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Abstract

Menezes, Lucyjane de Almeida Silv@n classical results for discontinuous
and constrained differential systems Goiania, 2019.85p. PhD. Thesis .
Instituto de Matematica e Estatistica, Universidade Fddlr Goias.

The present work concerns the study of classes of discanigdifferential systems
addressing the following topics: global attractors, lmegtion, and codimension—one
singularities for constrained differential systems. Tharklis—Yamabe conjecture deals
with global stability and it states that if a differentialsigstermx’'= f(x) has a singularity
and the Jacobian matrRf (x) has everywhere eigenvalues with negative real part, then
the singularity is a global attractor. We consider a pieseveimooth differential systems
Z = (X,Y) separated by one straight likeAssuming thaX andY are linear vector field,
0€ 2, Y(0) =0, X(0) # 0, and the Jacobian matrices of the subsyst&nadY has
everywhere eigenvalues with negative real part, we proaezltan have one crossing
limit cycle. That is about similar hypotheses to that of tharklis—Yamabe conjecture
the origin is not necessarily a global attractorbfConsiderZ defined inR". In this
work, we provide linear normal forms around generic singtiés of Z. Let A(x) be a

n x n matrix valued functionn > 2, andF(x) a vector field defined of". Assuming
thatA andF are smooth, a constrained systemibhis a differential equations system of
the formA(x)x = F(x), wherex € R". The setia = {x € R": detA(x) = 0} is called the
impasse hypersurface whose points are called impassespbirthis thesis we classify
the one codimension singularities of the constrained systiefined oiR3. Moreover we
provide the respective normal forms in the one parameterespa

Keywords
Discontinuous systems, linearization, global attactonjticycles, constrained
systems.
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Introduction

Discontinuous differential systems appear in the histdrgymamical systems
as models of real phenomena presenting abrupt switchingled\bor such as electronic
relays and mechanic impact, séid. [The theory of discontinuous systems has been in
wide development and it can applicable in different aredshofvledge such as electrical
and mechanic engineering and biology, s28}.[The qualitative analysis of discontinuous
differential systems is an essential issue for the studycangprehension of such models.
However, the qualitative analysis requires the estableitrof new techniques and the
adaptations of the classic tools for continuous diffeadrsystems, sed], [16], and [29].
Moreover even in the planar case there are important unggjwestions for this class of
differential system as to know the maximum number of limitleg.

Let f : R" — R be aC' function,r > 1, for which 0 is a regular value. We define
adiscontinuous differential syster@so namedFilippov systenas

Z(Z>:{ X(2), if f(z)io, ©-1)

wherez ¢ R" andZ = f~1(0) is thediscontinuity manifold

According to Filippov’'s convention, the manifoklis decomposed in crossing,
sliding, and escaping regions. Furthermore, we define idinglvector fieldZ® as the
linear convex combination of andY tangent ta> at p, that is

Y f(p)X(p) = Xf(p)Y(p)

2P = N (p) =XT(p)

whereX f(p) = (Of(p),X(p)),

The singularities of Filippov systen®{1) are the pointg such that:;p ¢ > and
X(p) =0 orY(p) = 0, p belonging to sliding or escape region such tA&tp) = O,
and p € Z such thatX f(p) = 0 orY f(p) = 0. Notice that in Filippov systems there
exist singularitiesp which is not a stationary point oZ. We say thatp € Z is a
tangency of ordek of X if X f(p) = 0,...,Xk"1f(p) = 0, andXkf(p) # 0. Furthermore,
if {DX f(p),...,DX*"1f(p),Df(p)} is linearly independent then the tangency pagiris
said to be generic.
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We define acrossing limit cycleas a isolated periodic orbit formed by the union
of regular orbits which cross the discontinuity only thrbugossing points. In this work
a crossing limit cycle will be called simplimit cycle

The present work concerns the study of different classessebdtinuous dif-
ferential systems with emphasis on the problems as the MaMamabe conjecture,
Hartman—Grobman Theorem, maximum number of limit cycles, ane—codimension
singularities for constrained systems.

On global attractors for discontinuous systems

In 1960 Markus and Yamabe stated thatt(0) = 0 and all eigenvalues @ f (x)
have negative real part then the differential system

x=f(x), (0-2)

where f € CY(R"), is such that the origin is a global attractor. In their paji] the
conjecture was proved under some strong additional hypethd his statement became
known as the Markus—Yamabe conjecture.

Many authors have dedicated their work in proving the Markf@snabe conjec-
ture. In 1988 Meisters and Olech proved this conjecturedyrmpmial vector fields in the
plane, see]0]. Considering vector fields of clag? defined inR?, Gutierrez [L5], Fleber
[9] and Glutsyuk 1.2] for this order provided different proofs of the Markus—Yaipe con-
jecture in the years 1994 and 1995. However counterexarhples been constructed in
higher dimensions. Bernat and Llibi@[in 1996, presented a counterexample to the con-
jecture in dimension larger than 3. In 1997, Cima et&Ipfovided a counterexample for
the casen = 3. More precisely, they proved that the Markus—Yamabe obmje is false
for polynomial vector fields ifR" with n > 3. More details can be found i8,[11, 14]. In
this work we consider a discontinuous differential systetis§ying similar hypotheses
to that of the Markus—Yamabe conjecture and prove that tlggnois not necessarily a
global attractor.

We define giecewise linear Markus—Yamabe differential sysésna discontin-
uous differential systen0¢1) defined fom = 2 andf(x,y) = x, whereX andY are linear
vector fields, the real part of the eigenvalue®df(z) andDY (z) are negativeY (0) = 0,
and the singularity oK is virtual, i.e. it leaves in the half—plane< 0. In this case the
discontinuity set is the straight lire= {(x,y) € R%x = 0}. In order to simplify the nota-
tion we denote the piecewise Markus—Yamabe systef-a$X,Y) and call it simply as
piecewise MY-systenhe extension of the conjecture of Markus—Yamabe to piesew
MY-system claimsThe origin of any piecewise MY—system is a global attradfour
main goal is to prove that the extension of the Markus—Yantalpgecture does not hold
for piecewiseMY—systems. For this we should characterize that these systemhave
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limit cycles. This characterization is done in the Theor®m
On linearization for discontinuous differential systems

A classical result on linearization for continuous diffietial system is the
Grobman—Hartman Theoren®1]]. It states that topologically the local behavior of the
non linear system

X = X(X) (0-3)

near an hyperbolic singularity whereX(xg) = 0 is typically determined by the behavior
of the linear system

X = DX (X)X (0-4)

near the origin. Assuming that the singularityhas been translated to the origin, we have
the following:

Grobman—Hartman Theorem. Let E be an open subset &" containing the origin let
X € C1(E), and let®d; be the flow of the nonlinear syster®d-8). Suppose thaX(0) = 0
and that O is hyperbolic singularity &f, that is the matriXA = DX(0) has no eigenvalue
with zero real part. Then there exists a homeomorphisof an open sety containing
the origin onto an open skt containing the origin such that for eagfc U, there is an
open intervalg C R containing zero such that for ady € U andt € g

H o @ (x0) = €*'H (x0).

That isH maps trajectories of0¢3) near the origin onto trajectories 0d-4) near the

origin and preserves the parameterization by time.

Our main scope on linearization for discontinuous difféie@nsystems is to establish

results such as versions of the Grobman—Hartman Theoreme idiscontinuous context.
ConsiderZ = (X,Y) a discontinuous differential system of the forG1). The

generic singularities of are

1. the hyperbolic singularities & andY in 2™ = {ze R": f(z) > 0} andX~ ={ze
R": f(z) < 0}, respectively.

2. hyperbolic singularities of the sliding vector fielde Z such thaZ®(p) = 0.

3. the tangency—-regular poin{se Z such thap is a generic tangency of with order
k, 1< k<n,andY f(p) #0.

In this work we assume that the origin is a generic singylaxitZ and provide linear
normal forms forZ around the origin. This is done in the TheorBxMoreover we prove
a version of the tubular flow theorem for pairs of vector figlcdslled theorenC, that



13

is a key tool for proving the Theorem® for generic singularities what are hyperbolic
singularities of the sliding vector field.

Codimension—one singularities for constrained system

Let A= A(x) be an x n matrix valued functionn > 2, andF = F(x) a vector
field defined orR". Assuming thalA andF are smooth, @onstrained systenonR" is a
differential equations system of the form

AX)X = F(x), (0-5)

wherex € R". The constrained system are characterized by the exist@hicepasse
hypersurface
A= {XG R": oa = thA(X) = 0}

whose points are calleéthpasse pointdNotice that, outside of the impasse hypersurface
the constrained system can be rewritten as

X =AY (X)F (x) = Sy 1A (X)F (x),

whereA* denotes the adjoint matrix @&. Then, for every system of the forr9-§) , we
can define the vector field = A*(x)F(x) called theregularizationof the constrained
system. A constrained systei@§; at pointp is said to be topologically equivalent to a
constrained systef@S provided that there is a homeomorphikrfrom a neighborhood
U of pinto a neighborhoo® of g which maps the impasse hypersurfdgeonto la,
and sends the arcs of orbits of the regularizaf(@mn U \ I5, onto those oﬁz inV\ la,
preserving there constrained positive orientations. Swaistrained orientation, in the
case 0-5) is defined byX; multiplied by the sign obp, .

Systems of the formQ:5) appear in electrical circuit theory and in the study of
the inversion of smooth mappings, sék [7], and [26]. The numerical analysis of a class
of constrained systems has been carried out by Riaza and4of[23].

An impasse poinp of the constrained systen®-6) is said regular ifda is a
regular function ap, that isD(da(X))(p) # 0. Moreover an regular impasse popwill
be called non singular if the space Ré¢p) is transversal tdy and the vectoF (p) does
not belong to the image @&(p). Otherwise, if at least one at least of these conditions are
violated,p is called a impasse singularity. 18]], Zhitomirskii provided the local normal
forms for constrained systems on 2—manifolds. 27]] Sotomayor and Zhitomirskii
classified the generic impasse singularities of constdagystems defined dR", n > 3,
and provided the respective normal forms. 18][ the authors provided a complete list
of the one—parameter impasse bifurcations. A Peixoto’®iidra for constrained systems
defined orS? was proved by Buzzi, Medrado, and Silva #).[
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In this work we consider the constrained syste@&)(defined onR3 and we
classify the codimension—one singularities and proviger@spective local normal forms
in the one parameter space. This classification is done inréheD.

Organization of the thesis

In Chapterl we introduce the basic concepts and the necessary results on
differential systems that will be fundamental tools for tlevelopment of this thesis.

Chapter2 is devoted to study on Markus—Yamabe conjecture for discoatis
differential systems. In order to see that the Markus—Yantainjecture does not hold for
discontinuous differential systems separated by onegstiréine, we should characterize
which piecewise MY-systems can have limit cycles. This abrization is done in the
TheoremA.

Chapter3 concerns to the versions of the Grobman—Hartman Theoreondro
generic singularities and their respective normal fornesexthibited, this is done in the
TheoremB. In the SectiorB.1we prove a version of the Tubular Flow Theorem for pairs
of vector fields, called Theoref. This result will be a key tool for proving the Theorem
B in a neighborhood of the hyperbolic singularity of the siglvector field in the Section
3.2 In Sections3.3 and 3.4 we provide the linear normal forms of the discontinuous
differential system in a neighborhood of a tangency—requoat with order 2 and greater
than 2, respectively.

The last Chaptes we present a classification of the codimension—one singular
ities for constrained systems defined Bf and the respective normal forms. These are
the contents of the Theoreb. In the sectiond.1 we classify the impasse singularities
that are of type tangency impasse points. The sedtidooncerns the classification of the
impasse singularities that are of type equilibrium impassats.

The figures of this work were made on maple and corel draw.
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