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Introduction

The contents of this memoir deal with Qualitative Theory of Differential Equations.

It consists essentially of two parts that can be read independently. In the first part,

composed by Chapters 1, 2 and 3, we consider vector fields on manifolds of arbitrary

dimension and we discuss questions related to their index. In the second part, which

is formed by Chapters 4, 5, 6 and 7, we study the isochronicity problem for planar

Hamiltonian differential equations.

The first part of this work treats questions concerning the index of vector fields.

Given a tangent vector field X on a compact manifold M, the index of X, that we

denote by Ind(X), measures the variation of the direction of X around its critical

points. The index of X provides qualitative information about the global behaviour

of the flow generated by the differential equation ẋ = X(x). For instance, in case

that M is an even dimensional sphere we can assure the existence of at least one

critical point since the index of X must be different from zero. The index can also be

used to investigate if a critical point is asymptotically stable because the local index

of such a critical point in a n-dimensional manifold is equal to (−1)n.

The Poincar-Hopf Theorem is perhaps one of the most classical results dealing

with the question of the index of a vector field. It can be applied in case that M is

compact and X is nonvanishing on ∂M, the boundary of M. It shows that if X is

never pointing outward at ∂M then

Ind(X) = (−1)nX (M), (1)

where X (M) and n denote respectively the Euler characteristic of M and its dimen-

sion. It is usually stated for vector fields having finitely many critical points, and in

this case Ind(X) is the sum of the local indices of X at all its critical points.

A two-dimensional version of this theorem was proved by Poincar in 1885. The

full theorem was proved by Hopf in 1926 after earlier partial results by Brouwer,
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Lefschetz and Hadamard.

The Poincar-Hopf Theorem is a very useful tool to prove results that relate the

topology of M with the qualitative behaviour of the solutions of ẋ = X(x). Many

works about polynomial vector fields use it because a polynomial vector field on R
n

can be extended analytically to a vector field defined on the n-dimensional sphere

(which is a compact and boundaryless manifold). For example, Cima and Llibre [13]

prove that any bounded polynomial vector field X on R2 satisfy that the sum of the

local indices of X at all its critical points is equal to 1. A vector field X is said to be

bounded when any solution of ẋ = X(x) has nonempty and compact ω-limit set.

The Poincar-Hopf Theorem solves the problem of computing Ind(X) in case

that M is a compact and boundaryless manifold. In fact it shows that this num-

ber is a topological invariant of the manifold. However it is not very helpful when M

has nonempty boundary because then the assumptions are too restrictive. To ap-

proach this problem, several authors have proved formulas to compute the index of

vector fields that do not behave so simply at ∂M. The first work in this direction is

due to Morse [36]. In 1929 he proved that, under more general conditions on X|∂M ,

the index of X is equal to the sum of the Euler characteristics of certain submanifolds

defined by means of the behaviour of X at ∂M. Until now the generalizations of the

Poincar-Hopf Theorem have followed this direction. Thus, it is to be referred the

contribution of Pugh [38], who proves a similar formula to compute Ind(X) that can

be applied to almost any vector field (that is, the condition to apply the formula is

generic).

In fact there is a classical result, proved by Poincar in 1881, that allows to compute

the index of the vector field in case that M is a two-dimensional disc. The idea is to

relate the behaviour of X at ∂M with the existence of a special type of trajectories

of ẋ = X(x). These are the so called inner and outer contact points. Thus, if X

has finitely many tangency points with the boundary of the disc, the Poincar Index

Formula asserts that the sum of the local indices of X at all the critical points inside

the disc is equal to

1 +
σ − ν

2
,

where σ and ν are respectively the number of inner and outer contact points. This

shows that the notion of inner and outer contact point picks up all the information

that is needed to compute the index. Llibre and Ye Yanquian [30] have generalized

this result to any compact and connected two-dimensional manifold.
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In Chapter 1, given a tangent vector field X on a n-dimensional manifold M (not

necessarily compact), we study the flow generated by ẋ = X(x) and we consider an

attractor compact set K with region of attraction A. The results that we obtain show

that the topology of A is closely connected with the local indices of X at the critical

points inside K. Indeed, we prove that X (A) is defined and that the sum of the local

indices of X at all its critical points in K is equal to (−1)nX (A). Moreover, when K

is regular enough so that X (K) is well defined, we show that if K is asymptotically

stable and invariant then X (K) = X (A).

As a consequence of the above results, we can assert that if there is a global com-

pact attractor for the flow generated by X then X (M) and Ind(X) are well defined

and satisfying relation (1). From the dynamical point of view, this is the natural

generalization of the Poincar-Hopf Theorem to noncompact manifolds. Note that

when M is compact, the condition that X is never pointing outward at ∂M is equiv-

alent to require the existence of a global compact attractor. Since this equivalence

is obviously not true for noncompact manifolds, one may wonder if there is some

weaker condition that yields the same relation. However there is not any. This is so

because if it is only required, for example, that each solution has nonempty ω-limit

set (and this implies that X never points outward at ∂M if any) then the relation

does not hold any more. Even more, it is not satisfied either if it is required that X

is a bounded vector field, and in Chapter 2 we will show examples of this.

In Chapter 2 we study bounded vector fields on Rn. Our initial goal was to prove

that any C 1 bounded vector field on Rn satisfies that the sum of the local indices at

all its critical points is equal to (−1)n. We thought that this could be true because

Cima and Llibre [13] proved it for any polynomial vector field if n = 2, and for any

polynomial vector field satisfying a generic condition if n ≥ 3. In this chapter we

prove that for C 1 vector fields the result is true in case that n = 2. On the other

hand, when n ≥ 3 we show that there are C∞ bounded vector fields on Rn which do

not satisfy this relation. In fact, since X (Rn) = 1, these are the examples that we

have mentioned above.

In Chapter 3 we turn to the problem of computing the index of a tangent vec-

tor field on a compact manifold M, and we focus on the case in which M is two-

dimensional and connected. With the same philosophy as the Poincar Index For-

mula, we obtain a result that allows to calculate it. Our result improves previous

ones because it does not require that the vector field has finitely many tangency
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points with ∂M.

In the second part of this memoir we study the period function of the centers of

planar analytic Hamiltonian differential systems,

{
ẋ = −Hy(x, y),

ẏ = Hx(x, y).
(2)

Given a center of a planar differential system, the period function gives the period of

each periodic orbit inside its period annulus. We are mainly interested in the case in

which the period function is constant, the center is then said to be isochronous.

The study of isochronous systems started even before the development of the

differential calculus. It goes back at least to Galileo, who found out in 1632 the

isochronicity of small oscillations of a simple pendulum. Afterwards, in 1673,Huygens

gave the formula of its period. Huygens also described the first nonlinear isochronous

pendulum, a particle constrained to move on a cycloid under the action of gravity.

He was trying to design a clock with isochronous oscillations in order to have a more

accurate clock for the navigation of ships. Isochronous systems were later studied by

Euler, Bernoulli and Lagrange.

The characterization of the vector fields with isochrones is still a difficult and

unsolved problem. In fact, in the polynomial case, it has strong parallelisms with

the so called center-focus problem. Both problems are completely solved only in the

quadratic case.

Questions about the behaviour of the period function have been extensively stud-

ied by a number of authors. In relation to their applications, some works have been

motivated by the desire to find conditions under which the period function is mono-

tone (see [6, 43] for instance). This is so because monotonicity is a nondegeneracy

condition for the bifurcation of subharmonic solutions of periodically forced Hamilto-

nian systems, and because monotonicity implies existence and uniqueness for certain

boundary value problems. In fact, for these boundary value problems, the range of

values of the period function determines the set of initial conditions for which the

problem has at least one solution. The interested reader is referred to [7, 9, 45]. We

note that in these problems isochronicity represents the worst possible setting.

On the other hand, to fully understand the properties of the period function in

a family of differential systems, it is necessary to consider the bifurcation of criti-

cal points of the period function. This is done by calculating the Taylor series of
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the period function in a neighbourhood of the center. When this is performed on

a polynomial (or even analytic) family, the coefficients of the period function are

polynomials in the coefficients of the system. Once again the problem becomes more

difficult in the cases in which the center is isochronous. Therefore a complete study

of these bifurcations requires the identification of the subclass of systems that have

an isochronous center. The work of Chicone and Jacobs in [8] is a good example of

this approach.

Concerning polynomial Hamiltonian systems, Sabatini [41] shows that there is a

strong connection between isochronicity and the Jacobian conjecture in R2. Indeed,

this conjecture is equivalent to prove that if we take a polynomial canonical mapping

(x, y) 7−→
(
P (x, y), Q(x, y)

)
then the isochronous center of (2) given by

H(x, y) =
P (x, y)2 +Q(x, y)2

2

is global (that is, its period annulus is the whole R2). By a canonical mapping we

mean a mapping satisfying that the determinant of its jacobian is equal to one at any

point. As a matter of fact, in the literature there are only examples of polynomial

Hamiltonian systems with global isochronous centers.

In spite of the fact that the isochronicity problem has been studied by many

authors, a characterization of this phenomenon is far to be found. The most signif-

icant results for general polynomial systems are due to Loud [31], who classifies the

quadratic ones, and Pleshkan [37], that classifies the cubic systems with homogeneous

nonlinearities. In relation to Hamiltonian systems, several authors (see [10, 20, 44])

have proved that there is not any isochronous center in those systems that have

homogeneous nonlinearities. Moreover Cima, Gasull and Maosas [15] have shown

recently that the only isochronous center among the polynomial systems associated

to H(x, y) = F (x) +G(y) is the linear one.

As we have already said, the second part of this work is devoted to study the

isochronicity problem in analytic Hamiltonian differential systems, and we shall of-

ten pay attention to the polynomial case. In order to study the isochronicity in a

polynomial family, one can compute the Taylor series of the period function to ob-

tain what are called the period constants. These are strongly related to the Lyapunov

constants, which give the center conditions. The vanishing of all the period constants

provides necessary and sufficient conditions for isochronicity. When a family with

finitely many parameters is considered then there is only a finite number of period
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constants that are significant (they already give the isochronicity conditions). This

fact follows from the Hilbert’s basis Theorem, but in general this number is unknown

a priori. Consequently the method is to calculate some period constants and then

to investigate if its vanishing is sufficient for isochronicity. The works of Christo-

pher and Devlin [10] and Rousseau and Toni [39] on the Kukles system are a good

example of this manner of approaching the problem. This algorithmic method is

similar to search the center conditions by means of the Lyapunov constants and its

applicability raises the same difficulties. Thus in most cases even the calculation of

the period constants is intractable with a computer. The algebraic method described

above hides completely the mechanism by which a center is isochronous. We shall

not use it because the Hamiltonian systems furnish more geometric tools.

It is well known that an isochronous center of an analytic differential system

is nondegenerate. There is a classical result, due to Poincar, that shows that a

nondegenerate center of an analytic system can be brought by means of an analytic

change of coordinates to the normal form

{
ẋ = −y f(x2 + y2),

ẏ = x f(x2 + y2),

where f(0) 6= 0. We call normalization this coordinate transformation.

One of the purposes of Chapter 4 is to prove that for a nondegenerate center

of an analytic Hamiltonian system there exists an analytic normalization being also

canonical. In addition we show that any of these canonical normalizations, contrary to

the usual ones, brings system (2) to the same normal form, what we call the canonical

normal form (CNF in shortened form). The CNF of a nondegenerate center depends

only on the function that gives the area of each periodic orbit inside the period

annulus.

As a corollary of the above result we get a characterization of isochronicity for

analytic Hamiltonian systems. Indeed, we prove that a center of (2) is isochronous if

and only if there exists an analytic canonical mapping (x, y) 7−→
(
g1(x, y), g2(x, y)

)

so that

H(x, y) =
g1(x, y)

2 + g2(x, y)
2

2
. (3)

Concerning this last result, it is worth mentioning that Sabatini [40] proves the exis-

tence of a C∞ canonical mapping such that.
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In Chapter 5 we study the isochronicity problem in the Hamiltonian systems of

the form “kinetic+potential”. More concretely, the ones associated to

H(x, y) =
y2

2
+ V (x),

where V is an analytic function on R. The aim of this chapter is not to give new results

but to approach the problem in a more geometric manner. This approach allows us

to give a simple proof of two results due to Chicone and Jacobs [8] and Urabe [50].

We relate the isochronicity of the center to the shape of the periodic orbits inside

the period annulus. We also show the strong connection between isochronicity and

involutions on R.

As it has been said before, in Chapter 4 we show that for any analytic Hamiltonian

system with an isochronous center there exists an analytic canonical mapping so

that the Hamiltonian can be written in the form (3). At this point it is natural to

investigate if it occurs the same in the polynomial case. That is, given a polynomial

Hamiltonian system having an isochronous center, does there exist a polynomial

canonical mapping so that (3) holds? We note that all the examples appearing in the

literature can be obtained in this way. In fact this is precisely the reason why there

is not any example of polynomial Hamiltonian system with a nonglobal isochronous

center (such a system would give a counterexample to the Jacobian conjecture).

In Chapter 6 we show that the question posed above has a negative answer, and

we give examples of polynomial Hamiltonian systems with a nonglobal isochronous

center. This is achieved by studying the Hamiltonian systems associated to

H(x, y) = A(x) +B(x) y + C(x) y2,

where A, B and C are analytic functions on R. These systems include the ones

considered in Chapter 5, and we call them quadratic-like Hamiltonian systems. We

assume that the origin is a center and we give necessary and sufficient conditions for

its isochronicity. In the polynomial case, a complete classification of the isochronous

centers is given when C has at most degree three.

Finally, in Chapter 7 we characterize the cubic Hamiltonian isochronous centers.

More precisely, we determine the fourth degree polynomials H(x, y) for which the

differential system (2) has an isochronous center. To this end we begin by showing

some necessary conditions for the isochronicity of a polynomial Hamiltonian system

of arbitrary degree. These conditions enable us to suppose without loss of generality
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that any cubic Hamiltonian system with an isochronous center is quadratic-like. We

then take advantage of the results proved in Chapter 6. It is to be noted that in [32]

it is given a characterization of the cubic Hamiltonian isochronous centers which are

Darboux linearizable.

The two parts that constitute this memoir can be read independently. Each

chapter has an introduction which explains in detail the questions that are discussed,

and the main theorems are enumerated alphabetically.

The results of Chapter 1 have appeared in Topology under the title “A Poincar-

Hopf Theorem for noncompact manifolds,” and the ones of Chapter 2 constitute a

work entitled “On bounded vector fields” that will appear in Rocky Mountain Journal

of Mathematics. The results of Chapters 5, 6 and 7 form a work entitled “Isochronicity

for several classes of Hamiltonian systems” that have been accepted for publication

in Journal of Differential Equations. These three papers are a join work with Anna

Cima and Francesc Maosas. The results that appear in Chapter 3 are a join work

with Jaume Llibre and have been published in Differential and Integral Equations

under the title “A Poincar Index Formula for surfaces with boundary.”


