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Abstract

Vibrations in dynamical structures, as those encountered for
instance in mechanical, aerospace or civil engineering, are of-
ten caused by internal or external excitations. One way to at-
tenuate vibrations that can be undesirable for safety or other
reasons is by the use of active control systems. This means
to use feedback controllers driving actuators at appropriate lo-
cations between the structure and its environment. This work
considers a specific kind of uncertain excitation due to a tempo-
rary coupling of the structure with a second dynamical system
which cannot be influenced by actuators controlling the main
structure. A linear control scheme is proposed, which is im-
plemented with the feedback of the structure’s state only and
ensures the existence of a ball of ultimate boundedness. The
effectiveness of the control scheme is illustrated by numerical
experiments on a model of a bridge platform with crossing ve-
hicles as unknown coupling excitations.

1 Introduction

Active control has grown in the last years as a mean to attenuate
vibrations of dynamical flexible structures subjected to internal
or external excitations. Examples are encountered in areas such
as mechanical, aerospace or civil engineering. Active control
means to use feedback controllers driving actuators at appropri-
ate locations between the structure and its environment. In the
last years different approaches have been taken from control
theory to develop active controllers. Within this context, robust
control methods have been used to account for uncertainties
in the structural models and the lack of knowledge of the ex-
citations, which in most of the cases are even unpredictable.
One of the robust control approaches for this purpose has been

based on the constructive use of Lyapunov stability techniques
[1-3]. Within this approach, semiactive structural control sys-
tems have been developed for instance in [4-5]. In this kind
of systems, the feedback is designed to modify in real time pa-
rameters such as damping or stiffness to increase the resistance
of the structures as compared with the purely passive schemes.
Purely active controllers, in which the feedback is used to feed
actuators to implement desired forces to the structures, have
been proposed for example in [6-7].

Following this direction, this paper deals with a class of struc-
tures excited by the coupling with another dynamical system
during a certain time. An active linear controller is proposed
which uses feedback information from the controlled structure
only. It is shown that the response of the structure and the excit-
ing system stay bounded within a neighborhood of the origin.
The class of systems is illustrated by considering a model of a
bridge platform with an unknown moving vehicle as coupled
exciting system. Numerical results are given to show the effec-
tiveness of the approach in getting a practical reduction in the
vibrations of the platform.

2 Control scheme

The control objective is to attenuate the vibrations of a system
described by the state space variables x € R™. The excitation
applied to this system is due to a second system, described by
the state space variables y € R"", to which it is coupled. This
coupling is uncertain. In this sense, the following model is
considered:

Main System:
Exciting System:

X =Ax+Bcu+ gc(wiat>7

: 1
y=A:y +g:(y,w,t). M

u € R™ is the control, which acts only on the main system.
A, B, and A, are known constant matrices of appropriate di-
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mensions. The coupling between the systems goes through the
uncertain functions g. and g, and is due to some interchange
action w € R¢, which can be described by some mathematical
relationship such as w = f(x,y,t). In the case that there is no
coupling, w = (.

The following assumptions complete the model of the system.
Assumption 1: A and A, are stable matrices.

Assumption 2: There exists an uncertain function e : R?= X
R" xR — R™ such that e(-, -, %) is continuous and e(x, y, -)
is continuous for all ¢ except for a set {¢1,t2, - .., tn }, and there
exist known non—negative constants a$, af, é., u¢, and v, such
that

2.1) gc(xa f(xayat)at) = Bce(xa Yy, t)a
2.2) |le(x,y, 1)l < ollx|| + agllyll + 6.
(2.3) llge(x,£(x,y, 1), )l < willx|| + prllyll + v,

hold for all x,y and ¢.
Consider the linear feedback control

u(t) = —yB Kex(t), 2)

where K¢ is the solution of the algebraic Lyapunov equation
KA+ AcTKc +Qc=0, 3

for a given matrix Q. € R™= "= positive definite. And where
4 > 0 is a gain parameter. Notice that the matrix B¢’ K¢ of
this control uses only information on the known part (A¢, Be)
of the uncoupled main system, while the scalar gain v will be
chosen through a stability analysis which involves the known
part (Ay) of the exciting system and the bounds on the uncer-
tainties in Assumption 2.

The stability analysis will ensure that the control defined in (2),
with an appropriate selection of -y, guarantees that there exists
a parameter value p > 0 such that any admissible trajectory

&) = (x(t),y(t)) enters B, = {€£ € R™ x R™: [¢| < p}
at a time 7', and that there exists a compact set KC, which is a
global uniform attractor of (1).

3 Stability analysis

Let us define the following Lyapunov function candidate for
system (1):
;)
y

where K. is the solution of the algebraic Lyapunov equation

KA+ A K, +Q, =0, 4)

V(x,y) =< x,Kex >+ <y, Ky >= (x",y") K (

for a chosen matrix Q, € R" " positive definite, and K =
diag(Kc, K;). Thus

d
EV(X’Y) < 2<xAx> +2<x,g:(x,w,t) >+
2<y, Ay > +2 <y, g(x, W, 8) >

Using Assumption 2 and equations (3) and (4), we have:

d
EV(X’ y) <= <x,Qcx > _2'7||BCTKCX||2+

20 |x|| B Kex|| + 2a7||y|| 1B Kex||+
+26,|B Kex|| - < ¥, Qry > +2uf K|l [1x]] [ly]|+
207K | 1¥1* + 207 K| [[y])-

Using the fact that — < x, QX >< —Amin (Qc)||%||? and also
that — < ¥, Qry >< —Anin(Q:)||¥]|? (Where Apin denotes
the minimum eigenvalue), and setting

(Il llyll, 1B "Kex|))7,
(0, 21/,.||Kr||,250)T,

Z:
q:=

and after some manipulations, we arrive at

d
—V(X,y) S - < Z,MZ> + <q,z >,

dt
where
my  —me —ag
M = -me m3 —a s
[+ T
—-aé —a; 2y

with my 1 =Amin(Qe), ma :=pl||K;|| and mg :=Amin(Qr) —
2uT||Ke||. According to the Theorem of Hurwitz, we have that
M is positive definite if and only if (i) mq > 0, (ii) mims —
m32 > 0, (i) det(M) > 0.

Condition (i) is satisfied by construction, since Q. is positive
definite. Condition (ii) leads to

Amin(Qc) [Amin(Qr) - QM:HK:-”] - (,U/f.)2||Kr||2 > 0. (5)

This condition holds if and only if the following inequalities
are satisfied: Nonin (@)
My < o (©)
T 2Kl

and

(/\min (Qc) [)\min (Q:) — 2”:”Kr||:| ) 1/2
1Kz

4

pr <

(7

Condition (iii) leads to

2atatms + (af)?ms + (af)?mq
2(mims — m3) )

®)

Choosing Qc,Q; and y according to (6)—(8), then M is positive
definite. Now, we have

d
27 oY) < —Amin(M)||z]1* + [lall [l2]-

>\min (M)
llall

I':={(x,y) € R* x R™

Therefore, setting r; =

)

such that||z(x,y)|| = r1},
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and r := (me;,xF [|(x,¥)||, which is well-defined since I is a
x,y)€

’

compact set, we have that

d
—V
dt

holds for all ||(x,¥)] > r.

(x,y) <0

The smallest level surface of V' (x,y) containing B, (the ball
centered at the origin of radius ) is given by E, := {(x,y) €
R™e x R, such that V(z,y) = Amin(K) 72 = V. }. If we de-
note p the length of the major semi—axis of the hyper—ellipsoid
E,, then

V(x’y)|E.,= = Amin(]:{) 7'2 = Amax(K) p2,

i

—_——————1

o

which leads to
Amax (K)

Amin (K) ' (9)

p=r

Therefore any trajectory v(t) = (x(t),y(t)) enters the ball of
ultimate boundedness B, at a time ¢ = {,. Furthermore, as
it is proved in [6] with all the details, the compact set K =
{(x,y) € R®% x R" suchthat V(x,y) < V;.} =E,.UInt(E,)
is a global uniform attractor for system (1).

Observe that aé, o, §¢, ué, pr., and v, are bounds on the uncer-
tainties, which are given a priori, while Qc, Q, and -y are free
design parameters. According to the above stability analysis,
the designer has to choose Q., Qr and 7y satisfying inequalities
(6)—(8). These inequalities give only sufficient stability condi-
tions, which in practice can be relaxed as it will be illustrated
in the example in the next section.

4 Bridge platform with moving vehicles

In [5] a semi—active control approach for an elastically sus-
pended bridge with crossing vehicles is provided. Figure 1 de-
picts the main elements of the simplified dynamic model. We
will apply the active control approach described in Section 1
to that model. The bridge section consists of a rigid platform
with elastic mounts on the left-hand and right-hand sides. The
main variables that we will measure are the vertical deviation 2z
of the center of mass C of the bridge and the inclination © with
respect to the horizon of the platform. Within a time interval
[to,t¢], an object, say a truck, crosses the bridge. The truck
is modelled by a mass m with an elastic suspension (damping
c and stiffness k). The truck crosses the bridge with velocity
v(t). Additional variables £, and { are chosen according to
Figure 1. The mass of the platform is given by M, and the
moment of inertia with respect to C by the parameter J.

The active control is implemented by two actuators located be-
tween the ground and the bridge at the left and the right ends
respectively. The actuators A; and As supply vertical control
forces Mu; and Mug which complement the resistant (pas-
sive) forces F1 and Fy given by the elastic supports. uq and
ug are the control variables. The objective is that the active
forces Mu, and Mug significantly improve the attenuation of
the vibration of the bridge caused by the crossing vehicle.

TM"Z*Fz

Figure 1: Model of an actively mounted platform bridge with one
crossing vehicle.

4.1 Equations of motion

Without loose of generality we set tg := 0. In the following ¢
denotes the final time of interaction between the structure and
the truck. This value can be determined by physical sensors,
hence it is not an uncertain value.

Equations of motion of the truck: For ¢ < 0 and ¢ > tf the
equation of motion of the truck is m 7 = kny — m g, where 1o
is the position of relaxed suspension. For ¢ € [0,%s] we have

(10)

where F := k(o — (n+¢)) —c(i+¢), and ¢ := 2+ (£ —a)O©,
assuming small values of ©.

mij=F —mg,

Equations of motion of the bridge: For ¢ < 0 the bridge is in a
steady state. For t € [0,%7] we have the following equations of
motion:

M,E:Mg+F—F1—F2—MU1—MU2,

JO = (£ - a)F +aF, — bFs + aMu; — bMus. an

where F| = ki(—210 + 2 — a®) + c1(% — aé)), and F,
ko(—22,0+2+bO)+ca2(2+b0), being 21 ¢ (respectively za,9)
the vertical position of relaxed left-hand (respectively right—

hand) suspension.

In order to use the model framework in (1), we consider the
bridge as the main system and the truck as the attached system.
The space state variables are split into the ones we measure,
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X = (z,@,,é,(;))T, and the ones we do not measure, y =
(n,m)T. We also consider u := (u1,u2)”. The interaction
variable w = f(x,y,t) is now due to the force F' between the
bridge and the truck, that is the scalar function

w="F=k(no —(n+¢) —c(i+¢).

For w = 0 the two systems are obviously decoupled. This
occurs for ¢ > tf, and then the equations of motion of the
bridge are

M,E:Mg—Fl—FQ—MU1—Mu2,
JO =aF; — bF5 +aMu; — bMus.

We have to build the matrices A¢, B¢, and A, with known
parameters, and the functions g. and g, including the coupling
effects and the uncertainties.

In this model we consider that the structural parameters of the
bridge (M, J,c1,c2, k1, k2) are known, while the parameters
related to the truck (m,c¢, k,1n0,&, v) are uncertain. For these
parameters, we assume that % = wo + Aw, with |[Aw| < @,
= = 0o + Ao, with |Ag| < 7, % =Q, withQ < Q, & =T,
with T < T, |no| <o, |v(t)] < . In this description wp
and o are known nominal values and @, &,Q, YT, fjp and @ are
known bounds.

Finally the equations of motion (10) and (11) can be re-written
in the following state form:
x = Acx + Beu + ge(x, W, £)
y = Ary + gr(Yy w, t)

= AcX + Bcu + gc (X’ y, t)
= Ary + gr(xy y, t)

where
0 0 1 0
0 0 0 1
Ac = _kitks aky—bks _c1te2 ac1—bes 3
M M M M
ak1—bkso _ a2k1+b2k2 ac1—bes _ a2c1+b2c;
J J J J
0 0 0
0 0 0
BC = —1 —1 b and gc -
M _bM o
7 7 o
Here for t € [0,%y]:
1
geal ) 1= =37 = 3 KEW — )+ ij0
C . C . C .
Hz M(E(t) —a)® ﬁn Hn (12)
k + ky + k—2 +
Mﬂo le 0 MZ2,0 g
and
k 1 ,
Sea(x,¥,) = = 7€) = )z = 5KE®) -~
c .
+ev((t) — a)]© — —(E(t) - a)z— —(&(t) — a)’©
k K (13)
—2(E(t) — a)n — “(E(t) — )i + = (£() — a)o
J J J
ak1 ak + bkzz
7 210 7 %20

while, for ¢ > ¢, we have

ge,3 == lel,o + ﬁzzo +g
and
. aklz + bko p
Ge,a = 7 1,0 7 2,0-

‘We also have

Ar:( 0 1 )
—Wo —O0g

and, for ¢ € [0,%¢],
- 0
r x’ ’t = b
& (x,y,t) <9r,2 )

k 1 c .
gra = 2= —[K(E(t) —a) + 0] — S

where

. . k
~ (@) —a)O — Awn—Aci+ —mo—g
m m

~ .k
Fort > tg,itis g :== (0, -Awn — Aon+ o -7

In [7] it is checked that the model described above satisfies the
Assumptions 1 and 2 required in Section 2. This is necessary in
order to ensure that the stability analysis developed in Section
3 holds.

4.2 Tuning of the control law

For the design of the control law, we use the following set of
known parameters:

Bridge: M = 10° [kg], J = 2-107 [kgm?®],a = b = 25
[m], k; = 4-10° [N/m] and ¢; = 4 - 10* [Ns/m] for each
t = 1,2, 210 = 22,0 = —0.125 [m], which correspond to
the equilibrium position for the platform without truck and no
control.

Nominal parameters and bounds for uncertainties: 9 = 1 [m],
wo = 40 [N/(m kg)], @ = 20 [N/(m kg)], op = 1 [Ns/(m Kg)],
& = 5 [Ns/(m Kg)], @ = 5 [N/(m kg)], T = 0.5 [Ns/(m Kg)],
7 = 8.33 [m/s] (@ = 30 [km/h]), kg = 4 - 10° [N/m], ¢o = 10*
[Ns/m].

We select Q, = T (identity matrix) and

5 000
0100
Q. = 0010}
0 0 01
which gives
B.TK. — 0.0312 -0.0002 0.6641 —0.0251
¢ ¢ T\ 0.0312 0.0002 0.6641  0.0251

and the gain matrix is given by G := —y B, K.
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With the above selection of Q;, the inequality (6) leads to

r Amin (Qr)

ph < Smind=r) o 0.024.
T 2K

(14)

Taking p;. = 0.02 and using the selected matrix Qc, inequality
(7) leads to
1/2
c ()\min(Qc) I:Amin(Qr) - QM:HKI‘H])
by < K| ~ 0.021.
as)

These two inequalities impose maximum theoretical allowable
values for the parameters y; and p¢ appearing in the affine
bounding of the coupling uncertain function g, in Assumption
2.3.

In this case, taking p;. = 0.02 and pf = 0.02, inequality (8)
becomes

4 > 3.2051- 10° =: ,. (16)

Inequalities (14), (15) and (16) give sufficient conditions to en-
sure that the control law satisfies the stability analysis of Sec-
tion 3. When computing the uncertainty bounds for the data set
in this example, we obtain p]. /~ 20.62 and p¢ ~ 15568.4, which
are significantly bigger than the maximum allowable values ac-
cording to the theoretical stability analysis. In practice, simu-
lation results show that the control law guarantees the derived
stability property even for these actual values. This is because
the Lyapunov approach used in the stability analysis is rather
conservative in giving sufficient stability conditions, which are
based on rough estimates for the values of af,al, ., us, ur,
and v,.. Practice also shows that values of y lower than -y, are
acceptable to achieve stability and satisfactory control results
as it is illustrated next.

4.3 Numerical example

The following unknown parameters for the truck (which lie
within the prescribed uncertainty bounds) are used:

Truck: m = 10* [kg], v = 8.33 [m/s] (v = 30 [km/h]), k =
4 -10% [N/m], ¢ = 10* [Ns/m], o = 0.75 [m].

Figure 2 shows the time history of the vertical deflection 2z of
the center of mass C of the platform for the uncontrolled case
(dash line) and the controlled case (solid line) when using vy =
20. The platform is excited by the crossing of the truck for time
t €0, 6] seconds, and after ¢ = 6 seconds the platform evolves
with no excitation. In both the uncontrolled and the controlled
cases, the center of masses evolves towards its new equilibrium
position (z = 0.125[m]) with the truck on the platform, and
evolves to recover the initial equilibrium position after the truck
leaves the platform at =6 seconds. A significant reduction in
the oscillations around the equilibrium positions of C' can be
observed with the control operation.

Figure 3 shows that the inclination © of the bridge has a similar
pattern for the uncontrolled and the controlled case. It behaves
almost linearly while the truck crosses with a constant speed.

0.025

0.02

0.015

Bridge’s vertical displacement [m]

-0.005

-0.01

_0.015 | | | | | | | |
0 8

Time [s]

Figure 2: Time history of z(¢) without control (dash line) and with
control (solid line) using v = 20.

After the truck leaves the bridge, the inclination tends to zero
in a damped oscillatory motion.

x10™

Bridge’s inclination [rad]

~10 | | | | | | | |
0 8

Time [s]

Figure 3: Time history of ©(¢) without control (dash line) and with
control (solid line) using v = 20.

Figure 4 displays the control signals u; and ug. Initial im-
pulsive actions are observed when the excitation starts up and
when it disappears, followed by smooth evolutions to zero.

5 Conclusions

A linear feedback control law is proposed to actively reduce
the vibrations of a class of structures excited by the coupling
with an uncertain system. The main practical advantage is the
simplicity of the control law. It is composed by a nominal gain
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