ANALYTIC CONTINUATION OF CIRCULAR AND ELLIPTIC KEPLER MOTION TO THE GENERAL 3-BODY PROBLEM ## JAUME SOLER Departament d'Informàtica i Matemàtica Aplicada Universitat de Girona C. Lluís Santaló s/n, 17071, Girona, Spain E-mail: jaume@ima.udq.es The existence of families of periodic solutions of the general planetary 3-body problem in which one of the orbits is ellipic is shown. Each family derives from uncoupled circular and elliptic Kepler motion in a given resonance, with the eccentricity of the elliptic orbit as the parameter. The standard method of Poincaré's analytic continuation cannot be directly applied due to the vanishing of a determinant, so a strong form of the implicit function theorem is used. ## 1 Introduction Let P_0 , P_1 and P_2 be three material points of mass m_0 , m_1 and m_2 , respectively, moving in a plane under their mutual Newtonian gravitational attraction. We are particularly interested in the planetary problem, in which one of the bodies is much larger than the other ones. As m_0 will be assumed to be the large mass then we will call P_0 the Sun and P_1 and P_2 the planets. We will set $m_0 = 1$, $m_1 = \nu_1 \mu$, $m_2 = \nu_2 \mu$, where μ is a small parameter. We are interested in periodic solutions which, in the limit $\mu \to 0$, become circular and elliptic resonant orbits of two uncoupled Kepler problems. These periodic solutions will be shown to exist, when $\mu \neq 0$ provided a certain integral does not vanish. This integral is computed numerically in a few instances and shown to be different from zero. ## 2 The equations of motion We consider an inertial frame with origin at the center of mass of P_0 , P_1 and P_2 , denote by $q_i = (q_{i1}, q_{i2})$, i = 0, 1, 2, the position of P_i in this frame and by $\dot{q}_i = (\dot{q}_{i1}, \dot{q}_{i2})$ its velocity. The Lagrangian of the system is then given by $$\mathcal{L}_{0} = \frac{m_{0}}{2} ||\dot{q}_{0}||^{2} + \frac{m_{1}}{2} ||\dot{q}_{1}||^{2} + \frac{m_{2}}{2} ||\dot{q}_{2}||^{2} + \frac{m_{0}m_{1}}{||q_{0} - q_{1}||} + \frac{m_{0}m_{2}}{||q_{0} - q_{2}||} + \frac{m_{1}m_{2}}{||q_{1} - q_{2}||}.$$ (1)