Tangential Trapezoid Central Configurations

Pengfei Yuan ${ }^{1 *}$ and Jaume Llibre ${ }^{2^{* *}}$
${ }^{1}$ School of Mathematics and Statistics, Southwest University, 400715 Chongqing, China
${ }^{2}$ Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain
Received December 12, 2019; revised October 17, 2020; accepted October 27, 2020

Abstract

A tangential trapezoid, also called a circumscribed trapezoid, is a trapezoid whose four sides are all tangent to a circle within the trapezoid: the in-circle or inscribed circle. In this paper we classify all planar four-body central configurations, where the four bodies are at the vertices of a tangential trapezoid.

MSC2010 numbers: 70F07,70F15
DOI: 10.1134/S156035472006009X
Keywords: convex central configuration, four-body problem, tangential trapezoid

1. INTRODUCTION

The classical n-body problem concerns the study of the dynamics of n particles interacting among themselves by their mutual attraction according to Newtonian gravity.

Let $x_{i} \in \mathbb{R}^{d}(i=1, \ldots, n)$ denote the position vector of the i-body, and let $m_{i} \in \mathbb{R}^{+}(i=1, \ldots, n)$ denote the mass of the i-body. \mathbb{R}^{d} is the Euclidean space ($d=2$ or 3). By Newton's law of motion and Newton's gravitational law the equations of motion of the n-body problem are governed by

$$
\ddot{x}_{i}=-\sum_{j=1, j \neq i}^{n} \frac{m_{j}\left(x_{i}-x_{j}\right)}{r_{i j}^{3}}, \quad 1 \leqslant i \leqslant n
$$

where $r_{i j}=\left|x_{i}-x_{j}\right|$ is the mutual Euclidean distance between the i-body and the j-body. Here we take the gravitational constant $G=1$.

The vector $x=\left(x_{1}, \ldots, x_{n}\right) \in\left(\mathbb{R}^{d}\right)^{n}$ is called the configuration of the system. Define $\delta(x)$ as the dimension of a configuration x, i. e., the dimension of the smallest affine space of \mathbb{R}^{d} containing all of the points x_{i}. Configurations with $\delta(x)=1,2,3$ are called collinear, planar and spacial, respectively.

When $n=2$, the n-body problem has been completely solved. However, for the n-body problem for $n \geqslant 3$ the complete solution remains open.

Let

$$
M=m_{1}+\cdots+m_{n}, \quad c=\frac{m_{1} x_{1}+\cdots+m_{n} x_{n}}{M}
$$

be the total mass and the center of masses of the n bodies, respectively.
A configuration x is called a central configuration if the acceleration vectors of the n bodies are proportional to their positions with respect to the center of masses with the same constant of proportionality, i. e.,

$$
\begin{equation*}
\sum_{j=1, j \neq i}^{n} \frac{m_{j}\left(x_{j}-x_{i}\right)}{r_{i j}^{3}}=\lambda\left(x_{i}-c\right), \quad 1 \leqslant i \leqslant n \tag{1.1}
\end{equation*}
$$

where λ is the constant of proportionality.

[^0]
[^0]: *E-mail: yuanpengfei@swu.edu.cn
 ** E-mail: jllibre@mat.uab.cat

