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Abstract. In this note, motivated by the recent results of Wang, Chen and Zhang in [Local bifurcations
of critical periods in a generalized 2D LV system, Appl. Math. Comput. 214 (2009), 17-25], we study
the behaviour of the period function of the center at the point (1, 1) of the planar differential system

{

u
′ = u

p(1− v
q),

v
′ = µv

q(up
− 1),

where p, q, µ ∈ R with pq > 0 and µ > 0. Our aim is twofold. Firstly, we determine regions in the
parameter space for which the corresponding system has a center with a monotonic period function.
Secondly, by taking advantage of the results of Wang et al., we show some properties of the bifurcation
diagram of the period function and we make some comments for further research. The differential system
under consideration is a generalization proposed by Farkas and Noszticzius of the Lotka-Volterra model.

1 Introduction and statement of the result

Simple nonlinear dynamic models with periodic solutions have a great importance in describing complex
dissipative systems, especially in chemistry and biology. The Lotka-Volterra model is a classical example
and it is widely used to describe chemical and biological systems that oscillate.

The generalization of the Lotka-Volterra model proposed by Farkas and Noszticzius in [9] contains
three chemical reactions: (GLV1) autocatalytic production of the intermediate X, (GLV2) autocatalytic
transformation of X into Y, and (GLV3) decay of the intermediate Y. It can be formulated by the following
reaction schemes:

A+ pX
k1−→ (p+ 1)X, (GLV1)

pX + qY
k2−→ (q + 1)Y, (GLV2)

qY
k3−→ B, (GLV3)

where X and Y are the intermediates, A and B are reactants of constant concentration, p and q are
respectively the molecules of X and Y that participate in one elementary reaction, and ki (for i = 1, 2, 3) is
the reaction rate of the ith step. By simple law of mass action principles, the kinetics of these schemes can
be described by the following system of ordinary differential equations:

{
ẋ = k1ax

p − pk2x
pyq,

ẏ = k2x
pyq − qk3y

q,
(1)
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where x and y are respectively the concentrations of the intermediates X and Y, the dot denotes derivation
with respect to time t, and a is the concentration of A. The authors in [7] show that the transformation

{
u =

(
k2
qk3

)1/p
x, v =

(
pk2
ak1

)1/q
y, s = ak1

(
qk3
k2

)1−1/p

t

}

brings system (1) to {
u′ = up(1− vq),

v′ = µvq(up − 1),
(2)

where µ := 1
p

(
pk2
ak1

)1/q(
qk3
k2

)1/p
and the prime denotes derivation with respect to s. If all the reactions are

of the first order with respect to any intermediate, then system (2) reduces to the classical Lotka-Volterra
system (p = q = 1). The generalized system (2) includes other important chemical models as special cases
(see [8, 9, 10, 26]).

In this note we shall assume that p, q ∈ R with pq > 0, although, from the point of view of the chemical
model, p and q should be natural numbers. We shall suppose in addition that µ is positive and independent
of p and q. (This setting is slightly more general than the original one but it is also interesting from the
theoretical point of view.) Under these assumptions the differential system is analytic on the (open) first
quadrant no matter that p or q are negative, and the critical point at (u, v) = (1, 1) is a center. Recall
that a critical point z of a planar differential system is a center if it has a neighbourhood U such that
U \ {z} consists entirely of periodic orbits surrounding z. The largest punctured neighbourhood with this
property is called the period annulus of the center and, in what follows, it will be denoted by P . The period

function of the center assigns to each periodic orbit in P its period. Questions related to the behaviour of
the period function have been extensively studied. Let us quote, for instance, the problems of isochronicity
(see [4, 6, 14]), monotonicity (see [2, 22, 28]) or bifurcation of critical periods (see [1, 3, 12, 13, 19, 27, 30]).

The period function of a center is monotonous increasing (respectively, decreasing) if for any pair of
periodic orbits inside P , say γ1 and γ2 with γ1 ⊂ Int(γ2), we have that the period of γ2 is greater (respectively,
smaller) than the one of γ1. (Here by Int(γ) we mean the bounded connected component of R2 \ {γ}.) If all
the periodic orbits in P have the same period, then the center is said to be isochronous.

The following is our main result and in its statement C and D stand respectively for the light grey and
dark grey regions in Figure 1. To be more precise, denoting I2 = I×I,

C = [−1, 0)2 ∪ [1/2,+∞)2 \ {i1, i3} and D = (−∞,−1]2 ∪ (0, 1/2]2 \ {i1, i3}.

With this notation, the aim of the present note is to prove the following:

Theorem A. Let us take p, q, µ ∈ R with pq > 0 and µ > 0 and consider the planar differential system (2).
Then, if (p, q) belongs to C (respectively, D), the period function of the center at (1, 1) is monotonous

increasing (respectively, decreasing). In addition, if (p, q) ∈ {i1, i3}, then the center is isochronous.

In fact, taking the period constants into account (see Section 3), it turns out that i1 and i3 are the only
isochronous centers of system (2). On the contrary, numerical evidences show that there are parameters not
in C ∪ D for which the associated center has a monotonic period function (see also Section 3).

There are several previous papers to be quoted in relation with the results in Theorem A. As we have
already mentioned, the case p = q = 1 corresponds to the original Lotka-Volterra system and the fact that
its center has a monotonous increasing period function was proved independently by Rothe [18], Schaaf [20]
and Waldvogel [24] in mid-eighties. More recently, the bifurcation of critical periods of system (2) at the
inner boundary of the period annulus (i.e., the center itself) has been studied in [25]. In short (see Section 3
for details), the authors prove that at most two critical periods bifurcate from a weak center of finite order.
In case of weak centers of infinite order (i.e., the isochrones), this upper bound is one for µ 6= 1 and two
for µ = 1. This implies, for instance, that near the isochrones i1 and i3 (see Figure 1) there are parameters
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Figure 1: Monotonicity regions in Theorem A.

(p, q) for which the corresponding center has a non-monotonic period function. (Of course, according to
Theorem A, these parameters are outside C ∪ D .) We stress that the approach in [25] is different from the
one here because in that paper the authors study the local behaviour of the period function near the center.
The monotonicity in Theorem A refers to its behaviour in the whole period annulus.

Let us conclude this introduction by mentioning that
{
ẋ = −y − bx2 − cxy + by2,

ẏ = x(1 + y),

is also referred as “generalized Lotka-Volterra center” in several papers dealing with the so-called Hilbert’s

sixteenth problem (see for instance [29] and papers quoting it). This is so because this 2-parametric family
also includes the classical Lotka-Volterra center, which corresponds to b = 0. In this setting it is to be quoted
the results in [23], where it is proved that the center of the above system has a monotonic period function
as well for those parameters such that b = −1 or c2 + (2b+ 1)2 = 1.

The paper is organized as follows. Section 2 is devoted to the proof of the result. In Section 3 we make
some remarks for further research in the regions not covered by Theorem A.

2 Proof of the result

The key point to prove Theorem A is that there exists a coordinate transformation that brings system (2) to
a Hamiltonian system with separate variables. Next lemma explains how we found this change of variables.

Lemma 2.1. Assume that a given planar differential system in U ⊂ R
2 has a first integral Ĥ and let η be

its corresponding integrating factor. In other words, let us consider
{
u̇ = −Ĥv(u, v)/η(u, v),

v̇ = Ĥu(u, v)/η(u, v).
(3)

Suppose that there exists a diffeomorphism ψ in U such that det
(
Dψ
)
(u,v)

= η(u, v) for all (u, v) ∈ U. Then

the coordinate transformation (x, y) = ψ(u, v) brings (3) to the Hamiltonian system
{
ẋ = −Hy(x, y),

ẏ = Hx(x, y),
(4)
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where H = Ĥ ◦ ψ−1.

Proof. In fact we will show that (u, v) = ψ−1(x, y) brings (4) to (3). To this end define J =

(
0 −1
1 0

)
,

so that system (4) writes as (ẋ, ẏ)t = J∇Ht(x, y). Then

(
u̇
v̇

)
=
(
Dψ−1

)
(x,y)

(
ẋ
ẏ

)
=
(
Dψ−1

)
ψ(u,v)

J∇Ht(x, y) =
(
Dψ
)
−1

(u,v)
J∇Ht(x, y)

=
1

det
(
Dψ
)
(u,v)

(
ψ2v −ψ2u

−ψ1v ψ1u

)t

(u,v)

J∇Ht(x, y) =
1

η(u, v)

(
∇H(x, y)J t

(
ψ2v −ψ2u

−ψ1v ψ1u

)

(u,v)

)t
.

Now, since one can verify that

J t
(

ψ2v −ψ2u

−ψ1v ψ1u

)

(u,v)

= −
(
Dψ
)
(u,v)

J,

from the above equality it follows that (u̇, v̇) = −1
η(u,v)∇H(x, y)

(
Dψ
)
(u,v)

J. Hence, on account of

∇H(x, y) = ∇Ĥ
(
ψ−1(x, y)

)(
Dψ−1

)
(x,y)

= ∇Ĥ(u, v)
(
Dψ−1

)
ψ(u,v)

= ∇Ĥ(u, v)
(
Dψ
)
−1

(u,v)
,

it turns out that (u̇, v̇) = −1
η(u,v)∇Ĥ(u, v)J = 1

η(u,v)∇Ĥ(u, v)J t. This is precisely the transpose of (3).

Next, thanks to the previous result, we will obtain the above mentioned change of variables. This is
done in the following lemma. Although it is a trivial result, its statement is a little cumbersome because
we want to avoid treating the different cases separately. To this end we introduce this definition:

Definition 2.2 From now on we shall use the following notation:

R(s;κ) :=

{
(1 + κs)1/κ − s− 1 if κ 6= 0,

es − s− 1 if κ = 0.

Sometimes, for the sake of shortness, we shall write Rκ(s) = R(s;κ). �

Lemma 2.3. Define ψ(u, v) =
(
h(u; 1− p), h(v; 1 − q)

)
where

h(s;κ) =

{
sκ−1
κ if κ 6= 0,

log s if κ = 0.

Then the coordinate transformation (x, y) = ψ(u, v) brings system (2) to

{
ẋ = −G′(y),

ẏ = F ′(x),

with F (x) = µR(x; 1 − p) and G(y) = R(y; 1− q).

Proof. Let us suppose first that p 6= 1 and q 6= 1. Note that η(u, v) = 1
upvq is an integrating factor of

system (2) and that its corresponding first integral is given by

Ĥ(u, v) = µ

(
u−

u1−p − 1

1− p
− 1

)
+ v −

v1−q − 1

1− q
− 1.
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(Let us point out that here we took the first integral vanishing at the point (1, 1) for the sake of convenience.)

Clearly, ψ(u, v) =
(
u1−p

−1
1−p , v

1−q
−1

1−q

)
is a diffeomorphism verifying det

(
Dψ
)
(u,v)

= η(u, v) for all (u, v). Thus,

by applying Lemma 2.1, the coordinate transformation (x, y) = ψ(u, v) brings system (2) to the Hamiltonian
system associated to

H(x, y) = Ĥ
(
ψ−1(x, y)

)
= µ

((
1 + (1− p)x

) 1

1−p − x− 1
)
+
(
1 + (1 − q) y

) 1

1−q − y − 1.

This, according to Definition 2.2, proves the result when (p− 1)(q − 1) 6= 0.

The case (p − 1)(q − 1) = 0 splits up in three subcases, namely: {p = 1, q 6= 1}, {p 6= 1, q = 1} and
{p = 1, q = 1}. The coordinate transformation and the Hamiltonian function in each subcase can be obtained
by taking the limits p −→ 1 or q −→ 1 in the functions of the case (p − 1)(q − 1) 6= 0. The verification of
the result in these subcases is straightforward and it is left to the reader.

Next we shall apply a monotonicity criterion for the period function of Hamiltonian systems with separate
variables. In order to state it, the following definition is needed:

Definition 2.4 Let Ω be an open interval of R and let us consider a smooth function f : Ω −→ R. Define
Ψ(f) =

(
f/(f ′)2

)
′′

. We say that f ∈ I(Ω) (respectively, f ∈ D(Ω)) if Ψ
(
f
)
is positive (respectively,

negative) on Ω. Moreover, we say that f ∈ N (Ω) if Ψ
(
f
)
≡ 0 on Ω. �

Let F and G be smooth functions with a non-degenerated local minimum at 0. Then the Hamiltonian
differential system {

ẋ = −G′(y),

ẏ = F ′(x),
(5)

has a center at the origin. Let Px and Py be the projections of its period annulus on the x-axis and y-axis
respectively. The proof of the following result can be found in [5, 11].

Proposition 2.5. Consider the center at the origin of the Hamiltonian differential system (5).

(a) If (F,G) ∈ N (Px)×N (Py), then the center is isochronous.

(b) If (F,G) belongs to D(Px)×D(Py), N (Px)×D(Py) or D(Px)×N (Py), then the center has a monotonous

decreasing period function.

(c) If (F,G) belongs to I(Px)×I(Py), N (Px)×I(Py) or I(Px)×N (Py), then the center has a monotonous

increasing period function.

Next we study for which values of the parameter κ, if any, Rκ belongs to D or I. This is done in the
following lemma, where we set Ωκ = (−1/κ,+∞) for κ > 0, Ωκ = (−∞,−1/κ) for κ < 0 and Ω0 = R (i.e.,
the domain of Rκ when 1/κ /∈ N).

Lemma 2.6. Consider the function s 7−→ Rκ(s) introduced in Definition 2.2.

(a) If κ ∈ {1/2, 1, 2}, then Rκ ∈ N (Ωκ).

(b) If κ ∈ (−∞, 1/2) ∪ (1, 2), then Rκ ∈ I(Ωκ).

(c) If κ ∈ (1/2, 1) ∪ (2,+∞), then Rκ ∈ D(Ωκ).

Proof. Let us assume κ 6= 0 first. Some computations show that

Ψ
(
Rκ

)
(x) = (κ− 1)

(1 + κx)1/κ−4A (x)
(
(1 + κx)1/κ−1 − 1

)4 , (6)
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where

A (x) := (2κ− 1)(1 + κx)2/κ + 2(κ− 2)
(
(2κ− 1)x+ 1

)
(1 + κx)1/κ − (1 + κx)

(
(κ− 2)x+ 4κ− 5

)
.

The above expression shows that Ψ
(
Rκ

)
= 0 for κ ∈ {1/2, 1, 2} and this proves (a). Hence from now on we

assume that κ /∈ {1/2, 1, 2}. By computing the Taylor series of A at x = 0 we know that

A (x) = (κ− 1)2(2κ− 1)(2− κ)x4 + o(x4) (7)

and, on the other hand, one can verify that its third derivative is given by

A
(3)(x) = 2(1− 2κ)(κ− 2)(κ− 1) (1 + κx)1/κ−3

(
(κ+ 1)x+ 2− 2(1 + κx)1/κ

)
︸ ︷︷ ︸

b(x)

. (8)

Note that b(0) = 0 for all κ. We claim that b has an additional zero in Ωκ (which is negative) if, and only if,
κ > −1. Since b′(x) = κ+ 1− 2(1+ κx)1/κ−1, it is clear that b′(x) = 0 if, and only if, (1 + κx)1/κ−1 = κ+1

2 .
An easy study of this equation in terms of the parameter κ shows that the derivative of b does not vanish
for κ < −1 and vanishes exactly once, at some negative value, for κ > −1. On account of this, and the
behaviour of b at the endpoints of Ωκ, the claim follows by applying Rolle’s Theorem.

Taking (8) and the above claim into account, by applying Rolle’s Theorem once again we can assert
that A has at most five zeros. In view of (7), four of them correspond to the zero of multiplicity four at
x = 0. The fifth zero may only exist in case that κ > −1 and it should be negative. A straightforward study
of the behaviour of A at the endpoints of Ωκ shows that in fact this fifth zero does not exist for any value
of κ. In short, A only vanishes at the origin and it does it with multiplicity four. Consequently, from (6),

Ψ(Rk) does not vanish. Finally, since one can easily check that Ψ
(
Rk

)
(0) = (κ−2)(2κ−1)

12(1−κ) , the statements in

(b) and (c) follow.

Finally, if κ = 0, then

Ψ
(
R0

)
(x) =

e2x − 4(x− 1)ex − 2x− 5

e−x(ex − 1)4
,

which it is easy to show that it is positive for all x ∈ R. This concludes the proof of the result.

Proof of Theorem A. The period annulus of the center at (1, 1) of the differential system (2) is inside
the first quadrant. By applying Lemma 2.3, the coordinate transformation (x, y) = ψ(u, v) brings (2) to
the Hamiltonian differential system {

ẋ = −G′(y),

ẏ = F ′(x),
(9)

where F (x) = µR(x; 1 − p) and G(y) = R(y; 1 − q). Note that ψ maps the center at (1, 1) to the origin,
and that the first quadrant is mapped to the rectangle Ω1−p× Ω1−q. (Here we use again the notation
Ωκ = (−1/κ,+∞) for κ > 0, Ωκ = (−∞,−1/κ) for κ < 0 and Ω0 = R.) Therefore the period annulus P of
the center at the origin of system (9) is inside the rectangle Ω1−p× Ω1−q. In particular, its projection on
the x-axis (respectively, y-axis) is inside Ω1−p (respectively, Ω1−q).

Clearly, to prove the result we can consider system (9) instead of the original one because both systems
are conjugated. The advantage of doing this is that then we can apply Proposition 2.5.

Since µ > 0, from Lemma 2.6 it follows that F ∈ N (Ω1−p) for p ∈ {−1, 0, 1/2}, F ∈ I(Ω1−p) for
p ∈ (−1, 0)∪ (1/2,+∞) and F ∈ D(Ω1−p) for p ∈ (−∞,−1)∪ (0, 1/2). Obviously, replacing p by q, exactly
the same result holds for G. Accordingly, by applying Proposition 2.5 we can assert that the center at the
point (1, 1) of system (2) is isochronous when p = q = −1 or p = q = 1/2, and that its period function is
monotonous increasing for (p, q) ∈ C and monotonous decreasing for (p, q) ∈ D . (The case pq = 0 is not
considered because then the critical point is not a center.)
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Figure 2: Bifurcation curves for the simplified model.

3 Remarks for further research

In the present paper we determine some regions in the parameter space

Π:= {λ = (p, q, µ) ∈ R
3 : µ > 0, pq > 0}

where the associated differential system (2) has a monotonic period function. Our aim in this final section
is to show that the situation is not so simple for the parameters not covered by Theorem A, and to make
some remarks for further research. More concretely, the problem that we pose is to obtain the bifurcation

diagram of the period function of family of differential systems (2). In other words, to split the parameter
space up as Π =

⋃
Vi in such a way that if λ1 and λ2 belong to the same set Vi, then the associated period

functions are qualitatively the same. In order to be more precise it is first necessary to parametrize the set
of periodic orbits. To this end recall that the period annulus P of the center at (1, 1) of the differential
system (2) is inside the first quadrant. Thus, if (uℓ, ur) is the projection of P on the u-axis, then we have
that 0 6 uℓ < 1 < ur 6 +∞. For each s ∈ (0, ur − 1) and λ ∈ Π, let P (s;λ) be the period of the periodic
orbit of (2) passing through the point (1 + s, 1) ∈ P . This provides us with a parametrization of the period
function for which s ≈ 0 corresponds to periodic orbits near the center. The critical periods are the critical
points of s 7−→ P (s;λ), and it can be shown that their number, character (maximum or minimum) and
distribution does not depend on the particular parametrization of the set of periodic orbits used. It is clear
moreover that the study of the critical periods is essential to understand the qualitative properties of the
period function.

The boundary of the period annulus P has two connected components; the center itself and a polycycle.
We call them, respectively, the inner and outer boundary of the period annulus. As it is established in [16],
the bifurcation diagram of the period function consists in three parts:

(a) Bifurcations of the period function at the inner boundary (i.e., the center).

(b) Bifurcations of the period function at the outer boundary (i.e., the polycycle)

(c) Bifurcations of the period function in the interior of the period annulus.

Roughly speaking the bifurcations at the inner (respectively, outer) boundary correspond to critical pe-
riods that emerge, or disappear, from the center (respectively, the polycycle). According to the above
parametrization, to determine them it is necessary to study P (s;λ) for s ≈ 0 and s ≈ ur − 1. The bifurca-
tions in the interior of the period annulus correspond to parameters for which two critical periods collapse
disappearing in P . (As a matter of fact, talking about the interior of P is an abuse of language because the
period annulus is open by definition.)

To clarify these notions we can consider the bifurcation of zeros of the equation x2 + αx + β = 0 for
x ∈ (0, 1) as a simplified model. In this model {β = 0}, {1 + α+ β = 0} and {α2 = 4β,−2 < α < 0} would
correspond to the bifurcation curves in (a), (b) and (c) respectively (see Figure 2).

7



3.1 Bifurcations at the inner boundary

It is well known that the function s 7−→ P (s;λ) is analytic on the interval (0, ur − 1). The key point to
study the bifurcations at the inner boundary is that it can be extended analytically to s = 0. We can thus
consider its Taylor development at s = 0,

P (s;λ) =
∑

i>0

∆i(λ)s
i. (10)

The coefficients ∆i for i > 1 are called the period constants of the center, and it can be shown that they are
polynomials in λ. By the Hilbert basis theorem there exists a natural number N such that the ideal of all the
period constants is finitely generated by the first N. Moreover, it turns out that ∆2k+1 ∈ (∆2,∆4, . . . ,∆2k),
the ideal generated by ∆2i for i = 1, 2, . . . , k, and that the the first k > 1 such that ∆k 6= 0 is even. The
center corresponding to the parameter value λ⋆ is said to be a weak center of order k if

∆1(λ⋆) = ∆2(λ⋆) = . . . = ∆2k+1(λ⋆) = 0 and ∆2k+2(λ⋆) 6= 0.

In case that ∆k(λ⋆) = 0 for all k > 1, we say that it is a weak center of infinite order, which of course
correspond to the isochrones.

We can now summarize the results in [25] in the following statement, where local critical period refers to
a critical period bifurcating at the inner boundary of the period annulus (see [3, 16] for a precise definition).

Theorem 3.1. Consider the period function of the differential system (2). Then the following hold:

(a) For k = 1, 2, at most k local critical periods bifurcate from weak centers of finite order k. Moreover, for

any 0 6 n 6 k, there are perturbations with exactly n local critical periods.

(b) ∆k ∈ (∆2,∆4,∆6) for all k > 1. In particular, there are no weak centers of finite order k > 3.

(c) If µ = 1, then at most 2 local critical periods bifurcate from weak centers of infinite order. Moreover,

for any n = 1, 2, there are perturbations with exactly n local critical periods.

If µ 6= 1, then at most 1 local critical period bifurcate from weak centers of infinite order. Moreover,

there are perturbations with exactly 1 critical period.

In the following discussion we have used the explicit expression of ∆2, ∆4 and ∆6. We do not include
them here for the sake of shortness (the interested reader can find them in [25]). For simplicity in the
exposition we shall assume that the parameter µ > 0 is fixed. Thus, making an abuse of notation, we will
write λ = (p, q). Taking this into account, it is easy to show that

Λ∞ := {λ = (p, q) ∈ R
2 : ∆2(λ) = ∆4(λ) = ∆6(λ) = 0} = {i1, i2, i3, i4},

where i1 = (12 ,
1
2 ), i2 = (−1, 12 ), i3 = (−1,−1) and i4 = (12 ,−1). (Note that only i1 and i3 are “true”

isochrones since pq > 0 is a necessary condition in order to have a center.) Moreover, if µ 6= 1, then

Λ2 := {λ = (p, q) ∈ R
2 : ∆2(λ) = ∆4(λ) = 0 and ∆6(λ) 6= 0} = {m1,m2,m3}.

It can be proved, see Figure 3, thatm1 = m1(µ) is inside the square (0, 1)
2 and that it tends to i1 as µ −→ 1.

Similarly, m3 = m3(µ) is inside the square (−2, 0)2 and it tends to i3 as µ −→ 1. Finally, m2 = m2(µ) is
in the second quadrant for µ ∈ (0, 1) and in the forth quadrant for µ > 1. In addition, ||m2|| −→ +∞ as µ
tends to 1. In particular, it turns out that Λ2 is empty for µ = 1. Setting

Λ1 := {λ = (p, q) ∈ R
2 : ∆2(λ) = 0 and ∆4(λ) 6= 0},

we have that Λk is the set of weak centers of order k for k = 1, 2,∞.
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Figure 3: Location of the weak centers of system (2) for µ > 1 and, enlarged, a numerical study of a
parameter subset not covered by Theorem A. The parameters in light grey have one critical period.

The above properties of Λ1, Λ2 and Λ∞ can be proved analytically. In Figure 3 we draw them qualita-
tively for µ > 1. This figure also contains a zoom of the square [0, 12 ]× [ 12 , 1] in which we make a numerical

study1 of the period function for µ = 5.69. For this value, m1 ≈ (0.21, 0.61) and the light grey region
corresponds to parameters for which the associated system has one critical period. (To be more precise,
the ones below ∆2 = 0 correspond to a minimum and the ones above ∆2 = 0 to a maximum.) Note that
the existence of this critical period near the curve ∆2 = 0 is established by (a) in Theorem 3.1 because this
curve consists precisely of weak centers of order 1.

3.2 Bifurcations at the outer boundary

The bifurcations at the inner boundary for the family of centers in (2) are completely understood thanks
to Theorem 3.1. In particular, the bifurcation curve is ∆2 = 0. The finding of its counterpart for the
bifurcations at the outer boundary is a challenging problem. This is so already when the differential system
is polynomial. However system (2) presents some features that makes this problem even more difficult.

1In fact we use system (9), which is conjugated to the original one and it has the center at the origin. We write it in polar
coordinates as

{

θ̇ = Θ(r, θ),

ṙ = R(r, θ).

Then, if r(θ; x) is the solution of dr
dθ

=
R(θ,r)
Θ(r,θ)

with initial condition r(0; x) = x, the period of the periodic orbit of system (9)

passing through the point (x, 0) ∈ R2 is given by the definite integral

T (x) =

∫ 2π

0

dθ

Θ
(

r(θ;x), θ
) ,

where of course “everything” depends on p, q and µ. For µ = 5.69 we make a 100×100 grid on the square [0, 1
2
]× [ 1

2
, 1] and, for

each (p, q) in this grid, we compute numerically T in m = 400 points equally spaced of its domain, say xi for i = 1, 2, . . . ,m.

More concretely, we approximate the integral T (xi) by using the composite Simpson’s rule with n = 500 points in the interval
(0, 2π). To this end, for each θk = 2πk

n
for k = 1, 2, . . . , n, we compute using Newton’s method r(θk ;xi) =:rk as a root of the

equation H(rk cos θk, rk sin θk) = H(xi, 0), where H(x, y) = F (x) + G(y) is the Hamiltonian function of system (9). Finally,
once we have an approximation of T (xi) for i = 1, 2, . . . ,m, we use a five-point formula to approximate the derivative T ′(xi).
The interested reader is referred to [21] for details about these numerical methods.
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Figure 4: Numerical study near m1 of the number of critical periods.

In general, even in case that the vector field is analytic at the polycycle, it turns out that the period
function can not be extended there analytically. Then, instead of a Taylor series as in (10), the study leads
to an asymptotic development of the period function in terms of the so-called Roussarie-Écalle compensator

(see [15, 16, 17]). Of course this can be done in case that the vector field is defined at all the points of
the polycycle, or at least such that we have some kind of extension there. (For instance, if P is unbounded
then the polycycle has some vertices at infinity, where the vector field is not defined. This can be solved
in case that the differential system is polynomial because then it can be extended meromorphically to the
infinity by means of a suitable compactification.) In order to study the bifurcations at the outer boundary for
system (2), the interesting cases for our purposes (i.e., the parameters not covered by Theorem A) present an
additional difficulty apart from the ones we have just explained. Indeed, for these cases the outer boundary
of the period annulus is a Jordan curve tangent to either {u = 0} or {v = 0}, and the differential system is
only continuous there (in fact there is not uniqueness of solutions). The tools developed in [15, 16, 17] to
study this type of bifurcation cannot be applied in such a degenerated setting.

3.3 Bifurcations in the interior

Figure 4 shows a zoom near m1, a weak center of order 2, where we made a numerical study of the period
function for µ = 5.69. (Following the notation in the footnote, in this case we take a 50×50 grid with
m = 1000 and n = 500.) As before, we color the parameters for which we detect one critical period in
light grey. We also draw those parameters with two critical periods in black. We stress that a non-colored
parameter does not mean the absence of critical periods. For instance, it may happen that there are two
of them, but so close to each other that the change in the monotonicity of the period function can not be
detected numerically because the discretization of its domain is not fine enough. This occurs precisely near
a bifurcation of the period function in the interior of P . The existence of a curve corresponding to this type
of bifurcation landing at m1 is the reason why we do not detect (numerically) parameters near m1 having
two critical periods as it is established by (a) in Theorem 3.1.

One can verify, see Figure 4, that ∆2 = 0 and ∆4 = 0 intersect transversally at m1. Taking this fact
into account, it can be proved that there exists a germ of curve ℓ at m1 tangent to ∆2 = 0 and inside
{∆2 < 0}∩ {∆4 > 0} which corresponds to bifurcations in the interior of P . (The proof follows by applying
the Weierstrass Preparation Theorem exactly the same way as in Theorem 4.3 of [16].) According to the
simplified model that we explain at the beginning of the Section, this curve should join ∆2 = 0 with the
curve corresponding to bifurcations at the outer boundary. Note finally that since ∆2 = 0 and ∆4 = 0 also
intersect transversally at m3, we can assert the existence of another germ of this type of curve near m3.
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