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Abstract

Menezes, Lucyjane de Almeida Silva.On classical results for discontinuous
and constrained differential systems. Goiânia, 2019.85p. PhD. Thesis .
Instituto de Matemática e Estatística, Universidade Federal de Goiás.

The present work concerns the study of classes of discontinuous differential systems

addressing the following topics: global attractors, linearization, and codimension–one

singularities for constrained differential systems. The Markus–Yamabe conjecture deals

with global stability and it states that if a differentiablesystem ˙x= f (x) has a singularity

and the Jacobian matrixD f (x) has everywhere eigenvalues with negative real part, then

the singularity is a global attractor. We consider a piecewise smooth differential systems

Z= (X,Y) separated by one straight lineΣ. Assuming thatX andY are linear vector field,

0 ∈ Σ, Y(0) = 0, X(0) 6= 0, and the Jacobian matrices of the subsystemsX andY has

everywhere eigenvalues with negative real part, we prove that Z can have one crossing

limit cycle. That is about similar hypotheses to that of the Markus–Yamabe conjecture

the origin is not necessarily a global attractor ofZ. ConsiderZ defined inRn. In this

work, we provide linear normal forms around generic singularities of Z. Let A(x) be a

n× n matrix valued function,n ≥ 2, andF(x) a vector field defined onRn. Assuming

thatA andF are smooth, a constrained system onR
n is a differential equations system of

the formA(x)ẋ= F(x), wherex∈ R
n. The setIA = {x∈ R

n : detA(x) = 0} is called the

impasse hypersurface whose points are called impasse points. In this thesis we classify

the one codimension singularities of the constrained systems defined onR3. Moreover we

provide the respective normal forms in the one parameter space.

Keywords

Discontinuous systems, linearization, global attactor, limit cycles, constrained

systems.
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Introduction

Discontinuous differential systems appear in the history of dynamical systems

as models of real phenomena presenting abrupt switching of behavior such as electronic

relays and mechanic impact, see [1]. The theory of discontinuous systems has been in

wide development and it can applicable in different areas ofknowledge such as electrical

and mechanic engineering and biology, see [28]. The qualitative analysis of discontinuous

differential systems is an essential issue for the study andcomprehension of such models.

However, the qualitative analysis requires the establishment of new techniques and the

adaptations of the classic tools for continuous differential systems, see [4], [16], and [29].

Moreover even in the planar case there are important unsolved questions for this class of

differential system as to know the maximum number of limit cycles.

Let f :Rn −→R be aCr function,r ≥ 1, for which 0 is a regular value. We define

adiscontinuous differential system, also namedFilippov systemas

Z(z) =

{
X(z), if f (z)> 0,

Y(z), if f (z)< 0,
(0-1)

wherez∈ R
n andΣ = f−1(0) is thediscontinuity manifold.

According to Filippov’s convention, the manifoldΣ is decomposed in crossing,

sliding, and escaping regions. Furthermore, we define the sliding vector fieldZs as the

linear convex combination ofX andY tangent toΣ at p, that is

Zs(p) =
Y f(p)X(p)−X f(p)Y(p)

Y f(p)−X f(p)

whereX f(p) = 〈∇ f (p),X(p)〉,

The singularities of Filippov system (0-1) are the pointsp such that:p /∈ Σ and

X(p) = 0 or Y(p) = 0, p belonging to sliding or escape region such thatZs(p) = 0,

and p ∈ Σ such thatX f(p) = 0 or Y f(p) = 0. Notice that in Filippov systems there

exist singularitiesp which is not a stationary point ofZ. We say thatp ∈ Σ is a

tangency of orderk of X if X f(p) = 0, ...,Xk−1 f (p) = 0, andXk f (p) 6= 0. Furthermore,

if {DX f(p), ...,DXk−1 f (p),D f (p)} is linearly independent then the tangency pointp is

said to be generic.
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We define acrossing limit cycleas a isolated periodic orbit formed by the union

of regular orbits which cross the discontinuity only through crossing points. In this work

a crossing limit cycle will be called simplylimit cycle.

The present work concerns the study of different classes of discontinuous dif-

ferential systems with emphasis on the problems as the Markus–Yamabe conjecture,

Hartman–Grobman Theorem, maximum number of limit cycles, and one–codimension

singularities for constrained systems.

On global attractors for discontinuous systems

In 1960 Markus and Yamabe stated that iff (0) = 0 and all eigenvalues ofD f (x)

have negative real part then the differential system

ẋ= f (x), (0-2)

where f ∈ C1(Rn), is such that the origin is a global attractor. In their paper[19] the

conjecture was proved under some strong additional hypotheses. This statement became

known as the Markus–Yamabe conjecture.

Many authors have dedicated their work in proving the Markus–Yamabe conjec-

ture. In 1988 Meisters and Olech proved this conjecture for polynomial vector fields in the

plane, see [20]. Considering vector fields of classC1 defined inR2, Gutierrez [15], Fleber

[9] and Glutsyuk [12] for this order provided different proofs of the Markus–Yamabe con-

jecture in the years 1994 and 1995. However counterexampleshave been constructed in

higher dimensions. Bernat and Llibre [3], in 1996, presented a counterexample to the con-

jecture in dimension larger than 3. In 1997, Cima et al. [8] provided a counterexample for

the casen= 3. More precisely, they proved that the Markus–Yamabe conjecture is false

for polynomial vector fields inRn with n≥ 3. More details can be found in [5, 11, 14]. In

this work we consider a discontinuous differential system satisfying similar hypotheses

to that of the Markus–Yamabe conjecture and prove that the origin is not necessarily a

global attractor.

We define apiecewise linear Markus–Yamabe differential systemas a discontin-

uous differential system (0-1) defined forn= 2 and f (x,y) = x, whereX andY are linear

vector fields, the real part of the eigenvalues ofDX(z) andDY(z) are negative,Y(0) = 0,

and the singularity ofX is virtual, i.e. it leaves in the half–planex < 0. In this case the

discontinuity set is the straight lineΣ = {(x,y) ∈R
2;x= 0}. In order to simplify the nota-

tion we denote the piecewise Markus–Yamabe system asZ = (X,Y) and call it simply as

piecewise MY–system. The extension of the conjecture of Markus–Yamabe to piecewise

MY–system claims:The origin of any piecewise MY–system is a global attractor. Our

main goal is to prove that the extension of the Markus–Yamabeconjecture does not hold

for piecewiseMY–systems. For this we should characterize that these systems can have
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limit cycles. This characterization is done in the TheoremA.

On linearization for discontinuous differential systems

A classical result on linearization for continuous differential system is the

Grobman–Hartman Theorem, [21]. It states that topologically the local behavior of the

non linear system

ẋ= X(x) (0-3)

near an hyperbolic singularityx0 whereX(x0) = 0 is typically determined by the behavior

of the linear system

ẋ= DX(x0)x (0-4)

near the origin. Assuming that the singularityx0 has been translated to the origin, we have

the following:

Grobman–Hartman Theorem. Let E be an open subset ofRn containing the origin let

X ∈C1(E), and letΦt be the flow of the nonlinear system (0-3). Suppose thatX(0) = 0

and that 0 is hyperbolic singularity ofX, that is the matrixA= DX(0) has no eigenvalue

with zero real part. Then there exists a homeomorphismH of an open setU containing

the origin onto an open setV containing the origin such that for eachx0 ∈U , there is an

open intervalI0 ⊂ R containing zero such that for allx0 ∈U andt ∈ I0

H ◦Φt(x0) = eAtH(x0).

That is H maps trajectories of (0-3) near the origin onto trajectories of (0-4) near the

origin and preserves the parameterization by time.

Our main scope on linearization for discontinuous differential systems is to establish

results such as versions of the Grobman–Hartman Theorem in the discontinuous context.

ConsiderZ = (X,Y) a discontinuous differential system of the form (0-1). The

generic singularities ofZ are

1. the hyperbolic singularities ofX andY in Σ+ = {z∈ R
n : f (z)> 0} andΣ− = {z∈

R
n : f (z)< 0}, respectively.

2. hyperbolic singularities of the sliding vector field:p∈ Σ such thatZs(p) = 0.

3. the tangency–regular points:p∈ Σ such thatp is a generic tangency ofX with order

k, 1< k≤ n, andY f(p) 6= 0.

In this work we assume that the origin is a generic singularity of Z and provide linear

normal forms forZ around the origin. This is done in the TheoremB. Moreover we prove

a version of the tubular flow theorem for pairs of vector fields, called theoremC, that
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is a key tool for proving the TheoremB for generic singularities what are hyperbolic

singularities of the sliding vector field.

Codimension–one singularities for constrained system

Let A = A(x) be an×n matrix valued function,n ≥ 2, andF = F(x) a vector

field defined onRn. Assuming thatA andF are smooth, aconstrained systemonR
n is a

differential equations system of the form

A(x)ẋ= F(x), (0-5)

wherex ∈ R
n. The constrained system are characterized by the existenceof impasse

hypersurface

IA = {x∈ R
n : δA = detA(x) = 0}

whose points are calledimpasse points. Notice that, outside of the impasse hypersurface

the constrained system can be rewritten as

ẋ= A−1(x)F(x) = δ−1
A A∗(x)F(x),

whereA∗ denotes the adjoint matrix ofA. Then, for every system of the form (0-5) , we

can define the vector field̃X = A∗(x)F(x) called theregularizationof the constrained

system. A constrained systemsCS1 at point p is said to be topologically equivalent to a

constrained systemCS2 provided that there is a homeomorphismh from a neighborhood

U of p into a neighborhoodV of q which maps the impasse hypersurfaceIA1 onto IA2

and sends the arcs of orbits of the regularizationX̃1 in U \ IA1 onto those of̃X2 in V \ IA2

preserving there constrained positive orientations. Suchconstrained orientation, in the

case (0-5) is defined byX̃1 multiplied by the sign ofδA1.

Systems of the form (0-5) appear in electrical circuit theory and in the study of

the inversion of smooth mappings, see [6], [7], and [26]. The numerical analysis of a class

of constrained systems has been carried out by Riaza and Zufiria in [23].

An impasse pointp of the constrained system (0-5) is said regular ifδA is a

regular function atp, that isD(δA(x))(p) 6= 0. Moreover an regular impasse pointp will

be called non singular if the space kerA(p) is transversal toIA and the vectorF(p) does

not belong to the image ofA(p). Otherwise, if at least one at least of these conditions are

violated,p is called a impasse singularity. In [31], Zhitomirskii provided the local normal

forms for constrained systems on 2–manifolds. In [27], Sotomayor and Zhitomirskii

classified the generic impasse singularities of constrained systems defined onRn, n≥ 3,

and provided the respective normal forms. In [18], the authors provided a complete list

of the one–parameter impasse bifurcations. A Peixoto’s Theorem for constrained systems

defined onS2 was proved by Buzzi, Medrado, and Silva in [4].
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In this work we consider the constrained systems (0-5) defined onR3 and we

classify the codimension–one singularities and provide the respective local normal forms

in the one parameter space. This classification is done in TheoremD.

Organization of the thesis

In Chapter1 we introduce the basic concepts and the necessary results on

differential systems that will be fundamental tools for thedevelopment of this thesis.

Chapter2 is devoted to study on Markus–Yamabe conjecture for discontinuous

differential systems. In order to see that the Markus–Yamabe conjecture does not hold for

discontinuous differential systems separated by one straight line, we should characterize

which piecewise MY–systems can have limit cycles. This characterization is done in the

TheoremA.

Chapter3 concerns to the versions of the Grobman–Hartman Theorem around

generic singularities and their respective normal forms are exhibited, this is done in the

TheoremB. In the Section3.1we prove a version of the Tubular Flow Theorem for pairs

of vector fields, called TheoremC. This result will be a key tool for proving the Theorem

B in a neighborhood of the hyperbolic singularity of the sliding vector field in the Section

3.2. In Sections3.3 and 3.4 we provide the linear normal forms of the discontinuous

differential system in a neighborhood of a tangency–regular point with order 2 and greater

than 2, respectively.

The last Chapter4 we present a classification of the codimension–one singular-

ities for constrained systems defined onR
3 and the respective normal forms. These are

the contents of the TheoremD. In the section4.1 we classify the impasse singularities

that are of type tangency impasse points. The section4.2concerns the classification of the

impasse singularities that are of type equilibrium impassepoints.

The figures of this work were made on maple and corel draw.
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