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a b s t r a c t

In this paper we perform an analysis of the wave structure of the ideal magnetohydrody-
namic (MHD) equations. We present an analytical expression of the nonlinearity term
associated to each characteristic field derived from a scaled version of the complete system
of eigenvectors proposed by Brio and Wu [M. Brio, C.C. Wu, An upwind differencing scheme
for the equations of ideal magnetohydrodynamics, J. Comput. Phys. 75 (2) (1988) 400–422]
and adopting the eight wave approach by Powell et al. [K.G. Powell, P.L. Roe, R.S. Myong, T.
Gombosi, D. deZeeuw, An upwind scheme for magnetohydrodynamics, AIAA 12th Compu-
tational Fluid Dynamics Conference, San Diego, CA, 1995, pp. 661–674]. A criterion for the
detection of local regions containing points for which a nonlinear characteristic field
becomes nonconvex is formulated for the two-dimensional case. We then design a charac-
teristic-based upwind scheme for the ideal MHD equations that resolves the wave dynam-
ics by local characteristic wavefields. The new scheme is able to detect local regions
containing nonconvex singularities and to handle an entropy correction through a pre-
scription of a local viscosity ensuring convergence to the entropy solution. A third order
accurate version of the scheme performs satisfactorily in resolving one and two-dimen-
sional MHD problems. Numerical results indicate that the proposed scheme behaves low
dissipative, stable and accurate under high CFL numbers.
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1. Introduction

The ideal magnetohydrodynamics (MHD) system of equations can be expressed as

qt ¼ �rðqvÞ; ð1Þ

ðqvÞt ¼ �r qvvT þ P þ 1
2

B2
� �

I � BBT
� �

; ð2Þ

Bt ¼ r� ðv � BÞ; ð3Þ

Et ¼ �r
c

c� 1
P þ 1

2
qq2

� �
v � ðv � BÞ � B

� �
; ð4Þ

where q; P;v;B and E denote the mass density, the pressure, the velocity field, the magnetic field and the total energy respec-
tively. The adiabatic constant is represented by c and the energy E ¼ 1

2 qq2 þ 1
2 B2 þ P

c�1 where q2 and B2 are the squares of the
magnitudes of the velocity field and the magnetic field respectively. The hydrodynamic pressure is defined through the ideal
gas EOS as P ¼ ðc� 1Þq� where � is the specific internal energy.
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