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Introduction

The main purpose of this Thesis is to give an interface between dynamical systems and
analysis topics by means of the development of a software. Hence, the framework

of this Thesis is Numerical Analysis. In particular, such developed interface focuses into
obtain an analytical approximation of some invariant objects. From such approximation,
and due to the difficulty to make calculations in an explicit way, we want to try to assess
some properties of such invariant object. This is, roughly speaking, the main topic of the
present dissertation.

In the following we will develop, in a not in-depth way, the motivation and the
underlying problems. To this end, let us introduce the main subject of our study: a
family of pinched skew products which are defined on the Cartesian product of S1 and
R+ = [0,∞). They are of the type

()
(
θn+1
xn+1

)
= Fσ,ε(θn, xn) =

(
Rω(θn)

Fσ,ε(θn, xn)

)
,

where Rω(θ) = θ + ω, ω ∈ R\Q and σ, ε ∈ R. Precisely, in these classes of dynamical
systems invariant sets with a strange geometry appear. From now on, we will call the
invariant ϕ, which depends on σ and ε by construction. Now, let us motivate our study.

Obtaining analytical approximation of this “weird" ϕ the use of wavelets instead of
“Fourier approach” naturally arises. Indeed, the Fourier techniques, which are widely
studied and used, tries to get expansions as:

ϕ ∼ a0 +
∞∑
n=1

(an cos(nθ) + bn sin(nθ)) ,

which are not convenient for our case. Therefore, the aim of this Thesis is to describe
an efficient algorithm for the semi-analytical computation of the invariant object using
wavelets. However, we want to mention that the methodology developed strongly
depends on the Lyapunov exponent on ϕ. Recall that the Lyapunov exponent must be
understood as the mean growth rate of the distance between neighboring initial point
trajectories. The approximation is based on the computation of〈

ϕ,ψPER
−j,n

〉
=
∫

supp(ψPER
−j,n)

ϕ(θ)ψPER
−j,n(θ) dθ

since we want to approximate a function from L 2(S1) by a wavelet expansion of the
type

ϕ ∼ a0 +
∞∑
j=0

2j−1∑
n=0

〈
ϕ,ψPER

−j,n

〉
ψPER
−j,n.
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Observe that the unknown is, precisely, 〈ϕ,ψ−j,n〉 because

ψPER
j,n (x) =

∑
`∈Z

ψj,n(x+ `) = 2−j/2
∑
`∈Z

ψ

(
(x+ `)− 2jn

2j

)

and ψ(x) is a given wavelet. Namely, ψ(x) is a function such that its dyadic translations
and its dilations by powers of two form an orthonormal basis of L 2(R).

The aim for this exercise is twofold. From one side, to study bifurcations and, per-
haps, to give information of the dynamics of the object. On the other side, to estimate
the regularity of ϕ. Notice that the study of this regularity, depending on parameters,
provides another point of view to the “fractalization routes” as it is described, for in-
stance, in [Nis, JT]. Therefore we need to calculate as well as possible the coeffi-
cients

〈
ϕ,ψPER

−j,n

〉
. We will compact the notation using DPER as the vector, which can

be infinite dimensional, of wavelet coefficients.
Finally, we want to make a comment concerning to the wavelet coefficients DPER

and the regularity pf ϕ. Leaving aside the classification of ϕ in terms of its regularity,
we have used the regularity to decide, in some sense, the quality of the “numerically
obtained” DPER. Indeed, since, by construction, DPER can always restore ϕ then, how
we can control if they are good enough? The answer is the regularity in those cases
where the regularity is known.

An overview

In order to calculate the desired coefficients, let us make one step backwards. As it is
described in Chapter  and  one of the main ingredients, besides of how to compute
ψPER
−j,n(θ), is the solution of a (non)-linear system of equations. Indeed, the Equation ()

can be understood as

Fσ,ε : S1 × R −−−−−−−→ S1 × R
(θ, x) 7−→ (Rω(θ), Fσ,ε(θ, x)),

and the invariant object, ϕ, is a solution of the invariance equation

Inv(θ) = Fσ,ε(θ, ϕ(θ))− ϕ(Rω(θ)) = 0.

An underlying subject related to the above equation is the Transfer OperatorM. Let us
skip such concepts, which will be clearly explained in Chapter , and focus on something
masked behind the invariance equation. Indeed, we turn our attention to

Fσ,ε(θ, ϕ(θ))−ϕ(Rω(θ)) = (Fσ,ε ◦ϕ)(θ)− (ϕ ◦Rω)(θ) = 0⇔ (Fσ,ε ◦ϕ)(θ) = (ϕ ◦Rω)(θ)

Working on this point of view, the invariance equation becomes similar to a cohomo-
logical equation. Precisely, the nature of the solutions of the cohomological equation,
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in terms of regularity, is widely studied in many cases. Moreover, it arises as a good
starting point to understand the reducibility methods in a general context and systems
depicted in [FR, Jor, HdlLa, HdlLb, HdlL]. These are used to undertake actions
avoiding the problematic regions, which depend on σ and ε.

We point out that the methods used along the memoir are slightly different from
such techniques. Nevertheless, due to the “simplicity” of the environment space, S1×R,
the Lyapunov exponent is the link between the notion of reducibility and our point of
view, as it can be seen in [JT].

Moving to the regularity ideas, remark that the idea of the Transfer Operator de-
scribed along this Thesis will have two meanings. As a first instance, the Transfer Op-
erator must be understood as the projection on the second component of the system
given by Equation () (see [AM, Kel]):

T(ϕ)(θ) = Fσ,ε(θ, ϕ(Rω(θ)).

On the other side, when one uses the reducibility language to the Transfer Operator,
the Invariance equation becomes an operator:

T(ϕ)(θ) = ϕ(Rω(θ))− Fσ,ε(θ, ϕ(θ)).

Notice that, both are essentially the same and they are used to derive regularity prop-
erties (see e.g [dlLO, HdlLa, HdlLb, HdlL, Kel]). The main difficulty in carrying
out the regularity assessment with these techniques, depending on the parameters σ
and ε, is to plug them into wavelets theory. This is, precisely, one of the main purposes
of the developed software.

Zoom in

In Chapter  we describe the vector DPER using the invariance equation and the Transfer
Operator, we find. To do so, we deal with the Newton’s method. In such situation, we
solve the following (non)-linear system

(
Ψ̃PER
N −∆NΨPER

N

)
(Θ)DPER

N = −Inv(Θ), Θ ∈ S1
N︷ ︸︸ ︷

× · · ·×S1

for a certain N -variable functions ∆ = ∂Fσ,ε(θ,ϕ(θ))
∂x and ΨPER, related to Fσ,ε and

the wavelets ψPER respectively. Hence, in order to find the solution, the Newton-
Kantorovich hypothesis must be verified. Having said that, we warn that we will not go
further in this topic because we have applied the idea of if Newton’s method converges,
converges.

However, we can go a little bit in-depth in the above equation if we restrict ourselves
to the Haar’s case. Indeed, see Chapter  for an exhaustive explanation, our equation
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becomes (
Ψ̃PER
N −∆NΨPER

N

)
(Θ)DPER

N =
(
Id−∆NP

>
)

(Θ)DPER
N = −Inv(Θ),

using a permutation matrix given by

Pi,j =

1 if (j + b2jωc) mod N,

0 otherwise.

The idea behind this change of variables is the preconditioning techniques for linear
systems. Observe that P> is a matrix whose image is the same point θ translated a
certain quantity ω̃. Moreover, the permutation matrix P>, when j tends to∞, becomes
the rotation Rω(θ). Indeed, for all x ∈ R it follows that x − 1 ≤ bxc ≤ x. Using such

inequality it can be shown that lim
j→∞

b2jωc
2j = ω.That is, P>∞ = Rω(θ). Namely, we have

translated the Transfer Operator to another one more understandable. Indeed, we can
find the vector DPER iteratively solving

() Tσ,ε(DPER
k ) = (Id−∆σ,ε ◦Rω)(Θ)DPER

k = −Inv(Θ),

with a given initial seed DPER
0 . Hence, the “contraction – invertible properties” of Tσ,ε

will decide the convergence towards DPER. Taking Tσ,ε as an (infinite) matrix will help
us. Actually, Tσ,ε as a matrix will be a contractive matrix if its spectral radius, ς(Tσ,ε),
is less than one. Such condition is equivalent to demand ς(∆σ,ε ◦ Rω) < 1, and this is
equivalent to have the Lyapunov exponent of the system given by Equation () less than
zero (see Chapter  for more details). In view of that, it arises three “natural” situations:

(a) If the Lyapunov exponent is less than zero, then the operator is invertible and
Equation () converges to DPER hopefully.

(b) If the Lyapunov exponent is close to zero, then the operator nearby not invertible
and we have kernel. Hence, other techniques must be applied.

(c) If the Lyapunov exponent is positive, then system given by Equation () has a
repellor and we do not consider such case.

In other words, what will control in which of the above cases we are will be the
parameters σ and ε. Notice that it is linked to the question whether those parameters,
specially ε, “control” the regularity properties of ϕ or the regularity is inherent to ϕ.

Zoom out

From a general point of view, wavelet coefficients determine the regularity of a function
in the same way as in the Fourier world. Hence, in our case, DPER will decide if ϕ is on a
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certain regularity space. Let us denote this space by Bs
∞,∞(S1), where s ∈ R. Roughly

speaking, Bs
∞,∞(S1) are the generalization of Hölder spaces (under certain constraints)

for all real value of s (see e.g [Tri, Tri, Tri]). This range (even negative!) seems
a bit weird; however there are systems where ϕ it is not a graph of a (usual) function,
as it can be guessed in Figure . On the contrary, an invariant object with a strange
geometry at a first glance may become a nice object after some manipulations (see
e.g [AM, Jor]). Thus, all range of s must be allowed and other regularity spaces
may be considered.

Figure : On the left picture it is shown an attractor with area [AM]. On the right
picture it is displayed the Nishikawa-Kaneko model with σ = 3.0 and ε = 0.18 [Nis].

However, we will have two important and related drawbacks. The first one is linked
to the three “natural” situations described at the end of the last paragraph. For certain
values of σ and ε the Lyapunov exponent is relatively close to zero. In these cases,
the vector DPER is very hard to calculate, in CPU time consuming. We use standard
continuation techniques on the way of solving such problem. The other disadvantage is
that “a priori” Equation () does not knows, in some sense, if DPER

k will have some nice
vanishing property. That is, using this methodology is mandatory to converge towards
DPER to be able to classify ϕ in one of these spaces Bs

∞,∞(S1).

Organization and contributions of this Thesis

This dissertation is divided into two parts. The first one (Chapters , and ) is devoted
to recall and introduce all the theory and the methodology which is used into the
second part (Chapters ,  and ). In Chapter  a self-contained and general introduction
to wavelets it is done. However, since we will use Daubechies wavelets with p ≥ 1
vanishing moments, we will focus in such wavelets (in R or S1). Actually, along this
thesis we have performed the translation from the R-Daubechies wavelets language
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to S1. Following the generic notation, in the literature we have call it ψPER. Also, in
this first Chapter a crash course on the notion of regularity, in terms of the functional
spaces Bs

2,2(S1) and Bs
∞,∞(S1), and the relationship between them and the wavelets

coefficients,
〈
f, ψPER

−j,n

〉
, is done.

Precisely, the main topic of Chapter  is the calculation of the wavelets coefficients
using two different techniques; namely, Fast Wavelet Transform and the solution of
(non)-linear systems of equations. In a more concrete terms, we have performed an
algorithm to calculate, in an efficient and fast way, ψPER on a (really big!) mesh of points
of S1. The method is based on the Daubechies–Lagarias algorithm (see [DL, DL]).
Such computation, which is a key point of this disquisition, will be the main part of the
Chapter .

Finally, the last chapters of this first part are devoted to give a short compilation of
the theoretical framework where this dissertation is dealt. In Section . it is shown the
machinery and also we try to characterize the mechanisms involved in the geometric
properties of a particular family of quasi periodically forced skew products on the cylin-
der. As a matter of fact, combining them with ideas from [AM, Har] it is possible to
extend the results of [Sta, Sta] to a more weird class of functions. Also we derive
“theoretically” the regularity, in terms of Bs

∞,∞(S1), for ϕ of the Keller-GOPY model.
Despite of this two remarkable facts, such effort is to justify the use of the software in
other cases of SNA’s, as those ones in [AM, Nis], among the study of them in terms
of regularity.

Moving to the second part of this Thesis, two different exercises are done. The first
one, following [dlLP], is the development of an algorithm to estimate regularities, in
terms of Bs

∞,∞(S1), for s ∈ R. Such algorithm is the main goal of Chapter , and it is
used in many situations, but not only with the Fast Wavelet Transform. Indeed, in Chap-
ter  we perform the same kind of regularity assessment with a different methodology
to obtain

〈
ϕ,ψPER

−j,n

〉
.

Certainly, in the last Chapter(s), we have focused to solve the Invariance Equation
for several situations and dynamical systems. The solvers, which are iterative, are the
main contribution of such Chapter(s). Due to the good properties of the Daubechies
wavelet family, such as compact support or vanishing moments among others (see
e.g [Dau, HW, Tri]), we have derived two iterative strategies to find

〈
ϕ,ψPER

−j,n

〉
.

Both of them are based in the same argument but, due to the simplicity of the Haar
wavelet (p = 1), the first strategy give us a close to explicit method calculate the
Haar wavelet coefficients. As mentioned, beyond the “numerical approximation of the
invariant objects”, we have estimated the regularity, in terms ofBs

2,2(S1) andBs
∞,∞(S1),

of a certain models of skew products using the Haar wavelet. Both goals have been
repeated with other Daubechies wavelet. Nevertheless, we would like to remark that,
when p > 1, the core of the iterative method is the aforementioned massive evaluation
of ψPER and, also, the left conditioned discretization of the Transfer Operator. As an
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extra point, a numerical exploration of the Lyapunov exponent of a particular instance
of the kind of systems in [AM] it is done.

Loose ends of this Thesis

It is worth pointing out that in each of the chapters there are some open problems and
questions which we summarize at the end as a (possible) future work. Concretely, the
above strategies open the door too study the operator in terms of Newton-Kantorovich
theorem. This would guarantee the stability of the iterative method. In this way, there
are some open questions such as which is the limit operator, when one uses a precon-
dition technique, and how the convergence of the iterative method is affected by the
Lyapunov exponent. Of course, for a well suited norm, Newton-Kantorovich theorem
must may be used to detect, “a priori”, the lack of regularity of ϕ. Moving to the con-
tinuation methodology, since we have convergence, it seems useful to find, in a more
general context, such strips of convergence towards the desired case of σ and ε using
the operator framework.

Also, the developed software it might be updated to work on high dimensions and
some qualitative–quantitative properties of ϕ. For example, a modification of it can
produce rigorous numerical estimation of ϕ’s traits, such as the Hausdorff Dimension
or its length. Moreover, theoretical bounds on the aforesaid traits could be done using
the Haar wavelet because of its simplicity. Nonetheless, as it is described in Chapter 
and , the bug of the precision must be completely understood.
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