the proof is to relate the integral equations (5.15) to the Cauchy problem
and then solve it. For example, if i = j = 1 the integral equation is equivalent to the following
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Cauchy problem

∂w1
1

∂ t
(t,z) = F1

1 (t,x(t,z,0))+∂F1
0 (t,x(t,z,0))w1

1 with w1
1(0,z) = 0,

and solving this linear differential equation we get the expression of w1
1(t,z) described in the

statement of the lemma. For more details see Proposition 4.3.2 of Chapter 4.

Now, we provide a formula for the averaged functions (5.7) for the class of discontinuous
differential systems studied in this chapter.

Proposition 5.4.2. For i = 1,2, . . . ,k, the averaged function (5.7) of order i is

gi(z) = Y−1
n (T,z)

wn
i (T,z)

i!
.

Proof. For each i = 1,2, . . . ,k we define

wi(t,z) =
n

∑
j=1

χ[t j−1,t j](t)w
j
i (t,z).

Given t ∈ [0,T ] there exists a positive integer k̄ such that t ∈ (tk̄−1, tk̄] and, therefore, wi(t,z) =

wk̄
i (t,z). By the proof of Proposition 4.3.1 we obtain

w1(t,z) =
∫ t

0

(
F1(s,x(s,z,0))+∂F0(s,x(s,z,0))w1(s,z)

)
ds,

wi(t,z) = i!
∫

θ

0

(
Fi(s,x(s,z,0))+

i

∑
l=1

∑
Sl

1
b1!b2!2!b2 · · ·bl!l!bl

·∂ LFi−l(s,x(s,z,0))
l⊙

m=1

wm(s,z)bm

)
ds.

(5.16)

Since by Remark 5.2.1 we can consider the functions (5.8) given implicitly, we compute
the derivatives in the variable t of the functions (5.16) and (5.9) for i = 1, and we see that
the functions w1(t,z) and y1(t,z) satisfy the same differential equation. Moreover, for each
i = 2, . . . ,k, the integral equations (5.9) and (5.16), which provide respectively yi and wi, are
defined by the same recurrence. Then the functions yi and wi satisfy the same differential
equations for i = 1,2, . . . ,k, and their initial conditions coincide. Indeed, let i ∈ {1,2, . . . ,k},
since yi(0,z) = 0 and, by (5.16), wi(0,z) = 0, it follows that the initial conditions are the same.
Applying the Existence and Uniqueness Theorem on the solutions of the differential system we
get yi(t,z) = wi(t,z), for all i ∈ {1,2, . . . ,k}.

5.4.2 Bifurcation Functions

In this section we shall write the bifurcation functions (5.3) and the functions γi(α) given
by (5.4) in terms of Bell polynomials.
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Claim 3. The bifurcation function (5.3) is given by

fi(α) = πgi(zα)+
i

∑
l=1

l

∑
m=1

1
l!

∂
m
b πgi−l(zα)Bl,m(γ1(α), . . . ,γl−m+1(α)),

where

γ1(α) = −∆
−1
α π

⊥g1(zα) and

γi(α) = −∆
−1
α

( i−1

∑
l=0

i!
l!

l

∑
m=1

∂
m
b π

⊥gi−l(zα)Bl,m(γ1(α), . . . ,γl−m+1(α))

+
i

∑
m=2

∂
m
b π

⊥g0(zα)Bi,m(γ1(α), . . . ,γi−m+1(α))

)
.

Proof. The expressions (5.3) was obtained in (CÂNDIDO; LLIBRE; NOVAES, 2017) using the
Faá di Bruno’s formula for the L-th derivative of a composite function. This claim follows just
by applying the version of the Faá di Bruno’s formula in terms of the Bell polynomials.

5.5 The main theorem and its proof
The main theorem of this chapter says that the simple zeroes of the bifurcation functions

(5.3) controls the number of limit cycles of system (5.10).

Theorem 5.5.1. Let ∆α denote the lower right corner (m−d)× (m−d) matrix of the matrix
Id −Y−1(T,z). We assume that the functions defined by (5.3) and (5.7) satisfy f1 = f2 = . . .=

fk−1 = 0 and that for each α ∈ V , det(∆α) ̸= 0. If there exists α* ∈ V such that fk(α
*) = 0,

and that det(D fk(α
*)) ̸= 0, then there exists a T -periodic solution ϕ(t,ε) of (5.10) such that

|ϕ(0,ε)− zα*|= O(ε).

For j = 1,2, . . . ,n let ξ j(t, t0,z0,ε) be the solution of the discontinuous differential system
(5.12) such that ξ j(t0, t0,z0,ε) = z0. Then, we define the recurrence

x1(t,z,ε) = ξ1(t,0,z,ε)

x j(t,z,ε) = ξ j(t, t j−1,x j−1(t j−1,z,ε),ε), j = 2, . . . ,n.

Since we are working in the cross region it is easy to see that, for |ε| ̸= 0 sufficiently small, each
x j(t,z,ε) is defined for every t ∈ [t j−1, t j]. Therefore x(·,z,ε) : [0,T ]→ R is defined as

x(t,z,ε) =



x1(t,z,ε) if 0 = t0 ≤ t ≤ t1,

x2(t,z,ε) if t1 ≤ t ≤ t2,
...

x j(t,z,ε) if t j−1 ≤ t ≤ t j,
...

xn(t,z,ε) if tn−1 ≤ t ≤ tn = T .
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Notice that x(t,z,ε) is the solution of the differential equation (5.11) such that x(0,z,ε) = z.
Moreover, the following equality hold

x j(t j−1,z,ε) = x j−1(t j−1,z,ε),

for j = 1,2, . . . ,n.

The next lemma expands the solution x j(·,z,ε) around ε = 0.

Lemma 5.5.2. For j ∈ {1,2, . . . ,n} and t j
z > t j, let x j(·,z,ε) : [t j−1, t j) be the solution of (5.12).

Then

x j(t,z,ε) = x j(t,z,0)+
k

∑
i=1

ε i

i!
w j

i (t,z)+O(εk+1).

Proof. First, fixed j ∈ {1,2, . . . ,n}, we use the continuity of the solution x j(t,z,ε) and the
compactness of the set [t j−1, t j]×D× [−ε0,ε0] to get that∫ t

t j−1

R j(s,x j(s,z,ε),ε)ds = O(ε), t ∈ [t j−1, t j].

Thus, integrating the differential equation (5.12) from t j−1 to t, we get

x j(t,z,ε) = x j(t j−1,z,ε)+
k

∑
i=0

ε
i
∫ t

t j−1

F j
i (s,x j(s,z,ε))ds+O(εk+1), and

x j(t,z,0) = x j(t j−1,z,0)+
∫ t

t j−1

F j
0 (s,x j(s,z,0))ds.

(5.17)

By the differentiable dependence of the solutions of a differential system on its parameters
the function ε ↦→ x j(t,z,ε) is a Ck+1 map. Then, the next step is to compute the Taylor expansion
of F j

i (t,x j(t,z,ε)) around ε = 0 and for this we use the Faá di Bruno’s Formula about the l-th
derivative of a composite function, which guarantees that if g and h are sufficiently smooth
functions then

dl

dα l g(h(α)) = ∑
Sl

l!
b1!b2!2!b2 . . .bl!l!bl

g(L)(h(α))
l⊙

j=1

(
h( j)(α)

)b j
,

where Sl is the set of all l-tuples of non-negative integers (b1,b2, . . . ,bl) satisfying b1 +2b2 +

. . .+ lbl = l, and L = b1 +b2 + . . .+bl .

For each i = 0,1, ...,k−1, expanding F j
i (s,x j(s,z,ε)) around ε = 0 we get

F j
i (s,x j(s,z,ε)) = F j

i (s,x j(s,z,0))+

k−i

∑
l=1

∑
Sl

ε l

b1!b2!2!b2 . . .bl!l!bl
∂

LF j
i (s,x j(s,z,0))

l⊙
m=1

r j
m(s,z)

bm,

(5.18)
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where
r j

m(s,z) =
∂ m

∂εm x j(s,z,ε)
∣∣∣
ε=0

,

and for i = k

F j
k (s,x j(s,z,ε)) = F j

k (s,x j(s,z,0))+O(ε). (5.19)

Substituting (5.18) and (5.19) in (5.17) we get

x j(t,z,ε) = x j(t j−1,z,ε)+
∫ t

t j−1

(
k

∑
i=0

ε
iF j

i (s,x j(s,z,0))ds

+
k−1

∑
i=0

k−i

∑
l=1

ε
l+i

∑
Sl

1
b1!b2!2!b2 . . .bl!l!bl

·∂ LF j
i (s,x j(s,z,0))

l⊙
m=1

r j
m(s,z)

bm

)
ds+O(εk+1).

Then, the proof of the lemma ends using the next two claims.

Claim 4. For j = 1,2, . . . ,n we have

x j(t,z,ε) = x j(t,z,0)+
k

∑
i=1

ε i

i!
r j

i (t,z)+O(εk+1).

Claim 5. The equality r j
i = w j

i holds for i = 1,2, . . . ,k and j = 1,2, . . . ,n.

The proof of Claims 4 and 5 can be done following the steps described in the proof of
Claims 1 and 2, in Chapter 4, respectively.

Proof of Theorem 5.5.1. Consider the displacement function

h(z,ε) = x(T,z,ε)− z = xn(T,z,ε)− z (5.20)

It is easy to see that x(·,z,ε) is a T -periodic solution if and only if h(z,ε) = 0. Moreover,
to study the zeros of (5.20) is equivalent to study the zeros of

g(z,ε) = Y−1
n (T,z)h(z,ε). (5.21)

From Lemma 5.5.2 we have that

xn(T,z,ε) = xn(T,z,0)+
k

∑
i=1

ε i

i!
wn

i (T,z)+O(εk+1), (5.22)

for all (t,z) ∈ S1 ×D. Replacing (5.22) in (5.21) it follows that

g(z,ε) = Y−1
n (T,z)

(
xn(T,z,0)− z+

k

∑
i=1

ε i

i!
wn

i (T,z)+O(εk+1)

)

= Y−1
n (T,z)(xn(T,z,0)− z)+

k

∑
i=1

gi(z)+O(εk+1)

=
k

∑
i=0

gi(z)+O(εk+1),

(5.23)
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where g0(z) = Y−1
n (T,z)(xn(T,z,0)− z).

From hypothesis (H) the function g0(z) vanishes on the submanifold Z , therefore
hypothesis (Hα ) holds for the function (5.23). In order to take the derivative of g0(z) with respect
to the variable z we have the next claim.

Claim 6. For every j ∈ {1,2, . . . ,n}

Yj(t j,z) =
∂x j

∂ z
(t j,z,0).

The proof will be done by induction on j. For j = 1 the claim is exactly the definition.
Suppose that the claim is valid for j = j0−1 and we shall prove it for j = j0. Since x j(t j−1,z,ε)=

x j−1(t j−1,z,ε) for all j = 1,2, . . . ,n we have

Yj0(t j0 ,z) =
∂x j0
∂ z

(t j0,z,0)
(

∂x j0
∂ z

(t j0−1,z,0)
)−1

Yj0−1(t j0−1,z)

=
∂x j0
∂ z

(t j0,z,0)
(

∂x j0−1

∂ z
(t j0−1,z,0)

)−1
∂x j0−1

∂ z
(t j0−1,z,0)

=
∂x j0
∂ z

(t j0,z,0).

Hence if z ∈ Z then

∂g0

∂ z
(z) = Y−1(T,z)

(
∂x
∂ z

(T,z,0)− Id
)

= Y−1(T,z)(Y (T,z)− Id)

= Id −Y−1(T,z),

which has by assumption its lower right corner (m−d)× (m−d) matrix ∆α nonsingular. From
here, the result follows from Proposition 5.4.2 and Theorem 5.1.1.

5.6 Examples

This section is devoted to present some applications of Theorem 5.5.1. The first one is as
3D piecewise smooth system for which the plane y = 0 is the discontinuous manifold and admits
a surface z = f (x,y) foliated by periodic solutions. The second one is a 3D piecewise smooth
system for which the algebraic variety xy = 0 is the discontinuous set and the plane z = 0 has a
piecewise constant center. For these systems, we compute some of the bifurcations functions in
order to study the persistence of periodic solutions.
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Nonsmooth perturbation of a 3D system

Let f : R2 → R and g : R2 → R be differential functions such that g(x,y) = f (x,y)+

x∂y f (x,y)− y∂x f (x,y). Consider the nonsmooth vector field

Xε(x,y,z) =


X+

ε (x,y,z), y > 0

X−
ε (x,y,z), y < 0

(5.24)

where

X+
ε (x,y,z) =

(
−y+ ε(a0 +a1z)+ ε2(a2 +a3z), x, −z+g(x,y)

)
, and

X−
ε (x,y,z) =

(
−y, x+ εb1z+ ε2(b2 +b3)z, −z+g(x,y)

)
,

with a0, a1, a2, b1, b2, b3 ∈ R. Denote the discontinuous se by Σ = {(x,y,z) ∈ R3 : y = 0}.

Notice that the surface z = g(x,y) is an invariant set of the unperturbed vector field X0.
Indeed, considering the function f̂ (x,y,z) = z− f (x,y), we get

⟨∇ f̂ (x,y,z),X0(x,y,z)⟩
∣∣
z= f (x,y) = 0.

Moreover, since X0(x,y, f (x,y)) =
(
−y,x,x∂y f (x,y)−y∂x f (x,y)

)
we conclude that the invariant

set z = f (x,y) is foliate by periodic solutions.

Next result gives suficient conditions in order to guarantee the persistence of some
periodic solution. Consider the function

f1(r) = a1

∫
π

0
f (r cosφ ,r sinφ)cosφdφ +b1

∫ 2π

π

f (r cosφ ,r sinφ)sinφdφ . (5.25)

Theorem 5.6.1. Consider the piecewise vector field (5.24). Then, for each r* > 0, such that
f1(r*) = 0 and f ′1(r

*) ̸= 0, there exists a crossing limit cycle ϕ(t,ε) of X of period Tε =

2π +O(ε) such that ϕ(t,ε) = (x*,y*, f (x*,y*))+O(ε) with |(x*,z*)|= r*.

In order to apply Theorem 5.5.1 for proving Theorem 5.6.1 we need to write system
(5.24) in the standard form. Considering cylindrical coordinates x = r cosθ , y = r sinθ , z = z,

the set of discontinuity becomes Σ = {θ = 0}∪{θ = t1} with t0 = 0, t1 = π and t2 = 2π . The
differential system (ẋ, ẏ, ż) = X+

ε (x,y,z) in cylindrical coordinates writes

r′(t) = ε(a0 +a1z)cosθ + ε
2(a2 +a3z)cosθ ,

z′(t) = g(r cosθ ,r sinθ)− z,

θ
′(t) = 1− ε

(a0 +a1z)sinθ

r
− ε

2 (a2 +a3z)sinθ

r
,
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and the differential system (ẋ, ẏ, ż) = X−
ε (x,y,z) becomes

r′(t) = εb1zsinθ + ε
2(b2 +b3z)sinθ ,

z′(t) = g(r cosθ ,r sinθ)− z,

θ
′(t) = 1+ ε

b1zcosθ

r
+ ε

2 (a2 +a3z)cosθ

r
.

(5.26)

Notice that, for each j = 1,2 and t j−1 ≤ θ ≤ t j, we have θ̇(t) ̸= 0 for |ε| ̸= 0 sufficiently
small. Thus, in a sufficiently small neighborhood of the origin we can take θ as the new
independent time variable. Accordingly, system (5.26) becomes

ṙ(θ) =
r′(t)
θ ′(t)

= F01(θ ,r,z)+ εF11(θ ,r,z)+ ε2F2(θ ,r,z)+O1(ε
3),

ż(θ) =
z′(t)
θ ′(t)

= F02(θ ,r,z)+ εF12(θ ,r,z))+ ε2F22(θ ,r,z)+O2(ε
3).

Considering the notation of Theorem 5.5.1 we have Fi(θ ,r,z) = (Fi1(θ ,r,z),Fi2(θ ,r,z)) for
each i ∈ {1,2}. Moreover, for each i ∈ {1,2} the function Fi(θ ,r,z) is written in the form
Fi(θ ,r,z) = ∑

2
j=1 χ[t j−1,t j](θ)F

j
i (θ ,r,z).

Defining f̃ (θ ,r) = f (r cosθ ,r sinθ) and g̃(θ ,r) = g(r cosθ ,r sinθ) we write explicitly
the expressions of F0,F

j
1 and F j

2 for j ∈ {1,2},

F0(θ ,r,z) = (0, g̃(θ ,r)− z),

F1
1 (θ ,r,z) =

(
(a0 +a1z)cosθ ,

(a0 +a1z)sinθ

r
(g̃(θ ,r)− z)

)
,

F2
1 (θ ,r,z) =

(
b1zsinθ ,−b1zcosθ

r
(g̃(θ ,r)− z)

)
,

F1
2 (θ ,r,z) =

(
(a2 +a3z)cosθ +

(a0 +a1z)2 sinθ cosθ

r
,

sinθ

r2

(
(a0 +a1z)2 sinθ

+(a2 +a3z)r)(g̃(θ ,r)− z)
)
,

F2
2 (θ ,r,z) =

(
(b2 +b3z)sinθ −

b2
1z2 sinθ cosθ

r
,

cosθ

r2

(
b2

1zcosθ − (b2 +b3z)r
)
(g̃(θ ,r)− z)

)
.

The unperturbed systems is smooth and its solution (r(θ ,r0,z0),z(θ ,r0,z0)) with initial
condition (r0,z0) is given by

r(θ) = r(θ ,r0,z0) = r0, z(θ) = z(θ ,r0,z0) = e−θ

(
z0 +

∫
θ

0
esg̃(s,r0)ds

)
. (5.27)
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Consequently, a fundamental matrix solution of (5.13) is given by

Y (θ ,r0,z0) =
∂ (r,z)

∂ (r0,z0)
(θ ,r0,z0) =


1 0

G(θ ,r0) e−θ

 ,

where G(θ ,r0) is the derivative of z(θ ,r0,z0) with respect to the variable r0. Notice that, from
(5.27), G(θ ,r0) does not depend on z0.

Let ε0 > 0 be a real positive number and consider the set Z ⊂ R2 such that Z =

{(r, f̃ (0,r)) : r > ε0}. Notice that for (r0,z0)= (r0, f̃ (0,r0))∈Z we have z(θ ,r0,z0)= f̃ (θ ,r0)=

f (r0 cosθ ,r0 sinθ). Indeed, let w(θ) = f (r0 cosθ ,r0 sinθ). So

w′(θ) = ∂x f (r0 cosθ ,r0 sinθ)(−r0 sinθ)+∂y f (r0 cosθ ,r0 sinθ)(r0 cosθ)

= g(r0 cosθ ,r0 sinθ)− f (r0 cosθ ,r0 sinθ)

= g(r0 cosθ ,r0 sinθ)−w(θ)

= g̃(θ ,r0)−w(θ).

The second equality holds because g(x,y)= f (x,y)+x∂y f (x,y)−y∂x f (x,y). Hence, for (r0,z0)∈
Z the solution z(θ ,r0,z0) is 2π-periodic. Moreover,

Id −Y−1(2π,r,z) =


0 0

? 1− e2π

 .

Consequently, ∆α = 1− e2π ̸= 0. Accordingly, all the hypotheses of Theorem 5.5.1 are satisfied.

Proof of Theorem 5.6.1. Denote by (r,zr) a point in Z , that is zr = f̃ (0,r). Notice that the
bifurcation function of first order is f1(r) = πg1(r,zr), where g1 is defined in (5.7). Indeed, from

definition f1(r) = πg1(r,zr)+
∂πg0

∂b
(r,zr)γ1(r). But

g0(r,z) = Y−1(2π,r,z)((r,z(2π,r,z)))− (r,z(0,r,z))) = (0,?),

and then πg0 ≡ 0. Moreover,

w1
1(θ ,r,z) =

(
a0 sinθ +a1

∫
θ

0
z(φ)cosφdφ , G(θ ,r)

(
a0 sinθ +a1

∫
θ

0
z(φ)cosφdφ

)
−

e−θ

∫
θ

0

(
eφ G(φ ,r)(a0 +a1z(φ))cosφ + sinφ

eφ (g̃(φ ,r)− z(φ))(a0 +a1z(φ))
r

)
dφ

)
,
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w2
1(θ ,r,z) =Y (θ ,r,z)

[
Y−1(π,r,z)w1

1(π,r,z)+
∫

θ

π

Y−1(φ ,r,z)F2
1 (φ ,r(φ),z(φ))dφ

]

=Y (θ ,r,z)

(
a1

∫
π

0
z(φ)cosφdφ +b1

∫
θ

π

z(φ)sinφdφ ,

∫
π

0

eφ ((a0 +a1z(φ))(sinφ(g(r cosφ ,r sinφ)− z(φ))− r cosφ G(φ ,r))
r

dφ

+
∫

θ

π

−b1eφ z(φ)(cosφ(g(r cosφ ,r sinφ)− z(φ))+ r sinφ G(φ ,r))
r

dφ

)
.

Since g1(r,z) = Y−1(2π,r,z)w2
1(2π,r,z) and f1(r) = πg1(r,zr) it follows that

f1(r) = a1

∫
π

0
f (r cosφ ,r sinφ)cosφdφ +b1

∫ 2π

π

f (r cosφ ,r sinφ)sinφdφ . (5.28)

So, from Theorem 5.5.1, each positive simple zero of (5.25) provides an isolated periodic solution
of system (5.24). This concludes this proof.

The next result is an application of Theorem 5.6.1. We shall use in its statement the
concept of Bessel functions, which are defined as the canonical solutions y(x) of Bessel’s
differential equation

x2 d2y
dx2 + x

dy
dx

+(x2 −α
2)y = 0, α ∈ C.

This equation has two linearly independent solutions. Using Frobenius’ method we obtain one of
these solutions, which is called a Bessel function of the first kind, and is denoted by Jα(x). More
details about this function can be found in (WATSON, 1995).

Corollary 5.6.2. Consider the piecewise vector field (5.24).

(a) If f (x,y)= cosx, then the piecewise smooth vector field X admits a sequence of limit cycles
ϕi(t,ε) of X of period Tε such that Tε = 2π +O(ε), ϕn(t,ε) = (x*n,y

*
n,cos(x*n))+O(ε),

and |(x*n,z*n)|= nπ/2.

(b) If f (x,y) = sinx, then the piecewise smooth vector field X admits a sequence of limit cycles
ϕi(t,ε) of X of period Tε such that Tε = 2π +O(ε), ϕi(t,ε) = (x*n,y

*
n,sin(x*n))+O(ε),

and |(x*n,z*n)|= r*n, where each rn is a zero of the Bessel Function of First Kind, J1(r).

Proof. For f (x,y) = cosx, the bifurcation function (5.28) reads f1(r) =−(2b1 sinr)/r, and for
f (x,y) = cos(x), the bifurcation function (5.28) reads f1(r) = a1πJ1(r). Therefore the result
follows directly from Theorem 5.6.1.
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Notice that Theorem 5.6.1 cannot be applied when f1 is identically zero, which is the
case when f (x,y) = 2x2 − y2 for instance. For these cases we define the function

f2(r) =
∫

π

0

(
a1 coss

(
G(s,r)

∫ s

0
cosφ(a0 +a1 f̃ (φ ,r))dφ

− e−s
∫ s

0
eφ (a0 +a1 f̃ (φ ,r))(r cosφ G(φ ,r)+( f̃ (φ ,r)− g̃(φ ,r))dφ

+a2 +a3 f̃ (φ ,r)+
sins

r
(a0 +a1 f̃ (s,r))2

))
ds

+
e−2π(1+ eπ)

2(1− e2π)
(a1eπ −b1)

[∫
π

0
eφ G(φ ,r)cosφ(a0 +a1 f̃ (φ ,r))dφ

+
∫

π

0

eφ sinφ

r
(a0 +a1 f̃ (φ ,r))(g̃(φ ,r)− f̃ (φ ,r))dφ

+b1

∫ 2π

π

eφ G(φ ,r)sinφ f̃ (φ ,r)dφ +
b1

r

∫ 2π

π

eφ cosφ(g̃(φ ,r)− f̃ (φ ,r))dφ

]
+
∫ 2π

π

(
2
r
(−b2

1 coss( f̃ (s,r))2 + sins(b2 +b3 f̃ (s,r)))

+2b1 sins
(

G(s,r)
∫

π

0
cosφ(a0 +a1 f̃ (φ ,r))+b1G(s,r)

∫ s

π

sinφ f̃ (φ ,r)dφ

+ e−s
(∫

π

0
−eφ cosφ G(φ ,r)(a0 +a1 f̃ (φ ,r))+

eφ sinφ

r
(g̃(φ ,r)− f̃ (φ ,r))dφ

+b1

∫ s

π

eφ

(
cosφ

r
( f̃ (φ ,r)− g̃(φ ,r))−G(φ ,r)sinφ

)
dφ

)))
ds.

(5.29)

Theorem 5.6.3. Consider the piecewise vector field (5.24). Assume that f1 ≡ 0. Then, for each
r* > 0, such that f2(r*) = 0 and f ′2(r

*) ̸= 0, there exists a crossing limit cycle ϕ(t,ε) of X of
period Tε such that Tε = 2π +O(ε), ϕ(t,ε) = (x*,y*, f (x*,y*))+O(ε), and |(x*,z*)|= r*.

Proof. As we saw before πg0 ≡ 0. So, from (5.3), we compute the bifurcation function of order
2 as

f2(r) =
∂πg1

∂b
(r,zr)γ1(r)+πg2(r,zr), (5.30)

where γ1(r) =− 1
1− e2π

π⊥g1(r,zr) and

π
⊥g1(r,zr) =

∫
π

0

eφ ((a0 +a1 f̃ (φ ,r))(sinφ(g(r cosφ ,r sinφ)− f̃ (φ ,r))− r cosφG(φ ,r,z))
r

dφ

−b1

∫ 2π

π

eφ f̃ (φ ,r)(cosφ(g(r cosφ ,r sinφ)− f̃ (φ ,r))+ r sinφG(φ ,r,z))
r

dφ .

From Proposition 5.4.2, we have g2(r,zr) = Y−1(2π,r,z)w2
2(2π,r,z)/2, where w j

i (2π,r,z) is
given in Lemma 5.4.1. All these functions may be computed to get (5.30) as (5.29). Again, from
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Theorem 5.5.1, each positive simple zero of (5.29) provides an isolated periodic solution of
system (5.24). This concludes this proof.

The next result is an application of Theorem 5.6.3.

Corollary 5.6.4. Consider the piecewise vector field (5.24) and let f (x,y) = 2x2−y2. Assuming
a2

1 +b2
1 ̸= 0 define

A0 =
−80b2(1− eπ)

(1+ eπ)4(15a1b1 −b2
1 −14a2

1)−5π(1− eπ)(b1
1 +10a2

1)
,

A1 =
40a0((1+ eπ)(b1 −a1)−a1π(1− eπ)

(1+ eπ)4(15a1b1 −b2
1 −14a2

1)−5π(1− eπ)(b1
1 +10a2

1)
,

(5.31)

and D =−4A3
1 −27A2

0.

(i) If D > 0 then the piecewise smooth vector field admits at least one limit cycle. Moreover,
if A1 < 0 and A0 > 0, then the piecewise smooth vector field admits at least two limit
cycles;

(ii) If D ≤ 0 and A0 < 0, then the piecewise smooth vector field admits at least one limit cycle.

Moreover, in both cases we have a limit cycle ϕ(t,ε) of X of period Tε such that Tε = 2π +O(ε),
ϕ(t,ε) = (x*n,y

*
n,2(x

*
n)

2 − (y*n)
2)+O(ε), and |(x*n,z*n)|= r*n.

Proof. For f (x,y) = 2x2 − y2 the bifurcation function (5.29) becomes

f2(r) =−2b2 +
a0 ((eπ(1−π)+1+π)a1 − (1+ eπ)b1)

eπ −1
r

+

(
−(eπ(56−50π)+56+50π)a2

1 +60(1+ eπ)a1b1 − (eπ(4−5π)+4+5π)b2
1
)

40(eπ −1)
r3.

(5.32)

Dividing f2 by a2
1 + b2

1 ̸= 0, we see that the equation f2(r) = 0 is equivalent to f̃2(r)
.
= A0 +

A1r+ r3 = 0, where A0 and A1 are given in (5.31).

Notice that f̃2(r) is a polynomial function of degree 3, so it has at least one real root and
can be written as f̃2(r) = r3−(r1+r2+r3)r2+(r1r2+r1r3+r2r3)r−r1r2r3, where ri, i= 1,2,3
are the zeros of the polynomial. Moreover, the sign of its discriminant D =−4A3

1 −27A2
0 carries

information about its number of real roots.

If D > 0 the polynomial f̃2(r) has three simple real roots r1,r2 and r3. Since the polyno-
mial has no quadratic term, it follows that r1 + r2 + r3 = 0 and then at least one of these roots
must be positive. Moreover, if A1 < 0 and A0 > 0 then there are two changes of sign between the
terms of the polynomial and then by Descartes Sign Theorem we get the two positive roots.
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If D ≤ 0 then there is a pair of complex roots or a double real root. In both cases the
condition A0 < 0 implies that at least one root is positive.

Now, from Theorem 5.5.1, each positive simple zero of (5.32) provides an isolated
periodic solution of system (5.24). This concludes this proof.

Nonsmooth perturbation of a nonsmooth center

In this example we consider a discontinuous differential system in R3 defined in 4 zones
(n = 4). Consider the nonsmooth vector field

X(u,v,w) =



X1(u,v,w) if u > 0 and v > 0,

X2(u,v,w) if u < 0 and v > 0,

X3(u,v,w) if u < 0 and v < 0,

X4(u,v,w) if u > 0 and v < 0,

(5.33)

where

X1(u,v,w) = (−1+ ε(a1x+b1), 1,−w+ ε(c1x+d1)) ,

X2(u,v,w) = (−1+ ε(a2x+b2),−1,−w+ ε(c2x+d2)) ,

X3(u,v,w) = (1+ ε(a3x+b3),−1,−w+ ε(c3x+d3)) ,

X4(u,v,w) = (1+ ε(a4x+b4), 1,−w+ ε(c4x+d4)) ,

with a j,b j,c j,d j ∈ R for all j.

Writing in cylindrical coordinates u= r cosθ , v= r sinθ , w=w, the set of discontinuity is
Σ= {θ = 0}∪{θ = t1}∪{θ = t2}∪{θ = t3} with t0 = 0, t1 = π/2, t2 = π, t3 = 3π/2 and t4 = 2π .
For each j = 1,2,3,4 the differential system (u̇, v̇, ẇ) = X j(u,v,w) in cylindrical coordinates
writes

r′(t) = g j(θ)+
k

∑
i=1

ε
i(ai jr cos2

θ +bi j cosθ),

w′(t) =−w+
k

∑
i=1

ε
i(ci jr cosθ +di j cosθ),

θ
′(t) =

1
r

(
ĝ j(θ)−

k

∑
i=1

ε
i(ai jr cosθ sinθ +bi j sinθ)

)
,
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where

g1(θ) = sinθ − cosθ , ĝ1(θ) = sinθ + cosθ ,

g2(θ) =−(sinθ + cosθ), ĝ2(θ) = sinθ − cosθ ,

g3(θ) =−sinθ + cosθ , ĝ3(θ) =−(sinθ + cosθ),

g4(θ) = sinθ + cosθ , ĝ4(θ) =−sinθ + cosθ .

Notice that, for each j = 1,2,3,4 and t j−1 ≤ θ ≤ t j, θ̇(t) ̸= 0 for |ε| sufficiently small. Thus,
in a sufficiently small neighborhood of the origin we can take θ as the new independent time
variable by doing r′(θ) = ṙ(t)/θ̇(t) and w′(θ) = ẇ(t)/θ̇(t). Taking θ as the new independent
time variable we have

r′(θ) = F j
01(θ ,z)+ εF j

11(θ ,z)+O1(ε
2),

w′(θ) = F j
02(θ ,z)+ εF j

12(θ ,z)+O2(ε
2).

(5.34)

Here, z = (r,w) and the prime denotes the derivative with respect to θ . The expressions of F j
01

and F j
02 for j = 1,2,3,4 are given by

F1
01 =

r(sinθ − cosθ)

sinθ + cosθ
, F1

02 =
−rw

sinθ + cosθ
, F2

01 =
r(sinθ + cosθ)

cosθ − sinθ
, F2

02 =
rw

cosθ − sinθ
,

F3
01 =

r(sinθ − cosθ)

sinθ + cosθ
, F3

02 =
rw

sinθ + cosθ
, F4

01 =
r(sinθ + cosθ)

cosθ − sinθ
, F4

02 =
−rw

cosθ − sinθ
.

The expressions of F j
11 and F j

12 for j = 1,2,3,4 are also easily computed. Nevertheless, we shall
omit these expressions because of their size.

For each j ∈ {1,2,3,4}, the differential system (5.34) is 2π-periodic in the variable θ

and is written in the standard form with

F j
i (θ ,z) =

(
F j

i1(θ ,z),F
j

i2(θ ,z)
)
,

for i = 0,1. Now, for each j ∈ {1,2,3,4} we compute the solution x j(θ ,z,0) of the unperturbed
system

ṙ(θ) = F j
01(θ ,z), ẇ(θ) = F j

02(θ ,z).
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and this solution is

x1(θ ,z,0) =
(

r
sinθ+cosθ

,we−
r sinθ

sinθ+cosθ

)
,

x2(θ ,z,0) =
(

−r
cosθ−sinθ

,we−
r sinθ

cosθ−sinθ
−2r
)
,

x3(θ ,z,0) =
(

−r
sinθ+cosθ

,we−
r sinθ

sinθ+cosθ
−2r
)
,

x4(θ ,z,0) =
(

r
cosθ−sinθ

,we−
r sinθ

cosθ−sinθ
−4r
)
.

We note that in each quadrant the denominators of these four solutions never vanish.

Let 0 < r0 < r1 be positive real numbers and consider the set Z ⊂ R2 such that
Z = {(α,0) : r0 < α < r1}. The solution x(θ ,z,0) of the unperturbed system x′(θ) = F0(θ ,z)

satisfies x(θ ,z,0) = x j(θ ,z,0), for θ ∈ [t j−1, t j], and x(2π,z,0)− x(0,z,0) = (0,z(1− e−4r)).
Consequently, for each zα ∈ Z , the solution x(θ ,z,0) is 2π-periodic and system (5.33) satisfies
hypothesis (H). Moreover, the fundamental matrix Y (θ ,z) is given by

Y (θ ,z) =



Y1(θ ,z) if 0 = t0 ≤ θ ≤ π/2,

Y2(θ ,z) if π/2 ≤ θ ≤ π,

Y3(θ ,z) if π ≤ θ ≤ 3π/2,

Y4(θ ,z) if 3π/2 ≤ θ ≤ 2π,

where Yj(t,z) are defined by (5.14). So

Y1(θ ,z) =


1

g4(θ)
0

−e
− r sinθ

g4(θ) wsinθ

g4(θ)
e−

r sinθ

g4(θ)

 ,

Y4(θ ,z) =


1

g3(θ)
0

−e
− r sinθ

g3(θ)
−4r

w(sinθ+4g3(θ))
g3(θ)

e
− r sinθ

g3(θ)
−4r

 .

Hence,

Y1(0,z)−1 −Y4(2π,z)−1 =


0 0

−4w 1− e4r

 ,

and then det(∆α) = 1− e4r ̸= 0 if zα = (α,0) ∈ Z . Thus, we can compute the bifurcation
functions (5.3) for system (5.33). For doing this we first obtain the functions (5.15) corresponding
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to this system,

g0(θ ,z) = (0,w(1− e4r)),

w4
1(2π,z) =

(1
2

r(r(a1 +a2 +a3 +a4)+2(b1 −b2 −b3 +b4)),

1
3

e−4r(−r2w(6a1 +3a2 +2a3)−3r(w(4b1 −2b2 −b3)

+e2r(−e2rc4 + c2 + c3)+ c1)+3(er −1)(er(c2 +d2)

+e2r(c3 −d3)+ e3r(d4 − c4)+ c1 +d1))
)
,

and
g1(z) = Y4(2π,z)−1w4

1(2π,z). (5.35)

So, the bifurcation function (5.3) corresponding to the function (5.35) becomes

f1(α) =
1
2

α(α(a1 +a2 +a3 +a4)+2(b1 −b2 −b3 +b4)),

which has a simple zero α*. So, from Theorem 5.5.1, we get the existence of an isolated periodic
solution of system (5.34) for ε sufficiently small.
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CHAPTER

6
FINAL CONSIDERATIONS

The object of study of this thesis was the invariant curves for some families of differential
systems. This study was done in two parts: invariant algebraic cubics for planar polynomial
systems and periodic solutions for non–smooth differential systems. In fact, considering the
planar differential system

ẋ = P(x,y), ẏ = Q(x,y), (6.1)

where P and Q are polynomial in the variables x,y of degree two, first we investigated the
conditions under the parameters of P and Q in order that system (6.1) had an invariant cubic.
Secondly, under the conditions obtained, we drew the non–equivalent and realizable phase
portraits for systems that had a Darbouxian integral. To draw the phase phase portraits it was
used classical results on qualitative theory, as the theorems that classify semi–hyperbolic and
non–elementary singular points, founded in (DUMORTIER; LLIBRE; ARTÉS, 2006). The
greatest difficulty in this study was to work with the number of parameters that the systems
presented. We obtained systems with many parameters and in some cases we had to study their
singularities (and respective topological types) without being able to reduce this number.

In this line of research, future plans are to consider a system of type (6.1), but with P

and Q polynomials of degree n arbitrary. The objective is to study the conditions so that it has an
invariant cubic and a Darboux invariant. We expect to achieve a classification in terms of normal
forms for systems with such conditions.

The second part of this thesis was devoted to studying periodic orbits in systems on the
form

ẋ = F0(t,x)+
k

∑
i=1

ε
kFi(t,x)+ ε

k+1R(t,x,ε), (6.2)

where Fi(t,x) are piecewise smooth functions defined in S1 ×D, for i = 0,1, . . . ,k and D ⊂ Rn

was a bounded open subset of Rn. For k = 1 in (6.2) we presented the classical averaging theory
(averaging theory of first order) and we apply it in some systems defined in the plane, in R3 and
to a center defined in Rn, with n even. For k arbitrary also presented the classical theorems but
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the main result was the extension of the averaging theory for a family of non–smooth differential
systems. The simple zeros of the called averaged functions controlled very well the number of
periodic solutions of system (6.2). To prove this, one of the hypothesis in this extension was that
the all solutuions of the unperturbed system ẋ = F0(t,x) was T –periodic for each ρ ∈ D ⊂ Rn.
In other words the manifold Z of periodic solutions of the unperturbed system had dimension
m = n.

When this hypothesis is not vallid, that is, the dimension of Z is m < n then the averaing
theory is no sufficient for estimate the number of periodic solutions of system (6.2). So we aslo
used the Lyapunov–Schmidt Reduction to obtain the bifurcation functions, whose simple zeros
controls this number.

In both cases we give the reader examples and the explicit formulas for the calculation
and implementation of the averaged and bifurcation functions. For the examples we used the
software Mathematica.

In addition to demonstrating the extensions, calculating the functions and estimating
their number of zeros was one of the great difficulties in developing this part of the thesis. It
is important to note that many families of non–smooth systems can already be studied using
the theories developed in this thesis. We have made a significant contribution to the study of
periodic orbits in differential systems as in (6.2). We now expect to study other invariant sets for
discontinuous systems, developing new tools and seeking to contribute more and more to the
qualitative study of these systems.
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APPENDIX

A
NONSMOOTH DIFFERENTIAL SYSTEMS OF

KUKLES’ TYPE

During the master’s degree, we studied a particular discontinuous differential system,
which we call the generalized Kukles polynomial differential system. A first version of this work
can be found in (RODRIGUES, 2015). After improvements in the results, it was accepted for
publication in the year 2018. In this appendix we put the final version entitled “Limit cycles
for a class of discontinuous piecewise generalized Kukles” differential systems and published
in Nonlinear Dynamics. The objective is to give an estimative to the number of limit cycles
which bifurcate from the periodic orbits of the linear center ẋ = y, ẏ = −x by the averaging
method of first order when it is perturbed inside a class of discontinuous generalized Kukles
differential systems defined in 2l−zones, l = 1,2,3, ..., in the plane. The classical Kukles system
was introduced by Kukles in (KUKLES, 1944) where necessary and sufficient conditions for the
system

ẋ = −y,

ẏ = x+a0y+a1x2 +a2xy+a3y2 +a4x3 +a5x2y+a6xy2 +a7y3,

to have a center at the origin are presented. The existence of a center or focus for such system
was considered by Sadovskii in (SADOVSKII, 2003) when a2a7 ̸= 0. He also proved that such
system can have up till seven limit cycles. Zang et al. (ZANG et al., 2008) studied the number
and distribution of limit cycles for a class of reduced Kukles systems under cubic perturbation.
Chavarriga et al. (CHAVARRIGA et al., 2004) studied the maximum number of the small
amplitude limit cycles for Kukles system which can coexist with some invariant algebraic curves.
Llibre and Mereu (LLIBRE; MEREU, 2011) studied the maximum number of limit cycles which
can bifurcate from the periodic orbits of the linear center ẋ = y, ẏ =−x using averaging method
of first and second orders when the system is perturbed inside of the class of generalized Kukles
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polynomial differential systems

ẋ = y,

ẏ =−x− ∑
k≥1

ε
k( f k

n1
(x)+gk

n2
(x)y+hk

n3
(x)y2 +dk

0y3),

(A.1)

where for every k the polynomials f k
n1
,gk

n2
,hk

n3
have degree n1,n2 and n3 respectively, dk

0 ̸= 0 is a
real number and ε is a small parameter.

Here our main objective is investigating an estimative to the number of limit cycles given
by the averaging method of first order which bifurcate from the periodic orbits of the linear
center ẋ = y, ẏ = −x when it is perturbed inside a class of discontinuous generalized Kukles
differential systems defined in 2l−zones, l = 1,2,3, ..., in the plane.

We play with many straight lines of discontinuity passing through the origin and with two
different continuous Kukles system (of the form (A.1)) located alternatively in the zones defined
by such straight lines. These ideas appear in the study of two distinct classes of discontinuous
generalized Lienard polynomial differential equation, see (LLIBRE; MEREU et al., 2013)
and (LLIBRE; TEIXEIRA, 2015). In (LLIBRE; TEIXEIRA, 2015) the authors provide lower
bounds for the maximum number of limit cycles for the m-piecewise discontinuous polynomial
differential equations

ẋ = y+ sign(gm(x,y))F(x), ẏ =−x,

where the zero set of the function sign(gm(x,y)) with m = 2,4,6, ... is the product of m/2 straight
lines passing through the origin of coordinates and sign(z) denotes the sign function z. Note that
such lines divide the plane into zones of angle 2π/m. It is worth mentioning that the division of
the plane by straight lines passing through a vertex also appear in (AKHMET; ARUĞASLAN,
2009) where the authors investigate non-smooth planar systems with discontinuous right-hand
sides.

A.1 Statement of the main results

Let l be a natural number and hα the function hα : R2 → R given by

hα(x,y) =
l−1

∏
k=0

(
y− tan

(
α +

kπ

l

)
x
)
, (A.2)

for a fixed α ∈
(
−π

l
,
π

l

)
.

The set h−1
α (0) is the product of l straight lines passing through the origin of coordinates

dividing the plane in 2l− zones with angles π/l.
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Consider the discontinuous differential system

Ẋ =

X1(x,y), if hα(x,y)> 0,

X2(x,y), if hα(x,y)< 0,
(A.3)

where

X j(x,y) =

(
y

− x− ε( f j
n1
(x)+g j

n2
(x)y+h j

n3
(x)y2 +d j

0y3)

)

with f j
n1(x), g j

n2(x) and h j
n3(x) polynomials of degrees n1, n2 and n3 respectively, and d j

0 is a
nonzero real number for j = 1,2.

System (A.3) also can be written as

Ẋ = G1(x,y)+ sign(hα(x,y))G2(x,y),

where

G1(x,y) =
1
2
(X1(x,y)+X2(x,y))

and

G2(x,y) =
1
2
(X1(x,y)−X2(x,y)).

The main results are the following

Theorem A.1.1. Suppose j = 1,2, f j
n1(x), g j

n2(x) and h j
n3(x) polynomials of degree n1,n2 and

n3 (greater or equal to one) respectively, d j
0 a nonzero constant and l ∈ {1,2,3}. For |ε| > 0

sufficiently small the averaging theory of first order provides the existence of at most m(l) small
limit cycles of the discontinuous piecewise generalized Kukles differential system (A.3) where

i) m(1) = max
{

2
[n1

2

]
,n2 +1,2

[
n3 +2

2

]
,3
}

;

ii) m(2) = max
{[

n1 −1
2

]
,
[n2

2

]
,

[
n3 +1

2

]
,1
}

;

iii) m(3) = max
{

2
[n1

2

]
,n2 +1,2

[
n3 +2

2

]
,3
}
−1.

For the smooth case the authors in (LLIBRE; MEREU, 2011) show that the averaging
theory of first order provides the existence of at most max

{[n2

2

]
,1
}

small limit cycles to the
generalized Kukles polynomial differential systems.

The prove Theorem A.1.1 we use the averaging theory of first order, presented in Chapther
3. First we write

f 1
n1
(x) =

n1

∑
i=0

aixi, g1
n2
(x) =

n2

∑
i=0

bixi, h1
n3
(x) =

n3

∑
i=0

cixi,
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f 2
n1
(x) =

n1

∑
i=0

dixi, g2
n2
(x) =

n2

∑
i=0

eixi, h2
n3
(x) =

n3

∑
i=0

mixi.

Doing the change of coordinates x = r cosθ , y = r sinθ and taking θ as the new independent
variable, system (A.3) takes the form

dr
dθ

= ε sinθPj(r,θ)+O(ε2), (A.4)

where

P1(r,θ) =
n1

∑
i=0

airi cosi
θ +

n2

∑
i=0

biri+1 cosi
θ sinθ +

n3

∑
i=0

ciri+2 cosi
θ sin2

θ +d1
0r3 sin3

θ ,

and

P2(r,θ) =
n1

∑
i=0

diri cosi
θ +

n2

∑
i=0

eiri+1 cosi
θ sinθ +

n3

∑
i=0

miri+2 cosi
θ sin2

θ +d2
0r3 sin3

θ .

Note that system (A.4) satisfies the hypothesis of Theorem 3.2.2 therefore we can
estimate the number of limit cycles of system (A.3) estimating the number of zeros of the
averaged function (3.7).

Denoting by

ϕi jl(α) =
l

∑
k=1

∫
α+

(2k−1)π
l

α+
2(k−1)π

l

cosi
θ sin j

θdθ and ϕ i jl(α) =
l

∑
k=1

∫
α+ 2kπ

l

α+
(2k−1)π

l

cosi
θ sin j

θdθ ,

the averaged function (3.7) becomes

f (r) =
n1

∑
i=0

ri
[

aiϕi1l(α)+diϕ i1l(α)

]
+

n2

∑
i=0

ri+1
[

biϕi2l(α)+ eiϕ i2l(α)

]
+

n3

∑
i=0

ri+2
[

ciϕi3l(α)+miϕ i3l(α)

]
+r3

[
d1

0ϕ04l(α)+d2
0ϕ04l(α)

]
.

(A.5)

The next lemma yields some relations between the functions ϕi jl and ϕ i jl for any i, j ∈N
when l ̸= 0.

Lemma A.1.2. For each i ∈ N and l ̸= 0 the following holds

a) ϕi1l =−ϕ i1l,

b) ϕi3l =−ϕ i3l.

c) If i is odd then ϕi2l =−ϕ i2l.
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Proof. For each l ̸= 0 we have that

(ϕi1l +ϕ i1l)(α) =
l

∑
k=1

∫
α+ 2kπ

l

α+
2(k−1)π

l

cosi
θ sinθdθ =

∫
α+2π

α

cosi
θ sinθdθ = 0.

Analogously,

(ϕi3l +ϕ i3l)(α) =
l

∑
k=1

∫
α+ 2kπ

l

α+
2(k−1)π

l

cosi
θ sin3

θdθ =
∫

α+2π

α

cosi
θ sin3

θdθ = 0.

Moreover, (ϕi2l +ϕ i2l)(α) =
∫

α+2π

α

cosi
θ sin2

θdθ . Assuming i = 2m+1 item c) fol-
lows directly from the formulae 2.511-4 of (GRADSHTEYN; RYZHIK, 2014)∫

cos2m+1
θ sin2

θdθ =
sin3

θ

2m+3

(
cos2m

θ +
m

∑
j=1

A j,m cos2m−2 j
θ

)
, (A.6)

where

Am, j =
2 jm(m−1)...(m− j+1)

(2m+1)(2m−1)...(2m−2 j+3)
. (A.7)

Remark A.1.3. It follows from the previous lemma

1) ϕi2l(α),ϕ i2l(α)> 0 for all l ̸= 0 and α ∈ R when i is even.

2) As sin4
θ ≥ 0, ϕ04l(α),ϕ04l(α)> 0 for all α ∈ R.

In order to establish the number of zeros of the averaged function it remains to study
some of the functions ϕi1l,ϕi3l and ϕi2l for some values of i ∈ N and l ̸= 0. But to do it we must
to fix the number l ̸= 0.

A.1.1 Proof of item (i)(case l = 1).

Fix α ∈ (−π,π)∖{±π/2}. The cases α =±π/2 will be considered separately. If l = 1
then Σ = h−1

α (0), where hα(x,y) = y− (tanα)x.

The following lemmas are useful to give the maximum number of zeros of the averaged
function (A.5) in the case l = 1.

Lemma A.1.4. ϕi11 ≡ 0 when i is odd. Otherwise ϕi11 does not vanish except to α =±π

2 .

Proof. From the definition of the function ϕi11 we get

ϕi11(α) =
∫

α+π

α

cosi
θ sinθdθ =−(−1)i+1 cosi+1 α − cosi+1 α

i+1
=


0 if i is odd,

2
cosi+1 α

i+1
if i is even.

Then if i is even ϕi11(α) vanishes if and only if α =±π/2.
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Lemma A.1.5. The functions ϕi21 do not vanish when i is odd and α ̸= 0.

Proof. If i = 1 then ϕ121(α) =−2
3 sin3

α . So ϕ121 = 0 if and only if α = 0.

If i > 1 is odd we write i = 2m+1 for some m ∈ N∖{0} and from (A.6) we get

ϕ(2m+1)21(α) =−2
sin3

α

2m+3

( m

∑
j=1

Am, j cos2m−2 j
α + cos2m

α

)
.

Then ϕ(2m+1)20(α) = 0 if and only if α = 0.

Lemma A.1.6. The function ϕi31 does not vanish for i even and α ̸=±π

2 . Moreover ϕi31 ≡ 0 if
i is odd.

Proof. We have

ϕi31(α) = (−1)i+3 cosi+3 α−cosi+3 α

i+3 − (−1)i+1 cosi+1 α−cosi+1 α

i+1

=


0 if i is odd,

2
(

cosi+1 α

i+1
− cosi+3 α

i+3

)̸
= 0 if i is even.

So the function ϕi31(α) vanishes if and only if i odd or α =±π

2 .

Proof of Theorem A.1.1 (i). By the previous lemmas the averaged function is given by

f (r) =
n1

∑
i=0

i even

Ai(α)(ai −di)ri +
n2

∑
i=0

i even

Bi(α)(bi + ei)ri+1

+
n2

∑
i=1
i odd

Ci(α)(bi − ei)ri+1 +
n3

∑
i=0

i even

Di(α)(ci −mi)ri+2

+(E1(α)d1
0 +E2(α)d2

0)r
3,

where the functions Ai(α) and Di(α) do not vanish if α ̸= ±π

2 , Bi(α),E1(α),E2(α) > 0 and
Ci(α) ̸= 0 if α ̸= 0.

Then the averaged function is a polynomial function of degree m where m is given by

(i) m = max{n2 +1,3}, if α ∈
{
−π

2 ,
π

2

}
;

(ii) m = max
{

2
[

n1
2

]
,2
[

n2
2

]
+1,2

[
n3+2

2

]
,3
}

, if α = 0;

(iii) m = max
{

2
[

n1
2

]
,n2 +1,2

[
n3+2

2

]
,3
}

, if α ̸∈ {0,±π

2}.
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Therefore, the maximum number of zeros of the averaged function is also m.

Moreover it is possible to choose the coefficients ai,bi,ci,di,ei,mi and d j
0 and α in the ex-

pression of the averaged function such that f (r) has exactly m(1)=max
{

2
[

n1
2

]
,n2 +1,2

[
n3+2

2

]
,3
}

simple positive roots. As the maximum number of zeros is reached we conclude from Theorem
3.7 that system (A.3) provides at most m(1) limit cycles, each one with period near to 2π .

A.1.2 Proof of item (ii)(case l = 2).

In this case Σ = {(x,y) : (y− (tanα)x)(y+ tan(α + π

2 )x) = 0}, with α ∈ (−π/2,π/2).

Lemma A.1.7. ϕi12 ≡ 0 if i is even. Otherwise ϕi12 do not vanish except for α =±π

4 .

Proof. It is easy to see that

ϕi12(α) =


0 if i is even,

2
cosi+1 α − sini+1

α

i+1
if i is odd.

So ϕ112(α) = 0 if and only α =±π

4 ,±
3π

4 . For any other i odd, i+1 = 2n for some n ∈ N and

cos2n
α − sin2n

α =

(
∑

k+ j=2(n−1)
cosk

α sin j
α + sin2n−2

α + cos2n−2
α

)
(cos2

α − sin2
α).

Then the zeros of the function ϕi12(α) are ±π

4 in the established interval.

Lemma A.1.8. The function ϕi22 ≡ 0 if i is odd.

Proof. If i = 1 then ϕ122(α) = 0. If i is odd, i > 1, applying (A.6) to get

ϕi22(α) =
sin3 (

α + π

2

)
2m+3

(
cos2m (α + π

2

)
+

m

∑
j=1

Am, j cos2m−2 j
(

α +
π

2

))

+
sin3(α + 3π

2 )

2m+3

(
cos2m (α + 3π

2

)
+

m

∑
j=1

Am, j cos2m−2 j
(

α +
3π

2

))

− sin3
α

2m+3

(
cos2m α +

m

∑
j=1

Am, j cos2m−2 j
α

)

−sin3(α +π)

2m+3

(
cos2m(α +π)+

m

∑
j=1

Am, j cos2m−2 j(α +π)

)
,

where Am, j is given in (A.7).

Using trigonometric relations we have

ϕi22(α) =
cos3 α

2m+3

(
sin2m

α +
m

∑
j=1

Am, j sin2m−2 j
α

)
− sin3

α

2m+3

(
cos2m

α +
m

∑
j=1

Am, j cos2m−2 j
α

)

− cos3 α

2m+3

(
sin2m

α +
m

∑
j=1

Am, j sin2m−2 j
α

)
+

sin3
α

2m+3

(
cos2m

α +
m

∑
j=1

Am, j cos2m−2 j
α

)
= 0.
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Lemma A.1.9. The function ϕi32 is identically null if i is even. Otherwise its zeros are α =±π

4 .

Proof. From straightforward calculations we conclude that ϕi32(α)≡ 0 for any even i. Otherwise

ϕi32(α) =
2

i+3
(sini+3

α − cosi+3
α)+

2
i+1

(−sini+1
α + cosi+1

α).

Besides α = ±π

4 are roots of the function ϕi32(α) when i is odd. To show that these are the
unique roots in the established interval we study the sign of its derivative

ϕ
′
i32(α) =−2(cosi

α sin3
α + cos3

α sini
α).

Note that for α ∈ (−π

2 ,0), ϕ ′
i32(α)> 0 and hence ϕi32(α) is strictly increasing. For α ∈ (0, π

2 ),
ϕ ′

i32(α) < 0 and hence ϕi32(α) is strictly decreasing. So the unique roots of ϕi32(α) in the
established interval are α =±π

4 .

Proof of Theorem A.1.1 (ii). It follows from Lemmas A.1.7 – A.1.9 that the averaged function
is given by

f (r) =
n1

∑
i=1

i odd

Ai(α)(ai −di)ri +
n2

∑
i=0

i even

(Bi(α)bi +Bi(α)ei)ri+1

+
n3

∑
i=1

i odd

Ci(α)(ci −mi)ri+2 +(E1(α)d1
0 +E2(α)d2

0)r
3,

where Ai(α) and Ci(α) are not zero except when α =±π

4 and Bi(α),Bi(α) are not zero for any
α .

Then the averaged function f (r) is a polynomial of degree m where m is given by

1) m = max
{

2
[

n1−1
2

]
+1,2

[
n2
2

]
+1,2

[
n3+1

2

]
+1,3

}
, if α ̸∈

{
−π

4 ,
π

4

}
;

2) m = max
{

2
[

n2
2

]
+1,3

}
otherwise.

Moreover if α ̸=±π

4 the averaged function is an odd function hence it has at most m−1
2 positive

roots. From the averaging theory it follows item (ii) of Theorem A.1.1.

Moreover it is not difficult to verify that the averaged function has independent coef-
ficients (the coefficients are polynomial functions in the coefficients of the perturbed system).
Therefore the upper bound provides in statement (ii) can be reached.
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A.1.3 Proof of item (iii)(case l = 3).

In this case Σ = {(x,y) : (y− tan(α)x)(y− tan(α +
2π

3
)x)(y− tan(α +

4π

3
)x) = 0}, with

α ∈ (−π/3,π/3).

Lemma A.1.10. Concerning function ϕi13 we have

(i) ϕ ′
i13(α)< 0 in (0, π

3 ).

(ii) ϕi13(α) is an even function.

(iii) ϕi13(α) is 2π/3–periodic.

(iv) ϕi13(α) ̸= 0, if α ̸=±π

6 and i ̸= 0 is even.

Proof. From the definition we get that

ϕi13(α) =
(−1)i cosi+1 α + cosi+1 α − (−1)i+1 sini+1(α − π

6 )

i+1

+
sini+1(α − π

6 )+(−1)i+1 sini+1(α + π

6 )− sini+1(α + π

6 )

i+1
.

Then the function ϕi13(α)≡ 0 if i is odd. Otherwise,

ϕi13(α) =
2

i+1

(
cosi+1

α + sini+1(α − π

6
)− sini+1(α +

π

6
)
)
.

Therefore if i = 0 then ϕ013(α)≡ 0. If i ̸= 0 is even we take the derivative of ϕi13 with respect
to α . Using computational tools like Mathematica we get

ϕ ′
i13(α) = −2cosi α sinα +2−i(

√
3cosα + sinα)(

√
3sinα − cosα)i

+2−i(−
√

3cosα + sinα)(
√

3sinα + cosα)i.
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If α ∈ (0, π

3 ) we get cosi α sinα > 0 and −
√

3cosα + sinα < 0 then

(
√

3cosα + sinα)(
√

3sinα − cosα)i +(−
√

3cosα + sinα)(
√

3sinα + cosα)i =

√
3cosα((

√
3sinα − cosα)i − (

√
3sinα + cosα)i)

+sinα((
√

3sinα − cosα)i +(
√

3sinα + cosα)i)

= −2
√

3cosα

i−1

∑
k=1

k odd


i

k

(
√

3)k cosi−k
α sink

α +2sinα

i

∑
k=0

k even


i

k

(
√

3)k cosi−k
α sink

α

< −2
√

3cosα(
√

3sinα + cosα)i +2sinα(
√

3sinα + cosα)i

< 2(−
√

3cosα + sinα)(
√

3sinα + cosα)i < 0.

Hence ϕ ′
i13(α)< 0 if α ∈ (0, π

3 ), so ϕi13(α) is strictly decreasing in this interval and item (i) is
proved.

Moreover

ϕi13(−α) =
2

i+1
(
cosi+1(α)− sini+1(α + π

6 )+ sini+1(α − π

6 )
)
= ϕi13(α),

and we conclude item (ii), i.e., ϕi13(α) is an even function.

Because

ϕi13

(
α +

2π

3

)
=

2
i+1

(
cosi+1(α)− sini+1(α +

π

6
)+ sini+1(α − π

6
)
)
= ϕi13(α),

we get that ϕi13(α) is 2π

3 -periodic.

Finally if i ̸= 0 is even then ϕi13(0) =
21−i

i+1
(2i −1) ̸= 0. See the graphic of ϕi13(α), for

i even, i ̸= 0 in Figure 27.

As ϕi13 is strictly decreasing in (0, π

3 ) and ϕi13(
π

6 ) = 0 it follows that π

6 is the unique
root of ϕi13 in (0, π

3 ). Analogously ϕi13 is strictly increasing in (−π

3 ,0) and −π

6 is the unique
root in this interval.

Lemma A.1.11. If i is odd and α ̸∈ {0,±π

3} then the function ϕi23 does not vanish.

Proof. If i = 1 ϕ123(α) = 1
2 sin(3α). If i > 1 we write i = 2m+1 for some m ∈ N∖{0} and use

(A.6) to get
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-1.5 -1.0 -0.5 0.5 1.0 1.5

Figure 27 – Graphic of ϕi13(α), for i even

ϕi23(α) = 2
[

sin3(α + π

3 )

2m+3

(
cos2m(α + π

3 )+
m

∑
j=1

Am, j cos2m−2 j(α +
π

3
)

)

+
sin3(α + 5π

3 )

2m+3

(
cos2m(α + 5π

3 )+
m

∑
j=1

Am, j cos2m−2 j(α +
5π

3
)

)

+
sin3(α +π)

2m+3

(
cos2m(α +π)+

m

∑
j=1

Am, j cos2m−2 j(α +π)

)]
,

where Am, j is defined in (A.7).

Now using the software Mathematica we can evaluate the expressions of ϕi23(α) with
i = 2m+1, for some values of m. Below we give some of them (m = 1,2, ...,7),

(i) ϕ323(α) = 1/8sin(3α),

(ii) ϕ523(α) =−61/1.120sin(3α),

(iii)ϕ723(α) =−31/630sin(3α)+1/384sin(9α),

(iv)ϕ923(α) =−26.123/887.040sin(3α)+7/1.536sin(9α),

(v) ϕ11,23(α) = (1/92.252.160)(−1.612.309sin(3α)+389.550sin(9α)),

(vi) ϕ13,23(α)= (1/5.535.129.600)(−60.534.421sin(3α)+17.493.735sin(9α)+135.135sin(15α)),

(vii)ϕ15,23(α) = (1/376.388.812.800).(−2.715.648.724sin(3α)+811.055.280sin(9α)

+29.864.835sin(15α)).

From the expressions of ϕi23(α) for i= 1,2,3, ... we conclude that ϕi23(α)= am sin(3α)+

bm sin(9α)+ cm sin(15α)+ ..., with am,bm,cm ∈ R. Therefore the roots of these functions are
0,−π

3 ,
π

3 .

Proceeding as in the case l = 2 we can state the following lemma

Lemma A.1.12. The function ϕi33 does not vanish for α ̸=±π

6 and i even. If i is odd we have
ϕi33 ≡ 0.
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Proof of Theorem A.1.1 (iii). From Lemmas A.1.10 – A.1.12 we conclude that, in the case l = 3
the averaged function becomes

f (r) =
n1

∑
i=2

i even

riAi(α)(ai −di)+
n2

∑
i=1

i odd

ri+1Ci(α)(bi − ei)

+
n2

∑
i=0

i even

ri+1(biBi(α)+ eiBi(α))+
n3

∑
i=2

i even

ri+2Di(α)(ci −mi)

+(E1(α)d1
0 +E2(α)d2

0)r
3,

where Bi(α),Bi(α) > 0 for all α , Ci(α) does not vanish if α ̸∈ {0,±π

3} and Ai(α),Di(α) are
different of zero if α ̸=±π

6 .

Then f (r) is a polynomial function of degree m such that f (0) = 0 where

1) m = max
{

2
[

n1

2

]
,2
[

n2

2

]
+1,2

[
n3 +2

2

]
,3
}

if α ∈
{

0,±π

3

}
;

2) m = max{n2 +1,3} if α ∈
{
±π

6

}
;

3) m = max
{

2
[

n1

2

]
,n2 +1,2

[
n3 +2

2

]
,3
}

, otherwise.

For |ε|> 0 sufficiently small Theorem 3.2.2 provides that there exist at most m(3) limit
cycles of system (A.3) bifurcating from the linear center, where

m(3) = max
{

2
[

n1

2

]
,n2 +1,2

[
n3 +2

2

]
,3
}
−1.

Again it is possible to choose the coefficients of the perturbation such that the averaged function
f (r) has exactly m(3) positive roots. Then as discussed previously the proof of Theorem A.1.1
is concluded.

The computations are becoming increasingly complicated as we increase the number of
lines. However we also can state a general result as the following.

Theorem A.1.13. Assume that the polynomials f j
n1(x),

g j
n2(x) and h j

n3(x) have degree n1 ≥ 1, n2 ≥ 1 and n3 ≥ 1 respectively, d j
0 is a nonzero constant

and l ∈ N, for j = 1,2. For |ε|> 0 sufficiently small the averaging theory of first order provides
the existence of at least m(l) small limit cycles of the discontinuous piecewise generalized
Kukles differential system (A.3) where

m(l) = max
{[n2

2

]
,1
}
, if l ≥ 4.
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Remark A.1.14. In the previous result we obtain a lower bound for the number of limit cycles
of system (A.3) because we can not get the exact number of zeros of the averaged function (only
an estimative of them).

Using Lemma A.1.2 and Remark A.1.3 we present a general expression for the averaged
function (A.5) with many lines of discontinuity

f (r) =
n1

∑
i=0

ri [(ai −di)ϕi1l(α)]+
n2

∑
i=0

i even

ri+1

bi ϕi2l(α)︸ ︷︷ ︸
>0

+ei ϕ i2l(α)︸ ︷︷ ︸
>0


+

n2

∑
i=1
i odd

ri+1 [(bi − ei)ϕi2l(α)]+
n3

∑
i=0

ri+2 [(ci −mi)ϕi3l(α)]+ r3

d1
0 ϕ04l(α)︸ ︷︷ ︸

>0

+d2
0 ϕ04l(α)︸ ︷︷ ︸

>0

 .
(A.8)

Observe that the degree m of the averaged function (A.8) is m = max{n1,n2 + 1,n3 + 2,3}.
Moreover, independently if there are or not positive numbers l or angles α such that the functions
ϕi1l(α) and ϕi3l(α) vanish it is possible to choose coefficients di,mi,d1

0 and d2
0 such that the

averaged function (A.8) has at least degree m = max
{

2
[n2

2

]
+1,3

}
. Since in this case the

averaged function f (r) is an odd polynomial function without constant term the maximum
number of positive roots of (A.8) is m(l) = max

{[n2

2

]
,1
}

.

Proof of Theorem A.1.13 . Taking ai = di, i = 0, ...,n1 and c j = m j, j = 0, ...,n3 in (A.8) we get
that the number of positive roots of the averaged function depends only of n2. It is worth to
mention that d1

0 ̸= d2
0 guarantee that the original system is discontinuous. Applying Theorem

3.2.2 we conclude the proof.

A.2 Examples

In this section we illustrate Theorem A.1.1 and Theorem A.1.13 studying the existence
of limit cycles for three discontinuous piecewise generalized Kukles polynomial differential
systems.

Example A.2.1 (One line of discontinuity). Consider l = 1, α = 0 and the functions

f 1
n1
(x) = 1− x, f 2

n1
(x) = 4+3x,

g1
n2
(x) = 2− x, g2

n2
(x) =−3x+ 22

π
−2,

h1
n3
(x) = −1+2x, h2

n3
(x) = 7

2 −4x.
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Take the constants d1
0 = 1 and d2

0 = 8
3π

− 1. Under this conditions we have n1 = n2 = n3 = 1,
m(1) = 3 and the discontinuous piecewise system teste

Z(x,y) =

X1(x,y) if y > 0,

X2(x,y) if y < 0,
(A.9)

where Xi(x,y) =


y

−x− εFi(x,y)

, i = 1,2 and

F1(x,y) = (2x−1)y2 +(2− x)y− x+ y3 +1,

and

F2(x,y) =
(7

2 −4x
)

y2 +
(
−3x+ 22

π
−2
)

y+3x+
( 8

3π
−1
)

y3 +4.

Therefore the averaged function is f (r) = r3 −6r2 +11r−6, whose roots are r = 1,2,3.
It follows from Theorem (A.1.1) that for |ε|> 0 sufficiently small the discontinuous differential
system (A.9) has at least three limit cycles. In Figure 28 we can see a local phase portrait
of system (A.9) for ε = 1/100 in a neighborhood of the origin. In this Figure the red lines
are three concentric limity cycles that are solutions of the system passing through the points
(−2,0),(−1.5,0) and (1,0). The dasched line is the line of discontinuity of the system.

-5 0 5

-5

0

5

Figure 28 – Local phase portrait of system (A.9) for ε = 1/100 in a neighborhood of the origin. The red
lines are three concentric limity cycles that are solutions of the system passing through the
points (−2,0),(−1.5,0) and (1,0). The dashed line is the line of discontinuity of the system.
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Example A.2.2 (Two lines of discontinuity). Consider l = 2, α = 0, and the functions

f 1
n1
(x) = 4+2x−3x2 +2x3, f 2

n1
(x) = 7+3x+9x2 +2x3,

g1
n2
(x) = 3+5x, g2

n2
(x) =−3+2x,

h1
n3
(x) = 9+ x, h2

n3
(x) = 5− x.

Taking the constants d1
0 = 1 and d2

0 =−1 we have n1 = 3,n2 = n3 = 1 and m(2) = 3. Therefore
the get the discontinuous system

Z(x,y) =

X1(x,y) if xy > 0,

X2(x,y) if xy < 0,
(A.10)

where Xi(x,y) =


y

−x− εFi(x,y)

, i = 1,2 and

F1(x,y) = 4+2x−3x2 +2x3 +(3+5x)y+(9+ x)y2 + y3,

and
F2(x,y) = 7+3x+9x2 +2x3 +(−3+2x)y+(5− x)y2 − y3.

The averaged function of this system is f (r) = r3 − r, whose roots are r = 0,1,−1. It follows
from Theorem A.1.1 that for |ε| > 0 sufficiently small the discontinuous differential system
(A.10) has at least one limit cycle.

Example A.2.3 (Three lines of discontinuity). Consider l = 3, α = π

4 , the functions

f 1
n1
(x) = 3+2x+ x2, f 2

n1
(x) =−2+7x+ x2,

g1
n2
(x) = 2x, g2

n2
(x) =−12

π
+(2−22

√
2)x,

h1
n3
(x) = 1+3x+2x2, h2

n3
(x) = 1+2x+(2+8

√
2)x2,

and the constants d1
0 = d2

0 =− 8
π

. In this case n1 = n3 = 2,n2 = 1, m(3) = 4 and the discontinuous
system is

Z(x,y) =

X1(x,y) if h(x,y)> 0,

X2(x,y) if h(x,y)< 0,
(A.11)
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where hα(x,y) = (−x+ y)((2+
√

3)x+ y)((2−
√

3)x+ y), Xi(x,y) =


y

−x− εFi(x,y)

, i =

1,2 with

F1(x,y) = 3+2x+ x2 +2xy+(1+3x+2x2)y2 − 8
π

y3,

and

F2(x,y) =−2+7x+ x2 +(−12
π

+(2−22
√

2)x)y+(1+2x+(2+8
√

2)x2)y2 − 8
π

y3.

The averaged function is f (r) = r4 −6r3 +11r2 −6r, whose roots are r = 0,1,2,3. Hence by
Theorem A.1.1 it follows that for |ε|> 0 sufficiently small the discontinuous differential system
(A.11) has at least three limit cycles.

To illustrate Theorem A.1.13 we present the next example.

Example A.2.4. Consider the plane R2 divided in 14 zones (l = 7), α = 0 and the functions

f 1
n1
(x) = 6x+3x2 − x3, f 2

n1
(x) = 6x+3x2 − x3,

g1
n2
(x) = 3+3x+ x2 +2x3 +3x4, g2

n2
(x) =−5

2 +3x− 7
2x2 −2x3 −2x4,

h1
n3
(x) = 1− x+2x2, h2

n3
(x) = 1− x+2x2.

So n1 = 3,n2 = 4 and n3 = 2. If d1
0 =−d2

0 = 1 we get the discontinuous system

Z(x,y) =

X1(x,y) if hα(x,y)> 0,

X2(x,y) if hα(x,y)> 0,
(A.12)

where Xi(x,y) =


y

−x− εFi(x,y)

, i = 1,2 and

F1(x,y) = 6x+3x2 − x3 +(3+3x+ x2 +2x3 +3x4)y+(1+3x+2x2)y2 + y3,

and

F2(x,y) = 6x+3x2 − x3 +(−5
2
+3x− 7

2
x2 −2x3 −2x4)y+(1− x+2x2)y2 − y3.

The averaged function becomes f (r)= π

16(r
5−5r3+4r),and their zeros are −2,−1,0,1,2.

Hence system (A.12) has two limit cycles, guaranteed by Theorem A.1.13.
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