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Motivation

We are interested in approximate, via expansions of a truncated
base of wavelets, complicated objects semianalitically. From
such approximation, we want to predict and understand changes
in the geometry or dynamical properties (among others) of such
objects.

As a testing ground of our developed techniques, we will be
focused on skew products of the form

Fσ,ε

(
θn
xn

)
=

{
θn+1 = Rω(θn) = θn + ω (mod 1),

xn+1 = Fσ,ε(θn, xn),
()

here x ∈ R+, θ ∈ S1 = R/Z, ω ∈ R \Q.

D. Romero Numerical Computation of Invariant Objects with Wavelets //



Motivation Wavelets in Theory Wavelets in Practice

The [GOPY]-Keller model: a testing ground

In the System (), we take Fσ,ε(θ, x) = fσ(x)gε(θ) (multiplicative
forcing) with

 fσ : [0,∞) −→ [0,∞) ∈ C1, bounded, strictly increasing,
strictly concave and verifying f(0) = 0.

 gε : S1 −→ [0,∞) bounded and continuous.
Fixing ideas, we will use ω =

√
5−1
2 and the following

one-parameter family of skew products (with x ≡ 0 invariant)

Fσ,ε(σ)

(
θn
xn

)
=

θn+1 = θn + ω (mod 1),

xn+1 = 2σ tanh(xn)(

ε(σ)︷︸︸︷
ε +| cos(2πθn)|),

()

where
ε(σ) =

{
(σ − 1.5)2 when 1.5 < σ ≤ 2,

0 when 1 < σ ≤ 1.5.

The toy model is similar to the [GOPY] model.
[GOPY] Grebogi, Celso et al., Strange attractors that are not chaotic, Phys. D   – –.
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The [GOPY]-Keller model: a testing ground

In this testing ground we want to approximate the attractor, ϕ, of
the above system (if it exists).

Pinching condition⇒ SNA’s creation
When gε = 0 at some point it is called the pinched case,
whereas if gε is strictly positive it is called the non-pinched case.

In the pinched case, any Fσ,ε–invariant set has to be 0 on a point
and, hence, on a dense set (in fact on a residual set). This is
because the circle x ≡ 0 is invariant and the θ-projection of
every invariant object must be invariant under Rω .

Our main goal: work with wavelet approximations
Compute ϕ in terms of wavelet coefficients to recover the
appearance of the residual set from such coefficients.
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The [GOPY]-Keller model: a testing ground

In the next slide will appear a theorem due to Keller [Kel] that
makes the above informal ideas rigorous. Before stating it we
need to introduce the constant σ:

Since the line x = 0 is invariant, by
Birkhoff Ergodic Theorem, the vertical
Lyapunov exponent on the circle
x ≡ 0 is the logarithm of

σ := f ′(0) exp

(∫
S1

log gε(θ)dθ

)
<∞.

A particular instance of
the Keller-GOPY attractor

The parameterization ε(σ) controls the Lyapunov Exponent and
the pinched point at the same time.
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Keller’s Theorem (shortened)

There exists an upper semicontinuous map ϕ : S1 −→ [0,∞)
whose graph is invariant under the Model (). Moreover,

 if σ > 1 and gε(θ0) = 0 for some θ0 then the set
{θ : ϕ(θ) > 0} has full Lebesgue measure and the set
{θ : ϕ(θ) = 0} is residual,

 if σ > 1 and gε > 0 then ϕ is positive and continuous; if gε is
C1 then so is ϕ,

 if σ 6= 1 then |xn − ϕ(θn)| → 0 exponentially fast for almost
every θ and every x > 0.

[Kel] Keller, Gerhard, A note on strange nonchaotic attractors, Fund. Math. 
  –.
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On the use of wavelets

Notice that the invariant objects that we want to compute are
expressed as graphs of functions (from S1 to R).

The standard approach to compute with such objects is to use
finite Fourier approximations to get expansions as:

ϕ ∼ a0 +
N∑
n=1

(an cos(nθ) + bn sin(nθ)) .

Since the topology and geometry of these objects is extremely
complicate, the regularity and periodicity of the Fourier basis
make this approach too costly.
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On the use of wavelets

In this case, it seems more natural to use wavelets (an
orthonormal basis of L 2(R)) that adapt much better to
oscillatory, irregular and highly discontinuous objects.

ϕ ∼ a0 +

N∑
j=0

2j−1∑
n=0

d−j,nψ
PER
−j,n(θ),

where ψPER is a given wavelet.

Summarizing: given a generic skew product we want to
Derive properties of ϕ

Massive approximations of ϕ

Massive calculation of d−j,n and ψPER
−j,n(θ)

we do

we need

we need
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A primer on wavelets

Let us start by the definition of Multi-resolution Analysis (MRA)

Definition
A sequence of closed subspaces of L 2(R), {Vj}j∈Z, is a
Multi-resolution Analysis if it satisfies:

 {0} ⊂ · · · ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ · · · ⊂ L 2(R).

 {0} =
⋂
j∈Z Vj .

 clos
(⋃

j∈Z Vj
)

= L 2(R).

 There exists a function φ(x) whose integer translates, φ(x− n),
form an orthonormal basis of V0. Such function is called the
scaling function.

 For each j ∈ Z it follows that f(x) ∈ Vj if and only if
f(x− 2jn) ∈ Vj for each n ∈ Z.

 For each j ∈ Z it follows that f(x) ∈ Vj if and only if
f(x/2) ∈ Vj+1.
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A primer on wavelets

Consider the bi-indexed family of maps obtained by dilations
and translations of φ(x):

φj,n(x) =
1√
2j
φ

(
x− 2jn

2j

)
.

It is shown that

 {φj,n}n∈Z is an orthonormal basis of Vj for each j ∈ Z, and
 φ(x) characterizes the whole MRA (see [Mal]).

[Mal] Mallat, Stéphane, A wavelet tour of signal processing, Academic Press Inc.,
San Diego, CA, , xxiv+.
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A primer on wavelets
If we fix an MRA, we know that Vj ⊂ Vj−1. Then, we define the
subspace Wj as the orthogonal complement of Vj on Vj−1. That is

Vj−1 =Wj ⊕ Vj .

We are looking for an orthonormal basis of Wj : the wavelets. This
basis is given, from a function called the mother wavelet ψ(x), by

ψj,n(x) =
1√
2j
ψ

(
x− 2jn

2j

)
.

The integer translates, ψ(x− n), of ψ(x) form an orthonormal basis of
W0. Also, ψ(x) verifies a relation with φ(x). Moreover, from [Mal]:

Mallat and Meyer Theorem

For every j ∈ Z the family {ψj,n}n∈Z is an orthonormal basis of
each Wj ,

The wavelets {ψj,n}(j,n)∈Z×Z are an orthonormal basis of L 2(R)
for all j, n ∈ Z.
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Summarizing

L 2(R) = clos

 ⋃
j∈Z
Vj


Vj = span{φj,n(x)}n∈Z

L 2(R) = clos

⊕
j∈Z
Wj


Wj = span{ψj,n(x)}n∈Z

φ(x)

h[n]

ψ(x)

g[n]

ĥ(ω) =
∑
n∈Z

h[n]e
−inω

Wj := Vj−1\Vj

V0 = span{φ(x− n)}n∈Z W0 = span{ψ(x− n)}n∈Z

ψ̂(ω) := 1√
2
e−iω ĥ∗(ω + π)φ̂(ω)

g[n] := (−1)1−nh[1− n]

φ̂(ω) =

∞∏
p=1

ĥ(2−pω)
√

2

1√
2
ψ( x

2
) =

∑
n∈Z

g[n]φ(x− n)1√
2
φ( x

2
) =

∑
n∈Z

h[n]φ(x− n)
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Examples of mother wavelets

Shannon wavelet (no compact support)

ψ(x) =
sin(2π(x− 1/2))

2π(x− 1/2)
−

sin(π(x− 1/2))

π(x− 1/2)

h[n] =


√

2
2

if n = 0,
√

2−1(n−1)/2

πn
if n odd,

0 otherwise.

Daubechies wavelet (compact support)

No closed formula

h[n] =



0.48296291314 . . . if n = 0,
0.83651630373 . . . if n = 1,
0.22414386804 . . . if n = 2,
−0.12940952255 . . . if n = 3,

0 otherwise.
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Examples of mother wavelets

0 0.5 1

−1

0

1

Haar wavelet (compact support)

ψ(x) := 1[0, 1
2

)(x)− 1[ 1
2
,1)(x)

where 1[a,b)(x) =

{
1 if x ∈ [a, b),
0 otherwise.

h[n] =

{
1√
2

if n = 0, 1,
0 otherwise.

It is the unique Daubechies wavelet with an explicit formula.
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Fixing and translating the wavelet

We will be focused on the Daubechies wavelets family. Each
Daubechies wavelet minimize its support, [1− p, p], constrained
to the maximal number of vanishing moments, p:∫ p

1−p
xkψ(x) dx = 0 for 0 ≤ k < p.

Since our framework is S1 = R/Z, we transform a R-function
into a S1-function by setting ψPER

j,n as follows:

ψPER
j,n (θ) =

∑
ι∈Z

ψj,n

x∈R : frac(x)=θ︷ ︸︸ ︷
(θ + ι) = 2−j/2

∑
ι∈Z

ψ

(
(

x︷ ︸︸ ︷
θ + ι)− 2jn

2j

)
.

ψPER
j,n are 1-periodic functions belonging to L 1(S1).
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Fixing and translating the wavelet

It is known that an orthonormal basis of L 2(S1) is given by
{1, ψPER

−j,n with j ≥ 0 and n = 0, 1, . . . , 2j − 1} provided that ψ(x)
is an orthonormal wavelet from a R-MRA (see [HeWe]).

Hence, once ψ is given, we are (almost) ready to compute

ϕ ∼ a0 +

N∑
j=0

2j−1∑
n=0

d−j,nψ
PER
−j,n(θ).

Thus, we need to perform a feasible strategy to evaluate ψPER

(and ψPER
−j,n) at θ ∈ S1.

[HeWe] Hernández, Eugenio and Weiss, Guido, A first course on wavelets, CRC
Press, Boca Raton, FL, , xx+.
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Computing regularities with wavelet coefficients

Theorem
Let s ∈ R \ {0} and let ψ be a mother Daubechies wavelet with
more than max(s, 5/2− s) vanishing moments. Then f ∈ Bs

∞,∞
if and only if there exists C > 0 such that for all j ≤ 0

sup
n∈Z
|〈f, ψPER

j,n 〉| ≤ C2τj with τ =

{
s+ 1

2 if s > 0,

s− 1
2 if s < 0,

In the case of Haar, [Tri], there is an analogous result.
[Coh] Cohen, Albert, Numerical analysis of wavelet methods, North-Holland, ,
xviii+.

[Tri] Triebel, Hans, Theory of function spaces. III, Birkhäuser Verlag, Basel, ,
xii+.

[Tri] Triebel, Hans, Bases in function spaces, sampling, discrepancy, numerical
integration, European Mathematical Society, Zürich, , x+.
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Computing regularities with wavelet coefficients

Corollary (Keller’s Theorem)

The upper semicontinuous function λ : S1 −→ R+ whose graph
is in ϕ, is in Bs

∞,∞(S1) with s ∈ (0, 1] when ε > 0.

Lemma
The upper semicontinuous function λ : S1 −→ R+ whose graph
is in ϕ, is in B0

∞,∞(S1) when ε = 0.

The above result justifies the use of Besov spaces instead of the
Hölder ones because of the regularity zero.
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Computing regularities with wavelet coefficients

We will use a tailored version of these results using the
wavelet coefficients d−j [n]’s.

A pinched ϕ of the System (). A quasi-pinched ϕ of the System ().

To this end, we need to calculate the wavelet coefficients.
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Computing coefficients using Fast Wavelet Transform

We know that given a function f ∈ L 2(R) and a MRA, then:

f(x) =
∑
j∈Z

∑
n∈Z
〈f, ψj,n〉ψj,n(x) =

∑
j∈Z

∑
n∈Z

dj [n]ψj,n(x),

where dj [n] := 〈f, ψj,n〉 denote the wavelet coefficients. But, we
look for truncated wavelet approximations of f of the type:

f ∼
J∑
j=0

2j−1∑
n=0

〈f, ψ−j,n〉ψ−j,n =

J∑
j=0

2j−1∑
n=0

d−j [n]ψ−j,n(x).

We use the Fast Wavelet Transform (FWT) to manage this
problem.
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Computing coefficients using Fast Wavelet Transform
To do so, we truncate PV−J (f) to its finite dimensional version V−J to

get f ∼
2J−1∑
n=0

〈f, φ−J,n〉φ−J,n =

2J−1∑
n=0

a−J [n]φ−J,n where

aj [n] := 〈f, φj,n〉 denote the scaling coefficients. Therefore, using
V−J = V−J+1 ⊕W−J+1 :

f ∼
2J−1∑
n=0

a−J [n]φ−J,n

=

2J−1−1∑
n=0

〈f, φ−J+1,n〉φ−J+1,n +

2J−1−1∑
n=0

〈f, ψ−J+1,n〉ψ−J+1,n

=

2J−1−1∑
n=0

a−J+1[n]φ−J+1,n +

2J−1−1∑
n=0

d−J+1[n]ψ−J+1,n

= . . . apply iteratively this decomposition . . .

= a0φ0,0 +
J∑
j=0

2j−1∑
n=0

d−j [n]ψ−j,n(x).

D. Romero Numerical Computation of Invariant Objects with Wavelets //



Motivation Wavelets in Theory Wavelets in Practice

Computing coefficients using Fast Wavelet Transform

Thus, a formula to compute the coefficients aj+1[n] and dj+1[n]
from the coefficients aj [n] is needed. It is given by (see [Mal])

Mallat Theorem
Let {Vj}j∈Z be an MRA. Then, the following recursive formulas
hold.

At the decomposition:

aj+1[p] =
∑
n∈N

h[n−2p]aj [n] and dj+1[p] =
∑
n∈N

g[n−2p]aj [n].

At the reconstruction:

aj [p] =
∑
n∈N

h[p− 2n]aj+1[n] +
∑
n∈N

g[p− 2n]dj+1[n].
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Using the FWT to compute wavelet coefficients

To compute an estimate of the Hölder exponent of the attractor,
fixing J = 30 for the FWT, we will perform the following steps:

Step  Obtain a signal with

(θ0, x0) (θi, xi) (θi, λ(θi))

Attractor works Keller’s Theorem

Step  Calculate a−J [n], where 0 ≤ n ≤ 2J − 1, by means of

a−J [n] ≈ 〈λ, φ−J,n〉 a−J [n] ≈ λ(θi)

Proof of Keller’s Theorem & Dominated Convergence Theorem

Step  Compute, using the FWT, the coefficients

dj[n] = 〈λ, ψj,n〉

where 0 ≤ j ≤ J and, for each j, 0 ≤ n ≤ 2j − 1.
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Using the FWT to compute wavelet coefficients

Step  For 0 ≤ j ≤ J , calculate

sj = log2

(
sup

0≤n≤2j−1

|dj [n]|

)
.

Step  Make a linear regression to estimate the slope τ of
the graph of the pairs (j, sj) with j = 0,−1,−2, . . . ,−J.
Aerwards, use the regularity theorem to get s provided
that the wavelet used had more than max(s, 5

2 − s)
vanishing moments.

This algorithm gives an effective way of computing wavelet
coefficients and regularities in a generic way.
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Using the FWT to compute wavelet coefficients

Remark
 Step  and  justify why we need a hulking computation of

wavelets coefficients. Indeed,

J samples⇔ 2J+1 coefficients.

 The points θi that give the attractor are, a priori, not equally
spaced. This is solved by conjugating the attractor with a
diffeomorphism of class C2 to a version of the attractor with
points equally spaced and, also, sorting the signal to get the
values λ(θi) in the right ordering. The conjugacy is not a
problem since one can prove that the regularity of both
attractors is the same using a result from [Tri].

[Tri] Triebel, Hans, Theory of function spaces. II, Birkhäuser Verlag, Basel, ,
viii+.
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Using the FWT to compute wavelet coefficients

With these tricks, we get the following regularity graph for the
one-parameter family of skew products, with ϕ 6≡ 0, given by
the System ():

Regularity along ε(σ).

The results are obtained by
using a sample of 230 points,
a transient N0 = 105 and the
Daubechies Wavelet with 16
vanishing moments. We can
detect in a correct way the
regularity leap in “O(N )”.

The extremely complicate geometry of ϕ provokes a lack of
precision in the computed regularities with σ ' 1.5.
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Computing coefficients using the Invariance Equation

The functional version of the aforesaid systems can be studied
using the iteration of theTransfer Operator:

0 1

ϕ

T(ϕ)

R−1
ω (θ) θ

f(·)g(·)

θ + ω

T

Let P be the space of all
functions (not necessarily
continuous) from S1 to R.
Define T(ϕ)(θ) as:

ϕ 7→ fσ(ϕ(R−1
ω (θ))) · gε(R−1

ω (θ)).

The graph of a function ϕ : S1 −→ R is invariant for the
System () if and only if ϕ is a fixed point of T. That is:

fσ(ϕ(R−1
ω (θ))) · gε(R−1

ω (θ)) = T(ϕ)(θ) = ϕ(θ).

Which is the Invariance Equation: fσ(ϕ(θ)) · gε(θ) = ϕ(Rω(θ)).
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Computing coefficients using the Invariance Equation

To solve the above functional equation we write the attractor as

ϕ(θ) = φ0,0 +

J∑
j=0

2j−1∑
n=0

d−j [n]ψPER
−j,n(θ) = d0 +

N−1∑
`=1

d`ψ
PER
` (θ)

where the coefficients d0 and d` are the unknowns. Setting
` = `(j, n) = 2j + n, we have collected them in a vector DPER:

DPER := (φ0,0, d0[0], . . . , d−J [2J − 1]) = (d0, d1, . . . , d`).

As usual we plug this expression into the Invariance Equation:

d0 +
N−1∑
`=1

d`ψ
PER
` (Rω(θ)) = fσ

(
d0 +

N−1∑
`=1

d`ψ
PER
` (θ)

)
· gε(θ).

D. Romero Numerical Computation of Invariant Objects with Wavelets //



Motivation Wavelets in Theory Wavelets in Practice

Computing coefficients using the Invariance Equation

To compute it, we discretize the variable θ into N dyadic points
θi = i

N ∈ S1 for i = 0, 1, . . . , N − 1 and we impose that the
Invariance Equation is verified on such θi:

d0 +

N−1∑
`=1

d`ψ
PER
` (Rω(θi))− fσ

(
d0 +

N−1∑
`=1

d`ψ
PER
` (θi)

)
· gε(θi)︸ ︷︷ ︸

Fσ,ε(DPER)i

= 0.

Thus, we get a non-linear system of N equations with N
unknowns. To work and compute with Fσ,ε(D

PER), we need to
define the following N ×N matrices:

Ψ whose columns are ψPER
` (θi),

ΨR whose columns are ψPER
` (Rω(θi)).
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The matrix Ψ (and ΨR)

A generic matrix Ψ (and ΨR) has this shape:

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

For ΨR, the rows are given by Rω(θi) = θi + ω (mod 1).
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Computing coefficients using the Invariance Equation

Each component of the vector of Fσ,ε(DPER) is

i−th component of ΨRDPER︷ ︸︸ ︷
d0 +

N−1∑
`=1

d`ψ
PER
` (Rω(θi))−

B︷ ︸︸ ︷
fσ

(
d0 +

N−1∑
`=1

d`ψ
PER
` (θi)

)
· gε(θi)︸ ︷︷ ︸

Fσ,ε(DPER)i

.

Defining B as the i-th component of the N -dimensional vector
℘, i.e [℘]i = fσ ([ΨDPER]i) · gε(θi), we rewrite Fσ,ε(D

PER) as:

Algebraic expression of Fσ,ε(DPER)

Fσ,ε(D
PER) = ΨRDPER − ℘.

D. Romero Numerical Computation of Invariant Objects with Wavelets //



Motivation Wavelets in Theory Wavelets in Practice

Solving Fσ,ε(D
PER) = 0

We will use the Newton’s Method to find DPER

?) such that
Fσ,ε(D

PER

?) ) = 0. That is, given a seed DPER

0) and a tolerance tol:

Newton’s Method :=

{
find DPER

?) with |DPER

?) −DPER

n) | < tol,

solving JFσ,ε(D
PER

n) )(X) = −Fσ,ε(DPER

n) ),

for the unknown X = DPER

n+1) −DPER

n) .

To compute the Jacobian matrix, we need ∂Fσ,ε
∂d`

. To do so, recall
that Fσ,ε(DPER)i is equal, for each θi, to

d0 +

N−1∑
`=1

d`ψ
PER
` (Rω(θi))− fσ

(
d0 +

N−1∑
`=1

d`ψ
PER
` (θi)

)
· gε(θi).
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Deriving the Jacobian matrix JFσ,ε

d0 +

N−1∑
`=1

d`ψ
PER
` (Rω(θi))− fσ

(
d0 +

N−1∑
`=1

d`ψ
PER
` (θi)

)
· gε(θi).

Then, each entry of the Jacobian matrix, (JFσ,ε)i,` = (
∂Fσ,ε
∂d`

)i,`, is

JFi,` =


1− f ′σ

(
d0 +

N−1∑
`=1

d`ψ
PER
` (θi)

)
· gε(θi) if ` = 0,

ψPER
` (Rω(θi))− f ′σ

(
d0 +

N−1∑
`=1

d`ψ
PER
` (θi)

)
· gε(θi) · ψPER

` (θi) if ` 6= 1.

In the same way as before, define the following N ×N matrix:

∆σ,ε whose entries are the vector ∂Fσ,ε
∂x = f ′σ([ΨDPER]i)gε(θi).

Compact version of JFσ,ε ⇒ Ψ and ΨR computed once

In view of that, we can rephrase JFσ,ε as ΨR −∆σ,εΨ. That is, at each
Newton iterate we have to solve

−Fσ,ε(DPER

n) ) = JFσ,ε(D
PER

n) )(X) = (ΨR −∆σ,εΨ)X = b.
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The seed and the linear system from Newton’s method

Using the Trapezoidal rule

d` =

∫
S1

ψPER
` ϕ dθ ≈ 1

N

N−1∑
i=0

ψPER
` (θi)ϕ(θi),

one has
DPER

0) := Ψ>
(
ϕ(θ0), ϕ(θ1), . . . , ϕ(θN−1)

)>
.

We have to solve (many times) the system (ΨR −∆σ,εΨ)X = b.
The linear system (N ×N ) is big and difficult to solve naively:

Eigenvalues for a non-pinched case. Eigenvalues for a quasi-pinched case.
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When the matrix Ψ generates ΨR

An example of Haar matrix Ψ (which is orthogonal) is:

Ψ =
1
√

8



1 1
√

2 0 2 0 0 0

1 1
√

2 0 −2 0 0 0

1 1 −
√

2 0 0 2 0 0

1 1 −
√

2 0 0 −2 0 0

1 −1 0
√

2 0 0 2 0

1 −1 0
√

2 0 0 −2 0

1 −1 0 −
√

2 0 0 0 2

1 −1 0 −
√

2 0 0 0 −2


.

It is defined by taking t = i− ns, where s = 2J−j , and

ψj,n(i/N) =


1√
N

2−j/2 for 0 ≤ t < s/2,

− 1√
N

2−j/2 for s/2 ≤ t < s,

0 if t ≥ 0.

Lemma
Set r = bωNc and let P = (pi,j) be the permutation matrix such
that pi,j = 1 if and only if j = i+ r (mod N). Then,

ΨR = PΨ ⇒ ΨΨ>R = P> and ΨRΨ>R = Id.
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Using Haar to solve the Invariance Equation

We have to solve (many times) the system (ΨR −∆σ,εΨ)X = b.
Recall that a right precondition strategy is to solve firstly APy = b
and, aer, calculate P−1x = y to get the solution x.

In the case of Haar, X = Ψ>Ry, the initial system becomes
(ΨR −∆σ,εΨ)Ψ>Ry =(Id−∆σ,εP

>)y = b. And the matrix is:


1 0 0 0 0 f ′σgε 0 0
0 1 0 0 0 0 f ′σgε 0
0 0 1 0 0 0 0 f ′σgε

f ′σgε 0 0 1 0 0 0 0
0 f ′σgε 0 0 1 0 0 0
0 0 f ′σgε 0 0 1 0 0
0 0 0 f ′σgε 0 0 1 0
0 0 0 0 f ′σgε 0 0 1



By performing Gauss Method formally on the system we obtain an
explicit recurrence that solves the system in O(N ) time.
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A bootstrap on efficiency

The previous change of variables suggest that we should do this
change permanently and always work with the rotated wavelet
coefficients defined as c = ΨRDPER

Simplifying consequences
 Since DPER = Ψ>Rc, then ΨDPER = ΨΨ>Rc = P>c. (reconstruction)

 [ΨRDPER]i − f ([ΨDPER]i) · g(θi) = 0, is equivalent to
ci − f

([
P>c

]
i

)
· g(θi) = 0. (evaluation of the Invariance Equation)

 Since DPER

0) := Ψ>(ϕ(θ0), ϕ(θ1), . . . , ϕ(θN−1)> and
ΨRΨ> = (ΨΨ>R)> = (P>)> = P then define
c0) := P (ϕ(θ0), ϕ(θ1), . . . , ϕ(θN−1)>. (rotated seed)
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Using Haar to compute wavelet coefficients

Despite of the huge linear system to solve, as in FWT case, we
can detect the pinched point in “O(N ) time”. Indeed, the system
is huge, because we are solving a N ×N system of equations.
But, for N = 226 each Newton iterate takes less than  secs.

Regularity along ε(σ). Zoom around 1.5 the pinched point.

Because Haar it is not a basis of Bs
∞,∞ (for s > 0), we need other

Daubechies wavelets.
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Using Daubechies to solve the Invariance Equation

We have to solve (ΨR −∆σ,εΨ)X = b, where b = −Fσ,ε(DPER

n) ).
Applying X = Ψ>Ry does not work because ΨR 6= PΨ. However, recall
that le precondition strategy is to solve PAx = Pb. We will use
Ψ>R = P because Ψ>R(ΨR −∆σ,εΨ) ' Id−Ψ>R∆σ,εΨ.

To do so, since N ×N is huge, we will compute massively ψPER
j,n (θi).

Massively because for each θi = i
N , j = 0, . . . , J and n (also for

Rω(θi)):

ψPER

j,n (θi) = 2−j/2
∑
ι∈Z

ψ

(
(θi + ι)− 2jn

2j

)
.

To calculate it, set u to be a 2p− 1 dimensional vector whose entries
are ui(θ) = (−1)1−floor(2θ)h[i+ 1− floor(2θ)] for i = 0, . . . , 2p− 2.
Also, define two matrices M0 and M1 in terms of h[n].
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Daubechies – Lagarias on the circle
We have adapted the R-Daubechies – Lagarias algorithm to S1 to
evaluate Daubechies wavelets with p > 1 vanishing moments.
Wavelet point – long row calculator (p vanishing moments)
Because of the compact support of ψ it follows that,

taking Λθ ⊂ [ceil(1− p− θ),floor(p− 1− θ)] ,

ψPER(θ) =
∑
ι∈Λθ

lim
k→∞

u(θ + ι)′

 ∏
i∈dyad(frac(2θ+ι),k)

Mi

 1

2p− 1
1>.

For ψPER
j,n (θ) define t = floor(2−jθ), α = frac(2−jθ) and α̃ = ceil(α). To

save computational efforts:

ℵθ ⊂ [max (0, 2−jι+ t+ α̃− p),min (2−j − 1, 2−jι+ t+ p− 1)],

Λθ =
[
ceil
(

1−p
2−j − θ

)
,floor

(
p−1
2−j − θ

)]
.

[Daub] Daubechies, Ingrid,Ten lectures on wavelets Society for Industrial and Applied Mathematics
(SIAM),Philadelphia, , xx+.
[Vid] Vidakovic, Brani,Statistical modeling by wavelets John Wiley & Sons, Inc., New York,, xiv+.
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Daubechies – Lagarias on the circle (on practice)

As a toy example, consider the following matrix Ψ where each
row is a i

16 ∈ S1, where i = 0, . . . , 15 (J = 4⇒ N = 24 = 16).

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7
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Daubechies – Lagarias on the circle (on practice)

But, Ψ verifies relations and properties (and ΨR also).

θ0 1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 0 0 0 0 0 0 ψPER
3,7

θ1 1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 0 0 0 0 0 0 0

θ2 1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 0 0 0 0 0 0

θ3 1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 0 ψPER

3,1 0 0 0 0 0 0

θ4 1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 0 ψPER

3,1 ψPER
3,2 0 0 0 0 0

θ5 1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 0 0 ψPER

3,2 0 0 0 0 0

θ6 1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 0 0 ψPER

3,2 ψPER
3,3 0 0 0 0

θ7 1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 0 0 0 ψPER

3,3 0 0 0 0

θ8 1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 0 0 0 ψPER

3,3 ψPER
3,4 0 0 0

θ9 1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 0 0 0 0 ψPER

3,4 0 0 0

θ10 1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 0 0 0 0 ψPER

3,4 ψPER
3,5 0 0

θ11 1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 0 0 0 0 0 ψPER

3,5 0 0

θ12 1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 0 0 0 0 0 ψPER

3,5 ψPER
3,6 0

θ13 1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 0 0 0 0 0 0 ψPER

3,6 0

θ14 1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 0 0 0 0 0 0 ψPER

3,6 ψPER
3,7

θ15 1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 0 0 0 0 0 0 0 ψPER

3,7

×−1

The matrix is not necessarily sparse for j ≤ j0 The matrix is sparse for j > j0
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Daubechies – Lagarias on the circle (on practice)

As a consequence, Ψ has a stairway structure (and ΨR also).

1
ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3 ψPER

3,0 ψPER
3,1 ψPER

3,2 ψPER
3,3 ψPER

3,4 ψPER
3,5 ψPER

3,6 ψPER
3,7

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3

1 ψPER
0,0 ψPER

1,0 ψPER
1,1 ψPER

2,0 ψPER
2,1 ψPER

2,2 ψPER
2,3

What we calculate for j ≤ j0

What we store for j ≤ j0 What we calculate and store for j > j0

With these relations we can
calculate and store Ψ and ΨR

in a fast and feasible way.
For example 224 × 224

spents about h.
Because of ΨR − ∆σ,εΨ they

are only computed once.
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Using Daubechies to compute wavelet coefficients

From a skew product get

ϕ ∼ d0 +

N−1∑
`=0

d`ψ
PER
` (θ).

Find DPER
?) using

Newton’s Method.

Find an initial seed:
- trapezoidal rule,
- continuation.

Solve many times
(ΨR −∆σ,εΨ)X = b,

where b = −Fσ,ε(DPER
n) ).

Krylov methods: find X such
that minimizes the residuals,
rn := b − Axn , on the kth
Krylov subspace, Kk(A, b) =〈
b, Ab,A2b, . . . , Akb

〉
.

The matrix ∆σ,ε and the
vector b need ΨR and Ψ.

Apply TFQMR to
Ψ>R(ΨR−∆σ,εΨ).

P = Ψ>R must be
understood as shied

version of FWT.

Via

We have to

A := ΨR −∆σ,εΨ︸ ︷︷ ︸
Sparse, huge

Problem

P = Ψ>R

Observe

We get DPER
n)
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Using Daubechies to compute wavelet coefficients

With these tools we get the following regularity graph of the
Keller-GOPY attractor. The results are obtained by using a
sample of 224 points in S1 and the Daubechies Wavelet with 10
vanishing moments.

The detection of the regularity leap for
another parameterization.

How we compute the regularity of a
particular instance of ϕ.

As before, we can detect the pinched point in “in O(N ) time”
and with less iterates than Haar.
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Conclusions

Our aim was the study of the use of wavelets in the numerical
computation of invariant objects framework. That is, give a

generic way to get ϕ ∼ d0 +

N−1∑
`=0

d`ψ
PER
` (θ). For us, ϕ is a SNA.

Theoretical point of view
 Due to the geometry and topology of ϕ, we have

introduced and justified the use of Bs
∞,∞ in the SNA’s

framework.
 Under “Keller’s assumptions”, we have classified ϕ ∈ Bs

∞,∞
and related the wavelet coefficients of ϕ, DPER, with such
classification. Moreover, such relationship it can be used, for
example, when facing the fractalization route.

 Due to the volume of calculations involved, we have
introduced and justified the use of Newton’s Method, Krylov
methods and the FWT to calculate DPER in our framework.
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Conclusions

Theoretical point of view
 Focusing on the use of Newton’s Method, we have related

the use of the Trapezoidal rule with the initial seed D0)
PER.

 Moreover, in the Haar’s case we have related λϕ with the
convergence of Newton’s Method and, also, find an explicit
solution of the linear system, via a permutation matrix P
(and a precondition strategy).

 Focusing on the use of the FWT, we have shown a generic
conjugacy between two skew products. Also, we have
justified that the regularity of both attractors is the same.

 Focusing on the initial seed of the FWT, we have proved
that we can take the orbit of a point as a−J [n].
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Conclusions

Algorithmic point of view

 To work and compute, we have expressed the Invariance Equation
as “matrix×vector”. Using the same idea (and the same goals),
we have compacted the Jacobian matrix JFσ,ε = ΨR −∆σ,εΨ.

 To work and compute with Ψ and ΨR, we have rephrased the
Daubechies – Lagarias algorithm from R to S1. Using it and the
inherited properties of the Daubechies wavelets, we have derived
properties of Ψ and ΨR.

 Moreover, we have found good precondition strategies to solve
the system in a feasible way. As a consequence, we can go fast
and deep. In particular, when ψ(x) is the Haar wavelet, we have
performed a strategy to get the explicit solution.

 Focusing in the FWT performance, we have sorted a big signal of
the attractor ϕ faster than “fast sorting algorithms” using
Birkhoff’s Ergodic Theorem.
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Conclusions

From the Theoretical and Algorithmic conclusions:

Computational point of view
 We have rephrased the Daubechies – Lagarias algorithm on

a PC. Also, we have generated an independent soware to
work and compute with Ψ and ΨR on a (really big!) mesh
of points of S1. The core of such soware, besides the
calculations involved, is the definition of a particular data
structure for Ψ and ΨR.

 Using the above point, we have performed a modular
soware to obtain DPER in “O(N ) time” for a generic skew
products on the cylinder (with an irrational rotation in the
base). Its output, besides DPER, is an estimate of the
regularity of ϕ.

D. Romero Numerical Computation of Invariant Objects with Wavelets //


	Motivation
	A Primer on Wavelets and Regularity
	The construction of the wavelets
	Regularity with wavelet coefficients

	Numerical Computation of Invariant Objects with Wavelets
	Using the Fast Wavelet Transform
	Solving the Invariance Equation by means of Haar
	Solving the Invariance Equation by means of Daubechies


