
CONNECTIVITY OF JULIA SETS
OF TRANSCENDENTAL MEROMORPHIC FUNCTIONS

JORDI TAIXÉS

CONNECTIVITY OF JULIA SETS OF TRANSCENDENTAL M
EROM

ORPHIC FUNCTIONS
JORDI T

AIXÉS



Contents

Preface v

Resum vii

1 Introduction 1

2 Preliminaries and tools 9

2.1 Background on holomorphic dynamics . . . . . . . . . . . . . . . . 9

2.1.1 Basics on iteration theory . . . . . . . . . . . . . . . . . . . 10

2.1.2 The Fatou and Julia sets . . . . . . . . . . . . . . . . . . . 14

2.1.3 Fatou components and singular values . . . . . . . . . . . . 16

2.2 Quasiconformal surgery . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Local connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 On rational-like maps and virtually repelling fixed points . . . . . 25

3 Attractive basins 31

3.1 Shishikura’s rational case . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Fixed attractive basins . . . . . . . . . . . . . . . . . . . . . 32

3.1.2 Periodic attractive basins . . . . . . . . . . . . . . . . . . . 38

3.2 The transcendental case . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Fixed attractive basins . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 Periodic attractive basins . . . . . . . . . . . . . . . . . . . 51

4 Parabolic basins 53

4.1 Proof of Proposition 4.3 . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Preperiodic Fatou components 75

xvii



CONTENTS

6 Other Fatou components and further results 79
6.1 On wandering domains . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 On Herman rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3 On Baker domains . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Bibliography 85

Index 89

xviii



1
Introduction

In the year 1669, a young fellow of the Trinity College of the University of Cam-
bridge presented a treatise on quadrature of simple curves and on resolution of
equations. Concerning the latter, he wrote: “Because the whole difficulty lies in
the resolution, I shall first illustrate the method I use in a numeral equation,” and
the procedure he described next became the germ of possibly the most powerful
root-finding algorithm used today. The young fellow was Isaac Newton and the
treatise was De analysi per æquationes numero terminorum infinitas, one of his
most celebrated works.

Using the “numeral equation” y3 − 2y − 5 = 0, Newton then illustrates his
resolution method as follows: He proposes the number 2 as an initial guess of the
solution which differs from it by less than a tenth part of itself. Calling p this small
difference between 2 and the solution y, he writes 2 + p = y and substitutes this
value in the equation, which gives a new equation to be solved: p3+6p2+10p−1 =
0. Since p is small, the higher order terms p3 + 6p2 are quite smaller relatively,
therefore they can be neglected to give 10p − 1 = 0, from where p = 0.1 may be
taken as an initial guess for the solution of the second equation. Now, it is clear
how the algorithm continues, since, writing 0.1+ q = p and substituting this value
in the second equation, a third equation q3+6.3q2+11.23q+0.061 = 0 is obtained,
and so on.

Using this method, Newton constructs a sequence of polynomials, plus a
sequence of root approximations that converge to 0 and add up to the solution of
the original equation.
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CHAPTER 1. INTRODUCTION

A couple of decades later, Joseph Raphson discussed Newton’s recurrence
and improved the method by using the concept of derivative of a polynomial.
It was in 1740 that Thomas Simpson described the algorithm as an iterative
method for solving general nonlinear equations using fluxional calculus, essentially
obtaining the well-known formula xn+1 = xn − f(xn)/f ′(xn) for finding the roots
of a function f . In the same publication, Simpson also gave the generalisation
to systems of two equations and noted that the method can be used for solving
optimisation problems. Today, the so-called Newton’s method (or Newton-Raphson
method) is probably the most common — and usually efficient — root-finding
algorithm.

As in the previous example, Newton’s method is frequently used to solve prob-
lems of real variable — either in dimension one or greater —, although the plane
of complex numbers is often the natural environment provided that the functions
to be dealt with do have a certain regularity. Already in 1879, Arthur Cayley
applied Newton’s method to complex polynomials and tried to identify the basins
of attraction of its roots. Cayley did provide a neat solution for this problem
in the case of quadratic polynomials, but the cubic case appeared to be far more
difficult — and a few years later he finally gave only partial results. Today, it is
enough to see the pictures of a few cubic polynomials’ dynamical planes to under-
stand why Cayley was never able to work out such a complex structure with the
mathematical tools of 125 years ago.

Newton’s method associated to a complex holomorphic function f is then de-
fined by the dynamical system

Nf (z) = z −
f(z)

f ′(z)
.

A natural question is what kind of properties we might be interested in or, put more
generally, what kind of study we want to make of it. From the dynamical point of
view, and given the purpose of any root-finding algorithm, a fundamental question
is to understand the dynamics of Nf about its fixed points, as they correspond
to the roots of the function f ; in other words, we would like to understand the
basins of attraction of Nf , the sets of points that converge to a root of f under
the iteration of Nf .

Basins of attraction are actually just one type of stable component or compo-
nent of the Fatou set F(f), the set of points z ∈ Ĉ for which {fn}n≥1 is defined

and normal in a neighbourhood of z (recall Ĉ stands for the Riemann sphere,
the compact Riemann surface Ĉ := C ∪ {∞}). The Julia set or set of chaos is
its complement, J(f) := Ĉ \ F(f). These two sets are named after the French
mathematicians Pierre Fatou and Gaston Julia, whose work began the study
of modern Complex Dynamics at the beginning of the 20th century.

At first, one could think that if the fixed points of Nf are exactly the roots
of f , then Newton’s method is a neat algorithm in the sense that it will always
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CHAPTER 1. INTRODUCTION

Figure 1.1: The two images above are the dynamical plane of fa(z) for a = 0.913+0.424 i,
and the images below are the parameter space of this family. The black regions on
the right-hand pictures (magnifications of the other two) indicate the values of non-
convergence. The parameter a has been chosen so that there exists an attracting periodic
orbit of period 6.

converge to one of the roots. But notice that not every stable component is a basin
of attraction; even not every attracting behaviour is suitable for our purposes:
Basic examples like Newton’s method applied to cubic polynomials of the form
fa(z) = z(z−1)(z−a), for certain values of a ∈ C, lead to open sets of initial values
converging to attracting periodic cycles. Actually, also the set of such parameters
a ∈ C, for this family of functions, is an open set of the corresponding parameter
space (see [15, 19]). Figure 1.1 shows both phenomena in coloured complex planes.
Different colours represent different rates of convergence towards the roots of fa,
while black means either convergence somewhere else or non-convergence.
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Figure 1.2: The Mandelbrot set.

These facts suggest a division between two directions of dynamical study: On
the one hand, given a certain function f , we can try to understand the general
behaviour of points under iterates of f , that is to say, the study of its stable and
chaos sets — the dynamical plane. On the other hand, if we have a family of
functions depending on one or several parameters, we might then be interested
in knowing for which values of the parameter(s) a certain property occurs — the
parameter space. A well-known example of this division is given by the family of
quadratic polynomials fc(z) = z2 + c, c ∈ C, for which the dichotomy between
connected and totally disconnected Julia sets has been proved. In this case, the
parameter space shows the Mandelbrot set , the locus of polynomials fc(z) with
connected Julia set (see Figure 1.2).

The fixed points of Nf are the roots of the function f and the poles of f ′, since

Nf(z) = z ⇐⇒ z −
f(z)

f ′(z)
= z ⇐⇒

f(z)

f ′(z)
= 0 .

When the method is applied to a polynomial, infinity becomes a fixed point as
well, whereas if Nf is transcendental, this point is an essential singularity. In
Lemma 1.1 we will see when this case occurs.

4
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As for their behaviour, if we compute Newton’s method’s derivative we have

N ′
f = 1−

(f ′)2 − f · f ′′

(f ′)2
=

f · f ′′

(f ′)2
,

which means that simple roots of f are superattracting fixed points of Nf . This
is an extraordinary property from the point of view of root-finding algorithms, as
it is equivalent to say that, in a neighbourhood of such points, Nf is conjugate to
z 0→ zk, for some k > 1, for which local convergence is very fast.

Multiple roots of f are attracting fixed points of Nf , but no longer superat-
tracting. In fact, their multiplier is (m− 1)/m, where m is the multiplicity of the
root, so in this case the rate of attraction is linear.

When Newton’s method is applied to a polynomial P of degree d, the point
at infinity has multiplier N ′

P (∞) = d/(d − 1), so it is repelling — in particular,
weakly repelling.

Notice that the critical points of Nf are the simple roots of f , as well as

its inflection points {z ∈ Ĉ : f ′′(z) = 0}. Of course, every simple root of f is
both a critical point and a fixed point of Nf , but inflection points of f become
free critical points of Nf , which can lead to undesirable Fatou components (as
mentioned earlier). From the root-finding point of view, some tools have been
developed to cope with this kind of situations: Given a polynomial P , one can
find explicitly a finite set of points such that, for every root of P , at least one of
the points will converge to this root under NP (see [29]).

Now let us focus our attention on the case in which f is transcendental. We
have the following result (see [8]).

Lemma 1.1. If a complex function f is transcendental, then so is Nf , except
when f is of the form f = ReP , with R rational and P a polynomial. In this case,
Nf is a rational function.

The dynamical system Nf for functions of the form f = ReP has also been
investigated, especially when f is entire, i.e., of the form f = PeQ, where P and
Q are polynomials. Mako Haruta [28] proved that, if degQ ≥ 3, the area of
the basins of attraction of the roots of f is finite. Figen Çilingir and Xavier
Jarque [14] studied the area of the basins of attraction of the roots of f in the
case degQ = 1, and Antonio Garijo and Jarque [26] extended the previous
results in the cases degQ = 1 and degQ = 2. For yet another reference on the
subject, see also [30].

It is worth saying that there exist a number of variations of Newton’s method,
which can improve its efficiency in some cases. One of the most usual versions is
the relaxed Newton’s method , which consists in the iteration of the map Nf,h =
id− h · f/f ′, where h is a fixed complex parameter. In general, for certain choices
of rational functions R and parametres h, the method has additional attractors,
which causes the algorithm not to work reliably. Nevertheless, it has been proved
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in [44] that, for almost all rational functions R, the additional attractors vanish if
h is chosen sufficiently small.

A lot of literature concerning Newton’s method’s Julia and Fatou sets has been
written, above all when applied to algebraic functions. Feliks Przytycki [35]
showed that every root of a polynomial P has a simply connected immediate basin
of attraction for NP . Hans-Günter Meier [33] proved the connectedness of the
Julia set of NP when degP = 3, and later Tan Lei [43] generalised this result
to higher degrees of P . In 1990, Mitsuhiro Shishikura [40] proved the result
that actually sets the basis of the present work: For any non-constant polynomial
P , the Julia set of NP is connected (or, equivalently, all its Fatou components are
simply connected). In fact, he obtained this result as a corollary of a much more
general theorem for rational functions. We denote by a weakly repelling fixed point
a fixed point which is either repelling or parabolic of multiplier 1 (see Subsection
2.1.1). It was proven by Fatou that every rational function has at least one weakly
repelling fixed point (see Theorem 2.6).

Theorem 1.2 (Shishikura [40]). If the Julia set of a rational function R is
disconnected, then R has at least two weakly repelling fixed points.

Let us see how this applies to Newton’s method. If P is a polynomial, then
NP is a rational function whose fixed points are exactly the roots of the polyno-
mial P , plus the point at infinity. The finite fixed points are all attracting, even
superattracting if, as roots of P , they are simple. The point at infinity, instead,
is always repelling. Hence, rational functions arising from Newton’s methods of
polynomials have exactly one weakly repelling fixed point and, in view of Theorem
1.2, their Julia set must be connected.

This Thesis, however, deals with Newton’s method applied to transcendental
maps. In the same direction, in 2002 Sebastian Mayer and Dierk Schleicher
[32] extended Przytycki’s theorem by showing that every root of a transcenden-
tal entire function f has a simply connected immediate basin of attraction for Nf .
This work has been recently continued by Johannes Rückert and Schleicher
in [38], where they study Newton maps in the complement of such Fatou com-
ponents. Our long-term goal is to prove the natural transcendental versions of
Shishikura’s results — although this Thesis covers just part of it —, which can be
conjectured as follows.

Conjecture 1.3. If the Julia set of a transcendental meromorphic function f is
disconnected, there exists at least one weakly repelling fixed point of f .

It is important to notice that essential singularities are always in the Julia set
of a transcendental meromorphic function f and therefore infinity can connect two
unbounded connected components of J (f) ∩ C otherwise disconnected.

Observe that Fatou’s theorem on weakly repelling fixed points only applies
to rational maps. For transcendental maps, the essential singularity at infinity
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plays the role of the weakly repelling fixed point, and therefore no such point
must necessarily be present for an arbitrary map. From this fact, and from the
discussion above about Newton’s method, it follows that transcendental meromor-
phic functions that come from applying Newton’s method to transcendental entire
functions happen to have no weakly repelling fixed points at all, so the next result
is obtained forthwith.

Conjecture 1.4 (Corollary). The Julia set of the Newton’s method of a tran-
scendental entire function is connected.

Recall that the Julia set (closed) is the complement of the Fatou set (open).
Hence, as it was already mentioned, the connectivity of the Julia set is equivalent
to the simple connectivity of the Fatou set. Because of this fact, a possible proof
of Conjecture 1.3 splits into several cases, according to different Fatou components
(see Section 3.2). In this Thesis we will see three of such cases (see [23, 24]), which,
together, give raise to the following result.

Main Theorem 1.5. Let f be a transcendental meromorphic function with either
a multiply-connected attractive basin, or a multiply-connected parabolic basin, or
a multiply-connected Fatou component with simply-connected image. Then, there
exists at least one weakly repelling fixed point of f .

Notice how this theorem actually connects with the result of Mayer and
Schleicher mentioned above.

In order to prove this theorem, we use mainly two tools: the method of qua-
siconformal surgery and a theorem of Xavier Buff on virtually repelling fixed
points . On the one hand, quasiconformal surgery (see Section 2.4) is a powerful
tool that allows to create holomorphic maps with some prescribed dynamics. One
usually starts glueing together — or cutting and sewing, this is why this procedure
is called ‘surgery’— several functions having the required dynamics; in general, the
map f obtained is not holomorphic. However, if certain conditions are satisfied,
the Measurable Riemann Mapping Theorem, due to Charles Morrey, Bogdan
Bojarski, Lars Ahlfors and Lipman Bers, can be applied to find a holomor-
phic map g, conjugate to the original function g. On the other hand, Buff’s
theorem states that, under certain local conditions, a map possesses a virtually
repelling fixed point. These conditions are a generalization of the polynomial-like
setup and the property of being a virtually repelling fixed point is only slightly
stronger than that of weakly repelling. Hence in those cases where we can apply
Buff’s theorem, the result follows in a very direct way.

Structure of the Thesis. This Introduction puts the subject of the Thesis into
historical context and gives a little state of the art about the study of the topology
of the Fatou and Julia sets of the dynamical system generated by applying New-
ton’s method to polynomials and transcendental entire functions. In particular,
it gives Shishikura’s main result and our ‘transcendental’ conjectures and Main
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Theorem. Chapter 2 provides us with some background tools from various top-
ics in Holomorphic Dynamics, to be used in the following chapters. These topics
range from pure Dynamical Systems stuff, such as basics on iteration theory or the
classification of Fatou components, to concepts coming from other fields, like qua-
siconformal surgery from Analysis or local connectivity from Topology. In these
‘borrowed stuff’ cases we will see how such concepts are adapted to Holomorphic
Dynamics and become actual tools in our context. Sections 3, 4 and 5 contain
our proof for our Main Theorem, separated by type of Fatou component. Thus,
Section 3 is dedicated to the proof for the case of immediate attractive basins,
Section 4 to parabolic basins and Section 5 to preperiodic Fatou components.
Also, what actually opens Section 3 is a preamble with Shishikura’s proof for
the attractive rational case plus an introduction to the general transcendental case
that tells how our main conjecture splits into the different Fatou-component cases.
Finally, Section 6 rounds up our global case-by-case discussion with a collection
of results and ideas about wandering domains, Herman rings and Baker domains,
for completeness. The section concludes with some remarks about future projects
and further work on the subject.
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