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Zhaoyang Dong

Programa de Doctorat en Matemàtiques
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Chapter 1

Introduction

This memoir is concerned with the topological attractors of some quasi-
periodically forced one-dimensional maps. Our investigations display some
very essential features of the dynamics of this kind of systems. The quasi-
periodically forced systems consist of two generic types, the pinched ones
and the non-pinched. The dynamical behaviours of these two types have an
intrinsic distinction, presented on their attractors. Roughly speaking, the
dynamical structures of the unforced one-dimensional maps, can be seen
preserved by suitable forcing term in non-pinched systems, but this is not
the case in pinched ones. Our Theorem A says that the attractors of a
pinched system must be in one piece, with the unique ω-limit set of pinched
points inside all of them. Hence, if there are different attracting orbits in
the unforced one-dimensional map, all of them can be represented by corre-
sponding invariant subsets in the non-pinched systems; however in the case
of a pinched system, the situation depends much on the pinched condition.
These features of two types of systems are exhibited clearly by the typical
families that we choose as examples.

More concretely, we study two types of typical families, whose unforced
one-dimensional maps are already very well studied. The first type con-
sists of two different quasi-periodically forced increasing real maps, both of
them are classic examples of saddle-node bifurcation. We elaborate differ-
ent states of their attractors by Theorem B and Theorem C respectively in
the third chapter. They show evidently that the qualitative behaviours of
non-pinched systems are exactly the same with the corresponding unforced
real systems, which the pinched ones are affected in a great degree by the
pinched conditions. The second type of families is the quasi-periodically
forced S-unimodal maps. S-unimodal maps are prototypes of periodic be-
haviours. We propose the mechanism for the states of periodicity in forced
systems according to the forced terms, which is based on rigorous analysis
of the S-unimodal maps and is substantiated by numerical evidences.

Moreover, our analysis of S-unimodal maps also demonstrates the mech-
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2 CHAPTER 1. INTRODUCTION

anism of bifurcations that happen on the attractors of cycles of chaotic
intervals. This is a new result for us about these well studied systems, given
by Theorem D. Bifurcations of this type have been reported for decades, but
they are only described in physical context. We explain their mechanism
mathematically and show each of them is the reverse of a corresponding
bifurcation of periodic orbit. A special significance of these reverse bifurca-
tions is that, each correspondence pairs of them forms a unit of similarity
in the transition of an S-unimodal family. Below we give more detailed
introduction of this memoir.

The attractors are one of the main subjects of dynamical systems and
chaos theory. They are invariant subsets of state spaces that the asymptotic
motion of the points in their neighbourhood follows them. Hence the long-
term evolution behaviours of dynamical systems are mainly represented by
their attractors, and the knowledges of attractors are the key for the under-
standing of the whole system. There are many important and impressive
results on attractors, such as the famous Lorenz’s attractor [51], Hénon’s at-
tractor [36], Feigenbaum’s attractor [22, 23]. They are all important strange
attractors, and each of them stands for an important achievement in the
field of dynamical systems. Here by strangeness it means that they own
some fractal features in the geometry aspect. A chaotic attractor is the one
which is “sensitive dependence on initial conditions”, usually measured by
a positive Lyapunov exponent. In early literature, a strange attractor often
refers to the chaotic attractor, since all known chaotic attractors are with
the strange feature together.

Our motivation is the problem of strange nonchaotic attractors(SNAs for
short), they are strange attractors which are nonchaotic instead. In 1984
Grebogi, Ott, Pelikan and Yorke [29] found examples of strange nonchaotic
attractors in quasi-periodically forced skew product systems. A noticeable
work [44] by Keller in 1996 gives an elegant mathematical proof on the
existence of SNA in modified systems of [29]. In recent decades, a lot of works
were devoted to find and to study SNAs. However the concrete mechanism
for the birth of SNAs remains unclear yet. In this memoir, rather than
focusing only on how to find SNAs, we extend our perspective to the general
dynamical behaviours of quasi-periodically forced systems, in which typical
SNAs occur. It provides us some basic cognition on the possible mechanism
of SNAs by studying some representative forced systems.

The main content of this memoir consists of three chapters. The basic
notions and background knowledges are introduced in the second chapter.
We start from the elementary concepts of dynamical systems, orbits, ω-limit
sets and attractors. Next we make a short summary on ergodic theory and
Lyapunov exponent, which is the major measurement of the chaoticity of
attractors. These materials are all standard, we include them so that this
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memoir is more self-contained.

The third section is devoted to an introduction of some fundamental
and important issues about SNAs. We first introduce the quasi-periodically
forced systems, they belong to a special form of the skew products. In this
memoir, we focus only on quasi-periodically forced one-dimensional maps,
which are on cylinder S1 × I ⊂ S1 × R of the form{

θn+1 = θn + ω (mod 1),
xn+1 = f(θn, xn).

(1.1)

Here θ ∈ S1 the unit circle, ω is a fixed irrational real number and I ⊂ R
represents the forced space which is called fibre of the skew product.

The SNA problem on such systems consists of the chaoticity and the
strangeness of their attractors. In the second subsection, we summarize the
paper [1] of Alsedà and Costa for their discussion on the definition of SNA.
The two important examples of Grebogi, Ott, Pelikan and Yorke [29] and
Keller [44] are presented in the third subsection, these examples help us
to obtain an intuitive understanding on such attractors. The last subsec-
tion is devoted to some arguments involving the strangeness of attractors,
which is the most confusing and difficult part about confirming an SNA. We
summarize the results of Stark [74] on the regularity of invariant graphs in
quasi-periodically forced one-dimensional systems, and the elaborate discus-
sions of fractalization mechanism by Jorba and Tatjer [41].

Our investigations are presented in the next two chapters. In the third
chapter we first explore shortly some general topological structures of pinched
closed invariant subsets of systems (1.1), which are sets possibly strange. By
pinched we mean that the intersection of the set with some fibre contains
only one point, which is called a pinched point. We prove that, the ω-limit
set of pinched points is the unique minimal set in a pinched closed invariant
set, and any continuous graph contained in a pinched set must be invariant.
Such an invariant graph is then the most possible closed invariant subset in
a quasi-periodically forced system. A system (1.1) itself is called pinched, if
there is one fibre who is wholly mapped to one point. Any closed invariant
set in a pinched system is certainly pinched. Theorem A, our first main
result shows that, in a pinched system the ω-limit set of pinched points is
the only minimal set which must be contained in every closed invariant set.
Hence the pinched points plays a crucial role in a pinched system, since all
the other orbits can only go around their ω-limit set.

This special role of the pinched orbits in pinched systems is clearly pre-
sented in the two models we study next in this chapter. They are families
of forced monotone increasing maps with two parameters, both in form of

F (θ, x) = ( θ + ω mod(1), λf(x+ a) · g(θ) ), (1.2)
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with f a real function defined on R which is continuous, strictly increasing
and satisfies f(0) = 0. The two real number a and λ > 0 are parameters,
and g(θ) ≥ 0 is continuous from S1 to R.

Moreover, for the first family, we ask f to be bounded, α-concave for
x ≥ 0 with some α > 0, and is β-convex for x ≤ 0 with some β > 0. While
for the second, f is assumed to α-concave or β-convex on whole R for some
α > 0 or β > 0. Thus, in both cases, the real systems given by λf(x + a)
are typical examples of the saddle-node bifurcations, due to the concave and
convex structures of f . Precisely, if we let λ increases from 0 with a 6= 0
fixed in the first case, the number of fixed points changes from 1 to 3 after
the bifurcation. In the second case, the number of fixed points are 0 and 2
at the two sides of the bifurcation respectively.

In the second section, before proving rigorously the states of their dy-
namics, we develop some general and common properties derived from the
monotonicity, and the concavity and convexity respectively. These prop-
erties provide us the basic tools of the investigations of systems with such
structures on their fibre maps. Next, the complete dynamics of the two
families are given by the main theorem in each of the following two sections.
Briefly saying, in both of their non-pinched cases, only the fixed points of
the one-dimensional maps λf(x + a) are replaced by continuous invariant
graphs, so they have totally analogous dynamics and exhibit the same type
of bifurcation with invariant graphs.

For the pinched systems of the first model, the corresponding bifurcation
is totally destroyed for any a 6= 0. With any value of λ, there exists a unique
continuous graph which is invariant and attracts all the points in the system.
In the second model, different situations occur according to the cases of g(θ).
When g(θ) = 0 on a positive measure set of θ ∈ S1, the system has a unique
invariant graph which attracts all the points for any λ and a, and hence no
bifurcation takes place. Otherwise, when g(θ) = 0 only on a zero measure
set of S1, there is similar bifurcation as the unforced real system λf(x+ a).
However, if the value of λ is big such that the graph x = 0 is invariant and
repelling at a = 0, then the critical value of bifurcation is fixed at a = 0,
with the attractor being an SNA.

From these examples, we see that all the regular types of bifurcations
of one-dimensional maps may happen correspondingly in pinched systems,
that is, the pitchfork, saddle-node, and transcritical ones. We also give an
example of the period-doubling one. Notice that, it is possible for all of these
types to give the birth of an SNA. However, one cannot just expect such a
result by simply resembling any a bifurcation of the real map to the pinched
one, because it happens only when the pinched orbits locate appropriately
in a relative special position.

The last chapter is devoted to the quasi-periodically forced S-unimodal
maps. We propose the mechanism of the change of periodicity of their
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attractors, which is based on the structures of the restrictive intervals of the
unforced S-unimodal maps. Such structures also exhibit the reason of the
reverse bifurcations in S-unimodal families, which we present in Theorem D.
For a more intuitive introduction of these problems and our results, the
reader can refer directly to the first section of this chapter.

Just simply, we consider system{
θn+1 = θn + ω (mod 1),

xn+1 = ψ(θn, xn),
(1.3)

where (θ, x) ∈ S1 × I, the function ψ(θn, xn) is continuous on both x and θ,
which is in form of ψθ(x) = f(x) · gε(θ) or ψθ(x) = f(x) + gε(θ) with f an S-
unimodal map defined on I ⊆ R. Here ε ≥ 0 is used as a parameter to control
the perturbation given by the forcing function g(θ). Moreover, we suppose
that ψθ(x) = f(x) for all θ ∈ S1 if ε = 0, and in case of ψθ(x) = f(x) · gε(θ),
gε(θ) ≥ 0 so that the S-unimodal structure can be maintained in fibre maps.

The crucial concept of this chapter is the block structures of restrictive
intervals for S-unimodal maps, that we develop in the second section. S-
unimodal maps are popular and well studied already, they are unimodal
maps with negative Schwarzian derivative in every point except for the crit-
ical point. For any periodic orbit of period n of a unimodal map f , we show
that there is a set of K intervals with K = n or K = 2n, each of them has
an endpoint of this periodic orbit. This set of intervals are called to be re-
strictive if their union is forward invariant under f . The restrictive intervals
own very nice properties as follows. By the definition, for any two sets of
restrictive intervals, one must be contained in the other, hence has the block
structure over it, which is represented by extension pattern. Notice that, all
the restrictive intervals of an S-unimodal map are nested, and their intersec-
tion is also forward invariant. We prove further that, the only attractor of a
generic S-unimodal is contained in their intersection, and each one of three
cases of restrictive intervals corresponds actually to one type of topological
attractors: an attracting periodic orbit, a solenoidal (Feigenbaum-like) at-
tractor, or a cycle of chaotic intervals. This characterization of attractors by
restrictive intervals provides us a convenient criterion to confirm the state
of an attractor.

Next, the bifurcation issues in S-unimodal families are discussed in the
third section. We have known already that, each new periodic orbit comes
from a bifurcation, and the theories on bifurcations of these periodic orbits
are classic already. In Theorem D we demonstrate another kind of bifurca-
tion, which happens for the attractor in form of cycle of chaotic intervals,
at the value of a set of restrictive intervals becoming non-restrictive. Since
every set of restrictive intervals occurs together with the unique periodic
orbit whose points are their endpoints, this bifurcation at the end of being
restrictive behaves actually to be reverse of the bifurcation which generates
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the corresponding periodic orbit. Furthermore, a particular fact is that,
the transition of an S-unimodal family fµ between each pairs of such corre-
sponding bifurcations is shown to be a unit of similarity, because fKµ turns
out to be a full family on each one of these restrictive intervals.

Finally we analyse the quasi-periodically forced S-unimodal maps in the
last section. In system (1.3), we let ε increase from 0 with the S-unimodal
map f being fixed, then the attractor shows somehow similar behaviour as
the reverse bifurcation of cycle of chaotic intervals in S-unimodal families.
Precisely, for a fixed S-unimodal map f , its block structure of restrictive
intervals is specific, and every block corresponds to an invariant region in
S1 × I which limits the attractor of (1.3) when ε = 0. With the increasing
of ε, both these regions and the attractor change continuously, and it can
be seen that the attractor increases its size and finally goes beyond these
limit regions one by one. So at each time the attractor increases over the
boundary of a limit region, a similar behaviour like the reverse bifurcation
can be observed.
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Chapter 2

Preliminary and background

In this chapter we introduce the basic definitions and notions that we need
throughout this thesis. The reader with a good background on dynamical
systems, particularly on strange nonchaotic attractors, can skip this chapter
and come back only when some of these are needed. This introduction is
tried to keep the “minimum amount”, starting with some fundamental and
essential concepts in the study of dynamical systems. The purpose of these
preliminaries is to make this work as self-contained as possible, so that it
allows the reader to follow the thesis without consulting other books or
articles frequently. The issue of Strange Nonchaotic Attractors(SNAs for
short) is the motivation of this memoir, hence the contents are all close
related on it.

More precisely, the first section covers basic definitions and notions about
general dynamical system, including orbits, limit sets and attractors. In the
second section we introduce some of basic measure theory and the concept of
Lyapunov exponent, which are usually used as measurement of the chaotic-
ity. The third section is devoted to the problem of SNAs, where we present
the notions on quasi-periodically forced skew product systems, a short dis-
cussion on the definition of SNA, and the typical examples including the
famous Keller’s model. Its last subsection is focused on the strangeness of
attractors. The noticeable works by Stark [74] and by Jorba and Tatjer [41]
on fractalization mechanism are summarized.

2.1 Basic definition on dynamical systems

The contents of this section are some of the most fundamental concepts of
dynamical systems. We start from the definition of a dynamical system,
followed by the notion of the orbit of a point, which is the natural object for
the study of dynamical systems. The efforts to understand the orbits lead
to the concepts of the periodic orbit, the ω-limit set and the attractor of a
system step by step.

7



8 CHAPTER 2. PRELIMINARY AND BACKGROUND

2.1.1 dynamical Systems

A dynamical system is one whose state changes with time t under some
deterministic law. All the possible states of the system form a set X, which
is called the state space, or phase space. Mathematically, a state space can
be a metric, topological space or manifold and so on. Any point of X is
called a state.

According to the time variable t, there are two main types of dynamical
systems: those for which the time variables are continuous (t ∈ R), and
those for which they are discrete (t ∈ Z). A continuous dynamical system
is usually described by a differential equation

dx

dt
= ẋ = F (x) (t ∈ R) , (2.1)

while discrete one is in the form of the iteration of a map, i. e.,

xt+1 = F (xt) (t ∈ Z). (2.2)

In each of the above situations, x represents the state of the systems and
takes value in the state space X. The differential equation in (2.1), or the
map F in (2.2) represents the law which determines uniquely the evolution
behaviour of the system.

Moreover, in order to form a dynamical system, either the solutions of
differential equation or the iteration of a map must have some group struc-
ture, that is, it must satisfy the following definition (see, for instance [43,
48]).

Definition 2.1.1. A dynamical system is a triple (X,T,F), where

(1) X is a set of states (normally with some special structure);

(2) T is a set of times, such that 0 ∈ T and for any s, t ∈ T, s+ t ∈ T;

(3) F: X × T −→ X is a function satisfying the group property F0 = Id,
Fs ◦ Ft = Fs+t.

In the above definition, if the time variable t belongs only to the set
of nonnegative real number or the nonnegative integer number, and the
solution or the iteration of a map satisfies the corresponding property of
item (3), the system (X,T,F) is called a semi-dynamical system. In this
case, F needs not be invertible. Notice that semi-dynamical systems are
often called dynamical systems in the literature by abuse of notation. In
this memoir, we only work with discrete semi-dynamical systems, that is,
with T = Z+ ∪ {0}. So we use (X,F) to denote such a system, and call it
dynamical system whenever there is no possible ambiguity.



2.1. BASIC DEFINITION ON DYNAMICAL SYSTEMS 9

2.1.2 Orbits and ω-limit

The basic goal of the study of dynamical systems is to understand how the
states of all points change with time under the action of given mathematical
laws, that is, their orbits or trajectories.

Definition 2.1.2. The (forward) orbit, or trajectory, of a point x ∈ X is
the set

Orb(x) = O+(x) = {Fn(x) : n ∈ Z+ ∪ {0} }.

In general, the orbit of a point can be a very complicated set. How-
ever, there may exist some simple ones among all the orbits, which play an
important role in the study of the whole system.

Definition 2.1.3. A point x is a periodic point of period n if there is an
n ∈ N such that fn(x) = x, and fm(x) 6= x for each m < n. If n = 1, then
x is called a fixed point. Moreover, if a periodic point has a neighbourhood
such that all the points in this neighbourhood eventually approach to its
orbit, then it is called an attracting periodic point. On the contrary, if all
the points in some of its neighbourhood leave this neighbourhood under
the action of fn, that is, x is the only point which stays always inside this
neighborhood, then it is repelling.

If a point x is a periodic point of period n, let the number λ(x) =
d
dxf

n(x). If |λ(x)| < 1, then x is an attracting one. On the other hand, if
|λ(x)| > 1 then x is repelling. Whenever |λ(x)| 6= 1, the orbit of x is called
hyperbolic.

It is clear that if x is a periodic point of period n, then Card(Orb(x)) = n.
Since {fn(x)} is a repeating sequence of these n points, the behaviour of x
is well-understood. For those points which are not periodic, it is useful to
understand their limiting behaviour. This gives rise to the notion of ω-limit
set.

Definition 2.1.4. Let (X,F) be a dynamical system, and x ∈ X. The
ω-limit set of x, denoted by ω(x), is the set of the limit points of Orb(x),
that is, ω(x) = {y : there is a subsequence {nj} of {n} such that fnj (x) →
y as nj →∞}.

ω-limit sets have particular significance in the study of dynamical sys-
tems, they are very important invariant sets in the systems. A set A ⊆ X is
(forward) invariant in a system F if F (A) ⊆ A. particularly, if F (A) = A,
then A is called strongly invariant. Normally, we only clarify a strongly
invariant set in time of necessary.

Obviously, any orbits will stay in an invariant set eventually since they
enter it. Thus it forms a special system of it own. This display the special
role of such set.
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Remark 2.1.1. It is well-known (see for instance [67]) that the ω-limit set
of a point has the following properties.

(i) For any x ∈ X, ω(x) = ∩n≥0 Cl(Orb(fn(x)));

(ii) For all y ∈ Orb(x), ω(y) = ω(x);

(iii) For any point x, ω(x) is closed and forward invariant, that is, f(ω(x)) ⊂
ω(x);

(iv) Moreover, if Orb(x) is contained in some compact subset of X, then
ω(x) is nonempty, compact and (totally) invariant, that is, f(ω(x)) =
ω(x);

(v) If D ⊂ X is closed and forward invariant and x ∈ D, then ω(x) ⊂ D.
In particular, if y ∈ ω(x), then ω(y) ⊂ ω(x).

�

Obviously, if x is periodic, then ω(x) = Orb(x).

2.1.3 Definition of attractors

In the study of dynamical systems, the main attention is devoted to the
eventual behaviour of most of points in the state space. The ω-limit set can
give us this information about a point, but it is not enough for the whole
system. For this reason we need some more global notion.

Notice that the orbit of a fixed or a periodic point has only finite points,
so its dynamics is simple and well-understood. Moreover, if such a point is
attracting, then its orbit plays an important role in the study of dynamical
systems. Geometrically, we can say that the asymptotic motion of these
points in the neighbourhood follows the orbit of this periodic point in state
space. Thus, the dynamics of all these points are well-understood through
the dynamics of this attracting periodic point. Generalizing this idea, we
can see that, an invariant subset of the state space with such properties also
plays the same role in the study of dynamical systems. This leads to the
concept of attractors. For a concrete mathematical meaning of attractor,
we adopt the definition given by Milnor in [58]. We should point out that,
there are many other definitions of attractors in the literature. Milnor also
makes a survey of some of them in his article.

Definition 2.1.5 (Milnor). Let (X,F ) be a dynamical system where X
is a smooth, compact manifold endowed with a measure µ equivalent to
Lebesgue measure when it is restricted to any coordinate neighbourhood. A
closed subset A ⊂ X is called an attractor if it satisfies the following two
conditions:

(1) The set %(A) := {x : ω(x) ⊂ A} has strictly positive measure;
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(2) there is no strictly smaller closed set A′ ⊂ A so that %(A′) coincides
with %(A) up to a set of measure zero.

The set %(A) is called realm of attraction of A, it can be defined for every
subset of X. When it is open, it is called basin of attraction of A.

Remark 2.1.2. In the above definition, the first condition assures that
there is some positive possibility, such that a randomly chosen point will
be attracted to A, so the realm is visible in this sense. The second is a
minimality condition, that is, every part of A should play an essential role.�

In [58], Milnor also pointed out some properties of the attractor based
on this definition, and proved the following result about the existence of
attractor. With this result, it is often convenient to ensure that there is an
attractor in a system.

Theorem 2.1.1. Let S be a compact subset of X such that µ(S) > 0 and
f(S) ⊂ S, then S contains at least one attractor.

In this spirit, in the topological space X, the (topological) attractor
refers to a set with dynamical structure similar to the metric one.

Definition 2.1.6. A closed invariant set A ⊆ X is called a topological
attractor of f if
(i) rl(A) is a set of second Baire category;
(ii) for any proper closed invariant subset A′ ⊂ A, the set rl(A)r rl(A′) is
of second Baire category as well.

Here rl(A) = {x : ω(x) ⊆ A} is its“realm of attraction”.

One can see from the definition of the attractors, the long-term evolution
behaviours of dynamical systems are mainly represented by their attractors.
Hence the knowledge of the dynamical behaviours of the attractors is the key
for the understanding of the whole system, and the study of the attractors
is one of the main subjects of dynamical systems and chaos theory. The
improvement on this study is always closely related with the development of
the whole field. In the passed half century, many impressive discoveries were
presented. These results not only interested a great number of scientists,
they even aroused the public’s enormous enthusiasm of this field because of
the beauty of their wonderful forms.

In 1963, Lorentz published his famous and historical paper “Determin-
istic Nonperiodic Flow” [51], and reported the Lorentz’s attractor obtained
from a very rough model simulating the atmospheric motion. In this paper,
he rediscovered the phenomenon of “sensitive dependence on initial condi-
tions” described by Poincaré in his book [63] more than half century ago.
Just like Poincaré pointed out, the systems with this character always ex-
hibit complicated behaviours, and predication is impossible. It is notable
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that such phenomena were found to exist in many systems with very simple
mathematical forms, see for instance, May [54], Li and Yorke [49], where
the term “chaos” was coined. Here in this context, when we refer to chaotic
attractors, we mean that there is sensitive dependence on initial conditions.
The chaoticity is given in terms of positive Lyapunov exponents.

Later than Lorentz, in 1971 Ruelle and Takens [70] suggested that the
turbulent motion of a fluid could be explained in terms of strange attrac-
tors. For them, a strange attractor is a chaotic attractor. While in this
memoir, by strangeness we mean that the attractors have nonelementary
geometrical properties, such as noninteger fractal dimension, or nowhere
differentiability. But at the early time in this field, almost all the important
chaotic attractors own the features of strangeness in geometry structure.
So in the early literature, when people spoke of “strange attractor”, some-
times they spoke of the strangeness in geometry, sometimes they referred to
the chaotic behaviour of the attractor, and sometimes both. As the study
of this phenomenon was proceeded further, people realized that a chaotic
attractor may not be strange or fractal in its geometry form. There is a
simple example of a chaotic attractor which is a nicely smooth manifold
(see [58, Appendix 3]). On the other hand, a strange attractor needs not be
chaotic either. The earliest literature we found about this is the works of
V.M. Millionščikov [56, 57] and R. E. Vinograd [76], in which there are some
constructions of continuous flows containing such attractors. The term of
Strange Nonchaotic Attractor(SNA for short) was introduced and coined by
Grebogi, Ott, Pelikan and Yorke in 1984. In their paper [29], they gave out
models of two and three dimensional systems, and proved both numerically
and theoretically that the attractors are nonchaotic with geometry structure
of nowhere differentiability. So far, the Strange Nonchaotic Attractors are
reported to typically appear in the quasi-periodically forced skew product
systems. In the remaining of this memoir, we will focus our study on this
particular class of dynamical systems, so we give an special introduction
of the SNAs and quasi-periodically forced systems with the third section.
Before we this, we need some knowledges on ergodic theory and Lyapunov
exponent.

2.2 Ergodic theory and Lyapunov exponents

When one investigates a complicated system, a more global point of view
is usually very helpful. Ergodic theory provides the measure-theoretic ap-
proach to reveal the statistical properties of the systems, which is very nec-
essary for the understanding of general behaviour of those complicated sys-
tems. We summarize the basic materials on it first in the second subsection.
One of the important application of ergodic theory is that, it can be used
to simplify the calculation of Lyapunov exponents. Lyapunov exponent is
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another important notion in the study of dynamical system, which is often
used to indicate the degree of chaoticity. We discuss it at the last of this
section. All these materials are quite standard, so we just present them
briefly.

At the beginning of the study of dynamical systems, people tried to use
strictly analytical tools to find the precise solutions, so that they can get
the information of the orbits of the points in the system. But such methods
can only be used to study particular solutions, and often work only locally.
Whereas a more global picture of the system is often needed, particularly,
for the study of long-term asymptotic behaviour and of its qualitative as-
pects. It is in the late nineteenth century, Henri Jules Poincaré introduced
geometrical and topological methods into the study of dynamical systems
(see [63]), which began the history of the modern theory of dynamical sys-
tems. The geometrical and topological approaches do not rely on explicit
calculation of solutions, they are the tools to make the system visualized.
The attractor in the preceding section is just a notion from this point of
view.

In addition to the qualitative study of a dynamical system, the measure-
theoretic approaches are also very utilized to overcome the difficulties that
arise in using strict analysis, especially for those very complicated systems.
People have some complicated systems could even behave with some prob-
abilistic characters. Around 1900, Gibbs suggested looking at what hap-
pens to subsets of state space, for instance, the probability that a subset
is in another subset of the space at a given time t, and the average time
that the subset spends inside of the other one, so one can discover statis-
tical properties of dynamical systems. Such questions motivate the type of
study undertaken in ergodic theory. In general, ergodic theory is the study
of transformations and flows from the viewpoint of recurrence properties,
mixing properties, and other global dynamical properties connected with
asymptotic behaviour. In this section, we introduce some essential notions
of ergodic theory. All the materials here in this section are very standard in
ergodic theory, and come from the textbooks of Walters [77] or Mañe [53].

We start with some basic definitions of measure theory.

Definition 2.2.1. LetX be a set, a σ-algebra B overX is a nonempty collec-
tion of subsets of X, which is closed under complementation and countable
unions of its members. That is, the following properties hold:

(1) If B ∈ B, X rB ∈ B.

(2) If Bn is a sequence of elements of B, then
⋃
Bi∈N ∈ B.

From the definition, it follows that X and the empty set are in B, and
that the σ-algebra is also closed under countable intersections. Moreover,
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the intersection of σ-algebras is also a σ-algebra. One can also see that,
for any collection of subsets of X, there is always a σ-algebra containing it,
namely, the power set of X. Thus, if S is a collection of subsets of X, by
taking the intersection of all σ-algebras containing S, we obtain the smallest
such σ-algebra, which is called the σ-algebra generated by S.

The main use of σ-algebras is in the definition of measures on X. We
give this definition as below.

Definition 2.2.2. If B is a collection of subsets of X which forms a σ-
algebra, then the pair (X,B) is called a measurable space. A measure on
the measurable space (X,B) is a set function µ : B → R+ satisfying the
following conditions:

(1) µ(∅) = 0,

(2) if B1, B2, . . . , Bm, . . . is a countable collection of pairwise disjoint ele-
ments of B, µ(

⋃∞
i=1Bi) = Σ∞i=1µ(Bi).

The triple (X,B, µ) is then called a measure space.

In addition, if µ(X) = 1, then we say that µ is a probability measure.
Most of the times, we work with probability measures on finite dimensional
topological spaces equipped with a Borel σ-algebra, that is, the σ-algebra
generated by the topology.

Definition 2.2.3. Let (X1,B1) and (X2,B2) be two measurable spaces. A
transformation T : (X1,B1) −→ (X2,B2) is a measurable transformation if
T−1(B) ∈ B1 whenever B ∈ B2. We denote it briefly by T : X1 −→ X2 as
long as the σ-algebras are clear for us.

Moreover, a measurable transformation T : (X1,B1, µ1) −→ (X2,B2, µ2)
is measure-preserving or invariant if µ1(T

−1(B)) = µ2(B) for every B ∈ B2.

In the study of dynamical systems and ergodic theory, we are mainly
interested in self-transformations of probability measure spaces. That is,
(X2,B2, µ2) = (X1,B1, µ1). According to this situation, we have the follow-
ing definition.

Definition 2.2.4. A measure µ is called T -invariant for a transformation
T : (X,B, µ) −→ (X,B, µ) if µ(T−1(B)) = µ(B) whenever B ∈ B.

The set of all invariant probability measures onX is denoted byMinv(T ),
or Minv briefly. The Krylov-Bogolubov Theorem guarantees that there al-
ways exists an invariant measure for a compact topological space with a
continuous map on it, so Minv is non-empty. Moreover, the set Minv is
convex and compact with the weak* topology.

It may be difficult to check directly from the definition whether a measure
is invariant or not, since we usually do not have explicit knowledge of all
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members of B. The following proposition is a useful tool to help us to
simplify this work.

Proposition 2.2.1 (Characterization of invariant measures). A mea-
sure µ ∈Minv(T ) if and only if

∫
M g◦Tdµ =

∫
M gdµ for all g ∈ L1(X,B, µ).

In a dynamical system, we usually have a space X with some structure on
it, and a transformation T of X which preserves this structure, for instance,
a topological space and a continuous map on it. To apply the measure
theoretic methods to the study of such system, we need an invariant measure
for the transformation T which acts “nicely” with respect to the structure
on X. Ergodic measure is just such a concept.

Definition 2.2.5. An invariant probability measure µ ∈ Minv is called
ergodic if whenever T−1B = B for some B ∈ B, then either µ(B) = 0 or
µ(B) = 1. We denote the set of ergodic measures by Merg = {µ ∈ Minv :
µ is ergodic}.

Remark 2.2.1. Ergodicity is a concept of irreducibility for the given system
from the measure theory point of view. Since, if T−1(B) = B for some
B ∈ B, then T−1(X\B) = X\B, and we can study the action of T on B
and X\B separately. If 0 < µ(B) < 1, this would simplify the study of the
given system into two proper separated parts. We can see that this cannot
happen to a system with ergodic measure. �

We have known that the Krylov-Bogolubov Theorem guarantees that
Minv is nonempty for a continuous map on a compact topological space,
while the ergodic measures are precisely those extremal points of Minv, so
Merg is also non-empty (refer to [77, 64] for details). Moreover, this fact
makes the following definition allowable.

Definition 2.2.6. If a transformation T has a unique invariant measure,
then this measure must be ergodic. Such a transformation T is called
uniquely ergodic.

A classic example of this is the irrational rotation on S1 with the Haar-
Lebesgue measure.

Analogous to Proposition 2.2.1, ergodicity can be characterized in terms
of properties of functions too. We are going to see that this characterization
is very useful in application of ergodic theorem.

Proposition 2.2.2 (Characterization of ergodic measures). The fol-
lowing conditions are equivalent:

(1) µ is T -ergodic;
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(2) If a measurable function f is T -invariant, that is, f ◦ T = f , then f
is constant almost everywhere;

(3) If a measurable function f is T -invariant almost everywhere, then f
is constant almost everywhere.

The best known and major result in ergodic theory is the Birkhoff Er-
godic Theorem proved by Birkhoff in 1931.

Theorem 2.2.3 (Birkhoff Ergodic Theorem). Let T : X → X be a
transformation on a measurable space (X,B), and m ∈ Minv(T ). For any
f ∈ L1(X,B,m), there is an integrable function f∗ such that

1

n

n−1∑
i=0

f(T ix) −→ f∗(x), as n→ +∞,

for almost all points x ∈ X (with respect to m). Moreover, f∗ is T -invariant,
and if m(X) <∞, ∫

X
f∗dm =

∫
X
fdm.

Remark 2.2.2. By Proposition 2.2.2, if the invariant measure m is also
ergodic, then f∗ must be constant m-almost everywhere. So if m(X) <
∞, then f∗ = 1

m(X)

∫
X fdm m-almost everywhere. Consequently, if m is

ergodic, the “temporal averages” of f ,

1

n

n−1∑
i=0

f(T ix)

and the “spatial averages”

1

m(X)

∫
X
fdm

coincide. �

Another important ergodic theorem is the so-called Subadditive Ergodic
Theorem. It is not only utilized in the proofs of a number significant ergodic
theorems, but also very pregnant in many applications.

Theorem 2.2.4 (Subadditive Ergodic Theorem). Let T : X → X be a
transformation on a measurable space (X,B), and m ∈ Minv(T ). If {ϕn}
is a sequence of integrable functions satisfying

ϕn+m(x) ≤ ϕn(x) + ϕm(Tnx),

then for m-almost every x,

lim
n→∞

1

n
ϕn(x) = ϕ(x),

where the function ϕ is T -invariant and integrable. Moreover, if m is er-
godic, ϕ is constant m-almost everywhere.
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A notion which is closely related with ergodic theorems is the Lyapunov
(characteristic) exponent. The definition of Lyapunov exponents goes back
to the dissertation of Lyapunov in 1892 (see [67]). It gives the averaged
rate of exponential divergence (or convergence, according as it is positive or
negative) from perturbed initial conditions. Nowadays, it is commonly used
as the measure of the degree of chaoticity of a system. The precise definition
is as follows:

Definition 2.2.7. Let f : M →M be a differentiable map on a manifold of
dimension k. For each (x, v) ∈ M × TxM the Lyapunov exponent of (x, v)
is defined as

λ(x, v) := lim
n→∞

1

n
log ‖Dxf

nv‖,

where ‖ · ‖ is a norm on the tangent space induced by a Riemannian metric
on M .

Note that the above definition of Lyapunov exponent measures the expo-
nential divergence rate of nearby trajectories in the v-direction. In general,
the rates of separation can be different for different orientations of initial sep-
aration vectors. Hence, there is a whole spectrum of Lyapunov exponents,
the number of them is equal to the number of dimensions of the phase space.
This fact is just what the famous Oseledets’ Multiplicative Ergodic Theo-
rem shows. This theorem is a very important theorem on the existence and
properties of Lyapunov exponents, which is given by Oseledets in 1968 [61].
One can also refer to [69] for this theorem.

Theorem 2.2.5 (Oseledets’ Multiplicative Ergodic Theorem). Let
(M,B) be a measurable space, where M is k-dimensional, f : M −→ M a
measurable transformation and µ an f -invariant probability measure. Then
for µ-almost every x ∈M there exists s(x) ≤ n and numbers

−∞ ≤ λ1(x) ≤ . . . ≤ λs(x)(x)

with a sequence of subspaces

{0} = V0(x)  V1(x)  . . .  Vs(x)(x) = TxM

such that

(1) limn→∞
1
n log ‖Dxf

nv‖ = λi(x) for every v ∈ Vi(x)\Vi−1(x);

(2) DxfVi(x) = Vi(f(x));

(3) λi(x), s(x) and Vi(x) are µ-measurable;
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(4) if we denote Ei(x) = Vi(x)\Vi−1(x) and ki(x) = dimEi(x) for every
i = 1, . . . , s(x), then

lim
n→∞

1

n
log |detDxf

k| =
s(x)∑
i=0

ki(x)λi(x)

and

TxM = E1(x)⊕ . . .⊕ Es(x)(x).

Moreover, if the measure µ is f -ergodic, then λi(x), s(x) and Vi(x) do
not depend on x.

Remark 2.2.3. We should point out that it is useful to use an axiomatic
definition of Lyapunov exponents for the study their properties and the proof
of this theorem. For this concept, see [6]. �

It is common to just refer to the largest one of these exponents, i.e. to
the Maximal Lyapunov exponent, because it determines the predictability of
a dynamical system. The maximal Lyapunov exponent at a point x ∈M is
normally given by

λmax(x) := lim sup
n→∞

1

n
log ‖Dxf

n‖,

where ‖ · ‖ is a matrix norm compatible with the vector norm defined in the
tangent space induced by the Riemannian metric on M . A positive maximal
Lyapunov exponent is usually taken as an indication that the system is
chaotic.

2.3 Quasi-periodically forced skew products and
SNAs

This section is devoted an exclusive introduction of the quasi-periodically
forced skew product systems. Found SNAs are usually pinched closed invari-
ant sets in such systems, so we introduce some of their essential ingredients
in the first subsection. Next we turn to the SNAs issues. A precise definition
of SNAs and arguments involved are given in the second subsection, this will
help us to clarify unnecessary confusion on this notion. The third subsec-
tion contains two concrete examples of SNAs by Grebogi, Ott, Pelikan and
Yorke [29] and Keller [44]. In the last subsection, it covers two noticeable
papers on the strangeness problem. They are on the regularity of invari-
ant graphs by Stark [74], and the works on the fractalization mechanism by
Jorba and Tatjer [41].
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2.3.1 Quasi-periodically forced skew products

The essence of a forced systems is to have two or more equations which are
coupled together in some way. This type of coupling is known as a skew
product. It is written in the form{

xn+1 = f(xn),
yn+1 = g(xn, yn),

(2.3)

where xn ∈ X represents the state of the forcing (driving) system, and
yn ∈ Y represents the state of the forced (driven) system, influenced by the
dynamics of the forcing system. Another way of denoting system (2.3) is by
a map F : X × Y −→ X × Y , with

F (x, y) = (f(x), g(x, y)). (2.4)

The space Y is called the fibre of the skew product, and the space X is
called the base. f is a map of X which makes (X, f) a dynamical system
in its own way, its dynamical behaviour influence the combined dynamics
of x and y given by the skew product (2.3). The case that (X, f) induces
a periodic influence on the skew product has been extensively studied for
a long time. On the contrary, when this influence is quasi-periodic — a
quasi-periodically forced system — it is in general much more poorly under-
stood yet. Such kind of systems received more and more attention in the
last three decades, because of its close relation with the occurrence of SNAs.

In this memoir, we focus only on quasi-periodically forced one-dimensional
skew products. Precisely, all the bases of such systems are given by a sim-
ple one-dimensional quasi-periodically system, an irrational rotation in S1.
For those fibres of the skew product, they are also taken as one-dimensional
space X (usually R). Hence the state space of the whole system is a cylinder
S1 × R if X = R, and a system is of the form{

θn+1 = θn + ω (mod 1),
xn+1 = f(θn, xn),

(2.5)

where θ ∈ S1, ω is a fixed irrational real number and X represents the forced
space. Physically, this class of dynamical systems models physical systems
subject to external quasi-periodic perturbations of frequency ω.

In such a quasi-periodically forced dynamical system, due to the irra-
tional rotation of the forcing system, there cannot be any fixed or periodic
points. The simplest invariant closed subset, and hence the attractor, can
only be the graph of a map from the base S1 to the fibre X, that is, the graph
of a map ϕ : S1 −→ X. So it can be denoted by A = {(θ, ϕ(θ) : θ ∈ S1}.
Moreover, this graph A must be invariant under the action of system (2.5),
that is, ϕ(θ + ω (mod 1)) = f(θ, ϕ(θ)) for any θ ∈ S1. For the existence of
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such a graph as an attractor, a simple condition can be obtained from the
Hirsch-Pugh-Shub stability theory [38, 39] (see also [67]). We may also call
it an invariant curve when we focus on its geometric structure.

With respect to the ergodicity of the skew product dynamical system (2.3),
it can be shown that the invariant and ergodic measures of the whole system
are related with the ones for the system defined on the base space. This is
given by the next proposition, the reader can see [10] for its proof.

Proposition 2.3.1. In a skew product dynamical system F : X × Y −→
X×Y given by F (x, y) = (f(x), g(x, y)), if m is F -invariant, then m◦π−1 ∈
Minv(f), where π : X×Y −→ X is the projection over the first component.
Furthermore, if m is F -ergodic then m ◦ π−1 is f -ergodic.

Remark 2.3.1. In most of the literature of the study of quasi-periodically
forced dynamical systems (2.5), people use the notion of the horizontal and
vertical Lyapunov exponents, which correspond the two component direc-
tions, that is, the θ and the x directions respectively. They claim that the
horizontal one is zero a.e. for any invariant measure due to the constant
rotation on S1. While for every point z = (θ, x) ∈ M , the vertical one,
λV (z) = λ(z, (0, 1)t), is given by

λV (z) = lim
n→∞

1

n
log

∣∣∣∣∂xn∂x
∣∣∣∣ .

Many authors believe that they are indeed the Lyapunov exponents of such
systems, but it may not be the case. In fact, it is not an easy problem like
it looks, and we should be careful on this assertion. For a discussion of the
problem on Lyapunov exponents, see [1] and references therein. �

2.3.2 A definition of Strange Nonchaotic Attractor

The existence of Strange Nonchaotic Attractors interested mathematicians
and physicists working on dynamical systems greatly. Following the work of
Grebogi et al., there have been lots of papers related with SNAs. In those
papers, some authors try to report the existence of SNAs in some models by
numerical experiments or by theoretical proof (see [19, 7, 26]), some try to
explain the mechanisms of the creation of SNAs (see, for instance, [25, 35,
42, 45, 46, 60]). But this problem is still far from being solved now. Most
of the reports of the existence of SNAs are only based on rough numerical
experiments and are proved to be smooth curves by further research recently.
Moreover, since there is no a common precisely formulated definition of an
SNA, even the question of what an SNA is is still a problem. The authors
use their own intuitive idea on what an SNA is. To clarify this notion, we
first give a brief introduction of the definition of SNAs in this subsection.
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Here we adopt the definition given by Sara Costa in her master the-
sis [10](see also [1]). This definition is the most common one in the literature,
but is not the only one. There are several other definitions known in the
literature, for instance, using Hausdorff dimension to define the strangeness
in [11, 66]. For the details and the relation of these definitions, we refer the
reader to Sara’s thesis, in which she investigated this problem comprehen-
sively and made an integrated survey about it.

Definition of nonchaoticity: Let A be an attractor and %(A) be its
realm of attraction. The attractor A is said to be nonchaotic if the set
of points in the realm of attraction whose maximal Lyapunov exponent is
positive, that is, {

x ∈ %(A) : lim sup
n→∞

1

n
log ‖ Dxf

n ‖> 0

}
has zero Lebesgue measure.

Remark 2.3.2. The reason that we use such a condition is to guarantee the
nonchaoticity is Lebesgue observable. Notice that we use lim sup to compute
the maximal Lyapunov exponent, it must exist for every point x ∈ X. Then
the observability of the nonchaoticity is guaranteed by the fact that %(A)
has positive Lebesgue measure from the definition of the attractor. �

Definition of Strangeness: For a quasi-periodically forced system of the
form (2.5), an attractor, which is given by the invariant graph of a map ϕ
from the forcing space to the forced space, is called to be strange if it is
neither finite nor piecewise differentiable.

2.3.3 Examples of Strange Nonchaotic Attractors

To date, the model given by Grebogi et al. is still the most classic one, and
the works on the rigorous proofs of the existence of SNA are still very few.
The best results that we known on the proof of such problem is given by
Keller [44] and Bezhaeva and Oseledets [7] separately, based on a generalized
model of Grebogi et al.. In this subsection, we have a brief look at the model
of Grebogi et al. and Keller to make the abstract notion more clear.

Example 2.3.3 (Grebogi et al.). Consider the dynamical system{
θn+1 = θn + ω (mod 1),
xn+1 = f(θn, xn) = 2σ cos(2πθ) tanh(x)

(2.6)

where ω ∈ R r Q. The authors take ω =
√
5−1
2 , the golden mean, for

numerical computations. �
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There are two Lyapunov exponents in this system. The authors claim
that the horizontal one (according to the θ direction) is always zero, and the
vertical one (according to the x direction) is

h = lim
n→∞

1

n

n−1∑
k=0

log

∣∣∣∣ ∂∂xf(θk, xk)

∣∣∣∣ .
Obviously, the θ-axis, i.e., x = 0 is invariant under the map of sys-

tem (2.6). Whether it is an attractor or not is determined by its stability.
Note that two orbits on x = 0 maintain a constant separation, thus if h > 0
for the x = 0 orbits, the nearby points can only diverge from the θ-axis, so
it is unstable and cannot be an attractor.

To calculate h for the x = 0 orbit, applying the Birkhoff Ergodic Theo-
rem for m-a.e. θ and x = 0, the authors obtain that the vertical Lyapunov
exponent is

λV (θ, 0) =

∫
S1

log

∣∣∣∣ ∂∂xf(θ, 0)

∣∣∣∣ dθ = log |σ|.

Consider for the parameter |σ| > 1, x = 0 is not an attractor. On the
other hand, since |xn| ≤ 2|σ| < ∞ for every n ∈ N, there must exist an
attractor because the orbit of any point is in this compact subset of the
state space. Moreover, the measure on the attractor generated by an orbit
is uniform in θ, because of the ergodicity in θ. The authors note that in this
system, for any point p = (1/4, x) or p = (3/4, x), there must be f(p) = 0.
So the attractor must contain the points (1/4+ω, 0) and (3/4+ω (mod 1), 0)
and must not contain any other point in θ = 1/4+ω and θ = 3/4+ω (mod 1).
Consequently, every (1/4 + kω (mod 1), 0), (3/4 + kω (mod 1), 0) for k ∈ N
belong to the attractor. Hence there is a subset of points which is dense
both in the attractor and in x = 0, which is not an attractor itself.

The authors draw the picture of the attractor for σ = 1.5 (see Figure 2.1)
and calculate the vertical Lyapunov exponent by numerical method. It
is seen from the picture of the attractor that there are points off x = 0
as expected, and the vertical Lyapunov exponentis h ≈ −1.059. So the
attractor is an example of Strange Nonchaotic Attractor.

To verify that h must be negative so that the attractor is indeed non-
chaotic, the authors consider the points that x 6= 0. Note that the function
tanh is increasing in R, concave in (0,∞) and convex in (−∞, 0), so

0 ≤ d

dx
tanhx ≤ tanhx

x
,

for every x 6= 0. That is, ∣∣∣∣ ∂∂xf(θ, x)

∣∣∣∣ ≤ ∣∣∣∣f(θ, x)

x

∣∣∣∣
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Figure 2.1: SNA of the model of Grebogi et al..

for all θ ∈ S1 and every x 6= 0. In particular,∣∣∣∣ ∂∂xf(θn, xn)

∣∣∣∣ ≤ ∣∣∣∣f(θn, xn)

xn

∣∣∣∣ =

∣∣∣∣xn+1

xn

∣∣∣∣ .
From this inequality, the authors obtain

λV (θ, x) = lim
n→∞

1

n

n−1∑
k=0

log

∣∣∣∣ ∂∂xf(θk, xk)

∣∣∣∣
≤ lim

n→∞

1

n

n−1∑
k=0

log

∣∣∣∣xk+1

xk

∣∣∣∣
= lim

n→∞

1

n
(log |xn| − log |x0|)

≤ lim
n→∞

1

n
log 2|σ| = 0

for every θ ∈ S1 and x 6= 0. So the vertical Lyapunov exponent λV (θ, x) is
nonpositive for every x 6= 0 and m-a.e. θ ∈ S1. Since in the attractor, those
points who are on x = 0 form only a zero measure subset, this assertion of
SNA is valid.

Example 2.3.4 (Keller). Later in 1996, Keller gave out an elegant ana-
lytical proof for the existence of SNA in a generalized model. The model
that he considered is {

θn+1 = θn + ω (mod 1),
xn+1 = f(xn)g(θn)

(2.7)
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where ω ∈ R\Q as before; f : [0,∞) −→ [0,∞) is C1, bounded, increasing
and strictly concave, moreover f(0) = 0; and g : S1 −→ [0,∞) is continuous.
Thus it corresponds to the model of Grebogi et al. by changing the quasi-
periodically forced map defined on S1 × [0,∞) and replacing cos(2πθ) by
| cos(2πθ)|. �

Keller shows the existence of an SNA by studying the properties of the
invariant graph of the given model (2.7). He successfully constructs a de-
creasing sequence of continuous functions and proves that the attractor of
this model is the graph of a map ψ : S1 −→ [0,∞) to which that sequence
of functions converges. His complete theorem is as follows:

Theorem 2.3.2 (Keller). Let us consider the two-dimensional discrete
dynamical system T : S1 × [0,∞) −→ S1 × [0,∞) given by

T (θ, x) = (θ + ω, f(x) · g(θ))

where ω ∈ R\Q; f : [0,∞) −→ [0,∞), bounded, increasing, strictly concave
and f(0) = 0; and g : S1 −→ [0,∞) is continuous. Then there is an upper
semi-continuous function ϕ : S1 −→ [0,∞) with an invariant graph such
that:

(1) limn→∞(1/n)
∑n−1

k=0 |xk − ϕ(θk)| = 0 for m-a.e. θ ∈ S1 and all x > 0,
where m is the Lebesgue measure on S1. In particular, the Lebesgue
measure on S1 “lifted” to the graph of ϕ is a SRB (Sinai-Ruelle-
Bowen) measure for T , i.e.,

lim
n→∞

1

n

n−1∑
k=0

ν(T k(θ, x)) =

∫
S1
ν(θ, ϕ(θ))dθ

for all ν ∈ C(S1 × [0,∞)) and for a.e. (θ, x) ∈ S1 × [0,∞).

Define

λϕ =

∫
S1

log g(θ)dθ +

∫
S1

log f ′(ϕ(θ))dθ,

and consider the parameter

σ := f ′(0) exp

(∫
S1

log g(θ)dθ

)
.

(2) If σ ≤ 1, then ϕ ≡ 0 and λ(θ, x) = λϕ = log σ for m-a.e. θ ∈ S1 and
each x ≥ 0.

(3) If σ > 1, then λ(θ, x) = λϕ < 0 for m-a.e. θ ∈ S1 and all x > 0. The
set {θ : ϕ(θ) > 0} has full Lebesgue measure. Furthermore,
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(3.1) if g(θ̂) = 0 for at least one θ̂ ∈ S1, then the set {θ : ϕ(θ) > 0} is
at the same time meagre and ϕ is m-a.e. discontinuous.

(3.2) if g(θ) > 0 for all θ ∈ S1, then ϕ(θ) > 0 for all θ ∈ S1. In this
case, ϕ is continuous, and if g is C1, then so is ϕ.

(4) If σ 6= 1, then |xn − ϕ(θn)| → 0 exponentially fast for m-a.e. θ ∈ S1
and each x > 0.

The idea of the proof is the following: taking a horizontal line which
is higher than the upper bound of f · g and iterating it, the monotonicity
of the model ensures that there exists a limit of this decreasing sequence of
continuous graphs, which is an upper semicontinuous graph. The uniqueness
of this semicontinuous graph and its attraction for all upper points are the
consequence of the concavity of f . This semicontinuous graph, when x = 0
is attracting with the nonpositive vertical Lyapunov exponent, is just the
invariant graph x = 0. Otherwise, it must be x > 0 almost everywhere.

The interesting case is in (3.1). The upper semi-continuous function ϕ
in the theorem is m-a.e. discontinuous, while the closure of the graph of ϕ
contains the circle {(θ, x) : x = 0}, and it is the ω-set of m-a.e. points in the
state space, so it is a strange attractor. Moreover, the vertical Lyapunov
exponent of the points in this graph is λϕ < 0, this shows that the closure
of this graph is an SNA.

2.3.4 Regularity, fractalization and strangeness

In this subsection we summarize related results on the strangeness of invari-
ant curves in quasi-periodically forced systems, which are from two papers
by Stark [74] and Jorba and Tatjer [41]. The works of Stark give some
sufficient conditions on the smoothness of invariant curves in skew product
systems according the Lyapunov exponents. Jorba and Tatjer point out
that, even a smooth invariant curve may get extremely wrinkled during the
process that it goes close to the critical value 0 of its Lyapunov exponent.
This process is called as fractalization, it reveals the difficulties on judging
the strangeness of the curve in such situation. At last, we mention the most
reliable and easy ways on deciding the continuity of an invariant curve.

There have been a lot of studies of these objects for several kinds of quasi-
periodically forced dynamical systems (see, for instance, [16, 17, 18, 35, 42,
46, 68] and references therein). In these papers, the authors tried to report
the existence of SNAs and to characterize them through several kinds of
properties of topological, spectral and dimensional nature as well as other
ones. However, until now, rigorous mathematical results are still scarce.
Statements on the existence of an SNA in some papers are just based on
very rough numerical evidences, and turned to be wrong in later research.
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For this reason, it is necessary and helpful to obtain a better understanding
on the properties of the attractors in the quasi-periodically forced skew
product systems first. Here we only mention the results related close to our
subsequent investigations, and omit all the details on the proofs. Both the
papers are elaborate and technological, which cover more results we present
here. The interested reader can refer to them directly.

Regularity of invariant curves In [74] Stark study the regularity of
invariant curves in general skew product systems. Particularly for quasi-
periodically forced one-dimensional systems, he proves (more than) that a
continuous invariant graph with a negative vertical Lyapunov exponent is
as smooth as the fibre function of the system. This is the theorem below.

In a quasi-periodically forced dynamical system of the form{
θn+1 = θn + ω (mod 1),
xn+1 = f(θn, xn),

(2.8)

with θ ∈ S1, ω is irrational, and x ∈ X. We have,

Theorem 2.3.3 (Stark). Suppose that Φ is a continuous invariant graph
of (2.8) such that its largest Lyapunov exponent in the x direction is negative,
then Φ is as smooth as f . In particular, if X is one-dimensional and Φ is
a continuous invariant graph with a negative Lyapunov exponent in the x
direction, then Φ is as smooth as f .

Fractalization of continuous curves Now we know that the negative
vertical Lyapunov exponent can guarantee the continuity of a curve. How-
ever, a smooth curve may also be a highly oscillating one. If the oscilla-
tion degree is extremely high, then it may be very difficult to detect its
smoothness by only the numerical methods. Jorba and Tatjer prove that
this fractalization mechanism does exist on some so-called nonreducible at-
tracting invariant graphs for some quasi-periodically forced one-dimensional
systems. Notice that fractalization is usually regard as one of the process
which results in SNAs in physical contexts.

Precisely, in some quasi-periodically forced one-dimensional system, there
is a continuous change of the attracting invariant curve, which makes them
more and more wrinkled as the the system parameter varies. When this
happens, the attracting invariant graph may look strange with only usual
numerical methods. But in reality, it can continue being smooth as long as
its vertical Lyapunov exponent is negative. This procedure of fractalization
is described mathematically as below.



2.3. QUASI-PERIODICALLY FORCED SKEW PRODUCTS AND SNAS 27

Consider a family of one-dimensional quasi-periodically forced dynamical
systems Fµ of the form{

θn+1 = θn + ω (mod 1),
xn+1 = fµ(θn, xn),

(2.9)

with x ∈ R, θ ∈ S1, ω an irrational number, and fµ a smooth function of
both x and θ. Here µ ∈ R is a parameter, on which fµ depends continuously.
Moreover, the function f0 does not depend on θ, that is, f0(θ, x) = g(x) for
some smooth function g : R→ R.

For a given value of µ = µ0, assume that system (2.9) has an invariant
curve x = uµ0(θ) and the curve is of class Cr for some r ≥ 0. Without loss
of generality, it can be taken µ0 = 0. Then the invariant curve u0(θ) must
satisfy the functional equation F (u0, 0) = 0, where F : Cr(S1,R) × R →
Cr(S1,R) is given by

F (u, µ)(θ) = fµ(u(θ), θ)− u(θ + ω), (2.10)

for any (u, µ) ∈ Cr(S1,R)× R. Next, use the Implicit Function Theorem to
study the continuation of this curve with respect to the parameter µ. That
is, look for a regular function µ 7→ uµ, which is defined for |µ| small enough,
such that F (uµ, µ) = 0.

On the Banach space Cr(S1,R) endowed with the standard Cr norm,
it is not difficult to see that such an F is differentiable, and the function
DuF (u, µ)v ∈ Cr(S1,R) is given by

[DuF (u, µ)v](θ) = Dxfµ(u(θ), θ)v(θ)− v(θ + ω) (2.11)

for any (u, µ) ∈ Cr(S1,R) × R, and any v ∈ Cr(S1,R). It is immediate to
verify that DuF (u, µ)v is a bounded operator.

Assume that an invariant curve x or u0(θ) is of class Cr, with r ≥ 0,
its linearized normal behaviour is described by the following linear skew
product system {

θn+1 = θn + ω,
xn+1 = a(θ)xn.

(2.12)

where a(θ) = Dxf0(u0(θ), θ) is of class Cr too, x ∈ R and θ ∈ S1. Moreover,
assume that the invariant curve is not degenerate, in the sense that the
function a(θ) is not identically zero. For the invariant curves, it will turn
out that there is important effect on their behaviours according to whether
the linear system (2.12) can be reduced to a form with a constant coefficient
or not. That is, whether the system verifies the property of reducibility.
The definition of reducibility is given by the following:
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Definition 2.3.1. The system (2.12) is called reducible if and only if there
exists a change of variable x = c(θ)y (which may be complex), continuous
with respect to θ, such that (2.12) becomes{

θn+1 = θn + ω,
xn+1 = bxn,

(2.13)

where b does not depend on θ.

Jorba and Tatjer proved that, under suitable conditions, the reducibility
of (2.12) is equivalent to the fact that a(θ) has no zeros. Then the fractal-
ization mechanism for nonreducible invariant curves is defined by:

Definition 2.3.2. A curve is undergoing a fractalization mechanism if its
C1 norm – taken on any closed nontrivial interval for θ – goes to infinity
much faster that its C0 norm, that is,

lim sup
α→α0

‖x′α‖I,∞
‖xα‖∞

= +∞,

where ‖ · ‖I,∞ denotes the sup norm on a nontrivial closed interval I.

In a family of the form{
θn+1 = θn + ω,
xn+1 = αa(θ)xn + b(θ),

(2.14)

where x ∈ R, θ ∈ S1, ω is an irrational number as usual, a(θ) and b(θ) are Cr
functions, and α is a real positive parameter. Clearly, the linearized normal
behaviour around it is described by{

θn+1 = θn + ω,
xn+1 = αa(θ)xn.

(2.15)

If an invariant curve of system (2.14) exists, its vertical Lyapunov expo-
nent over this curve is given by

Λ = lnα+

∫
S1

ln |a(θ)|dθ. (2.16)

If the above integral exists, then set

α0 = exp

(
−
∫
S1

ln |a(θ)|dθ
)
. (2.17)

For the values of α < α0, the vertical Lyapunov exponent is negative. Par-
ticularly, this implies that this invariant curve is globally attracting, hence
it must be unique. We also know that there is a continuous change of this
curve with respect to the parameter α when α < α0. Let xα(θ) denote the
solution of (2.14) for α < α0 and a given continuous function b(θ). The next
theorem describes the fractalization process of a nonreducible system.
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Theorem 2.3.4. Assume that a(θ), b(θ) ∈ C1(S1,R) and that (2.15) is not
reducible. Then,

(1) if
lim sup
α→α−0

‖xα‖∞ < +∞,

and b ∈ D1, where D1 is some residual set, we have

lim sup
α→α−0

‖x′α‖I,∞ = +∞,

for any nontrivial closed interval I ⊂ S1;

(2) if
lim sup
α→α−0

‖xα‖∞ = +∞,

then for any nontrivial closed interval I ⊂ S1, we have

lim sup
α→α−0

‖xα‖I,∞ = +∞, and lim sup
α→α−0

‖x′α‖I,∞
‖xα‖∞

= +∞.

Remark 2.3.5. If in Theorem 2.3.4 the system (2.15) is reducible, the
situation is different. In this case, if ω is Diophantine and a, b are Cr for r
large enough, then

(i) If lim sup
α→α−0

‖xα‖∞ < +∞, then lim sup
α→α−0

‖x′α‖∞ < +∞.

(ii) If lim sup
α→α−0

‖xα‖∞ = +∞, then lim sup
α→α−0

‖x′α‖∞
‖xα‖∞

< +∞.

�

Supplementary Finally we supplement two methods which can be used
to prove the continuity and strangeness respectively. They are simple, tra-
ditional, and easy to use, which we will use subsequently.

It is well-known that a continuous graph is both upper and lower semi-
continuous. Moreover, the limit of a decreasing sequence of continuous
graphs is upper semicontinuous, and the limit of an increasing sequence
of continuous graphs is lower semicontinuous. Hence, if a curve is proved to
be the limits of both a decreasing and an increasing sequences of continuous
graphs, it is proved that it is continuous.

For the strangeness, we known that, if two invariant graphs intersect in a
quasi-periodically forced system, they must intersect in a dense set of θ ∈ S1
by the irrational rotation on the base. This means that, when this happens,
at least one of them cannot be continuous. This is the most reliable way for
the proof of strangeness so far.





Chapter 3

Pinched invariant sets and
quasi-periodically forced
increasing systems

In this chapter we investigate the basic topological structure of pinched in-
variant subset in quasi-periodically forced systems, particularly the crucial
role of pinched orbits in those pinched systems. We also elaborate the dy-
namics of two concrete families as examples, which exhibit intuitively and
clearly the effects of the pinched orbits and the differences with the non-
pinched cases that they bring.

More precise, we first discuss some essential topological properties of
pinched invariant sets in quasi-periodically forced systems. A pinched in-
variant set is a forward invariant set that there is only one point in some
fibre. Such sets have special significance for the existence of strange attrac-
tors, since there can exist at most one continuous graph in a pinched set.
We notice that, if a continuous graph is contained in a pinched invariant
set, then this graph must be invariant and be the ω-limit set of all pinched
points.

Particularly, any compact invariant subset in a pinched system must be a
pinched set. By a pinched system we mean that, there is at least one fibre in
the system which is mapped into one single point, which is called a pinched
point of the system. We prove by Theorem A that, in such a system, the
unique ω-limit set of all pinched points is the only possible minimal subset
which is contained in any invariant set of the system. This fact implies
that its dynamics must take place around this ω-limit set of pinched points,
which is a distinctive feature of the pinched systems.

Next, We demonstrate exhaustively the overall dynamics of two families
of quasi-periodically forced systems. The differences between the pinched
and non-pinched cases of the same family show explicitly how the pinched
orbits affect dynamical behaviours. Concretely, both the families are given

31
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by maps F : S1 ×X → S1 ×X in form of

F (θ, x) = ( θ + ω mod(1), λf(x+ a) · g(θ) ).

Here the base map is an irrational rotation on the unit circle S1 by a fixed
angle ω. The real function f(x) is continuous on R, and is forced by a
continuous map g : S1 → R with g(θ) ≥ 0. Two real numbers λ > 0 and
a are used as parameters. For both of our two examples, we assume that
f is strictly increasing and satisfies f(0) = 0. The basic dynamics of the
forced system depends certainly first on the structures of corresponding one-
dimensional system given by f , whose detailed structures for the two specific
models are as follows.

Besides being monotone increasing, in the first family we require that f
is bounded, and that f(x) is α-concave for x ≥ 0 and β-convex for x ≤ 0.
The function f is α-concave if fα(x) = f(x)+αx2 is concave for some α > 0,
and is β-convex if fβ(x) = f(x)−βx2 is convex for some β > 0. As a family
of monotone interval maps λf(x + a) with such conditions, it has simple
and evident dynamics. If a = 0, then x = 0 is a fixed point for any λ > 0
which is unique when λ is small enough. With the increasing of λ, there
can appear two other fixed points respectively, each at one side of x = 0.
They are the results of the pitchfork bifurcations. For a fixed a 6= 0, it is a
typical example of saddle-node bifurcation with the increasing of λ. In such
system, there exists one attracting fixed point when the value of λ is small,
and two more fixed points occur simultaneously after that λ increases over
the critical value of bifurcation.

In the second family, f is assumed to be β-convex or α-concave on R.
The family λf(x + a) in this case is also a representative of saddle-node
bifurcation. Precisely, for any λ > 0, if f is convex(concave), there is some
aλ ≥ 0(aλ ≤ 0) which is the critical value of bifurcation, such that there are
two fixed points when a < aλ(a > aλ) and that there is no any fixed point
for a at the other side of aλ.

In the corresponding two quasi-periodically forced families, there exists
a common feature of their dynamics for both the non-pinched cases. Briefly
saying, the forced terms do not affect the qualitative behaviours. Generally,
the dynamics of any non-pinched forced system is essentially same with the
one-dimensional family of maps λf(x+ a), only the fixed points of unforced
interval maps are replaced by the corresponding invariant graphs. With the
parameters change in the same way above for the unforced interval systems,
there are the same types of bifurcations in non-pinched forced systems, which
occur in form of smooth invariant graphs.

However for their pinched cases, the dynamical behaviours depend not
only on the structures of f itself, but also on how the pinched conditions
act on it. We can see in the first model that, the pinched condition totally
destroys the saddle-node bifurcation in the non-pinched system, and there
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always exists just one invariant graph for any λ > 0 if a 6= 0. For the second
one, the situations are more diverse, which correspond to different cases of
the forcing function g and the value of parameter λ. There may exist no
bifurcation as the first family, or there may happen that the bifurcation
values are changed to aλ = 0 for a large set of λ. The detailed statements of
the general dynamics of these two families are given in Theorem B and C,
the main results of the last two sections respectively.

This chapter consists of four sections. In the first one we discuss proper-
ties of the pinched invariant sets and the pinched orbits in pinched systems.
The arguments display their most general and essential topological struc-
tures. The other three sections are devoted to the two quasi-periodically
forced monotone increasing systems. In the second section, we develop
some concepts and properties which are basic tools for the investigation
of general forced monotone increasing systems. After that, each of the two
specific models are treated in one of the last two sections respectively, where
we present a main theorem with elaborated proofs, which describes the com-
plete dynamics of the whole family with respect to its two parameters.

3.1 Pinched invariant sets and pinched systems

In this section, we give out two theorems on the topology of quasi-periodically
forced systems. The first is concerned with continuous graphs in pinched
invariant subsets of forced systems, which is the issue of the first subsection.
Theorem A in the second subsection is our first main result of this memoir
and is also the core theorem of this chapter, it exhibits the most essential
features particularly on the dynamics of pinched systems.

The reason for considering the continuous graphs in pinched invariant
sets is that, as we see in Keller’s model, there is a notable difference in ap-
pearance between the pinched and non-pinched cases. Namely, there may
exist an invariant graph in a pinched system which is not continuous and dis-
plays complicated geometric shape. However, we know from literature that,
not only in pinched systems, it is also possible that there exists a pinched
invariant subset in a non-pinched system, which admits strange invariant
graph too. In examples by Heagy and Hammel [35] and by Bjerklöv [8], they
show that two different invariant graphs intersect at a dense orbit of some
θ ∈ S1 in a non-pinched system, this results in a pinched invariant subset
with at least one strange graph, since there can exist at most one continuous
graph in such a set. Therefore we discuss first the most basic topological
structures of those pinched invariant sets in general quasi-periodically forced
systems. Our theorem shows that, if there exists a continuous graph inside
a pinched compact invariant set, this graph must be invariant and in fact
be the ω-limit set of all pinched points.
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The second theorem focuses on dynamics of pinched systems, which
demonstrates that: there may exist only one minimal invariant subset in
a pinched system, which is the unique ω-limit set of all those pinched orbits,
and is contained in any invariant compact subset of the systems. This the-
orem implies that all other points in such a system have to go around the
pinched orbits, which therefore are the key of dynamics of the whole pinched
systems. This role of pinched orbits is helpful to understand a remarkable
difference between the dynamics of pinched and non-pinched systems. That
is, the dynamical behaviours of non-pinched ones in version of invariant
graphs or subsets are basically close to the corresponding unforced maps;
but in pinched systems, some behaviours of unforced maps cannot be found
due to the action of pinched orbits. The dynamical phenomena behind this
abstract theorem are exhibited concretely by the two families that we inves-
tigate in the sequel of this chapter.

3.1.1 Continuous graphs in pinched invariant sets

In this subsection we first introduce briefly some necessary definitions and
then review some known results about pinched invariant sets. Next, after a
simple Lemma 3.1.2, we prove our theorem about the continuous graph in
a pinched invariant set.

The notions of the ω-limit set and the invariant set are standard. The
ω-limit set of a point p, denoted by ω(p), is the set of the limit points of
Orb(p), the orbit of point p. If a subset A of the system (3.1) satisfies
F (A) ⊆ A, then it is called an invariant subset.

Generally a map F : S1 ×X → S1 ×X:

F (θ, x) = (R(θ), G(θ, x) ) (3.1)

gives a quasi-periodically forced dynamical system. Here S1 = R/Z is the
unit circle, and X denotes some interval of R. The function R : S1 → S1
denotes an irrational rotation of the circle S1 by a fixed angle ω. Due to it,
there cannot be any fixed or periodic points in such systems. If an invariant
set is compact, then the projection of this set to S1 must be the whole circle.
The simplest invariant closed subset can only be the graph of a map from S1
to X. If we denote a map by Φ, its graph is the set A = {(θ,Φ(θ) : θ ∈ S1}.
To be invariant under the action of system (3.1), the graph need to satisfy
the invariant equation Φ(R(θ)) = G(θ,Φ(θ)) for any θ ∈ S1. We abuse the
notation and call Φ an invariant graph, or an invariant curve.

Let A ⊂ S1 ×X be a compact invariant set for F , the lower and upper
boundaries of A are respectively the functions A−, A+ : S1 → X given by

A−(θ) = inf{x ∈ X : (θ, x) ∈ A},

A+(θ) = sup{x ∈ X : (θ, x) ∈ A}.
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Since A is compact in S1 ×X, it is bounded and closed, so these functions
are well-defined, and (θ,A−(θ)) ∈ A, (θ,A+(θ)) ∈ A. The pinched compact
invariant subset is a compact F -invariant set A such that A ∩ {θ0 × X}
contains only one point for at least one θ0 ∈ S1, that is, A+(θ0) = A−(θ0)
for such θ0 ∈ S1. We call such points (θ0,A(θ0)) the pinched points, and
denote the set of all the pinched points by P (A). Due to the continuity of
F and the invariance of A, it is easy to see that P (A) is also an F -invariant
set.

There are already some known properties on the topological structures
of compact invariant sets in the literature (see [21] and reference therein),
which we summarize as the proposition below.

Proposition 3.1.1. Suppose A is a compact F -invariant set, its upper and
lower boundaries A+ and A− are upper and lower semicontinuous graphs
respectively. If it is pinched, then A+(θ) = A−(θ) for a residual set of
θ ∈ S1. Moreover, both A+ and A− are continuous at all these θ ∈ S1.

In fact, we can say a little more about the continuity of the pinched
compact invariant set, which is derived from the property below.

Lemma 3.1.2. Let p = (θ, x) be a point in the quasi-periodically forced
dynamical system (3.1). If its orbit Orb(p) ⊂ Ψ where Ψ is a continuous
graph, then Ψ is an invariant graph and Ψ = ω(p).

Proof. We only need to prove that Ψ = ω(p), because the F -invariance of
Ψ just follows the F -invariance of ω(p).

First we prove that Ψ ⊂ ω(p), that is, taking any point q = (θq,Ψ(θq)) ∈
Ψ, we have q ∈ ω(p). Denote Fn(p) by (θn, xn). Since the set {Fn(p)} ⊂ Ψ
by assumption, we have xn = Ψ(θn) for all n ≥ 0. Notice that F (θ, x) =
(R(θ), G(θ, x) ) with R an irrational rotation on S1, this implies that {θn} is
a dense set in S1. So we can choose a subsequence (θnj ) of (θn) such that its
limit is θq. Thus, (xnj = Ψ(θnj )) must converge to Ψ(θq) by the continuity
of Ψ. This shows q is a limit point of Orb(p), that is q ∈ ω(p).

Next we show that ω(p) ⊂ Ψ. As a continuous graph, Ψ is a closed
subset in S1 ×X. Thus Orb(p) ⊂ Ψ implies any limit point of Orb(p) must
also belong to this closed set Ψ.

Next we prove our theorem which show the property of continuous in-
variant graph in a pinched compact invariant set.

Theorem 3.1.3. Suppose A is a pinched compact F -invariant subset of
system (3.1), and let p = (θp, xp) ∈ P (A) be any pinched point. If there
exists a continuous graph Ψ ⊂ A, then Ψ must be invariant and Ψ = ω(p).

Proof. A is pinched means that A+(θp) = A−(θp) = xp for any p ∈ P (A).
Since Ψ ⊂ A, we have A+(θp) ≥ Ψ(θp) ≥ A−(θp) by the definition of A+
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and A−. Notice that A+(θp) = A−(θp) since p is a pinched point, so p ∈ Ψ
because xp = Ψ(θp). Thus we have proved that P (A) ⊂ Ψ. This implies
Orb(p) ⊂ Ψ since Orb(p) ⊂ P (A) for any pinched point p. Now the results
follow directly from Lemma 3.1.2 above.

Remark 3.1.4. This theorem demonstrates a mechanism for the creation
of geometric strangeness in pinched invariant sets. In fact, there are two
possibilities: one is that, if a pinched compact invariant set itself is not the
ω-limit set of the pinched points, then there must be some strange geometry
of this invariant set (at least one of its boundaries cannot be continuous,
like Keller’s model); the other one is more difficult to analyze and it is still
an open problem, which is the case that a pinched compact invariant set is
just the ω-limits set of the pinched points. In this case, either the pinched
set itself is just a continuous graph, or there exists no any continuous graph
inside it. One cannot ignore the possibility of the latter, although we have
not seen an explicit example of such strange set yet.

We summarize some useful results on this problem in the literature.
In [3], this ω-limits set of the pinched points is treated as a pseudo curve,
which must be a curve if it contains any piece of curve. Stark([73]) has
proved that, if the projection of the set of pinched points is with full measure
on S1, and the normal Lyapunov exponent of the unique invariant measure
supported on this pinched set is negative, then this pinched set must be a
smooth curve provided that F is a C1 map.

In general, it is still not known if all the ω-limit sets of the pinched points
are continuous curves or not. Particularly, even in the case that a curve is
smooth indeed, its shape may be extremely wrinkled by undergoing the
fractalization mechanism when its Lyapunov exponent approaches to zero.
There are some works which claim such curves are not continuous based
on their numerical looking, but are reported as mistakes (see, for example
[12, 27, 62]). A detailed theoretical discussion on fractalization mechanism
is given in [41], which we have summarized in the last section of the previous
chapter. Finally, some examples on the situation of the Lyapunov exponent
at critical value zero can be found in [37]. �

3.1.2 Orbits of pinched points in pinched systems

This subsection is focused on the dynamics of pinched systems. We prove by
Theorem A that, the unique ω-limit set of all the system pinched points is
the only minimal invariant subset in whole system, which must be a subset
for any compact invariant sets. This means that all the points have to come
back arbitrarily close to the pinched points, so all the interesting dynamics
can only happen around them. This distinctive feature exhibits the crucial
role of the pinched orbits in those pinched systems. We give a particular
example to display such feature at the end of this subsection, more detailed
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effects by these pinched points are exhibited by examples of the following
sections.

For the bifurcation mechanism which can produce a pinched invariant
set, those pinched systems are natural and important candidates. A dy-
namical system given by the map F : S1 ×X → S1 ×X in (3.1) is pinched
if there is at least one fibre who is mapped to a single point. That is, if there
exists some θ0 ∈ S1 such that G(θ0, x) = c is a constant for all x ∈ X. The
point (R(θ0), c), who is the image of a pinched fibre, is called a (system)
pinched point. We reserve the notation p for (system) pinched points in
the following of this chapter. Obviously, in a pinched system, the compact
invariant set must also be pinched, hence our arguments of the previous sub-
section are also valid here. Furthermore, such systems have more properties
of their own, which are given by the following lemmas and theorem.

First we show that, unless going to infinity, all the points have to come
back arbitrarily close to the pinched points.

Lemma 3.1.5. In a pinched system, p ∈ ω(x) for any point x who doesn’t
go to infinity.

Proof. Denote p by (θp, xp) and Fn(x) by (θn, xn). Because R is an irra-
tional rotation on S1, this implies that {θn} is a dense set in S1. Choose
a subsequence (θnj ) of (θn) such that the limit of (θnj ) is just R−1(θp) and
(xnj ) is bounded. If we cannot do it, this implies that (Fn(x)) goes to in-
finity. Otherwise, because F is continuous and maps the whole fibre over
R−1(θp) to p, it must be that p is the limit point of (Fnj+1(x)).

Corollary 3.1.6. It is easy to see that:

(1) if there is some system pinched point p who goes to infinity, then all
the points in the system also go to infinity;

(2) the ω-limit set for all the pinched points is unique.

Proof. The first claim is trivial from the above lemma, in such case the
ω-limit of any point is empty. Now we consider the case that the pinched
points do not go to infinity. If p1 and p2 are two different pinched points,
Lemma 3.1.5 gives both p1 ∈ ω(p2) and p2 ∈ ω(p1). By the property of the
ω-limit sets, if y ∈ ω(x), then ω(y) ⊂ ω(x) for any points x and y. Thus
ω(p1) ⊂ ω(p2) and ω(p2) ⊂ ω(p1), we have ω(p1) = ω(p2).

Therefore we can use ω(p) to denote the ω-limit set of any pinched point
in a pinched system, it doesn’t matter which one the point p is. Now, it is
almost trivial for us to get our theorem below.

Theorem A. In the pinched quasi-periodically forced systems, if ω(p) is
not empty, then it is the only minimal compact invariant set in the whole
system, and is a subset for any compact invariant set.



38 CHAPTER 3. PINCHED SETS AND FORCED INCREASING SYSTEMS

Figure 3.1: Period doubling bifurcation at x = 0, obtained with G(θ, x) =
2.2 |cos(2πθ)|x(x− 1) and ω equals the golden mean.

Proof. To see that ω(p) is minimal, we need to prove it is the ω-limit set
of all its points. Taken any x ∈ ω(p), the property of the ω-limit set gives
ω(x) ⊂ ω(p). We have also ω(p) ⊂ ω(x) because p ∈ ω(x) by Lemma 3.1.5.
Hence ω(x) = ω(p) as required.

Now let A be a compact invariant set, for any point x ∈ A, we have also
p ∈ ω(x) by Lemma 3.1.5. This means ω(p) ⊂ ω(x). On the other hand,
the ω-limit set of any point in a compact invariant set must be its subset,
which is ω(x) ⊂ A. So we have ω(p) ⊂ ω(x) ⊂ A. Notice that this works
for any x ∈ A, which implies ω(p) is unique.

Remark 3.1.7. Notice that, inside each pinched compact invariant set in
non-pinched systems, the ω-limit set of its pinched points is also its unique
minimal subset. Using arbitrary point x and pinched point of the pinched
set instead, the arguments above work the same for this case. That is, the
“set” pinched point must be in the ω-limit set of any points of this set, and
then the result follows. �

Theorem A is simple but instructive, it displays the special significance
of orbits of pinched points on the dynamics of pinched systems. Naturally we
can hope that, a forced system owns the similar dynamics with the unforced
interval map when the perturbation given by forced term is relative small.
This is really the case for the non-pinched systems, in which there can exist
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several disjoint compact invariant sets, each one corresponds to a different
fixed or periodic point of the unforced interval maps. But it is generally
not true for the pinched systems. Theorem A implies that any two compact
invariant sets cannot be disjoint, hence all interesting dynamics can only be
in a piece which is around the ω-limit set of the pinched points.

We will discuss some monotone interval families exhaustively in the fol-
lowing sections. They illustrate more clearly this special significance of the
pinched systems by pinched orbits and their difference with the non-pinched
ones. Before that, we present a simple example to show that, how the posi-
tion of the pinched orbits in a pinched system affects the general dynamical
behaviour of the system.

Example 3.1.8. Consider the system

F (θ, x) = ( θ + ω mod(1), 2.2 |cos(2πθ)|x(x− 1) ),

which is a pinched one whose attractor is plotted in Figure 3.1.
In [4], the authors study the pinched quasi-periodically forced unimodal

map

F (θ, x) = ( θ + ω mod(1), µx(1− x) · g(θ) ),

with g = 0 at some θ. They propose a question that, if there are some
periodic invariant graphs in such system, just like the unimodal maps which
can go into the period doubling cascade. Notice that x = 0 is invariant and
contains all the pinched points, hence the dynamics of this system happens
only around it. But x = 0 is not the place where the period doubling takes
place for the unimodal map µx(1 − x), that should be at the other fixed
point 1− 1/µ.

If we replace µx(1 − x) by µx(x − 1), then Figure 3.1 shows clearly
that the period doubling occurs. This is because that, for this new map
µx(x− 1), x = 0 is just the right place for the first period doubling. In fact,
it is equivalent to that there is a change of variable, so that the fixed point
1− 1/µ of the common logistic map µx(1− x) is move to x = 0 of this new
model µx(x− 1). �

3.2 Transfer operator and contraction due to con-
cavity or convexity

In this section we develop some general properties of the quasi-periodically
forced monotonically increasing systems. They are derived from the mono-
tonicity, and from the concavity and convexity respectively. These properties
provide the basic tools for the investigations of systems with such structures
on their fibre maps, not only for both the two models whose fibres are set as
R in the next two sections, but also for systems whose fibre maps are finite
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interval maps, or even for cases of being just locally with these structures
around some attractors as well.

Precisely, in the first subsection we discuss the notations of the forward
and backward transfer operators. They are very useful tools in the study
of quasi-periodically forced systems, obtained by considering the systems
from the function space point of view. Some properties of the monotone
increasing systems and their operators are given in the second subsection.
Finally, the third one is devoted to concepts of concavity and convexity,
where we introduce the concepts of α-concavity and β-convexity, and prove
some contraction results of the fibre maps with such structures.

3.2.1 Transfer operators

If we consider that, let the system in form of (3.1) act on functions from S1 to
R, we get a functional version of the system. Then an invariant function is a
fixed point in this functional version of system. For the skew products (3.1),
an invariant function is a function ϕ : S1 → R that satisfies the following
invariance equation

ϕ(R(θ)) = G(θ, ϕ(θ)).

Recall that we abuse terminology and refer an invariant graph ϕ to a graph
of an invariant function ϕ. Thus its graph is kept to be fixed under the
action of (3.1). An easy example is the function ϕ = 0 in Keller’s model.
This idea leads to the important tools for the study of invariant graphs,
which are the transfer operators defined as follows.

Let P be the space of all functions (not necessarily continuous) from
S1 to R, ψ ∈ P. The (forward) transfer operator T : P → P of the skew
product (3.1) is defined as:

(T ψ)(θ) = G(R−1(θ), ψ(R−1(θ))).

In this memoir, we only consider transfer operators for systems given by

F (θ, x) = ( θ + ω mod(1), λf(x+ a) · g(θ) ), (3.2)

here we have R(θ) = θ + ω (mod 1), and G(θ, x) = λf(x + a) · g(θ). In
the map G(θ, x), λ and a are used as real parameters. We assume that
g : S1 → R is continuous and g(θ) ≥ 0. The real function f(x) is strictly
increasing, which satisfies f(0) = 0.

Then the transfer operator of system (3.2) is given by

(T ψ)(θ) = λf(ψ(θ − ω) + a) · g(θ − ω). (3.3)

From now on, we save the notation T for operators given by (3.3) above,
and call them just as transfer operators for short. Notice that, the graph of
T ψ is the image of the graph of ψ under F , and ϕ is invariant if and only
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if T ϕ = ϕ. Moreover, when we want to indicate clearly a transfer operator
that corresponds to a system given by some specific parameter, for instance
to a, we then denote it as

(Taψ)(θ) = λfa(ψ(θ − ω)) · g(θ − ω). (3.4)

When considering the backward iterate or the preimage of a function ψ
in the system (3.2), we need the backward transfer operator R (only defined
when g(θ) > 0):

(Raψ)(θ) = f−1a

(
ψ(θ + ω)

λg(θ)

)
= f−1

(
ψ(θ + ω)

λg(θ)

)
− a. (3.5)

Notice that this operator is well-defined if λg(θ) 6= 0 for all θ ∈ S1, since we
require f to be strictly increasing in (3.2).

3.2.2 Some facts due to monotonicity

Next, we show some simple facts of the system (3.2), coming from the mono-
tonicity of f and g(θ) ≥ 0. They will be frequently used later when we deal
with the models in the next two sections.

Observation 3.2.1. The fibre map λf(x+a)g(θ) is also monotone increas-
ing for each θ ∈ S1. That is, taking (θ0, x0) and (θ0, y0) for any θ0 ∈ S1 with
x0 ≥ y0, then

λfa(x0)g(θ0) ≥ λfa(y0)g(θ0).

Furthermore, if g(θ0) > 0, this fibre map λf(x + a)g(θ0) is also strictly
increasing.

For a point (θ, x) ∈ S1×R, denote (θn, xn) = Fn(θ, x) for n ≥ 0 as well.

Observation 3.2.2. If a ≥ 0 and xk ≥ −a for some k ≥ 0, the monotonicity
of these fibre maps implies that xk+n ≥ 0 for all n ≥ 1.

Proof. First note that, if xk ≥ 0 for some k ≥ 0, we have f(xk+a) ≥ f(a) ≥
f(0) = 0, which implies xk+1 = λf(xk + a)g(θn) ≥ 0. Hence xk+n ≥ 0 for
all n ≥ 1.

Moreover, if xk ≥ −a, then xk+1 ≥ 0 since f(xk + a) ≥ f(0) = 0.

Remark 3.2.3. The above observations imply that, if a ≥ 0 in the sys-
tem (3.2), then S1 × [0,+∞) is invariant, and any point with initial value
x ≥ −a enters this invariant region after one iterate. Notice that it is the
same case for S1 × (−∞, 0] if a ≤ 0. �

In terms of transfer operators, the monotonicity of fibre maps in sys-
tem (3.2) gives the following lemma.
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Lemma 3.2.4. Let ψ,ϕ ∈ P, and ψ ≤ ϕ. Then

(1) T nψ ≤ T nϕ for all n ≥ 1;

(2) Rnψ ≤ Rnϕ, for all n ≥ 1, whenever R is well-defined;

(3) particularly, if T ψ ≤ ψ (T ψ ≥ ψ), then T n+1ψ ≤ T nψ (T n+1ψ ≥
T nψ) for all n ≥ 1. It is also the same case for the backward transfer
operator R.

Proof. Here T ψ ≤ T ϕ follows clearly from monotonicity of all the fibre
maps in Observation 3.2.1, then we have T nψ ≤ T nϕ by induction. All the
arguments go the same way for backward transfer operator R.

Remark 3.2.5. Particularly in case of T ψ ≤ ψ, the above lemma shows that
T n+1ψ ≤ T nψ for all n ≥ 1, which results a decreasing sequence of graphs
{T nψ}. It is commonly known that, if the pointwise limit of a decreasing or
an increasing sequence of continuous functions exits, this limit is an upper or
a lower semicontinuous function respectively. Hence, if a function is proved
to be the limit of both a decreasing and an increasing sequence at the same
time, this function must be a continuous one. �

3.2.3 Contraction due to concavity or convexity

Now we discuss a property derived from the concave or convex structure of
the monotonic function f in system (3.2). This property implies contraction
of such interval map f in an invariant region, which is also the reason of the
existence and the attraction of invariant graphs in some models of form (3.2)
that we will investigate later.

Our treatment here follows the arguments in [5], which extends their re-
sult to a more general setting. We start from the definition of concavity and
convexity first, then introduce the concepts of α-concavity and β-convexity,
and finally show that, for increasing maps with α-concavity or β-convexity
structures in some invariant intervals, all the points go to a unique limit
point with only one possible exception of an endpoint.

A real continuous function f defined on an interval I ⊂ R is concave, if
and only if for any x and y in the interval I,

f
(x+ y

2

)
≥ f(x) + f(y)

2
. (3.6)

Or equivalently, for any three points t1 < t2 < t3 in I, it is

f(t2)− f(t1)

t2 − t1
≥ f(t3)− f(t1)

t3 − t1
. (3.7)
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If the symbol “≥” in (3.6) and (3.7) above is changed to be “≤’, then f is
said to be convex. Moreover, if the inequalities of definitions are strict, then
f is also strictly concave or strictly convex.

Next, let us introduce the notions of α-concavity and β-convexity.

Definition 3.2.6. Let f be a continuous real-valued function on a closed
interval I ⊂ R and let α ≥ 0. The function f will be called α-concave if the
function fα, given by

fα(x) = f(x) + αx2,

is concave.

The following properties of an α-concave function f follow immediately
from the definition:

(1) f is concave;

(2) if α > 0 then f is strictly concave;

(3) if 0 ≤ γ ≤ α then f is γ-concave.

Similarly, we define a β-convex function as follows.

Definition 3.2.7. Let f be a continuous real-valued function on a closed
interval I ⊂ R and let β ≥ 0. The function f will be called β-convex if the
function fβ, given by

fβ(x) = f(x)− βx2,

is convex.

A β-convex function f also satisfies:

(1) f is convex;

(2) if β > 0 then f is strictly convex;

(3) if 0 ≤ γ ≤ β then f is γ-convex.

Notice that the properties of concavity and convexity are kept under the
change of variable, this is also true for α-concavity and β-convexity. Taking
the α-concavity as example, we have the following.

Lemma 3.2.8. If f(x) is an α-concave function defined on a closed interval
I = [t1, t2] (the endpoints may be infinity), then f(x + a) is also α-concave
on [t1 − a, t2 − a] for any a ∈ R.

Proof. By the definition, to prove f(x + a) is α-concave, we need to show
that f(x+ a) + αx2 is concave on [t1 − a, t2 − a].
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Since f(x) is α-concave on I = [t1, t2], fα(x+ a) = f(x+ a) + α(x+ a)2

is concave on [t1 − a, t2 − a]. Hence by (3.6), the definition of concavity, for
any x1 and x2 on the interval [t1 − a, t2 − a], it must be

fα
((x1 + a) + (x2 + a)

2

)
≥ fα(x1 + a) + fα(x2 + a)

2
. (3.8)

Notice that, for the left hand side of (3.8),

fα
((x1 + a) + (x2 + a)

2

)
= f

((x1 + a) + (x2 + a)

2

)
+ α

((x1 + a) + (x2 + a)

2

)2
= f

((x1 + a) + (x2 + a)

2

)
+ α

(
(
x1 + x2

2
)2 + a(x1 + x2) + a2

)
,

and for the right hand side, it is

fα
((x1 + a) + (x2 + a)

2

)
=
f(x1 + a) + α(x1 + a)2 + f(x2 + a) + α(x2 + a)2

2

=
f(x1 + a) + f(x2 + a)

2
+ α

(x21 + x22
2

+ a(x1 + x2) + a2
)
.

The last two terms in the above two expressions of both sides are the same,
deleting them gives

f
((x1 + a) + (x2 + a)

2

)
+α(

x1 + x2
2

)2 ≥ f(x1 + a) + f(x2 + a)

2
+α

x21 + x22
2

,

which means that f(x+ a) + αx2 is concave on [t1 − a, t2 − a].

For β-convexity the situation is exactly the same. That is, if f(x) is a
β-convex function defined on a closed interval I = [t1, t2], then f(x + a) is
also β-convex on [t1 − a, t2 − a] for any a ∈ R. For simplicity, we will only
consider concave functions in the sequel and will state the corresponding
results of convex functional only when necessary, since their arguments are
all analogous.

A contraction property of some increasing real maps with a concave
structure will be shown in Remark 3.2.10, it is derived from the inequal-
ity (3.9) below.

Let t be a real number, given two points u and v with (u− t)(v− t) > 0,
we define

κ(u, v) :=
|v − u|

min{|u− t|, |v − t|}
.

Lemma 3.2.9. Assume that a real increasing map f satisfies f(t) ≥ t, and
f is also α-concave on [t, y], then for any y > x > t,

κ(f(x), f(y))

κ(x, y)
≤ f(y)− f(t)

f(y)− f(t) + α(y − t)2
. (3.9)
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Proof. Particularly for y > x > t, we have

κ(y, x) =
y − x
x− t

.

We know that f is α-concave on [t, y], which means fα(x) = f(x) + αx2 is
concave on [t, y]. So by definition (3.7), if y > x > t we have

fα(x)− fα(t)

x− t
≥ fα(y)− fα(t)

y − t
. (3.10)

Notice that,

fα(x)− fα(t)

x− t
=
f(x) + αx2 − f(t)− αt2

x− t
=
f(x)− f(t)

x− t
+ α(x+ t),

so (3.10) is

f(x)− f(t)

x− t
+ α(x+ t) ≥ f(y)− f(t)

y − t
+ α(y + t),

which implies that

f(x)− f(t)

x− t
≥ f(y)− f(t)

y − t
+ α(y − x), (3.11)

and hence,

f(x)− f(t) ≥ x− t
y − t

(f(y)− f(t)) + α(y − x)(x− t).

The above formula gives,

f(y)− f(x) = f(y)− f(t)− (f(x)− f(t))

≤ (y − x)

(
f(y)− f(t)

y − t
− α(x− t)

)
.

Now we have that,

f(y)− f(x)

y − x
· x− t
f(x)− t

≤
(
f(y)− f(t)

y − t
− α(x− t)

)
· x− t
f(x)− t

.

Moreover, it is
f(x)− t
x− t

≥ f(x)− f(t)

x− t
since f(t) ≥ t, then by (3.11)

κ(f(x), f(y))

κ(x, y)
=
f(y)− f(x)

f(x)− t
· x− t
y − x

≤
f(y)−f(t)

y−t − α(x− t)
f(y)−f(t)

y−t + α(y − x)

= 1− α(y − t)
f(y)−f(t)

y−t + α(y − x)
≤ 1− α(y − t)

f(y)−f(t)
y−t + α(y − t)

=

f(y)−f(t)
y−t

f(y)−f(t)
y−t + α(y − t)

=
f(y)− f(t)

f(y)− f(t) + α(y − t)2
.
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Remark 3.2.10. Assume that a real map f is increasing on a closed in-
variant interval I with its left endpoint being t and f(t) ≥ t. If f is also
α-concave for some α > 0, then there can exist at most one fixed point in
I r {t}. Furthermore, this fixed point attracts all other points in I r {t} if
it exists.

This is because that, the same as in [5], for any two points x < y inside
I r {t}, denote xn = fn(x) and yn = fn(y), then we have

|xn − yn| = min{xn, yn}κ(xn, yn) = min{xn, yn}κ(x0, y0)
n−1∏
k=0

κ(xk+1, yk+1)

κ(xk, yk)
.

For all 0 ≤ k < n, by (3.9) of Lemma 3.2.9,

κ(xk+1, yk+1)

κ(xk, yk)
≤ f(yk+1)− f(t)

f(yk+1)− f(t) + α(yk+1 − t)2
,

and the right hand sides for all 0 ≤ k < n are smaller than a constant who
is less than 1. Hence, the products in the above equality go to 0 as n→∞,
it means that

lim
n→∞

|xn − yn| = 0.

That is, any two points x and y inside I r {t} have the same limit.
For the dynamics of such interval maps f , this implies that, if f(t) = t

and this left endpoint t is also attracting, then it is the only fixed point of
I which attracts all points of I. Otherwise, when f(t) > t or f(t) = t with
t repelling, all points of I r {t} have the same limit other than t, which is
attracting if it is a fixed point. Notice that, if I is a finite interval, then this
attracting fixed point must exist.

Analogously, provided β > 0, in the case that f is increasing and β-
convex on a closed invariant interval I with its right endpoint being t and
f(t) ≤ t, it has the same dynamics as the concave case above. This is derived
from the inequality below, that is, for any y < x < t

κ(f(x), f(y))

κ(x, y)
≤ f(t)− f(y)

f(t)− f(y) + β(y − t)2
, (3.12)

which is totally analogous to (3.9). �

Instead of the interval maps, here the systems that we are interested
in are those quasi-periodically forced one. However, if their forced inter-
val maps have the same structures, the contraction properties are basically
same. Below we take only one case as instance, all the other cases can be
treated in exactly the same way, so we do not repeat.

For the function f(x+ a) in quasi-periodically forced system (3.2) with
a ≥ 0, when f(x) is α-concave on [0,+∞), we have an inequality as below.
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Lemma 3.2.11. Assume that f(x) in (3.2) is α-concave on [0,+∞), and
a ≥ 0. Let 0 < x < y, then,

κ(f(x+ a), f(y + a))

κ(x, y)
≤ f(y + a)

f(y + a) + α(y + a)2
.

Proof. Since f is α-concave on [0,+∞), we have f(x+ a) is also α-concave
on [−a,+∞) by Lemma 3.2.8. Take the left endpoint t in Lemma 3.2.9 as
−a, since f(−a+ a) = f(0) = 0 ≥ −a, we have by (3.9) that

κ(f(x+ a), f(y + a))

κ(x, y)
≤ f(y + a)

f(y + a) + α(y + a)2
.

as required.

Unlike a map on a fixed interval, in a quasi-periodically forced system
each iterate goes to a different fibre. However, with assumptions of above
lemma, the contraction exists also for every pair of points in the same fibre.

Corollary 3.2.12. For two initial points (θ0, x0) and (θ0, y0) in the same
fibre, denote (θn, xn) = Fn(θ0, x0) and (θn, yn) = Fn(θ0, y0) where F is a
map of (3.2) with f(x) α-concave on [0,+∞). If a ≥ 0 and g(θk) 6= 0 for
all 0 ≤ k ≤ n, then for any 0 < x0 < y0, we have 0 < xk+1 < yk+1 and

κ(xk+1, yk+1)

κ(xk, yk)
=
κ(f(xk + a), f(yk + a))

κ(xk, yk)
≤ f(yk + a)

f(yk + a) + α(yk + a)2
. (3.13)

Proof. 0 < xk+1 < yk+1 follows directly from Observation 3.2.1, while the
strict inequality is due to g(θk) 6= 0 for all 0 ≤ k ≤ n.

Next, since

|xk+1 − yk+1|
min{|xk+1|, |yk+1|}

=
λg(θk)|f(xk + a)− f(yk + a)|

λg(θk)|f(xk + a)|
=
|f(xk + a)− f(yk + a)|

|f(xk + a)|
,

we have κ(xk+1, yk+1) = κ(f(xk + a), f(yk + a)), this gives the equality
in (3.13) first. The inequality is just the result of Lemma 3.2.11.

Remark 3.2.13. Analogously, if f in (3.2) is β-convex on (−∞, 0] with
β > 0, then for any y < x < 0 and a function f(x+ a) with a ≤ 0, we also
have

κ(xk+1, yk+1)

κ(xk, yk)
=
κ(f(xk − a), f(yk − a))

κ(xk, yk)
≤ f(yk − a)

f(yk − a) + β(yk − a)2
. (3.14)

Its proof goes literally the same as the concave case above. �
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3.3 First monotonic increasing model

Each of this and the next section is devoted to a concrete family of quasi-
periodically forced increasing real maps respectively. Both of these fami-
lies are given by maps F : S1 × R→ S1 × R in form of (3.2), with f being
monotonically increasing and having some concave or convex structures.
They also can be viewed as generalization of Keller’s model to whole cylin-
der. For the family that we discuss in this section, f is assumed to have a
symmetric-like structure: its upper part is kept to be concave like Keller’s,
the lower part is set to be convex.

The dynamical behaviours of this type of models are based first on the
structure of map f , and finally are decided by the situations of parameters λ
and a and by the case of function g being pinched or non-pinched. Especially
when a 6= 0, there is particular behaviour distinctively different with Keller’s
model, which is presented clearly in our Theorem B.

We divide this section into two subsections. The first one is dedicated
to a general introduction of the complete dynamics of this type of families.
Their proofs are given in the second subsection.

3.3.1 The model and its dynamics

Our first family generalizes Keller’s model to the whole cylinder S1 × R in
the following way:

F (θ, x) = ( θ + ω mod(1), λf(x+ a) · g(θ) ), (3.15)

with f a real function which satisfies:

(1) f is continuous and bounded;

(2) f is strictly increasing on R and f(0) = 0;

(3) f is α-concave for x ≥ 0 with some α > 0, and is β-convex for x ≤ 0
with some β > 0.

Hence the unforced interval map f(x) is the same with Keller’s model for
x ≥ 0, but is extended to the negative part with a convex curve. Here both
λ and a are real numbers which are used as parameters. We let λ > 0 so
that each fibre map is kept to be increasing. Different with Keller, another
parameter a is added in this model. The reason of this setting on fibre maps
of f(x+a) is that, we hope to study the general dynamics of any maps with
this type of shape, particularly without 0 being fixed. With the change of
a, the zero and fixed points of f(x+ a) change also, notice that this makes
x = 0 no longer invariant in the forced system as long as a 6= 0.

First we have a look at the dynamics of interval map λf(x + a), which
is the basis of the behaviour of the forced system. The family of this kind
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(a) a < 0 and λ is small. (b) a < 0 and λ is big.

(c) a > 0 and λ is small. (d) a > 0 and λ is big.

Figure 3.2: Graphs of λf(x+ a) for different cases.



50 CHAPTER 3. PINCHED SETS AND FORCED INCREASING SYSTEMS

of unforced interval maps λf(x+ a) is a typical example of the saddle-node
bifurcation of one-dimensional systems when a 6= 0. In Figure 3.2 we plot the
pictures for the cases of λ big and small with a < 0 and a > 0 respectively.
They display the situations before and after the saddle-node bifurcation with
the increasing of λ. The dynamics of λf(x + a) can be easily understood
via graph analysis. Notice that, the cases of a < 0 and of a > 0 are in fact
essentially the same, except for the directions that those points go are in an
inverse way. We do not plot the graphs of case a = 0, that x = 0 is always
fixed, and there is a pitchfork bifurcation occurs from it with the increasing
of λ.

Corresponding to the cases of unforced interval maps λf(x + a) above,
now we present the forced dynamical systems (3.15) with parameters a fixed
and λ increasing. Similar as the maps λf(x + a), their behaviours are also
different for the cases of a = 0 and a 6= 0, we describe each of them sepa-
rately.

Case a = 0: The forced systems in case of a = 0 are in fact just Keller’s
models, that we have known already.

(1) x = 0 is invariant in the system for any λ. Moreover, if λ is relatively
small, x = 0 is the only invariant graph which attracts all other points
in the system.

(2) With the increasing of λ, two invariant graphs other than x = 0 will
bifurcate out from above and below respectively, when x = 0 becomes
repelling in each of these two directions. The two new invariant graphs
attract those points with positive and negative initial x values sepa-
rately.

(3) If g(θ) > 0 for all θ ∈ S1, all the invariant graphs are as smooth as g;
if g(θ0) = 0 for some θ0 ∈ S1, both the invariant graphs bifurcate out
from x = 0 are strange.

Remark 3.3.1. This case is a rather special case for general families (3.15),
since x = 0 is always fixed. It is clearly a directly generalization of Keller’s
model, hence the dynamical behaviours can be easily understood via Keller’s
theorem without new proof. Precisely, the parts of x ≥ 0 and x ≤ 0 are two
subsystems individually. The upper one is exactly Keller’s model; while for
the lower one, the only difference with the upper is its convexity instead.
However the dynamics goes analogously with the upper part due to the
symmetric structure, so does its proof.

It should be noticed that, here by symmetry we don’t mean the two
parts are strictly geometrically symmetric, we only refer that their general
structures are symmetric in the topological sense. Hence the bifurcations of
these two individual subsystems may happen at two different values of λ. �
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Generally speaking, in the case of a = 0, for both the pinched and
non-pinched cases there are all the pitchfork type of bifurcations in form of
invariant graphs, and the only difference between them is the strangeness
of the graphs that bifurcate out. However, we can see that the situations
of a 6= 0 are not so, the bifurcation behaviours are noticeably distinct and
there only exist bifurcations in the non-pinched cases.

Case a 6= 0: In this case, x = 0 is no longer invariant. The complete
dynamical behaviours according to parameters λ and a are as below.

Theorem B. If a 6= 0 in family (3.15), the dynamics of the system is the
following:

(1) For any the values of a and λ, there is an invariant graph Φλ in the
system, which is attracting and continuous. Φλ ≥ 0 when a > 0;
Φλ ≤ 0 when a < 0.

(2) If there exists g(θ0) = 0 for some θ0 ∈ S1, Φλ is the only invariant
graph who attracts all points of the whole system.

(3) If g(θ) > 0 for all θ ∈ S1, then there is a critical value of λ, denoted
by λ0, such that

(a) if λ < λ0, Φλ is the only invariant graph which attracts all the
points in whole system S1 × R;

(b) if λ > λ0, there exist another two continuous invariant graphs
other than Φλ, one of them is repelling and the other one is at-
tracting. Denote this new attracting graph by Ψλ and the repelling
one by Γλ, it is Ψλ < −a when a > 0 (Φλ ≥ 0); and Ψλ > −a
when a < 0 (Φλ ≤ 0). In both these two cases, the repelling
graphs lie between Φλ and Ψλ.

Remark 3.3.2. We notice the following facts which lead to a simpler dy-
namical interpretation of the general situations:

(1) The existence of one attracting invariant graph, Φλ namely, depends
neither on if the system is pinched or not, nor on that λ is small or
big. But the bifurcations of new graphs do depend on them.

(2) For the non-pinched cases, there is a bifurcation occurs at the opposite
side of Φλ with the increasing of λ. The type of such bifurcation is
exactly corresponding to the saddle-node bifurcation of the unforced
interval maps λf(x+ a).

(3) Instead, there is no any bifurcation in any pinched systems of this
case a 6= 0. Notice that this is also different with the pinched case of
a = 0, which must have bifurcation for big enough λ. Particularly, it
implies that there is no strange curve in any cases of a 6= 0.
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(a) The attractor obtained by
model with λg(θ)f(x + a) =
0.5 |cos(2πθ)| tanh(x+ 2).

(b) The attractor obtained by
model with λg(θ)f(x + a) =
80 |cos(2πθ)| tanh(x+ 2).

(c) The attractor obtained by model
with λg(θ)f(x + a) = 2.5(1 +
|cos(2πθ)|) tanh(x + 2). No repellor
founded in system.

(d) The two attractors and repellor ob-
tained by model with λg(θ)f(x + a) =
2.8(1 + |cos(2πθ)|) tanh(x+ 2). The top
and bottom curves are attractors, the
middle one is repellor.

Figure 3.3: Graphs of different cases of the first family.
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�
In Figure 3.3 we plot the invariant graphs for all typical situations for the

case of a 6= 0, which correspond to the pinched and non-pinched cases, with
λ values small and big respectively. These invariant graphs are obtained by
a concrete model with f(x) = tanh(x) and a = 2. In this memoir, we take
the golden mean as ω in all the examples that we compute. We can see from
the pictures at the bottom row that, the dynamics of the non-pinched cases
are exactly similar to the unforced interval maps λf(x + a), only that the
fixed points are replaced by invariant graphs. While for the pinched systems
whose pictures are at the top row, even though the λ value is taken to be
very big as in Figure 3.3(b), there is still only one invariant graph in the
system.

Finally, we summarize briefly the character of the general dynamics of
this forced model (3.15). Comparing with the family of unforced interval
maps λf(x + a) and viewing the invariant graphs of forced systems as the
fixed points of unforced interval maps, the basic features of this family are
as follows.

• For the systems non-pinched, their dynamical behaviours are exactly
the same with the unforced system λf(x+a), from the point of view of
the bifurcations with respect to parameter λ. That is, pitchfork type
for a = 0, and saddle-node for a 6= 0.

• In the pinched case, the dynamics is distinctive for a 6= 0, in which
case the bifurcation is totally destroyed; if a = 0, the dynamics is the
same as the interval maps with a pitchfork bifurcation, the particular
point is that the invariant graphs other than x = 0 are strange.

The reason for the destruction of bifurcation is the pinched orbits, which
can be seen clearly in the proof at the next subsection.

3.3.2 Proof of Theorem B

Theorem B consists of several assertions, we prove them one by one for
the case a > 0 with a series of propositions below. For a < 0, the proof
goes analogously with a change of sign and the exchange of concavity and
convexity. So we omit it.

More precisely, first we prove the existence of the unique invariant graph
Φλ ≥ 0 in any cases and its attraction in the invariant region S1× [−a,+∞).
Next we show that, this graph Φλ is also the unique attracting invariant
graph of the systems for both the pinched case and small enough λ. This
is because that, in these two situations, all the points of the systems enter
eventually the region S1 × [−a,+∞). Finally, we prove that, there exists
a bifurcation in the region S1 × (−∞,−a) with the increasing of λ in the
non-pinched case. This completes the proof of the whole theorem.
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Existence of Φλ as attractor

One way for this proof is just to follow Keller. Take an upper bound M
of all the fibre maps, and let the transfer operator on the function space
act on x = M . This produces a decreasing sequence of continuous curves.
Meanwhile the same action on x = 0 gives an increasing sequence. These
two sequences have the same limit Φλ, which must be continuous.

Our investigations in this memoir involve neither the detailed regularity
of the invariant curves, nor the estimation of the convergent speed of the
points to invariant curves. These issues can refer to Keller [44] directly.
Here we prove the existence of the invariant graph Φλ as the attractor by a
straightforward method, using the contraction from the concavity.

First we prove a lemma which is derived from Corollary 3.2.12.

Lemma 3.3.3. Take (θ0, x0) and (θ0, y0) for any θ0 ∈ S1, if both x0 ≥ −a
and y0 ≥ −a, then

lim
n→∞

|xn − yn| = 0.

Proof. By Observation 3.2.2, if −a ≤ x0 < 0, then 0 ≤ x1, and then x2 > 0
if g(θ1) > 0. Thus we can start the following arguments from x1 or x2 if
necessary.

If there is any n such that g(θn) = 0, the result is true trivially because
xn+1 = yn+1 = 0. Otherwise, g(θn) > 0 for all n ∈ N, then we have

|xn − yn| = min{xn, yn}κ(xn, yn) = min{xn, yn}κ(x0, y0)
n−1∏
k=0

κ(xk+1, yk+1)

κ(xk, yk)
.

Corollary 3.2.12 tells us that, each
κ(xk+1,yk+1)
κ(xk,yk)

is smaller than a constant
number which is smaller than 1. Hence, the products in the above equality
goes to 0 as n→∞.

Proposition 3.3.4. There is a unique invariant graph Φλ in the region
S1 × [0,+∞), which is continuous and attracts all the points in the region
S1 × [−a,+∞).

Proof. The above lemma says that, for all the initial values (θ0, x0) with
x0 > −a, they go into S1× [0,+∞) with one iterate. Moreover, there is only
one limit point left in each fibre after iterations in S1 × [0,+∞) eventually.
So we obtain a function by corresponding each θ ∈ S1 with the limit point
left in this fibre, which is the Φλ that we claim.

By definition Φλ must be unique and attract all the points in S1 ×
[−a,+∞). In view of the transfer operator, Φλ is also the only possible
limit of T n(x = −a) and T n(x = c) with c any constant larger than the
upper bound of all fibre maps. These two sequences of graphs are monotone
increasing and decreasing respectively, so their common limit Φλ must be
invariant and continuous.
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Remark 3.3.5. We point out two facts here.

(1) First, by the proof of this proposition, neither the existence of Φλ

nor its properties of attraction and continuity depend on whether the
system (3.15) is pinched or not.

(2) It can also be seen that f is not necessarily bounded. In fact, if there
is big enough c > 0 which satisfies that T (x = c) ≤ c, the arguments
of our proof still work. This is indeed the case for a large number of
unbounded maps which are increasing and α-concave.

�

Bifurcation problem

The essential difference between the second and third items of our theorem
is that, whether there exists a bifurcation at the negative part. Our theorem
says that the bifurcation can occur at the negative part if and only if the
system (3.15) is non-pinched.

In the following, we prove first that, Φλ is the unique invariant graph who
attracts all the points in the pinched system, so there is no any bifurcation
possible. The non-pinched case is considered after that.

Pinched case: bifurcation destroyed

Proposition 3.3.6. If there is some θ0 ∈ S1 such that g(θ0) = 0, then all
points (θ, x) ∈ S1 ×R enter S1 × [−a,+∞) eventually, hence Φλ is the only
invariant graph and attracts all the points in the whole system.

Proof. We just prove that all the points must enter the region S1×[−a,+∞)
with this pinched condition, then Proposition 3.3.4 implies that all the points
must be eventually attracted by Φλ.

Let M denote any upper bound of |f |. Since g is continuous and g(θ0) =
0, there must be an interval J = (θ0 − δ, θ0 + δ) ∈ S1 such that, for any
θ ∈ J , g(θ) < a

2λM . Then we have −a < −a
2 < λf(x + a)g(θ) < a

2 for any
x ∈ R.

Due to the ergodicity of the irrational rotation orbit, all the orbits even-
tually enter J × R, and then enter S1 × [−a,+∞) at the next iterate.

Non-pinched case: saddle-node bifurcation For the one-dimensional
family λf(x + a) with a > 0, the dynamics of its negative part is a typical
example of the saddle-node bifurcation. When the forced system is non-
pinched, this saddle-node bifurcation is exact what happens at the negative
part too. That is, for λ small enough, there is no invariant graph at the
negative part, and all points enter S1 × [0,+∞); with the increasing of λ
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over a critical value, there occur two new invariant graphs in the system,
one is attracting, the other is repelling.

The proofs of these results go in the following way: first we show that
there is no invariant graph in S1×(−∞, 0] for small enough λ; next we prove
that there are indeed two invariant graphs in this negative part if λ is big
enough; and then we prove the facts that, if there are two invariant graphs
in S1 × (−∞, 0] at some value of λ, then this is the case for all bigger λ
too; while for the case of no invariant graph at some value of λ, there is
also no any invariant graph for all smaller λ; these facts together with the
properties of invariant graphs in monotone system indicate the bifurcation
can only happen at one value of λ.

First We give some notations that we need for the proofs. Recall that
non-pinched case means g(θ) > 0 for all θ ∈ S1. We denote that mg =
min{g(θ)},Mg = max{g(θ)}, both are well-defined since S1 is compact and
g is continuous on it. Clearly Mg ≥ mg > 0. Let l < 0 be some lower bound
of f , thus l ≤ f(x) for all x ∈ R.

Now we begin our proofs. First we show that, if λ is small enough, for
the same reason of the pinched case, all points enter S1 × [0,+∞), then Φλ

is the only invariant graph in the whole system.

Proposition 3.3.7. If λ < −a
Mgl

, all initial points go eventually into S1 ×
[−a,+∞), thus Φλ is the only invariant graph and the attractor in the whole
system.

Proof. We show that for points with any initial value of x, their values of
x are larger than −a under one iterate. Let λ < −a

Mgl
, which is equivalent

to λlMg > −a. By definition of l and Mg, λf(x + a)g(θ) ≥ λlMg > −a as
required.

Next, we show that there are two other invariant graphs in the region of
S1×(−∞,−a) for λ big enough. Therefore there are two attracting invariant
graphs and one repelling in the system simultaneously.

Proposition 3.3.8. For any c > a, let λ ≥ −c
mgf(−c+a) , then there exist

an invariant curve Ψλ with Ψλ ≤ −c, which attracts all the points (θ, x) ∈
S1× (−∞,−c). Moreover, there is a repelling invariant graph Γλ, which lies
in S1 × (−c,−a).

Proof. Notice that λ ≥ −c
mgf(−c+a) is equivalent to λmgf(−c+a) ≤ −c. Take

any points on x = −c, they all have λf(−c+ a)g(θ) ≤ λmgf(−c+ a) ≤ −c.
It implies that, in terms of transfer operator, we have T (−c) ≤ −c. Hence
T n+1(−c) ≤ T n(−c) for all n ≥ 0. We define Ψλ = limn→+∞ T n(−c).
Moreover, for every iterate, the fibre map satisfies the condition of (3.12),
hence the convexity gives the contraction which makes Ψλ an attracting
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invariant graph. This implies that Ψλ must also be the limit of Tn(l), which
is monotone increasing. So Ψλ is continuous as the common limit of these
two sequences.

Using the backward transfer operator on the graphs T (−c) and x = −c,
since T (−c) ≤ −c we have R(T (−c)) = −c ≤ R(−c). Hence R(−c) ≤
R2(−c), which follows then Rn(−c) ≤ Rn+1(−c) for all n ≥ 0. Similarly,
we also have Rn+1(−a) ≤ Rn(−a) for all n ≥ 0. The limit of these two
sequences must also be the same, which is just the repelling invariant graph
Γλ.

This is because that, S1 × (−c,−a) is invariant under the backward
iterate of F , and the fibre maps of backward iterate in this region are all
β-concave, thus the same as the arguments of Remark 3.2.10 of the fixed
interval map, we know that there is only one limit point in every fibre. Since
this only limit point is attracting under backward iterate, it is repelling for
the forward.

Finally, we show that, these two new invariant graphs come from a bi-
furcation at some critical value of λ. This can be derived from the fact that,
in such kind of systems, the invariant graphs also have some monotonicity
with respect to the parameters.

Proposition 3.3.9. If the invariant graphs Ψλ0 and Γλ0 in Proposition 3.3.8
exit for some parameter value λ0, then the invariant graphs Ψλ and Γλ also
exit for any λ > λ0. Moreover, Ψλ < Ψλ0 and Γλ > Γλ0.

Proof. Ψλ0 is invariant under the value λ0 means it satisfies the invariant
equation below,

(Tλ0Ψλ0)(θ + ω) = λ0f(Ψλ0(θ) + a)g(θ) = Ψλ0(θ + ω).

We know that Ψλ0 < −a, this implies f(Ψλ0(θ) + a) < 0. For any λ > λ0,
now in the system Fλ given by function λg(θ)f(x + a), let the transfer
operator act on the curve Ψλ0 , we have

(TλΨλ0)(θ + ω) = λf(Ψλ0(θ) + a)g(θ) < λ0f(Ψλ0(θ) + a)g(θ) = Ψλ0(θ + ω).

That is, TλΨλ0 < Ψλ0 , what follows is T n+1
λ Ψλ0 ≤ T nλ Ψλ0 for all n ≥ 0.

Now define Ψλ = limn→+∞ T nλ Ψλ0 , according to the proof of the above
proposition, this limit Ψλ is just the invariant graph under the value λ.

Analogously, under the action of the backward operator Rλ, it is easy
to show RλΓλ0 > Γλ0 . Define Γλ = limn→+∞RnλΓλ0 then the statement on
invariant graphs Γλ follows also.

Now the last fact we show is that, there is a critical value λ0 of parame-
ter λ at which a saddle-node bifurcation takes place with invariant graphs.
Hence the general dynamical behaviours of the non-pinched systems are as
follows.
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Proposition 3.3.10. For any fixed a > 0, there is a value λ0 such that:
when λ < λ0, all the points of system are attracted by the only invariant
graph Φλ > 0; when λ > λ0, there are two other invariant graphs occurring
in the region S1 × (−∞,−a). The lower one is attracting and is decreasing
with respect to the increasing of λ; the upper one is repelling and is increasing
with respect to the increasing of λ.

Proof. The existence of some λc with two invariant graphs at the negative
part is proved in Proposition 3.3.8, Proposition 3.3.9 shows that, such two
graphs then exist and have monotonicity with respect to all λ > λc. Thus
we can define by λl, the greatest lower bound of all values of λ which admit
two invariant graphs in S1 × (−∞,−a). That is, for any λ ∈ (λl,+∞) we
have two invariant graphs in S1 × (−∞,−a).

On the other hand, assume that λ1 is some value for which all the points
in S1 × (−∞,−a) go eventually up to x = −a, that is, for any (θ, x) ∈ S1 ×
(−∞,−a), there exists a smallest n ∈ N such that (θn, xn)λ1 = Fnλ1(θ, x) ∈
S1 × [a,+∞). Notice that, for any λ2 < λ1, whenever f(x+ a) < 0 we have
λ2f(x+a)g(θ) > λ1f(x+a)g(θ), which implies (θn, xn)λ2 = Fnλ2(θ, x) ∈ S1×
[a,+∞) too. Hence these values of λ for which all the points in S1×(−∞,−a)
go eventually up to x = −a also form an interval (0, λh). Next, we show
that these two bounds can only be λl = λh, which indicates our claim.

In proof of Proposition 3.3.9, the monotonicity of the invariant graphs
with respect to the parameter λ depends, in fact only on the forward or the
backward transfer operator used to an invariant graph at S1 × (−∞,−a).
Precisely, if ϕλ0 is any invariant graph at S1 × (−∞,−a) for some λ0, then
for any λ > λ0 we all have Tλϕλ0 < ϕλ0 and Rλϕλ0 > ϕλ0 . This mens that,
whenever there is a value λ0 such that there exists an invariant graph in this
region, there must be two invariant graphs Ψλ < ϕλ0 and Γλ > ϕλ0 for all
λ > λ0. Hence [λl, λh] can only consist of a single point, which is the critical
value λ0 of bifurcation.

3.4 The second model and its dynamics

In this final section we investigate another forced monotonic family in form
of (3.2) too, which is also generalized from Keller’s model. The fibre maps
of this family are kept to be concave or convex on whole R, whose concrete
conditions are given below. In Theorem C, we describe the complete dy-
namics of this family. We can see that the dynamics of non-pinched systems
is also analogous graphs version of the unforced interval maps, but for the
pinched cases there exist diverse situations this time.

As we have said, the family that we consider is also in the form of

F (θ, x) = ( θ + ω mod(1), λf(x+ a) · g(θ) ), (3.16)



3.4. THE SECOND MODEL AND ITS DYNAMICS 59

with f strictly increasing on R and g(θ) ≥ 0 continuous. However, we
remove the restriction of f being bounded, and let it be concave or convex
on whole R. Precisely, in (3.16) the map f is a real function which satisfies:

(1) f is continuous;

(2) f is strictly increasing on R and f(0) = 0;

(3) f is α-concave or β-convex on R for some α > 0 or β > 0.

We take only the model of f being convex as example. The details of
the dynamics of such families are in Theorem C below.

Theorem C. In the case of g(θ) 6= 0 almost everywhere, for any λ > 0 fixed,
the family of (3.16) goes through a graph version saddle-node bifurcation
with respect to the increasing of a. The details are the following.

• There is a critical value a0 ≥ 0 such that, if a > a0, there is no any
invariant graph and all points in the system go to infinity.

• For a < a0, there exist two invariant graphs ϕa and ψa with ϕa > ψa.
The upper one ϕa is repelling and all the points up to it go to infinity;
the lower one ψa is attracting which attracts all the points below ϕa.

Particularly in the pinched system, ϕa is the graph of a measurable
function which is not defined on a set of measure zero, unless ϕa = 0.

Let a increase from a < 0 to a0, ϕa goes down and ψa goes up
with respect to it. Actually, it is ϕa2 ≥ ϕa1 > ψa1 ≥ ψa2 for any
a2 < a1 < a0.

The detailed dynamical behaviours in this process are:

(1) when a < 0, ϕa > 0 and ψa ≤ 0. Particularly, ψa < 0 if g(θ) > 0
for all θ ∈ S1;

(2) at a = 0, either ϕa = 0 or ψa = 0;

(3) when 0 < a < a0,

(a) if g(θ) > 0 for all θ ∈ S1, either ϕa > ψa > 0 or 0 > ϕa > ψa;

(b) if g(θ) = 0 on a zero measure set of S1, and

i. if λ is relative small such that ψa = 0 at a = 0, then it is
ϕa > ψa ≥ 0 for 0 < a < a0;

ii. if λ is big such that ϕa = 0 at a = 0, then ψ0 ≤ 0 is
strange and nonchaotic who intersects x = 0 in a dense
set of θ ∈ S1, that is, it is an SNA.
Moreover, a0 = 0 for all such λ, hence there is no any
invariant graph for a > 0.
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In the case of g(θ) = 0 on a positive measure set of θ ∈ S1, no bifurcation
happens. For any λ > 0 and a, there always exists a unique invariant graph,
which is defined on a full measure set of θ ∈ S1, and attracts almost all the
points in the system.

Remark 3.4.1. The dynamics for α-concave case is totally analogous, with
only the difference in appearance. Precisely, there is the same saddle-node
bifurcation for a fixed λ with respect to the varying of parameter a. But
in this case the critical value of a is a0 ≤ 0 and it is no invariant graph for
a < a0. When two invariant graphs exist for a > a0, it is the attracting
one above the repelling. The same as β-convex case, the repelling invariant
graph partitions the phase space into two parts. All the points above it go to
the attracting invariant graph monotonically; while the points below leave
it monotonically decreasing to infinity. �

Once again as the previous model, in the non-pinched case, the dynamics
of forced systems (3.16) can be viewed essentially the same with the family
of unforced maps λf(x+a), so the forced terms do not affect the qualitative
behaviours. We plot in Figure 3.5 and Figure 3.6 the attractors and repellors
of some concrete examples of this kind of models, which correspond to the
non-pinched and pinched systems respectively. Comparing with the dynam-
ics of the unforced one-dimensional family λf(x + a) (refer to Figure 3.4),
we can see this feature clearly. So before we start to prove Theorem C, we
have a short look at the unforced interval maps λf(x+ a), whose dynamics
is the basis for analysing the corresponding forced systems.

Unforced interval maps λf(x+ a)

These convex increasing interval maps λf(x+a) are rather simple and well-
understood already, which are usually used as typical models for the saddle-
node bifurcation.

Generally, for a fixed λ, these exists a critical bifurcation value a0. For
a > a0, there exists no any fixed point, and all the points go to +∞ eventu-
ally. For a < a0, there are two fixed points occurring in the system. The left
(small) one is attracting, and the right (big) one is repelling. The attracting
fixed point attracts all the points which are smaller than the repelling one,
while all the points larger than the repelling one go eventually to +∞.

In Figure 3.4, we plot all the possible cases for such maps λf(x+a) with
f increasing and f(0) = 0, except for those exactly at the bifurcations. Fix
λ and let a increase from negative value, the behaviours of such maps go in
the following way. When a < 0, since λf(x+ a) < 0 for point x ≤ 0, so all
its iterations remain to be negative. Particularly, if we iterate x = 0, we get
a decreasing sequence. The contraction due to β-convexity at negative part
implies that there is a unique limit point of this sequence, which must be a
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(a) a = 0 with λ small. (b) a = 0 with λ big.

(c) a > 0 small with λ small. (d) a > 0 small with λ big.

(e) a > 0 big enough. (f) a < 0.

Figure 3.4: Graphs of λf(x+ a) for different cases.
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fixed point of the system. Consider the backward iterations of x = 0, which
is equivalent to the forward iterations in a monotone increasing concave
system, we have an increasing sequence whose limit point is another fixed
point. So the attracting fixed point is negative, the repelling one is positive,
they locate at two different sides of x = 0, which is shown in Figure 3.4(f).

With the increasing of a, the left fixed point moves to the right con-
tinuously, while the right one to left. When a = 0, λf(0 + a) = 0, hence
0 is one of the fixed point. Whether x = 0 is attracting or repelling, it
depends on the value of λ, which determines the derivative at x = 0 given
by λf ′(0). When λ is big enough such that λf ′(0) > 1, x = 0 is repelling,
and the attracting fixed point at its left side is negative; for smaller λ with
λf ′(0) < 1, x = 0 is attracting and the repelling fixed point is positive (see
Figure 3.4(b) and Figure 3.4(a)).

When a goes to a > 0, both of the fixed points go to the same side of
x = 0, which are positive for λ small or negative for λ big, depending on the
cases at a = 0 above. At the last, they merge into one at the bifurcation
point a = a0. For a > a0, all points in the system go to +∞ as shown by
Figure 3.4(e).

Proof of Theorem C

To prove Theorem C, we first discuss the conventional case of g(θ) 6= 0
almost everywhere in S1, and leave the case of g(θ) = 0 in positive measure
set to the last of this section.

In this case, the behaviours are basically close to the unforced interval
families λf(x + a), whatever the systems are pinched or non-pinched. So
our arguments follow the similar way of the unforced interval systems above.
In Figure 3.5, we take λg(θ)f(x+ a) = λ |1 + cos(2πθ)| (exp (x+ a)− 1) as
an example, and plot the attractors and repellors for different cases of this
model. The attractors are plotted in red, which are obtained by forward
iterations with very small initial x value. The repellors are plotted in green,
obtained by backward iterations with very big initial x value. From top to
bottom, each row corresponds to a negative, zero and positive value of a
before all points go to infinity. Concerning for the values of λ, it is taken as
0.3 for the left column, and 2.05 for the right. These pictures show intuitively
the graph version of systems which are in same spirit of the unforced interval
maps λf(x+ a) (refer to Figure 3.4).

Next we present the details of this case.

Case of g(θ) 6= 0 almost everywhere

The properties due to the monotonicity of the systems are important in-
gredients of our arguments. Recall that the fibre maps are in form of
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(a) a = −1 < 0 with λ = 0.3. (b) a = −1 < 0 with λ = 2.05.

(c) a = 0 with λ = 0.3. (d) a = 0 with λ = 2.05.

(e) a = 0.1 > 0 small with λ = 0.3. (f) a = 1 > 0 small with λ = 2.05.

Figure 3.5: Graphs of different cases for the non-pinched system λg(θ)f(x+
a) = λ |1 + cos(2πθ)| (exp (x+ a) − 1). The red one is attracting and the
green one is repelling.
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G(θ, x) = λf(x + a) · g(θ) with parameters λ and a. The transfer oper-
ator of such systems for a fixed a is given by

(Taψ)(θ) = λf(ψ(θ − ω) + a) · g(θ − ω), (3.17)

where ψ ∈ P with P the space of all functions (not necessarily continuous)
from S1 to R. Let λ and a both be fixed, the monotonicity of the real
map f yields the following results. For points (θ, x) and (θ, y) with x ≤ y,
denote Fn(θ, x) by (θn, xn) and Fn(θ, y) by (θn, yn). Trivially from the
monotonicity of fibre maps, we have G(θ, x) ≤ G(θ, y), and hence the same
order relation xn ≤ yn for all n ∈ N. This is the same case for curves in
P, that is, for two graphs ϕ ≥ ψ, Taϕ ≥ Taψ and also Tanϕ ≥ Tanψ for all
n ∈ N.

Moreover, the vertical Lyapunov exponent νϕ of an invariant graph ϕ is
given by

νϕ =

∫
S1

log
(
λf ′(ϕ(θ) + a) · g(θ)

)
dθ

=

∫
S1

log g(θ)dθ +

∫
S1

log λf ′(ϕ(θ))dθ.

Therefore, if two invariant curves are ϕa ≥ ψa, then νϕa ≥ νψa by the
convexity of f .

Besides the monotonicity of the fibre maps themselves, there is also
monotonicity with respect to the parameter a for such systems. Precisely, let
λ be fixed, for a1 > a2, we have λf(x+a1)g(θ) ≥ λf(x+a2)g(θ) for any point
(θ, x) by the monotonicity of f . This inequality follows directly from that f
is strictly increasing and λg(θ) ≥ 0. If we denote (θn, x

a
n) = Fna (θ, x) for F

given by f(x+a) with parameter a, then it is easy to see that xa1n ≥ xa2n for all
n ∈ N by induction. In terms of transfer operator, we also have T na1ψ ≥ T

n
a2ψ

for any graph ψ ∈ P. The following lemmas are useful consequences of this
monotonicity with respect to parameter a.

From now on in this section, we denote by ψa an attracting invariant
graph which attracts (at least) all points below it, and by ϕa a repelling
invariant graph such that all points above it go to +∞, provided these
graphs exist for a parameter a. Clearly, it must be ϕa ≥ ψa by assumption.

Lemma 3.4.2. For parameters a1 > a2, assume that there exist invariant
graphs ψa2, ϕa2 and ψa1, ϕa1 defined above, then we have ψa1 ≥ ψa2 and
ϕa1 ≤ ϕa2. Actually, in the case of g(θ) > 0, ψa1(θ + ω) > ψa2(θ + ω) and
ϕa1(θ) < ϕa2(θ).

Proof. The proof is based on the fact that, for any (θ, x) ∈ S1×R, xa1n ≥ xa2n
for all n ∈ N.



3.4. THE SECOND MODEL AND ITS DYNAMICS 65

(a) a = −1 < 0 with λ = 0.3. (b) a = −1 < 0 with λ = 2.05.

(c) a = 0 with λ = 0.3. (d) a = 0 with λ = 2.05.

(e) a = 0.9 > 0 small with λ = 0.3. (f) a = 0 small with λ = 2.5.

Figure 3.6: Graphs of different cases for the pinched system λg(θ)f(x+a) =
λ |cos(2πθ)| (exp (x+ a) − 1). The red one is attracting and the green one
is repelling.
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To see that ψa1 ≥ ψa2 , we consider an arbitrary point below ψa2 , that is,
point (θ, x) such that x < ψa2(θ). Because xa1n ≥ xa2n and (θn, x

ai
n ) converges

to ψai respectively, it must be ψa1 ≥ ψa2 .

On the other hand, for any point (θ, x) above ϕa2 , we have xa1n → +∞,
because that xa1n ≥ xa2n and xa2n → +∞. This implies ϕa1 ≤ ϕa2 by the
definition of ϕa.

Next, we show that these inequalities are strict if g(θ) > 0. Notice that
ψa(θ+ ω) = λf(ψa(θ) + a) · g(θ). If ψa1(θ) ≥ ψa2(θ), then f(ψa1(θ) + a1) >
f(ψa2(θ) + a2) by a1 > a2. Hence, when g(θ) > 0, it must be ψa1(θ + ω) >
ψa2(θ + ω).

Finally, if there is ϕa1(θ) = ϕa2(θ) at some θ ∈ S1, then we have ϕa1(θ+
ω) > ϕa2(θ + ω), which contradicts with ϕa1 ≤ ϕa2 . Hence it can only be
ϕa1(θ) < ϕa2(θ).

Lemma 3.4.3. If there is an a0 such that, ψa0 and ϕa0 are lower and upper
semicontinuous graphs respectively, and ψa0(θ0) = ϕa0(θ0) at some θ0 ∈ S1,
then all points in the system Fa go to +∞ for any a > a0.

Proof. By the definition of ψa and ϕa, there are two kinds of behaviours for
all the points in the system Fa0 given by this parameter a0. The first kind
is for all the point (θ, x) above ϕa0 , who goes to +∞. For any such point
(θ, x), we know that xan ≥ xa0n for any a > a0, hence it goes to +∞ in any
system Fa with parameter a > a0.

Points of the second kind are those below ϕa0 , that is, (θ, x) with x ≤
ϕa0(θ). For such point, its limit set contains all the intersection points of ψa0
and ϕa0 , since ψa0 by definition is attracting at least from below. Next we
show that, we can find a neighbourhood of some intersection point (which
we denote also by (θ0, ψa0(θ0)) = (θ0, ϕa0(θ))), such that all points of the
second kind enter this neighbourhood under Fa0 , and are mapped above ϕa0
by Fa for a given a > a0. Then all points in system Fa must go to +∞.

First, by Proposition 3.1.1, the existence of ψa0(θ0) = ϕa0(θ0) implies
that, the region enclosed by ψa0 and ϕa0 is invariant and pinched. Moreover,
all the points θ ∈ S1 such that ψa0(θ) = ϕa0(θ) form a residual subset of S1,
and both ψa0 and ϕa0 are continuous at these θ ∈ S1. In this residual set,
we can find a θ0 ∈ S1 at which g(θ0) 6= 0. This is because that, if g(θ) = 0
at all this residual set, then the continuity of g implies that g ≡ 0, which
contradicts with our assumption of g 6= 0 almost everywhere.

Now for any a > a0, we know from the previous lemma that, at θ0 such
that g(θ0) 6= 0, ψa(θ0+ω) > ψa0(θ0+ω) = ϕa0(θ0+ω). The latter equality is
due to the invariance of ψa0 and ϕa0 . Take ε = 1

2(ψa(θ0 +ω)−ϕa0(θ0 +ω)),
since ϕa0 is upper semicontinuous, we can find a neighbourhood ∆ ⊆ S1
of θ0 + ω, such that for every θ ∈ ∆, ϕa0(θ) < ϕa0(θ0 + ω) + ε. Denote
∆1 = ∆ × (ψa(θ0 + ω) − ε,+∞). All the points in ∆1 are above ϕa0 ,
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therefore they all go to +∞ in the system Fa0 , and hence also go the same
way in system Fa by a > a0.

Finally we show that, all these second kind of points in Fa0 must enter
∆1 under the action of Fa with a > a0, then this lemme is proved. Notice
that, the continuity of Fa implies that, there exist a neighbourhood ∆2 of
(θ0, ψa0(θ0)) such that all points here are mapped to ∆1. Since (θ0, ψa0(θ0))
is a limit point of all the orbits of the second kind of point, which implies
that all these points in system Fa0 enter ∆2 at some iterates. Therefore,
if (θn, x

a0
n ) ∈ ∆2, it must be (θn+1, x

a
n+1) ∈ ∆1, because xan ≥ xa0n for all

n ∈ N.

By the lemmas above we have proved that, if there exist two invari-
ant graphs in the system with the attracting and repelling properties that
we assume, then they must get close monotonically with the increasing of
parameter a. Particularly, in the non-pinched case they do so strictly mono-
tonically. The second lemma implies that, whenever these two invariant
graphs intersect at some a0, this a0 is then the critical value of bifurcation.
Both the invariant graphs disappear if a goes over it. Next we show that
both this critical value a0 and the two invariant graphs for a < a0 do exist,
which are as we claim in Theorem C.

To avoid duplication, we try to show the existence of invariant graphs
with the results of the previous model, whenever we can do so.

Recall in Proposition 3.3.4, the key point for proving the existence of a
unique invariant graph is that, the region S1 × [0,+∞) is invariant for the
system F = λf(x)g(θ) with map f increasing, α-concave for some α > 0,
and f(0) > 0. In this case, Lemma 3.3.3 ensures that

lim
n→∞

|xn − yn| = 0,

for any two points (θ0, x0) and (θ0, y0) in the same fibre with x0 ≥ 0 and
y0 ≥ 0. We refer this case as Case A below.

Analogously, there exists also a unique invariant graph which is attract-
ing in Case B, which is that the region S1 × (−∞, 0] is invariant for the
system F = λf(x)g(θ) with map f increasing, β-convex for some β > 0, and
f(0) < 0.

Notice that, the backward iteration of the current model (3.16) is equiv-
alent to the forward iteration of a monotone increasing concave one, and
the attracting invariant graph of backward iteration is just the repelling one
under forward iteration. We will frequently use these facts in the following
discussions.

Case a < 0 The pictures of the attractors and repellors for this case are
plotted in Figure 3.5(a), 3.5(b), 3.6(a) and 3.6(b), which correspond the
non-pinched and pinched cases at different values of parameter λ. In all
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these situations, there is a unique repelling invariant graph ϕa > 0, together
with a unique attracting graph ψa ≤ 0.

The dynamics in this case can be converted into two parts, one is just in
Case A we give above, the other is in Case B. This is done by considering
the forward iterations at the negative part and the backward iterations at
positive part respectively. Notice that, all the graphs of fibre maps in this
case have the same shape shown in Figure 3.4(f).

Precisely, a < 0 implies λg(θ)f(0 + a) < 0 for any (θ, 0), hence all the
points (θ, x) with x ≤ 0 always remain at the part of S1×(−∞, 0]. The maps
f(x+a) at the part S1× (−∞, 0] are increasing, β-convex, and f(0+a) < 0.
Thus for this region it is in Case B, there exists a unique invariant graph
ψa ≤ 0 which attracts all points of S1 × (−∞, 0].

If we consider the backward iteration F−1 starting from x = 0, then all
the iterates stay inside the part of S1 × (0,+∞), that is, S1 × (0,+∞) is
invariant for F−1. Notice that, in this case f−1 is increasing, β-concave,
and f−1(0) > 0. Thus this is in Case A for F−1, there is a unique invariant
graph ϕa > 0 which is attracting for F−1. Therefore in system (3.16) given
by F , this ϕa > 0 is repelling and the unique invariant graph in the positive
part , S1 × (0,+∞).

For the backward iteration F−1, a particularly situation occurs for pinched
systems. In this case, we cannot define such operation on all the fibres. For
those fibres which are preimages of the system pinched points, all their points
are mapped to the attracting graph ψa and the repelling graph ϕa has no
values there. Because that g(θ) = 0 only in a zero measure set, the set of its
preimages also has zero measure. On the fibres which is not in this set, the
existence of the values of the repelling graph is guaranteed by the contrac-
tion from the concavity of every iterate, which is proved in Lemma 3.3.3.
Therefore, for the pinched systems, their repelling graphs do have values in
a full measure set. This is also the case when a ≥ 0, unless the repelling
graph is ϕ0 = 0.

Case a = 0 If a = 0, x = 0 must be an invariant graph since f(0 + a) =
f(0) = 0. Whether it is attracting or repelling depends on the value of its
vertical Lyapunov exponent, or to say, the value of the parameter λ. Since
the vertical Lyapunov exponent νϕ of an invariant graph ϕ is defined by

νϕ =

∫
S1

log
(
λf ′(ϕ(θ) + a) · g(θ)

)
dθ.

At invariant graph x = 0, it is

νx=0 =

∫
S1

log
(
λf ′(0) · g(θ)

)
dθ.

For any g given, the value of νx=0 is decided by the value of λ. If λ is
small enough such that νx=0 < 0, then x = 0 is attracting. It is repelling if
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νx=0 > 0. However, to see more complete details of the dynamics of whole
system in each these two cases, we still need to refer to the fibre maps, which
we plot in Figure 3.4(a) and Figure 3.4(b).

Similar with the previous case a < 0, we also consider the forward it-
eration of F at negative part S1 × (−∞, 0] and the backward iteration of
F−1 at positive part S1 × [0,+∞). In this case of a = 0, each part forms a
subsystems itself, which is Keller’s model.

We know that a negative vertical Lyapunov exponent of forward itera-
tion is positive for backward, and vice versa. Hence, if νx=0 < 0, x = 0 is the
unique invariant graph in S1× (−∞, 0], which attracts all the points in this
region; meanwhile under backward iteration in S1 × [0,+∞), x = 0 must
be the repelling one. Furthermore, by Keller’s Theorem, there is uniquely
another graph which is attracting in S1 × [0,+∞) under the backward iter-
ation. Therefore, for forward iteration in this part S1× [0,+∞), there exist
two invariant graphs that x = 0 is attracting and ϕ0 > 0 is repelling.

When νx=0 > 0 with large enough λ, the situations of negative and
positive parts just exchange as in case of νx=0 < 0 above. See the first
row of Figure 3.4 for the fibre maps and the pictures in the middle row of
Figure 3.5 and Figure 3.6 for invariant graphs in forced systems. So in this
case, we have that x = 0 is the unique repelling invariant graph and there
is another one in S1 × (−∞, 0] which is attracting.

Notice that, if the system is pinched, the lower attracting invariant graph
is strange in this case. We plot in Figure 3.6(f) with more large λ for a better
view. Moreover for any a > 0, Lemma 3.4.3 implies that there exists no any
invariant graph and all points in the system go to +∞ eventually. So the
critical value a0 of bifurcation in this case are all at a0 = 0.

The particular case is νx=0 = 0 at a λ0. Keller’s Theorem says x = 0 is
the unique and attracting invariant graph of both the forward and backward
iteration in each of the two parts respectively. This means that it is the only
invariant graph in the system, which attracts all the points below it and
repels the points above it to +∞. We view this case as that the attracting
and repelling graphs coincide, by Lemma 3.4.3 we know that a = 0 is also
the critical bifurcation value for this λ0.

Case a > 0 The monotonicity with respect to the parameter a implies
that all the invariant graphs are now at the same side of x = 0 when a > 0,
except for the situations that the critical value of bifurcation is a0 = 0 which
we point out above.

For each part that the invariant graphs locate in, its dynamics now goes
into either the case of Proposition 3.3.8 or its analogous convex situation,
where we prove that there are two invariant graphs. Lemma 3.4.2 shows that
the two invariant graphs get more and more closer with the increasing of a.
We also know from Lemma 3.4.3 that, when two invariant graphs intersect
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at some a0 > 0, there exists no any invariant graph for a > a0. All these
facts lead to the similar arguments of Proposition 3.3.10, which shows that
a saddle-node bifurcations take place at some critical value a0.

Positive measure for zeros of g

This last case is rather special which owns the distinctive behaviour of forced
systems, that is, there exists a unique invariant graph which is attracting for
any parameters value. So there is no bifurcation like the unforced interval
maps f and the common forced systems (3.16) in the previous case.

Let the set P = {θ ∈ S1 : g(θ) = 0}, and denote its Lebesgue measure
by m(P ). For the union set of preimages of P under the irrational rotation
R(θ), we have known that the repelling invariant graph is not defined on it.
When m(P ) = 0, this union set is also a zero measure set, so it is possible
for the existence of a repelling invariant graph almost everywhere, as we
have seen in the previous case. If m(P ) > 0, this union of preimages of P
is a full measure set, therefore there is no repelling invariant graph in the
system.

As for the attracting invariant graph, we have the following.

Proposition 3.4.4. In case of m(P ) > 0, for any λ and a, there always
exists a unique invariant graph in the system, which attracts almost all the
points in S1 × R.

Proof. Let A = ∪+∞i=1R
i(P ), we know that m(A) = 1 due to the irrational

rotation R(θ) = θ + ω. For any θ ∈ A, it must be θ = Rn(θ̄) with some
θ̄ ∈ P and n ≥ 1. Denote (θ̄n, xn) = Fn(θ̄, x) = Fn−1(θ̄1, 0), then we can
define a function ψ on this full measure set A by ψ(θ) = xn, the graph of
this function ψ is just the unique invariant graph that we claim.

First we show that ψ is well-defined in this way, that is, for any θ ∈ A,
the value ψ(θ) is unique. Assume that there exist k ≥ 1 and θ̃ ∈ P such
that θ = Rk(θ̃), at the same time with some n 6= k that, θ = Rn(θ̄) with
some θ̄ ∈ P and n ≥ 1 too. We show that for any (θ̃, y) and (θ̄, x), it must
be yk = xn, which means that ψ is well-defined.

Without loss of generality, assume that k > n, then it must be θ̄ =
Rk−n(θ̃). Hence we have F k(θ̃, y) = Fn(θ̃k−n, yk−n) = Fn−1(θ̄1, 0) for any y
and x.

Clearly from the definition of ψ, it is an invariant graph. Moreover, all
the points in fibres of θ ∈ ∪+∞i=0R

−i(P ) are mapped into it, they form a full
measure set of the system since m

(
∪+∞i=0 R

−i(P )
)

= 1. We also notice that
ψ(θ) = 0 for any θ ∈ R(P ), so its vertical Lyapunov exponent must be
negative since m(R(P )) = m(P ) > 0.
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Finally, we point out one special fact on the problem of finding SNAs.
For the case of g(θ) = 0 on a zero measure set in this model, if we

regard a as the varying parameter with λ being fixed, then the bifurcations
are all of saddle-node type. They do result in SNAs when λ is big. On
the other hand, when we treat this example as λ increasing with a = 0
fixed, the bifurcation is a transcritical one. So we have all the examples of
these regular types of bifurcations in one-dimensional systems, namely, the
pitchfork, saddle-node, transcritical, and period-doubling ones, each one can
give the birth of an SNA in a pinched system.

However, although this is possible for any one of these types of bifurca-
tions, one cannot just expect such a result by resembling simply a bifurcation
of the real map to the pinched system. We have to consider that, how the
pinched condition is acted on the system. A bifurcation can happen only
when the pinched orbits locate appropriately in a relative special position.
The Keller’s model is one example. Also the bifurcations result in SNAs in
this model. They all happen at some a 6= 0 in both the one-dimensional case
and the non-pinched ones, but are moved to a = 0 with the intersection of
two graphs, which is due to the pinched condition.





Chapter 4

Attractors of
quasi-periodically forced
S-unimodal maps

We discuss two subjects in this chapter. One is the reverse bifurcations of
S-unimodal maps, which take place on the attractors of cycles of chaotic
intervals. We explain their detailed reason and show their correspondence
to the bifurcations of periodic orbits. The bifurcation theories of periodic
orbits are well developed and very classic, however the bifurcations of cycles
of chaotic intervals can only be found in physical context up to now. In
Theorem D, the first main result of this chapter, we give the mathematical
description of such phenomena, which shows that each of them is the reverse
of a bifurcation of periodic orbit. The crucial concept for this theorem is
the block structures of restrictive intervals of S-unimodal maps. We display
that a set of restrictive intervals occurs together with a periodic orbit, and
the reverse bifurcation takes place when it changes to be non-restrictive.

The other subject is the transition of attractors in quasi-periodically
forced S-unimodal systems, which is also based on the block structures of
restrictive intervals of S-unimodal maps. We propose the general mechanism
of the transition of attractors with respect to a increasing parameter of
forcing term on a fixed S-unimodal map, which is well verified with numerical
evidences.

This chapter has four sections. In the first one we give a short intro-
duction of the reverse bifurcation phenomena to make our statements above
more intuitively and more definitely. We display two concrete examples first,
and then exhibit briefly the concept of restrictive intervals and the mech-
anism of reverse bifurcations. Formal explorations start from the second
section, which is devoted to the definition and properties of restrictive in-
tervals of S-unimodal maps, their representation via extension pattern, and
the characterization of the topological attractors by these intervals. With

73



74 CHAPTER 4. ATTRACTORS OF FORCED S-UNIMODAL MAPS

these knowledge, in the third section we discuss precisely the reverse bifur-
cations of S-unimodal maps. Theorem D is presented and proved in the
first subsection. By viewing each pair of corresponding bifurcations, we can
also obtain an integrated perspective on the transition and self-similarity of
attractors in a full S-unimodal family, that we shortly explore in the sec-
ond subsection. The other main result is given in the fourth section, where
we demonstrate the general mechanism of the transitions of attractors in
quasi-periodically forced S-unimodal maps. This mechanism displays how
the periodicity changes with the increasing of the perturbation on a fixed
S-unimodal map.

4.1 Introduction of reverse bifurcations

In this section we exhibit the reverse bifurcations of S-unimodal maps, and
introduce briefly the idea of their treatments and the concepts involved.
Such bifurcations happen on the attractors in form of cycles of intervals,
that we first get acquainted with their phenomena intuitively below. Then
we summarize the formal arguments that we develop in the following sec-
tions, they can show that how each bifurcation of this type corresponds to
a classical bifurcation of periodic orbit and hence can be regarded as its
reverse. Furthermore, they are also the basis for understanding the cor-
responding mechanism of the periodicity of attractors in quasi-periodically
forced systems.

The reverse bifurcations of S-unimodal maps are reported for decades,
but few mathematical treatments are known yet. The S-unimodal maps are
unimodal maps with negative Schwarzian derivative in every point except
for the critical point c. By unimodal maps we mean continuous interval
maps f : [a, b] → [a, b] who have only one extreme c on [a, b] and map
the endpoints to one of them. A prototype of family of S-unimodal maps
is given by the popular logistic family fµ(x) = µx(1 − x) where µ is a
parameter. The classification of topological attractors of S-unimodal maps
and the bifurcations of periodic orbits are all very classic results in the field
of dynamical systems on intervals. It is known that (see [32, 52]), for an
S-unimodal map, there exists only one topological attractor which belongs
to one of the following three types: an attracting periodic orbit, a solenoidal
(Feigenbaum-like) attractor, or a cycle of intervals. In the transition of an
S-unimodal family like fµ, attractors of these three types alternate in a
certain order. The solenoidal attractors are not generic in the sense that
they occur only for a zero measure set of parameter value µ. For the other
two types, it is well-known that a new attracting periodic orbit comes out
of a bifurcation. There are two generic types of such bifurcations which
are period-doubling and saddle-node one respectively. The period-doubling
cascade to chaos is one of the most important result in chaotic dynamical
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(a) Attractor diagram of f(x) = µx(1−x)
for µ ∈ [3.57, 3.68]. The attractor changes
from 8 bands to 4, 4 bands to 2, and 2
bands into 1 at about 3.5747, 3.5924 and
3.678 respectively, where we marked by
vertical lines.

(b) Attractor diagram of f(x) = µx(1 −
x) for µ ∈ [3.8565, 3.8575]. At the place
a little larger than 3.8658, the attractor
changes from 3 bands directly into a one
piece band. It is the reserve of saddle-node
bifurcation.

Figure 4.1: Examples of band merging by reverse bifurcations.

systems. After the cascade, chaotic attractors in form of cycles of intervals
appear. When the attractor is a cycle of n intervals, each of the interval is a
chaotic subsystem under fn with sensitive dependence on initial conditions,
hence the attractor appears as n bands. Relative to the developed theory
on bifurcations of periodic orbits, the bifurcations of cycles of intervals can
only be found in physical context, we review shortly now.

There are two types of bifurcations of chaotic interval attractors. In
1980, Lorenz published a paper [51], where he found a series of procedure
which he thought to be reverse of the period-doubling cascade in a one-
parameter unimodal family. The phenomena are: after the period-doubling
cascade to the Feigenbaum attractor, there exists a series of µi values for
i = . . . n, n − 1, . . . 1, such that 2i bands merge into 2i−1 bands at µi, with
two adjacent bands meeting at a common endpoint and then becoming one.
See Figure 4.1(a) for these reverse bifurcations of the logistic family.

Another type of bands merging was found by Grebogi et al [30], which
happens when the chaotic three-bands attractor touches the unstable period
3 orbit born from a saddle-node bifurcation. It results the chaotic attractor
in three narrow bands into a chaotic attractor filling a entire interval, see
Figure 4.1(b). This bifurcation is called an interior crisis in physical context,
which occurs at a precise parameter value that marks a discontinuous jump
in size of the chaotic attractor as in Figure 4.1(b). Such jumps or explosions
are typical and common in nonlinear dynamics, for example, phenomenon
in the forced Duffing oscillator by Ueda [75], and also the quasi-periodically
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forced S-unimodal maps we will study later in this chapter. It is observed
that these explosions always involve collisions between attractors and un-
stable periodic motions or their insets, which are basin boundaries.

Actually, these two types of reverse bifurcations are treated totally in
consentaneous way for the S-unimodal maps by us. In Theorem D we explain
mathematically the mechanism of these reverse bifurcations, which shows
that each of them just corresponds to one bifurcation of periodic orbit in
an S-unimodal family. Their correspondence are displayed by the restrictive
intervals of unimodal maps.

Briefly saying, for any point p ∈ [a, b], denote by p′ the unique point
such that f(p) = f(p′) for a unimodal map f . For {p0, p1, . . . , pn−1} a
periodic orbit of period n of f , its central point p0 is the only one that
no any other pi of this orbit can belong to [p0, p

′
0], the central interval.

Associated to this orbit, there exists a unique set of K intervals [pi, qi] (or
[qi, pi]) for 0 ≤ i < K with K = n or 2n, which satisfies the following
properties: q0 = p′0; f

K(pi) = fK(qi); (pj , qj) ∩ (pi, qi) = ∅ if i 6= j; and
f([pi, qi]) = [pi+1, qi+1] for all 0 < i < K. These K intervals are called to be
restrictive if fK([pi, qi]) ⊆ [p1, q1], which is equivalent to that ∪Ki=0[pi, qi] is
forward invariant under f , and also that every [pi, qi] is periodic of period
K (that is, fK([pi, qi]) ⊆ [pi, qi] for all 0 ≤ i < K).

If p0 and q0 are two central points of different periodic orbits, and both
sets of the intervals linked to their orbits are restrictive, then we have either
p0 ∈ [q0, q

′
0] or q0 ∈ [p0, p

′
0]. Trivially by invariance, the restrictive intervals

of the inner one are also all contained in the restrictive intervals of the
outer, this means that the intersection of all the restrictive intervals of a
unimodal map f forms a nested and invariant set. If f is in addition S-
unimodal, then all these intersection contains the only attractor of system.
Moreover, the situations of restrictive intervals also characterize the types
of attractors of S-unimodal maps: the restrictive intervals of an S-unimodal
map f are infinitely many, if and only if its attractor is solenoidal; the
restrictive intervals are finitely many, and there is no other periodic point
inside their intersection, if and only if the attractor is a periodic orbit;
otherwise, there are other periodic points inside the intersection of all the
finitely many restrictive intervals, if and only if the attractor is a cycle of
chaotic intervals.

To describe the structures of these restrictive intervals and the attractor
contained inside them, extension pattern is a natural language.

A pattern θ represented by a single periodic orbit O(p) is a cyclic permu-
tation ofO(p). If (O(p), θ) is a pattern of cycle of period n and (B, γ) is a pat-
tern of period m. Let O(p) = {p1 < p2 < · · · < pn} and B = {i1, i2, . . . , im}.
Then (O(p), θ) has a block structure over B provided that, n = sm, O(p) =
P1 ∪ P2 ∪ . . . ∪ Pm with Pi = {p(i−1)s+1, p(i−1)s+2, . . . , p(i−1)s+s} for all
i = 1, 2, . . . ,m; θ(Pij ) = Pij+1 for all j = 1, 2, . . . ,m − 1 and θ(Pim) = Pi1 .
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Thus each of the sets Pi is a block of O(p). We can view each block as a
“fat” point and O(p) as a “fat” cycle with the pattern (B, γ). In this case,
we say, by an abuse of notation that, O(p) is an extension pattern of B
which has a block structure over it.

For p and q two central points with q ∈ (p, p′), denote by O([p, p′])
and O([q, q′]) the patterns of the orbits of their restrictive intervals re-
spectively. Both O(q) and O([q, q′]) are extension patterns of O([q, q′]).
Moreover, they are also uniquely decided by the pattern O([q, q′]) and their
patterns O[p,p′](q) and O[p,p′]([q, q

′]) of the central block. Here by O[p,p′](q)
and O[p,p′]([q, q

′]) we denote the patterns of orbits of q and [q, q′] under uni-

modal map G = fKp |[p,p′], with Kp the period of periodic interval [p, p′],
that is, their patterns limited in the central block [p, p′]. So we can define
an operation on the patterns in these cases, which we write as,

O(q) = O([p, p′])nO[p,p′](q),

and

O([q, q′]) = O([p, p′])nO[p,p′]([q, q
′]).

Concerning the case of a series of nested restrictive intervals, if we have
restrictive central points pi for 0 ≤ i ≤ k + 1 and pi+1 ∈ (pi, p

′
i), we have

O([pk+1, p
′
k+1]) = O([p0, p

′
0])nO[p0,p′0]

([p1, p
′
1])n . . .nO[pk,p

′
k]

([pk+1, p
′
k+1]).

We callO([pi, p
′
i]), the pattern of the orbit of intervals [pi, p

′
i], also the layer of

[pi, p
′
i]. For different layers of a given unimodal map, the one who has block

structure over another is said an upper (or inner) layer over its reduction.

A reverse bifurcation happens whenever the innermost layer of restrictive
intervals change from restrictive to be non-restrictive. Namely, in an S-
unimodal families fµ(x) with a parameter µ, at µ0 such that f

Kp
µ0 (c) = p′µ0

for a central periodic point pµ0 , if at the two sides of µ0, it is f
Kp
µ (c) ∈ [p′µ, pµ]

and f
Kp
µ (c) /∈ [p′µ, pµ] respectively, then µ0 is a critical value of reverse

bifurcation.

Theorem 4.1.1 (Theorem D). Suppose that µ0 is a critical value such that

f
Kp
µ0 (c) = p′µ0 for a central periodic point pµ0. Denote by qµ0 the restrictive

central period point who is the second closest to c, that is, with pµ0 the only
restrictive central point in (q′µ0 , qµ0). For value of µ (in Lebesgue measure

sense) arbitrarily close to µ0 with f
Kp
µ (c) /∈ [p′µ, pµ], the attractor changes

from a cycle of period Kpµ0
intervals of [p′µ0 , pµ0 ], to a cycle of intervals of

period Kqµ0
, contained in the restrictive intervals of orbit [q′µ, qµ]. Precisely

for the patterns, as µ0 → µ, we have

O(pµ0 , p
′
µ0 ]) = O([q′µ0 , qµ0 ])nO[q′µ0 ,qµ0 ]

([p′µ0 , pµ0 ])→ O([qµ0 , q
′
µ0 ]).
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The similar bifurcations that the attractor goes from the innermost layer
to the second innermost can also be observed in quasi-periodically forced S-
unimodal maps, which are in form of

{
θn+1 = R(θn) = θn + ω (mod 1),

xn+1 = ψ(θn, xn),
(4.1)

where (θ, x) ∈ S1 × I. Here S1 = R/Z is the unit circle and ω ∈ R r Q is
a fixed irrational number. The function R : S1 → S1 denotes an irrational
rotation of the circle S1 by the fixed angle ω as usual. Furthermore, the
function ψ(θn, xn) is continuous on both x and θ, which is in form of ψθ(x) =
f(x) · gε(θ) or ψθ(x) = f(x) + gε(θ) with f an S-unimodal map defined on
I. Here ε ≥ 0 is used as the parameter to control the perturbation given by
the forcing function g(θ). Moreover, we suppose that ψθ(x) = f(x) for all
θ ∈ S1 if ε = 0, and in case of ψθ(x) = f(x) · gε(θ), gε(θ) ≥ 0 so that the
S-unimodal structure can be maintained in fibre maps.

For the attractors of quasi-periodically forced S-unimodal maps, if we fix
an S-unimodal map and let a control parameter of the forcing term increase,
we can see that there are also the similar bifurcations of bands merging.
Like the unforced maps, it happens when the attractor goes beyond the
boundary of the invariant region and spreads to the larger invariant region
outside. With the help of numerical evidences, the procedure of a series of
bifurcations of band merging is shown to be coincident with the structure
of the restrictive intervals of the unforced S-unimodal map f . This gives
a general mechanism on the change of the periodicity of the attractors for
the forced systems. Precisely, this general mechanism with respect to the
increasing of ε is as below.

Theorem 4.1.2 (Claim E). Suppose the attractor of the unforced S-unimodal
map f(x) is contained in restrictive intervals of pattern

O([pk, p
′
k]) = O([p0, p

′
0])nO[p0,p′0]

([p1, p
′
1])n . . .nO[pk−1,p

′
k−1]

([pk, p
′
k]).

With f being fixed, let ε increase from 0, we can see a process that the
attractor of quasi-periodically forced systems (4.2) becomes stripes on the
cylinder with patterns step by step (maybe not monotonically)

O([pk, p
′
k])→ O([pk−1, p

′
k−1])→ . . .→ O([p1, p

′
1])→ O([p0, p

′
0]).

That is, the attractor merges into stripes with bigger size and less period,
according to the block structure of f(x) in general order.
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4.2 Restrictive intervals and structures of attrac-
tors

In this section we define the basic terminologies and notions of this chapter.
The key concept is restrictive intervals of unimodal maps. A set of restrictive
intervals comes together with a periodic orbit, and the union of every set of
restrictive intervals is forward invariant and contains the only attractor of a
generic S-unimodal map. So they are the major tool for characterizing the
periodicity and states of topological attractors of S-unimodal maps.

The content of this section consists of three parts, each is given in one
subsection. The first one is devoted to the definition and basic properties
of restrictive intervals. In the second one, we introduce extension pattern,
a combinatorial tool which is a natural and convenient tool to describe the
dynamical structure of restrictive intervals. Finally, we introduce the topo-
logical attractors of S-unimodal maps, and characterize them by restrictive
intervals in the last subsection.

4.2.1 Definition and properties

This subsection is devoted to set up the concept of restrictive intervals of
unimodal maps and to exhibit their properties. It can be seen finally that
the intersection of all the restrictive intervals of a unimodal map forms a
forward invariant nested set.

More precise, we start by construction to show that, to every periodic
orbit of a unimodal map, there exists a set of intervals associated naturally.
These intervals are selected preimages of the central interval (see definition
below), and are uniquely determined by this periodic orbit. The construc-
tion of them also shows that, it is equivalent to be restrictive, periodic and
invariant for every set of such intervals. We list all those equivalent condi-
tions by Proposition 4.2.4, thereafter we give our definition of the restrictive
intervals based on this proposition. Due to the invariance of these inter-
vals, the periodicity of any orbit inside them must be a multiple of the
periodicity of these intervals, such properties on periodicity are given by
Proposition 4.2.7. Notice that, the invariance also implies that any a se-
ries of restrictive intervals forms a nested set, with the critical point inside
their intersection. This is the crucial fact for us to study the attractors of
S-unimodal maps with restrictive intervals in the third subsection.

First we introduce some definitions and notations. By saying “an inter-
val” we mean a “closed interval”. The notation I = [a, b] means that a and
b are the endpoints of I but does not necessarily mean that a < b unless this
is specified. This is also the case when we discuss other kinds of intervals.
The n-fold iterates of a map f is denoted by fn. Assume fn(p) = p, one
says then that p is periodic with period n. Moreover, if n is the smallest
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(a) Intervals of a periodic orbit of period
3. The red line is graph of f3 with f =
3.85x(1− x) (in green).

(b) Intervals of 2n type of a repelling fixed
point. The red line is graph of f2 with
f = 3.8x(1− x) (in green).

Figure 4.2: Examples of periodic intervals associated with periodic orbits.

integer for which this is true, then we say that it is the prime period. In
most of situations, when we say “period” we refer to the prime period. If
n = 1, p is called a fixed point. The set O(x) = {fn(x)}∞n=0 is called the
orbit of x ∈ I. The limit set of O(x) is denoted by ω(x).

A continuous interval map f : I → I is called unimodal if it has only
one extreme c on I, and if it maps the endpoints of I to one of them.
Moreover, we assume f is strictly monotone on each of intervals [a, c] and
[c, b]. For simplicity reason, we often prove our results for the case that c is
the maximum. It is easy to see that the other case of c being minimum can
be treated analogously, since they can be transformed into each other just
by a simple change of coordinates. Points p and p′ are called “c-symmetric”
if f(p) = f(p′), and “c-symmetric” interval refers to an interval whose
endpoints are just “c-symmetric”. For two points p, q ∈ I, if p ∈ (q, q′), we
say p is “closer” to c than q. If p is a periodic point of period n, we say p is
central if it is closer to c than any other periodic points of its orbit, and call
[p, p′] a center interval. Thus in the central interval, there is no any other
periodic points of the orbit of p.

Like the case of periodic points, we are also interested in whether the
central intervals can exhibit some periodicity. For this we first show with
the lemma below that, there are a specific set of intervals naturally linked
to every periodic orbit.

Lemma 4.2.1. If p0 the central point of a periodic orbit of period n and
pi = f i(p0), then there is a set of intervals Ji = [pi, qi] for 0 ≤ i ≤ K with
K = n or 2n, such that f(Ji) = Ji+1 monotonically for each 1 ≤ i < K,
where JK = J0 = [p0, p

′
0].
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Proof. Assume that p0 6= c, otherwise we just take this set of intervals to be
degenerated, which is exact the periodic orbit itself. Now we construct the
set of intervals Ji = [pi, qi] as follows.

If n = 1 and f(c) ∈ [p0, p
′
0], we are done with J0 = [p0, p

′
0]. Otherwise,

let p2 = p1 = p0, q2 = p′0, choose q1 such that f(q1) = q2 and q1 is at the
same side of c with p0 (see Figure 4.2(b)). This is for the case n = 1.

Now assume that n > 1. Let qn = q0 = p′0 first, then choose qi such that
f(qi) = qi+1 and f |[pi,qi] is monotone for 0 < i < n. This means that qi is
one of the preimages of qi+1 which belongs to the same side of c as pi. So
the construction can be completed if this preimage of each qi+1 exists.

The existence of the preimages of point qi+1 is equivalent to qi+1 ≤ f(c),
and we know that p1 = f(p0) < f(c), so we just need to prove qi < p1 for
all 1 < i ≤ n. First we start from qn. By assumption, qn = p′0, thus it
must be qn < p1. This is because that c is the maximum, and pi /∈ (p0, p

′
0)

by the definition of the central point, so f(pi) < f(p0) = p1 for all i 6= 0,
that is p1 = f(p0) is the largest one in its orbit, which also means p0 < p1.
Hence we can get qn−1 as the required preimage of qn. Using induction next,
assume that we have obtained qk for some 1 < k < n. Notice that pi < p1
for all i 6= 1, thus we can obtain qk < p1. Otherwise, qk > p1 and pk < p1
implies p1 ∈ (pk, qk), and then fn−k(p1) = pn−k+1 ∈ (pn, qn) = (p0, q0),
which is a contradicts to p0 being central.

When we get q1 and if q1 > p1, the claimed intervals are all constructed
completely, hence we stop with K = n (see Figure 4.2(a)). If q1 < p1, we
recode the subindex by replacing n with 2n and continue the same construc-
tion, which means that q1 is reindexed as qn+1 now. The same arguments
above guarantee the construction process until we get the new q1 reindexed,
and finally q1 > p1 for this time. Notice that if K = 2n, then pn+k = pk,
qn+k and qk are at different side of pk (see the periodic orbit of period 3 in
Figure 4.4(b)).

Thus if K = n, Ji ∩ Jj = ∅ for any 0 ≤ i < j < K; and for K = 2n,
Ji ∩ Jj = ∅ if |i − j| 6= n, and Ji ∩ Jj = {pi = pj} if |i − j| = n. In fact,
these intervals linked to periodic orbit can exhibit many useful dynamical
structures of system of unimodal map, one is as the corollary below.

Corollary 4.2.2. Let p be a periodic point of period n of a differentiable
unimodal map f , we have (fn)′(p) = 0 if and only if c = f i(p) for some
0 ≤ i < n; (fn)′(p) > 0 if and only if K = n; and (fn)′(p) < 0 if and only
if K = 2n.

Proof. By the chain rule, (fn)′(p) =
∏n−1
i=0 f

′(f i(p)). Hence it is 0 if and
only if the only extreme c belongs to this orbit. For the other two cases,
now we just need to show their “if” parts.

Notice that (fn)′(p) is a constant for all the points of the orbit of p,
so we consider only the largest point of the orbit, which is p1 in the pre-



82 CHAPTER 4. ATTRACTORS OF FORCED S-UNIMODAL MAPS

vious lemma. If K = n, we have [p0, p0
′] = [p0, q0] = fn−1([p1, q1]), so

fn([p1, q1]) = f([p0, p0
′]) ⊆ [p1, f(c)]. This implies that, for any x ∈ (p1, p1+

δ) with δ > 0, fn(x) > p1 = fn(p1), hence (fn)′(p) = (fn)′(p1) > 0. The
same arguments show that, if K = 2n, fn([p1, q1]) ⊆ [c, p1], so (fn)′(p) < 0
(notice in this case that, instead of fn, the derivative for fK at p is also
(fK)′(p) = (f2n)′(p) > 0).

Remark 4.2.3. For a one parameter family of unimodal maps who is con-
tinuous with respect to the parameter, it is common that its periodic orbits
also move continuously with respect to the parameter. The arguments above
imply that, these intervals linked to a periodic orbit points change their style
of K = n or K = 2n whenever the central point moves cross the extreme
c. This is because that, for points of a periodic orbit, only the derivative
of the central point changes its sign during this process. For example, the
fixed point x = 1 − 1/µ of the logistic family fµ(x) = µx(1 − x) is of type
K = n when µ ∈ [1, 2), and changes to be type K = 2n with its value
1− 1/µ > c = 1/2 at µ ∈ (2, 4]. �

Now, we discuss when a central interval can be periodic. An interval
J ⊆ I is called to be periodic of period n if fn(J) ⊆ J and Int(fk(J)) ∩
Int(f j(J)) = ∅ for all 0 ≤ k < j ≤ n − 1. In such a case the set O(J) :=
∪n−1k=0f

k(J) is called a cycle of intervals. Any cycle of intervals is necessarily
forward invariant. A set I is forward invariant if f(I) ⊆ I. Thus a point p
stays eventually inside a forward invariant set after it enters. For the well-
known S-unimodal maps, the cycles of intervals containing the critical point
c are of particular interest for their attractors. A simple and direct condition
which ensures that a central interval is periodic is that, the central point p
of period n is restrictive, which means that fn(c) ∈ [p, p′] by the original
idea of Guckenheimer in [32]. However, this condition is only suitable for
those central intervals which are of type K = n in Lemma 4.2.1. We give
new definitions of this concept as follows.

By intervals of a periodic orbit of p, we mean the set of those intervals
constructed by Lemma 4.2.1. We also denote by p(R) the point q1 in the
lemma, which is the most right point of all those intervals. For p a central
periodic point of period n, both the points and intervals of the orbit of p
are called to be restrictive if fK(c) ∈ [p, p′]. Notice that the period of such
intervals is K with K = n or 2n, not necessarily the same as the prime
period of point p. If K = 2n, we call p a periodic point of period-doubling
(or 2n) type. Thus a periodic point of 2n type is itself of prime period n,
but the set of intervals of its orbit has 2n elements.

Some clear and handy equivalent conditions of intervals being restrictive
are given in the following proposition.

Proposition 4.2.4. Let p0 be a central periodic point of period n and
pi, Ji,K be defined as Lemma 4.2.1 above, then the following conditions are
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(a) Restrictive intervals and graph of f2

(red line) for f = 3.1x(1− x).
(b) Restrictive intervals and graph of f2

(red line) for f = 3.6785x(1− x).

Figure 4.3: Examples of restrictive intervals of a repelling fixed point of 2n
type.

equivalent:

(1) fK(c) ∈ [p0, p
′
0], that is, p0 is restrictive;

(2) f(c) ≤ q1;

(3) J0 . . . JK−1 are all periodic;

(4) each fK |Ji is unimodal for 0 ≤ i < K;

(5) ∪K−1i=0 Ji is invariant.

Proof. By Lemma 4.2.1, we know that f(Ji) = Ji+1 and f is monotone on
each Ji for 1 ≤ i < K. This implies that, we only need to verify whether
[p1, f(c)] = f(J0) ⊆ J1 = [p1, q1] or not. All of the above follow straightfor-
ward by it.

We can see in Figure 4.2(a) that, the intervals of a orbit of period 3
are restrictive; while for the example in Figure 4.2(b), the repelling fixed
point is of 2n type, but the intervals of its orbit are not restrictive. More
examples of restrictive intervals of this type can be seen in Figure 4.3. All
these pictures display clearly the properties given in the above proposition.

Remark 4.2.5. Notice that the 2n type is not viewed as being restrictive by
Guckenheimer in [32]. Furthermore, he requires the restrictive central points
to be repelling, but we do not. Our definition has better consistency for our
later arguments. The reader who is familiar with the renormalization theory
of interval maps knows that, some authors use also this name refer to the
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commonly called renormalization intervals. Although a little similar, but
our definition is different with the renormalization intervals either. Their
definition in fact implies the endpoints being also repelling. Here we will
not dwell on the details of this field of renormalization, which consider the
forward iterations of these intervals under the renormalization operator. We
only discuss the topological aspect of dynamics exhibited by these intervals
instead. �

Some other useful and simple facts about the restrictive intervals can
be easily concluded. First, due to the construction, it can be seen that
fK(qi) = fK−n+i(p′0) = pi = fK(pi), thus we can view qi and pi as being
“f i(c) central symmetric” for fK (see Figure 4.2).

Second, if K = 2n, then fn(c) ∈ fn([p0, p
′
0]) ⊆ Jn. Notice that Jn =

[qn, p0] and qn, p
′
0 are at different side of p0. This is the case for all the points

in the orbit of periodic point of 2n type. That is, there are two associated
intervals each at one side of every point of the orbit, and every point of
the orbit is the common endpoint of both two intervals. Therefore, when
there are new periodic points occur in such restrictive intervals, it must be
simultaneously in two intervals at both sides (see Figure 4.3(a)). For this
reason, we call them as period-doubling type.

Example 4.2.6. In Figure 4.3(a), we plot the picture of f2 for f = µx(1−x)
in x ∈ [0, 1] with µ = 3.1. In this case, f has a fixed point p = 1 − 1/µ ≈
0.67742, its central interval is [p′, p] = [1/µ, 1 − 1/µ]. For the fixed point
p, its central interval J0 = [p′, p] is not restrictive under f , since f(x) ≥ p
for all x ∈ [p′, p]. However, if we consider for map f2, then it is restrictive.
Moreover, both this interval J0 and its preimage J1 of f , are invariant under
f2.

If we consider this example from the point of view of family fµ(x) =
µx(1 − x), the following facts are worth noting. When µ > 1, there occurs
the second fixed point p = 1 − 1/µ other than x = 0. This fixed point
p is restrictive of n type for µ ∈ (1, 2) with p < fµ(c) < c < p′; and
becomes 2n type when µ > 2, for which p′ < c < p < fµ(c). Then it keeps
to be restrictive (of 2n type) until µ1 ≈ 3.6785735, which is the root of
f2µ(c) = f2µ(1/2) = 1/µ = p′, equivalently, of µ3 − 2µ2 − 4µ− 8 = 0.

It is clear that, when 2 < µ < 3.6785735, for any q ∈ J0, it must be
f2k+i(q) ∈ Ji for k ∈ N and i = 0, 1. Particularly, when 2 < µ < 3, we
know that all points inside these two intervals converge to p oscillatingly
from its two sides. At µ = 3, a period-doubling bifurcation takes place
with p becoming repelling and two new attracting periodic points of period
two occurring at both its sides (refer to Figure 4.3(a)). Thus for 3 < µ <
3.6785735, the attractors all stay in J0 ∪ J1 with p repelling. Figure 4.2(b)
shows that, at µ = 3.6785, the period-doubling intervals of p is coming to
the end of being restrictive. In fact, a reverse bifurcation just happens when
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(a) Nested restrictive intervals for f(x) =
3.635x(1−x). The red line is graph of f2,
The green one is of f6.

(b) Nested restrictive intervals for f(x) =
3.85x(1− x). The red line is graph of f3,
The green one is of f6.

Figure 4.4: Examples of nested restrictive intervals.

these intervals become non-restrictive, the two pieces of attractor merge into
one as shown in Figure 4.1(a).

This is an example of the correspondence of the bifurcations at two sides
of the restrictive intervals J0 and J1 of p: which starts when µ > 2 with p
becoming 2n type; becomes apparent after µ = 3 by the occurring of new
period-doubling attracting orbit; and finally ends at this reverse bifurcation
with these two intervals of p becoming non-restrictive. In fact, this is the
universal mechanism for all the restrictive intervals of period-doubling type.�

Finally, let us show the properties on the periodicity of periodic orbits
which are inside restrictive intervals. Let {Ji} be a set of restrictive intervals
for 0 ≤ i < K. Since Ji is invariant under fK for each 0 ≤ i < K, denote
fK |Ji by Gi, we have fmK |Ji = Gmi . This implies that, if s ∈ Ji is a periodic
point of period mK of f , then it is a periodic point of period m of Gi (see
Figure 4.4).

On the other hand, given p0 a periodic point of period n with {Ji} the
set of restrictive intervals of its orbit, then for any point p ∈ J0, it must be
fK+k(p) ∈ Jk due to the invariance of the union of these intervals Ji. Hence,
if p is also periodic and it is not an endpoint of J0, its period must be a
multiple of K. In this case, each Jk can be viewed as a block who contains
some points of the orbit of p with the same number. The same arguments
also work if this point p is replaced by a subinterval J ⊆ J0. Hence we have
the following proposition.

Proposition 4.2.7. All the restrictive intervals of a unimodal map f form
a nested set of invariant intervals. Particularly, if p is a restrictive central
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periodic point, and the set of intervals of its orbit are {Pi} for 0 ≤ i < Kp,
then

(1) if r is a central periodic point of period n who is closer to c than p, that
is, r ∈ (p, p′), then n = k×Kp for some k ∈ Z+, and fmKp+j(r) ∈ Pj
for all 0 ≤ j < Kp, m ≥ 0;

(2) if r is also restrictive and the periodic intervals of its orbit are Ri for
0 ≤ i < Kr, then RmKp+j ⊂ Pj for all 0 ≤ j < Kp, m ≥ 0;

(3) for any central periodic point s, if s is closer to c than p and the
restrictive central point r is closer to c than s, namely, s ∈ (p, p′) r
[r, r′], then its orbit O(s) ⊂ ∪Kpi=0Pi r ∪

Kr
i=0Ri.

The proof of this proposition is straightforward from the invariance of the
union of restrictive intervals. Just notice that, for any two different central
restrictive periodic points, it must be one is closer to c than the other, hence
all the restrictive intervals are nested. In Figure 4.4 we plot two examples
of restrictive periodic intervals of period 6, they can show this proposition
intuitively. Note that, Figure 4.4(a) shows three intervals inside each of two
intervals of a fixed point of period-doubling type; while in Figure 4.4(b), it is
two period-doubling intervals contained in each of a periodic three interval.
Clearly, although there are orbits of period 6 in both of the inner restrictive
intervals, but the dynamics of these two period orbits are not same. Next
we introduce extension pattern, which can specify the dynamical structures
of these restrictive intervals and periodic orbits.

4.2.2 Extension patterns

This subsection is devoted to extension pattern, a concept from combina-
torial dynamics, which is the most natural and convenient language for the
dynamics and structures of restrictive intervals and those periodic orbits in-
side them. The reader interested more on combinatorial dynamics can refer
to [2] for a comprehensive discussion on this concept. Here we introduce only
knowledges fitting our purpose: first the necessary definitions, and then a
special property for restrictive intervals of unimodal maps. With this prop-
erty, we define an operation on the patterns of these intervals, which we use
to describe of the dynamics of attractors of S-unimodal maps in the next
subsection.

The combinatorial structure we wish to study can be set up as follows.
Given f : I → I a continuous map of a closed interval I to itself and P a
f -invariant set (i.e., f(P) ⊂ P) with finite elements which are intervals (may
be degenerated, that is, a single point), label the elements of P by

p1 < p2 < · · · < pn
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(a) Enlarged central restrictive intervals
for f(x) = 3.635x(1 − x). The red line is
graph of f2, The blue one is of f6.

(b) Enlarged central restrictive intervals
for f(x) = 3.85x(1 − x). The red line is
graph of f3, The blue one is of f6.

Figure 4.5: Structures of nested restrictive intervals inside the central ones.

(where pi < pi+1 means the right endpoint of pi is no larger than the left of
pi+1). Then the action of f on P can be codified in the map

θ : {1, . . . , n} → {1, . . . , n}

defined by
f(pi) = pθ(i) i = 1, . . . , n.

The map θ encodes the combinatorial structure of each orbit and the way
these orbits intertwine. To stress the combinatorial role of θ, we refer to
any map of {1, . . . , n} to itself as a combinatorial pattern on n elements, or
a pattern for short. The degree of θ, denoted by |θ|, is the number n. We
say that the map f exhibits the combinatorial pattern θ on P, and call P a
representative of θ in f . A given finite invariant set P represents a unique
combinatorial pattern θ, but a given combinatorial pattern θ may have many
representatives in f . To make the situation clear, we may denote a pattern
θ and a representative P by (P, θ), and may also call it a pattern for short.

Let P = {1, . . . , n}. A block in P is defined as a set of the form B =
{i ∈ P|a ≤ i ≤ b}, where a ≤ b ∈ P. By a block structure for a pattern θ
represented by P, we mean a partition B = {B1, . . . , Bk} of P into disjoint
blocks such that if x, y ∈ P belong to the same block, their images under θ
belong to a single block. We number the blocks Bj so that x ∈ Bi, y ∈ Bj
and i < j implies that x < y; then there is a unique pattern γ defined by

θ[Bj ] ⊂ Bγ(j), i = 1, . . . , k.

We call γ a reduction of θ, θ an extension of γ, and refer to B as a block
structure for θ over γ.
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Particularly, if P is a single periodic orbit, the combinatorial pattern θ
represented by P is a cyclic permutation. Let (P, θ) be a cycle of period n
and let (B, γ) be a pattern of period m. Let P = {p1 < p2 < · · · < pn} and
B = {i1, i2, . . . , im}. Then (P, θ) has a block structure over B provided that,
n = sm, P = P1∪P2∪ . . .∪Pm with Pi = {p(i−1)s+1, p(i−1)s+2, . . . , p(i−1)s+s}
for all i = 1, 2, . . . ,m; θ(Pij ) = Pij+1 for all j = 1, 2, . . . ,m−1 and θ(Pim) =
Pi1 . Thus each of the sets Pi is a block of P. We can view each block as a
“fat” point and P as a “fat” cycle with the pattern (B, γ).

Example 4.2.8. Both the periodic orbits of period six in Figure 4.4 have
typical block structures linked to their restrictive intervals. They are of
maps f(x) = µx(1 − x) for two different values µ respectively, and their
pattens and block structures are not the same either.

The map f(x) = 3.635x(1− x) in Figure 4.4(a) has two orbits of period
six, both belong to the two restrictive intervals of the repelling fixed point
which is of 2n type, with each of these two intervals containing three points
of each orbit as shown in the plotted boxes. That is, for these two period
six orbits, each of their three points inside a same restrictive interval form
a block, thus the pattern of both two period six orbits have the same block
structure over the pattern of two restrictive intervals.

In the case of the periodic orbit of period six for the map f(x) =
3.85x(1 − x) in Figure 4.4(b), the six points in the plotted boxes belong
to three blocks respectively, the blocks are given by restrictive intervals of a
period three orbit who contain this period six orbit. �

Remark 4.2.9. Here we’d like to point out that, the two orbits of µ = 3.635
come together continuously from a saddle-node bifurcation at a smaller µ.
They exist thereafter for all value of µ larger than this bifurcation value, even
after they both become unstable. For instance, in Figure 4.4(b) for µ = 3.85,
it can been seen that, outside the boxes we plot, there are also two other
orbits which given by the intersection of f6 and the diagonal. They are just
the continuous successors of these two orbits of µ = 3.635. However, this
cannot be shown in the bifurcation diagram for the logistic family, which is
given only by attractors who must be contained in all restrictive intervals
as we will see in the next subsection. For this case µ = 3.635, refer to
our discussion of Example 4.2.6 and Figure 4.1(a), the period two intervals
created by the first period-doubling bifurcation are still restrictive, hence
new restrictive intervals and orbits brought by bifurcations can only lie in
these two intervals.

While for µ = 3.85, the orbit inside the plotted boxes originate from
period-doubling bifurcation of a period three orbit (see Figure 4.5(b)). It is
the first bifurcation in the big period three window of the transition diagram
of logistic maps. Thus the extension pattern represented by this orbit is over
the three blocks given by restrictive intervals. �
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The examples above demonstrate concretely extension patterns of re-
strictive intervals. The block structure is exact the combinatorial aspect of
Proposition 4.2.7, and therefore is valid for all periodic orbits of points or
restrictive intervals, who are inside another set of restrictive intervals.

Furthermore, there is another special property of this structure for those
unimodal maps: if the extension pattern of an orbit has block structure over
a set of restrictive intervals, then it is uniquely determined by the pattern
of blocks of restrictive intervals, and the pattern of the orbit in the central
block. The details are as follows.

For simplicity reason, when the unimodal map f is known, we abuse the
notation of an orbit and the pattern that it represents. That is, if p is a
periodic point, we use O(p) to denote also the pattern represented by this
orbit, and call it the pattern of (the orbit of) p. If p is a restrictive central
point, we denote by O([p, p′]) the pattern represented by the restrictive
intervals of its orbit. Furthermore, let G = fK |[p,p′] with K the period of
interval [p, p′], we know this restriction function G itself is also a unimodal
map on [p, p′]. If q ∈ [p, p′] is a central restrictive point of f , then q is
a periodic point of G on [p, p′]. We denote by O[p,p′](q) and O[p,p′]([q, q

′])
the patterns that G exhibits on the orbit and the restrictive intervals of q
respectively. Thus we have the following property.

Proposition 4.2.10. Given p and q two central periodic points of a uni-
modal map f with q ∈ [p, p′]. If p is restrictive, then O(q) , the pattern
of point q, is uniquely decided by its reduction O([p, p′]) and the pattern
O[p,p′](q) of the central block. Similarly, if q is also restrictive, O([q, q′]) is
also uniquely decided by O([p, p′]) and O[p,p′]([q, q

′]).

Proof. This proposition is a direct consequence of the monotonicity of uni-
modal map on each side of c. Recall the construction of the orbit of intervals
of p, [p, p′] is set as JK = J0, and for 0 < i < K, f(Ji) = Ji+1 strictly
monotonically. Hence, when the pattern O[p,p′](q) on [p, p′] is known, every

pattern that fK |Ji exhibits on the orbit of q in Ji is uniquely given by the
preimages of O[p,p′](q). Finally, from the pattern that fK exhibits on J1 to

J0, it is uniquely given by the order of fK |J1(q), and how those points of
O[p,p′](q) = fK |J0(q) close to c. The same is for O[p,p′]([q, q

′]) with those
preimages of q′.

To illustrate this proposition, in Figure 4.5 we plot the pictures of the
central restrictive intervals of Examples 4.2.8, which are shown by the outer
big boxes plotted in Figure 4.4. Denote by [p, p′] the central restrictive
intervals that we enlarge by Figure 4.5, in their pictures we plot the graphs
of f6 and fK with K the period of [p, p′] under f , which is K = 3 for
Figure 4.5(a) and K = 2 for Figure 4.5(b) respectively. Clearly, both G =
fK |[p,p′] are unimodal, and f6|[p,p′] = Gi where i = 6/K. In each case, there
is a q ∈ [p, p′], which is central for both maps G and f . The pattern of q that
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G exhibits is O[p,p′](q), represented by the orbit of those i points inside [p, p′]
in Figure 4.5. O(q) is the pattern of q that f exhibits, represented by the
period six orbit in Figure 4.4. The pattern O([p, p′]) is represented by the
orbit of interval [p, p′] in f , which is shown by those plotted outer big boxes
in Figure 4.4. Clearly with these boxes, O([p, p′]) is the reduction pattern
of O(q), whose elements are blocks for O(q). If we embed the central blocks
in Figure 4.5 back into Figure 4.4 and take its preimages, then what obtain
are exact those other boxes plotted.

Finally by Proposition 4.2.10, we can define an operation on extension
patterns of these central points and intervals with their block structures,
which we write as

O(q) = O([p, p′])nO[p,p′](q)

for q ∈ [p, p′] and p restrictive. Concerning a series of restrictive central
points, an easy induction yields that: if pi+1 ∈ [pi, p

′
i] for every restrictive

central point pi of 0 ≤ i ≤ k, then

O(pk+1) = O([p0, p
′
0])nO[p0,p′0]

([p1, p
′
1])n . . .nO[pk,p

′
k]

(pk+1).

In this case, we call O([pi, p
′
i]), the pattern of the orbit of intervals [pi, p

′
i],

the layer of pi. For two layers of a given unimodal map f , the one who has
block structure over the other is refer to an upper (or inner) layer over its
reduction.

We point out that, if an upper layer has only one element in the central
block of a lower one, these two layers have the same combinatorial pattern
in the sense of the very original definition of pattern. For instance, this is
the case of the repelling and attracting orbits of a saddle-node bifurcation
when they are just separated. But we regard them as different patterns to
emphasis the fact that they are representatives with different structures of
restrictive intervals, that is, the attracting orbit has an upper layer since
each of its points is inside one interval of the repelling.

This operation provides us a convenient tool to describe the dynamics of
topological attractors of generic S-unimodal maps, whose unique attractor
must be contained inside all the layers.

4.2.3 Criteria for topological attractors of S-unimodal maps

In this subsection we demonstrate how the structures of topological attrac-
tors of S-unimodal maps can be characterized by restrictive intervals.

It is well-known that, a generic S-unimodal map f has at most one topo-
logical attractor who attracts all the points but a meagre set of the system.
Moreover, this attractor can only be one of the following three types: a
periodic orbit, a solenoidal set, or a finite cycle of intervals that f is chaotic
on their union. Here we give a brief introduction of this classification first,
then show that each type of the attractors just corresponds to a situation
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of those restrictive intervals: a finite number of restrictive central intervals
without any periodic point within the innermost one; infinite many of re-
strictive central intervals; and a finite number of restrictive central intervals
with all periodic points within the innermost one being non-restrictive.

First we review the classic results on topological attractors of S-unimodal
maps. By attractor we mean only the topological attractor, which is a set in
the topological space I with dynamical structure similar to the metric one
in the sense of Milnor. More precisely, a closed invariant set A ⊆ I is called
a topological attractor of f if
(i) rl(A) is a set of second Baire category;
(ii) for any proper closed invariant subset A′ ⊂ A, the set rl(A)r rl(A′) is
of second Baire category as well.
Here rl(A) = {x : ω(x) ⊆ A} is its“realm of attraction”.

A unimodal map is called S-unimodal if it is three times differentiable
with negative Schwarzian derivative outside c:

Sf =
f ′′′

f ′
− 3

2
(
f ′′

f ′
)2 ≤ 0.

A primary reason for working with negative Schwarzian derivative is
Singer’s theorem. This theorem ensures that there is only one attractor of
a generic S-unimodal map that we specify later. To state this theorem we
recall some of definitions. A periodic point x of period n is stable if there
is a non-trivial interval U of x with fn(y) → x for all y ∈ U . When x
is an endpoint of U , it is one-side stable. A necessary condition for x to
be stable is that |Dfn(x)| ≤ 1. A sufficient condition for x to be stable is
that |Dfn(x)| < 1. We denote the derivative of f by either f ′ or Df as
convenient.

Theorem 4.2.11 (Singer[72]). Let f : I → I has negative Schwarzian
derivative. For every stable periodic point x of period n, there is an i <
n and a critical point c or endpoint of I such that y ∈ [c, f i(x)] implies
fkn(y)→ f i(x) as k →∞.

The proof of Singer’s theorem is based upon several facts about Schwarzian
derivatives which we list here and use later:

(1) If Sf is negative, then Sfn is negative for all n > 0.

(2) If Sf is negative, then |f ′| has no positive local minimum. If J = [a, b]
is an interval on which f is monotone and x ∈ J , then |f ′(x)| ≥
min(|f ′(a)|, |f ′(b)|).

(3) If x1 < x2 < x3 are consecutive fixed points of G = fn and [x1, x3]
contains no critical point of G, then G′(x2) > 1.



92 CHAPTER 4. ATTRACTORS OF FORCED S-UNIMODAL MAPS

We give an assumption on the S-unimodal maps which excludes an in-
significant situation, which we think it is not generic. Due to this theorem,
except for the fixed endpoint of I, an S-unimodal map has at most one sta-
ble orbit. Furthermore, if this stable orbit exists, it must attract the critical
point c. This implies that, if the fixed endpoint is stable, either it is the
only one which attracts all points of I; or there is some other point between
it and c, say p, who is fixed and repelling.

For the latter case, if p is not restrictive, then almost all points in [p, p′]
go outside this interval and are attracted by the stable fixed endpoint finally.
Thus the endpoint is also the only attractor, the dynamics of the system is
trivial. This is not an interesting case for us. On the other hand, if p is
restrictive, [p, p′] is invariant under f , while all the other points in I r [p, p′]
are attracted by the endpoint. In this case what we really need to consider is
just f |[p,p′]. So without loss of generality, we assume that, for an S-unimodal
map, if its fixed endpoint is no longer a stable one which attracts all points
of I, then it changes to be unstable. This implies that there can be at most
one stable orbit in the system, which must attracts the critical point c if it
exists. In fact, with this assumption, it can also have only one attractor,
which is given by the following theorem.

Theorem 4.2.12. Let f : I → I be an S-unimodal map. There exists a set
A ⊆ I of second Baire category, so that for each x ∈ A the set ω(x) has to
be of one of the following three types:

(1) ω(x) is a stable periodic orbit;

(2) ω(x) = ω(c) with ω(c) a minimal, solenoidal set of zero Lebesgue mea-
sure;

(3) ω(x) is a cycle of intervals, that is, it is a finite union of intervals
containing c, and f acts as a topologically transitive map on this union
of intervals.

Remark 4.2.13. The above theorem first dated back to Guckenheimer,
who proved in [32] that there is sensitive dependence on initial conditions
in the cycle of intervals, while it must not for the case of stable periodic
orbits. Later it was proved in increasing integrity (see [52] for transitivity)
and generality, refer to [55] for more details. Now we have known that,
the negative Schwarzian derivative is just one of the sufficient conditions
such that a family of unimodal maps have topological attractors of these
types. One can obtain the same kind of results by estimating distortion
of cross-ratios, thus the assumption of negative Schwarzian derivative is
rather restrictive and turns out to be unnecessary. Here in this work we
choose such families just as typical examples to study the transition of their
attractors, but note that our results also work for any unimodal families
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whose topological attractors are of the three types as the theorem above,
for instance, the real analytic unimodal families. �

The detailed definitions of the other two types besides the stable periodic
orbit are as below.

An invariant set S is called a solenoidal attractor or a Feigenbaum-like
attractor if it has the following structure:

S = ∩∞n=1 ∪
pn−1
k=0 fk(In),

where each In is a periodic interval of period pn, with I1 ⊃ I2 . . . and pn →
∞. Notice that a solenoidal attractor is a minimal invariant set, which
means that it is the limit set for any point of it.

For the attractors of the third type, clearly the intervals whose union
forms such an attractor must be periodic, so an attractor of this type is
called as cycle of intervals. We point out here that, actually such an at-
tractor is given by A = ∪K−1i=0 [fK(ci), f

2K(ci)], where these Ji’s are intervals
of the periodic orbit whose central point is the closest one to c among all
the restrictive periodic points of f , and each ci is the extreme of fK in
the restrictive interval Ji. In this case, f |A is chaotic in the sense of De-
vaney ([15]).

Concerning on a family of unimodal maps, a natural and fundamental
problem is to describe the set of parameters corresponding to these three dif-
ferent types of attractors. In the quadratic case we have known the following
(see [28, 47]).

• for the case of periodic orbits, the parameters form a set dense in
parameter space, which consists of countably infinitely many nontrivial
intervals. Moving the parameter inside one connected component of
this set, we see the period-doubling scenario, with universal scaling in
parameter space.

• for the case of solenoidal attractors, the parameters set is a completely
disconnected set of Lebesgue measure zero.

• for the case of cycles of intervals, the parameters set is a completely
disconnected set of positive Lebesgue measure.

So any nontrivial parameter interval contains maps with stable periodic or-
bits, and we cannot find cycles of intervals in a whole connected components
of the parameter space. But close some parameter with interval attractor,
we are likely to find also interval attractors. Recall that this is a general
property of a set of positive Lebesgue measure: almost all points of the
set are so-called Lebesgue density points, where measure accumulates. We
will discuss this a little bit when we later review the intermittency with
saddle-node bifurcation in the next section.
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Next we introduce criteria for the classification of these three types of
attractors. Both the definition and Theorem 4.2.12 are given in terms of
limit sets, which is not so easy to use in practice. However, these three
types of attractors can be characterized simply by the exact three cases of
the sets of central periodic points of the maps, so we can use this fact as
criteria of the classification.

Theorem 4.2.14. The attractor of an S-unimodal map is contained in the
intersection of all the restrictive intervals, and the sets of central periodic
points and the attractors of S-unimodal maps correspond with each other as
follows:

(1) if there are infinite many of restrictive central periodic points of f ,
then its attractor is a solenoid;

(2) if there are a finite number of restrictive central periodic points of f ,
and no any other (central) periodic point within the smallest restrictive
(central) interval, then the orbit of the restrictive central periodic point
closest to c is stable, and hence is the attractor;

(3) if there are a finite number of restrictive central periodic points of f ,
with other periodic points (hence not restrictive) inside the smallest
restrictive central interval, then its attractor is a cycle of intervals,
who is contained inside the cycle of the smallest restrictive central
interval.

Proof. We discuss these three cases one by one as follows.

(1) The case that infinite many of restrictive central periodic points means
the solenoidal attractor, is just from the definition of solenoid and
Proposition 4.2.7.

(2) Now for the case that there are a finite number of restrictive central
periodic points without any periodic point inside. The equivalence of
this case to the existence of a stable periodic orbit follows easily by
the simple lemma below.

Lemma 4.2.15. If f : [a, b] → [a, b] (a < b) is a unimodal map with
f(a) = f(b) = a, then it has only one periodic point a if and only if
f(x) < x for all x ∈ (a, b].

Proof. f(x) < x for all x ∈ (a, b] means trivially that a is the only fixed
point of f . On the other hand, if there is some x0 ∈ (a, b) such that
f(x0) ≥ x0 then, either x0 is another fixed point when f(x0) = x0,
or there must be some other fixed point at (x0, b) when f(x0) > x0,
which is the consequence of the Mean Value Theorem and the fact
f(b) = a < b.
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Now suppose that p is a restrictive central periodic point of period
n, and it is the closest one to c among all those restrictive central
periodic points of f . We have that fn : [p, p′] → [p, p′] is unimodal
by Proposition 4.2.4. Then there is no any other periodic point inside
(p, p′] means that p is the only periodic point of fn|[p,p′]. So p attracts
all the points in this interval due to the lemma above, its orbit must
be a stable one.

On the other hand, if there is a stable orbit of f , Singer’s Theorem
says that, it must be some point p of this orbit such that any y ∈ [p, c]
is attracted to p under fn, where n is the period of p. We prove only
for the case of p < c, p > c can be treated similarly. Of course, we can
let p be the central one, and clearly its attracted interval is at least
[p, p′], which means that there is no any fixed or periodic point of fn

in (p, p′]. Moreover, by the above lemma, we have that p is restrictive
since p < fn(c) < c < p′.

(3) This last case is just the classic result of Guckenheimer, who proved
in [32] that:

Theorem 4.2.16 (Guckenheimer [32]). Suppose an S-unimodal
map f has no stable periodic orbit. Then f has sensitivity to ini-
tial conditions if and only if there is an integer N such that n ≥ N
implies fn does not have a restrictive central point.

We do not repeat the prove here, but just point out why his condition
is qualified in our case, although the definition of restrictive central
points is not exactly same.

We have shown that, it is only in the case above that f can have a
stable periodic orbit, hence in this third case f has no stable periodic
orbit. For the problem that Guckenheimer requires a restrictive central
point being repelling, the arguments of above case also imply that all
the restrictive central points in this case must be repelling too, hence
there is no contradiction with his definition. Finally, taken the period
of the restrictive central periodic point p closest to c as the required
N in the theorem, we have that all the restrictive central points of f
have period no more than N , because [p′, p] is inside all of the central
intervals, so N is a multiple of period of any restrictive central point.
That is, for any n ≥ N , fn does not have a restrictive central point,
so the attractors in this case must be cycles of intervals.

Last, we present a description of the dynamical structures of attractors
with their patterns, which can exhibit more characters of an attractor than



96 CHAPTER 4. ATTRACTORS OF FORCED S-UNIMODAL MAPS

only its type and period. Theorem 4.2.14 implies that, using the operation
we defined for extension patterns, we can display the detailed block structure
of an attractor. Namely, for the cases of periodic orbits and cycles of inter-
vals, if the finite set of restrictive central periodic points of an S-unimodal
map f is {p0, p1, . . . , pk} with pi+1 ∈ [pi, p

′
i] for 0 ≤ i < k, then

O(pk) = O([p0, p
′
0])nO[p0,p′0]

([p1, p
′
1])n. . .nO[pk−1,p

′
k−1]

([pk, p
′
k])nO[pk,p

′
k]

(pk)

gives the pattern of the stable periodic orbit of pk. If the attractor is cycle
of intervals inside these restrictive intervals, then its pattern is

O([pk]) = O([p0, p
′
0])nO[p0,p′0]

([p1, p
′
1])n . . .nO[pk−1,p

′
k−1]

([pk, p
′
k]).

For a solenoidal attractor, we allow to apply this operation infinitely times,
thus its pattern can be written as

O(A) = O([p0, p
′
0])nO[p0,p′0]

([p1, p
′
1])n . . .nO[pk−1,p

′
k−1]

([pk, p
′
k])n . . . .

Notice that, if an attracting periodic point pk moves continuously cross c
with a varying parameter of maps, the pattern denoted byO[pk−1,p

′
k−1]

([pk, p
′
k])

actually changes from type n to type 2n. However, it is usually apparent
that for which case it represents when we use this notation later, so we will
not distinguish these two cases unless necessary.

4.3 Bifurcations and transition of full family

In this section we discuss the bifurcations during the transition of an S-
unimodal family. Theorem D is our first main result of this chapter, which
explains the mechanism of bifurcations for attractors of cycles of intervals.
A bifurcation of this type can be viewed as the reverse of a bifurcation of
periodic orbit, their correspondence is shown by restrictive intervals. The
bifurcations of periodic orbits product new orbits of periodic points together
with new restrictive intervals linked to them, and the reverse bifurcations
happen when the restrictive intervals become non-restrictive. We present
these details in the first subsection.

The transition between each pair of such corresponding bifurcations is a
kind of procedure of full family. This provides us an integrated perspective
of the transition of S-unimodal families, particular the self-similarity during
it. The second subsection is devoted to a short review of this transition
process.

4.3.1 Reverse bifurcations as bands merging

As we have shown with particular examples in the first section of this chap-
ter, the reverse bifurcations of attractors are in form of intervals merging,
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which yield cycles of bigger size and less period. In this subsection we exhibit
precisely the mechanism of their changes. The key factor for the mechanism
is just those restrictive intervals, actually it is the destruction of the inner-
most layer yields the merging of intervals. On the other hand, the birth of a
new layer of restrictive intervals is due to the bifurcation of a new periodic
orbit, hence there are natural relation between these two bifurcations which
explains why a merging of intervals is called as “reverse” bifurcation.

First we review briefly the theories on the bifurcations of periodic orbits.
These knowledge are commonly known in popular textbooks, so we do not go
into much details. A special issue is on the intermittency phenomena linked
with saddle-node bifurcations. The discussions on this issue are necessary
for clarification of the mathematical nature with numerical appearance of
the attractors. After that, we start to investigate the reserve bifurcations.
In Theorem D we present their precise mechanism by extension patterns of
restrictive intervals. At the last of this section, we give some examples to
illustrate the situation much clear.

Bifurcations of periodic orbits

Generally, the qualitative changes of dynamics with respect to parameters
are known as bifurcations. Here for us, this problem is given by how the
state and periodicity of the attractor change with the parameter µ of an S-
unimodal family fµ varying. Roughly speaking, when there is a qualitative
change at µ, one says that µ is a bifurcation or critical value of the parameter.
Concerning those bifurcations which involve periodic orbits, assume fnµ (p) =
p and that p is periodic with prime period n, the behaviours of orbits near
p are usually decided by the number λ(p) = d

dxf
n
µ (p). If |λ(p)| < 1, then

fn is a contraction in some neighborhood of p. Hence, for x close enough
to p, fni(x) → p as i → ∞. On the other hand, if |λ(p)| > 1 there is some
neighborhood of p such that p is the only point which stays always inside
this neighborhood. Moreover, the implicit function theorem implies that
when λ(p) 6= 1 there is a periodic point p(µ) of prime period n depending
smoothly on µ.

Thus the bifurcations of periodic orbits for S-unimodal maps are of two
sorts. The number of periodic orbits of a given prime period n can only
change at a value of µ for which there is a periodic point p of period n with
λ(p) = 1. The stability of a periodic orbit only changes when |λ(p)| = 1.
Bifurcations take place “generically” in the two cases λ(p) = ±1 are the well-
known saddle-node type and the period-doubling one correspondingly. The
detailed analytic forms of their sufficient conditions and the proofs can be
found in any common textbook. We refer to [15, 31] for discussions focused
on S-unimodal families.

Briefly, a period-doubling bifurcation happens at the place that an origi-
nally existed periodic orbit of period n loses its stability with a new periodic
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orbit of period 2n occurring around it. When a periodic point p(µ) of prime
period n depends smoothly on the parameter µ, the period-doubling bifur-
cation takes place at µ0 where λ(p(µ0)) = −1. The orbit loses its stability
if λ(p(µ)) < −1 with parameter µ varying. From the restrictive intervals
point of view, we know by Corollary 4.2.2 that, with the central point of
an attracting periodic orbit moving to another side of c, the derivative λ
of this orbit changes from positive to negative, and the original n type re-
strictive intervals of this orbit change to be 2n type. When finally this orbit
loses its stability, a new attracting orbit occurs with each of these 2n type
restrictive intervals containing one point of the new orbit inside. For typi-
cal S-unimodal families, for example, a quadratic one, the period-doubling
scenario can be seen clearly in its transition diagram of attractors. Recall
that the parameters of this scenario are inside each connected component
of the dense set of parameter space, which consists of countably infinitely
many nontrivial intervals.

A saddle-node bifurcation takes place when the graph of fnµ0 for some
n touches the diagonal tangentially at some µ0, so there occurs a periodic
orbit of period n with λ(p(µ0)) = 1 if this derivative of point p(µ0) exists.
At one side of µ0, this intersection does not happen, the orbit does not exist.
As µ varies to the other side of µ0, the graph of fnµ meets the diagonal at two
points, the new orbit splits into two with one attracting and the other one
repelling. In the transition diagram, this attracting one can be seen as the
attractor provided its period n is rather small. Furthermore, unlike a period-
doubling bifurcation at which the new orbit splits out of an existed attracting
orbit, the new orbit of a saddle-node bifurcation is observed occurring from
a chaotic attractor of cycle of intervals. The dynamical behaviour on such
cycles of intervals is known as (type I) intermittency introduced by Pomeau
and Manneville in [65].

Intermittency is regarded as a route to chaos in context of physics. The
phenomena observed before a saddle-node bifurcation are as follows. There
appears to be a chaotic orbit in the system, see Figure 4.6(a) for example.
Examining the chaotic orbit for parameter close to the bifurcation value,
the character of its transition is that: the orbit appears to be a period
orbit for long stretches of time as the same period of the orbit born by
the saddle-node bifurcation. But after that, there is a short burst (the
“intermittent burst”) of chaotic-like behaviour, followed by another long
stretch of almost period behaviour, followed again by a chaotic burst, and
so on. The average duration of the long stretches between the intermittent
bursts becomes longer and longer, and approaches infinity with the pure
periodic orbit appears at the bifurcation value.

Remark 4.3.1. Notice that, if one only looks at the picture of transition
diagram, it seems that the parameters for intermittency occurring occupy
quite a large nontrivial interval. But we know that, the parameter set of
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cycles of intervals is a completely disconnected set for a quadratic family,
so cycles of intervals cannot appear in a whole connected components of
the parameter space. In fact, a long stable cycle is indistinguishable from
non-periodic motion, and is discernible due to both its high period and short
occurrence. Hence, whether or not an attractor in this case is truly non-
periodic is difficult to judge only by numerical simulation. One should be
aware that, any nontrivial parameter interval does contain dense parameters
for maps with stable periodic orbits. But close a parameter value with
chaotic attractor, we are likely to find also interval attractors. Such values
are almost all Lebesgue density points where measure accumulates. We will
meet this similar situation when we deal with reverse bifurcations. �

The reverse bifurcations

A reverse bifurcation happens when a set of restrictive intervals become non-
restrictive, its performance is that some intervals of the attractor merge into
a larger size one, as we show in Figure 4.1. Theorem D demonstrates the
concrete mechanism of band merging, given by their extension patterns. The
bifurcation value is the so-called Misiurewicz point. Before we exclusively
investigate reverse bifurcations, we make a short exposition on the necessary
known results on the dynamics at such critical values.

To be precise, we deal with a family of one-parameter S-unimodal maps
fµ(x) on the interval I = [a, b], and assume that fµ is also continuous with
respect to the parameter µ. Denote by pµ the restrictive central point of

period n of some fµ. For a value µ0 such that f
Kp
µ0 (c) = p′µ0 with Kp = n

or 2n the period of restrictive intervals of orbit pµ0 , we study what hap-
pens locally when the parameter µ passes through µ0. Here at µ0, we have
f
Kp+1
µ0 (c) = f(pµ0), so µ0 is a Misiurewicz point which means that the critical

point c is preperiodic (i.e., it becomes periodic after finitely many iterates
but is not periodic itself). The map fµ0 at this point belongs to the set
of uncountably many Misiurewicz maps in generic one-parameter families.
In [59] Misiurewicz proved that Misiurewicz maps admit absolutely con-
tinuous invariant measures. Now it is known that the parameters of such
maps are Lebesgue density points of parameters corresponding to absolutely
continuous invariant measures.

Moreover, at the two sides of such µ0, there are different types of be-
haviours. For values of µ at the side of f

Kp
µ (c) ∈ [p′µ, pµ], the intervals are

kept to be restrictive, and with µ approaching to µ0 the homoclinic bifur-
cation takes place. A good introduction on such situations can be found
in the textbook [15] of Devaney. It shows that this critical value µ0 is an
accumulation point of infinitely many saddle-node and period-doubling bi-
furcations, and f

Kp
µ0 |[p′µ0 ,pµ0 ] is conjugate with the shift map of the sequence

space on two symbols, hence is chaotic in the sense of Devaney. Particularly,
the attractor at µ0 is exactly the cycle of intervals of [p′µ0 , pµ0 ]. Notice also
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that, at this side until µ comes to µ0, all the attractors have block structures
over O([p′µ, pµ]), which are the same with O([p′µ0 , pµ0 ]) in pure combinatorial
sense.

At the side of f
Kp
µ (c) /∈ [p′µ, pµ], the intervals [p′µ, pµ] is no longer restric-

tive for the value of µ. A reverse bifurcation occurs at this side when µ is
close to the critical value µ0. In this case, we know that pµ is unstable. By
general theory, an unstable periodic orbit (in fact any hyperbolic set) per-
sists and moves smoothly under small perturbations of the map. But since
the intervals of periodic orbit of pµ are no more restrictive, the attractor
is not limited inside those intervals any longer. While we know that the
attractor has to be contained in the innermost layer of restrictive intervals,
hence it must be inside the originally second innermost restrictive inter-
vals now. This yields the mechanism of the change of attractors at reverse
bifurcations.

Theorem D. Suppose that µ0 is a critical value such that f
Kp
µ0 (c) = p′µ0

for a central periodic point pµ0. Denote by qµ0 the restrictive central period
point who is the second closest to c, that is, with pµ0 the only restrictive
central point in (q′µ0 , qµ0). For value of µ (in Lebesgue measure sense) ar-

bitrarily close to µ0 with f
Kp
µ (c) /∈ [p′µ, pµ], the attractor changes from a

cycle of period Kpµ0
intervals of [p′µ0 , pµ0 ], to a cycle of intervals of period

Kqµ0
, contained in the restrictive intervals of orbit [q′µ, qµ]. Precisely for the

patterns, as µ0 → µ, we have

O([pµ0 ]) = O([q′µ0 , qµ0 ])nO[q′µ0 ,qµ0 ]
([p′µ0 , pµ0 ])→ O([qµ0 ]) = O([q′µ0 , qµ0 ]).

Proof. We show that, for those parameters µ (in Lebesgue measure sense)

arbitrarily close to µ0 with f
Kp
µ (c) /∈ [p′µ, pµ], the cycle of intervals of or-

bit [q′µ, qµ] is the innermost restrictive one of fµ, and there exists non-
restrictive central point inside [q′µ, qµ]. Therefore, our assertion follows by
Theorem 4.2.14.

Consider pµ(R) the most right endpoint of the set of restrictive intervals

of pµ. By Proposition 4.2.4, f
Kp
µ0 (c) = p′µ0 is equivalent to fµ0(c) = pµ0(R).

Meanwhile, we also have that, fµ0(c) = pµ0(R) > sµ0(R) for any non-
restrictive central point sµ0 , and fµ0(c) < qµ0(R) since qµ0 is restrictive
by assumption. That is, sµ0(R) < pµ0(R) = fµ0(c) < qµ0(R).

Now for µ arbitrarily close to µ0 with fnµ (c) /∈ [p′µ, pµ], due to the con-
tinuity of f(µ, x), the above inequality changes to be sµ(R) ≤ pµ(R) <
fµ(c) ≤ qµ(R). It means that qµ is still a restrictive central period point, pµ
becomes non-restrictive, and all the other non-restrictive central points of
fµ0 remain to be non-restrictive. So qµ is innermost restrictive central pe-
riod point now, with all the other central period points inside (qµ, q

′
µ) being

non-restrictive.
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(a) Reverse bifurcation of saddle-node
type with a period 6 cycle.

(b) Reverse bifurcation of period-doubling
type with a period 6 cycle.

Figure 4.6: Examples of nested restrictive intervals.

By “in Lebesgue measure sense”, we mean the following. It is similar
with what we introduce for intermittency and also the homoclinic bifurcation
at the other side of µ0: in any S-unimodal family, parameters correspond-
ing to cycles of intervals cannot appear in any whole connected component
of the parameter space. In fact, in any connected interval of µ0, there are
infinitely many saddle-node and period-doubling bifurcations of periodic or-
bits, discernible with high periods and extremely short life. These infinitely
many tiny windows open and then close very quickly, and all locate in re-
strictive intervals of orbit [q′µ, qµ] which comes continuously from the orbit
of [q′µ0 , qµ0 ] with the same pattern. The closed window gives attractor of
cycle of intervals exactly with this pattern. The opening one cannot be
distinguished hence also look like this cycle of intervals. µ0 is a Lebesgue
density point where measure accumulates, which means that one can ob-
serve chaotic interval attractors in positive possibility, thus those nearby
attractors all look like chaotic bands in the transition diagram by numerical
simulation (see Figure 4.6 for examples).

Maybe the mechanism given above by patterns of restrictive intervals is
lack of intuition, because it is hard to know actually the related restrictive
intervals at an abstractly given parameter. The situation becomes much
clear if one dates back to the birth of these intervals in the transition of
family. Since any set of restrictive intervals must be linked to a periodic
orbit, hence its state is certainly decided by the bifurcation which gives birth
of this orbit. The next examples that we display illustrate clearly the relation
between the birth of restrictive intervals via bifurcation and their destruction
as the reverse. Moreover, this is very helpful for the understanding of the
overall transition structure of a family.
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We give two examples of reverse bifurcations of the logistic family fµ(x) =
µx(1 − x), each corresponds to a generic bifurcation of periodic orbits, the
saddle-node and the period-doubling one respectively. Apparently, it looks
like they exhibit two different behaviours, so they are thought as two sorts of
phenomena in physical context. We will explain their detailed mechanism,
which exhibits that their different appearances are natural from the point
of view of the restrictive intervals.

Example 4.3.2. Our first example is shown in Figure 4.6(a), which is a
reverse bifurcation of a cycle of intervals of period 6, occurring at the value
about µ = 3.6348 for fµ(x) = µx(1− x).

In Figure 4.6(a), the attractor appears as a disjoint six-bands, with each
three in two groups. It suddenly becomes a two-bands at µ = 3.6348 , where
the three disjoint bands of each group merge directly into one. This is an
example of a saddle-node type, because the restrictive intervals of those six
bands originally occurs with a saddle-node bifurcation at about µ = 3.6265.
Notice that before this bifurcation of periodic orbit at µ = 3.6265, the
attractor is a two-bands. After this bifurcation, a periodic orbit of period
six occurs, with each three points of the new orbit from an original band.

From the restrictive intervals point of view, the saddle-node bifurcation
at µ = 3.6265 takes place inside a set of restrictive intervals with two inter-
vals, which contains the two-bands in Figure 4.6(a). After this bifurcation,
new sets of restrictive intervals linked to the new periodic orbits appear.
Figure 4.4(a) displays one case of this situation, where we plot in boxes the
old two restrictive intervals (due to the repelling fixed point, refer to Exam-
ple 4.2.6) and the new six restrictive intervals of the repelling periodic orbit
from the saddle-node bifurcation.

This repelling orbit of period six cannot be seen in transition diagram
Figure 4.6(a), but it persists since its appearance from the saddle-node bi-
furcation. Also it is the case for the restrictive intervals of its orbit, which
last until the reverse bifurcation happens. During this process, a series of
complicated dynamical transition presents in order, which are what we see in
transition diagram Figure 4.6(a). The attractor bifurcates, starting from the
period-doubling bifurcation of the attracting orbit by the same saddle-node
bifurcation at µ = 3.6265, ending with chaotic bands completely coincident
with restrictive intervals of the repelling period six orbit at µ = 3.6348.
Notice that, all these bifurcations of transition happen inside these restric-
tive intervals of this repelling period six orbit, and for each one of them the
transition diagram has the same picture of the general logistic family for
µ ∈ (1, 4]. Moreover, the reverse bifurcation makes the attractor go back
to a two-bands just like that before µ = 3.6265. This is because the inner-
most restrictive intervals come back to exact those before the saddle-node
bifurcation.

This type of reverse bifurcation for a saddle-node bifurcation is common
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refer as (interior) “crisis” in physics, because it always presents a sudden
change of jump in size of a chaotic attractor, with several bands merge into
one piece. There is also evidence in the diagram that the density of points
in the large attractor near the crisis concentrates in the original bands, and
gradually spreads out, indicating another form of intermittency. These are
its main character, which is for all the K = n type of restrictive intervals as
well. Another example of this type can be seen in Figure 4.1(b). �
Example 4.3.3. Our next example in Figure 4.6(b) is also a case of period
six. Differently, it is a reverse of period-doubling one, corresponds to the
K = 2n type.

The reverse bifurcation takes place at about µ = 3.851. The periodic
orbit to which these restrictive intervals linked occurs at about µ = 3.8415,
it is the attracting orbit of period three who comes from the saddle-node
bifurcation which starts the big period three window.

The type of these intervals changes to be 2n (hence period six) since it
moves to different side of c with the repelling orbit which comes from the
same bifurcation of it. But the restrictive intervals of the attracting orbit are
always contained in those restrictive intervals of the repelling orbit, whose
period is kept to be three(see Figure 4.4(b)). Also after a series of compli-
cated dynamical transition in order, the reverse bifurcation comes when the
chaotic intervals attractor is completely coincident with its restrictive inter-
vals. In this case, every pairs of the restrictive intervals bear at each two
sides of the three points of original attracting orbit, the outer series of re-
strictive intervals is of the repelling period three orbit. Hence at the critical
value, the pairs inside each outer intervals merge into one, the periodicity
of the chaotic intervals attractor changes from six to three.

This reverse bifurcation of period-doubling type is usually called as band
merging. Apparently, it is more “smooth” than the reverse of saddle-node
one. This is only because that, the pairs of the inner restrictive intervals are
not totally disjoint, but with a common endpoint instead. Therefore, as the
attractor spreads inside and occupies the intervals finally, every pairs meet
naturally and continuously. �
Remark 4.3.4. In the literature, phenomena similar as these reverse bi-
furcations are considered to be typical and common in nonlinear dynamics,
the popular opinion on their reason is that they are caused by apparent
collisions between attractors and unstable periodic motions. In S-unimodal
case, that is the chaotic intervals attractor touches the unstable periodic
orbit. Notice that, for repelling periodic orbits, all the points nearby move
away from them. The possible way for an attractor to touch a repelling
orbit is that, it hits some preimage of a point of the orbit. The c-symmetric
points are exactly the preimages of the central points in S-unimodal case.
This mechanism for touching the repelling orbits can also be seen in the
quasi-periodically forced systems later. �
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Figure 4.7: Example of not generic family with period-halving.

4.3.2 Self-similarity in transition of S-unimodal family

In this subsection we make a brief descriptive exposition of the transition of
a generic S-unimodal family, and the self-similarity during it.

From the restrictive intervals point of view, the transition in a life cycle
of each restrictive interval can form a full family. Namely, if [p, p′] is a restric-
tive periodic interval of period K, then from its creation with the occurrence
of the periodic orbit of p, to its destruction at reverse bifurcation of [p, p′]
becoming non-restrictive, fK |[p,p′] has the same transition with a general
S-unimodal family. Hence each of such cycle is a unit of self-similarity, since
the dynamics evolves with similar structures. This fact in turn provides us
an integrated perspective of the transition of S-unimodal families.

For S-unimodal maps, the transition of a family is also an important issue
besides the classification of their behaviours, that is, how the overall dynam-
ics evolves with respect to a parameter. The works of Guckenheimer [31]
and Devaney [14] are devoted to the systematic genealogy of periodic orbits
in the transition, which display that there exists particular regularity on
the order of the occurrence and also coexistence for periodic orbits of uni-
modal maps. People also notice the obvious self-similarity in the transition
diagram. In [13], Derrida Gervois and Pomeau exhibited this internal sim-
ilarity with a composition law of MSS (Metropolis-Stein-Stein) sequences
(which is the same as the popular kneading sequences nowadays). Now we
exhibit such structures with those restrictive intervals, which is more simple
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but integrated.

For simplicity, we only consider a generic family as Devaney in [14]. We
assume that fµ(c) goes from a to b with the increasing of µ. Furthermore,
any periodic orbit must always lasts until fµ(c) = b after its occurrence at a
bifurcation, and must remain unstable since it changes to be so. Hence, the
situation like period-halving in Figure 4.7 cannot occur.

Self-similarity of full families

We know that, a set of restrictive intervals occurs with its periodic endpoints
at some bifurcation and destructs at the reverse bifurcation where it becomes
non-restrictive. For each parameter unit between such two corresponding
bifurcations, this is called as an “window” in the transition diagram. It turns
out that every such period is a unit of similarity, because of a significant
theorem of the full families.

More precise, given a family of one-parameter S-unimodal maps fµ(x) on
the interval I = [a, b] such that fµ is continuous with respect to the param-
eter µ too, a full family is the one that its extreme fµ(c) goes continuously
from one endpoint a to the other b with µ. A prototype is the logistic family
fµ(x) = µx(1 − x) for µ ∈ [0, 4]. For a full family of S-unimodal maps, a
theorem (see Guckenheimer [32]) says that, for any unimodal map g, there
exists a map fµ0 of this family such that fµ0 and g have the same knead-
ing sequence. This means that all the possible combinatorial dynamics of
unimodal maps will occur in a full family. Moreover, the results of Gucken-
heimer in [32] also show that, there must be some map of a full family which
is topologically conjugate to any map of fµ(x) = µx(1− x) for µ ∈ [0, 4].

For our purpose, we may relax a little the restriction of fµ(c) moving
from a to b on the definition of a full family, and ask fµ(c) for going from
any r ∈ [a, c) to b instead. Doing so, we only miss at most one trivial
case: a is the only attracting point for all x ∈ [a, b]. Corresponding to
fµ(x) = µx(1− x), it is the case of µ ∈ (1, 4]. We regard any of such family
as a full family also.

Notice that, the transition of a full family of S-unimodal maps can be
viewed as inside a (the biggest) restrictive interval, their common domain
of definition I = [a, b].

Moreover, if [pµ, p
′
µ] is a restrictive interval of period K of fµ, the maps

fKµ |[pµ,p′µ] form certainly a full family from the creation of [pµ, p
′
µ] to its de-

struction at reverse bifurcation. This is because that, any restrictive interval
[pµ, p

′
µ] can only occur together with the orbit of pµ by some bifurcation at

µ0, by Lemma 4.2.15 we know that it must be fKµ0(c) < c whatever pµ0 itself
is attracting or is the repelling one at a saddle-node bifurcation. On the
other hand, the reverse bifurcation is at some µ1 where fKµ1(c) = p′µ1 .

This fact demonstrates the self-similarity in the transition of a full S-
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unimodal family. Since on every life cycle of such a restrictive interval
[pµ, p

′
µ] above, fKµ |[pµ,p′µ] is a full family, so all of them has the same transition

structure with the full family of S-unimodal maps f on I = [a, b].

In terms of extension pattern, we consider those windows in transition
diagram, which display the evolution of attractors with the parameter. For
any window, there is a pattern of it, which is given by the restrictive intervals
that this window corresponds. In this window, all the pattens of attractors
are then extension patterns who have some block structure over its pattern.
More precise, if pµ is a central restrictive periodic point of fµ, we denote
by {O(pµ)} the set of all the patterns of the attractors who have a block
structure over O([pµ, p

′
µ]). That is,

{O(pµ)} := {patterns with form denoted by O([pµ, p
′
µ])n ∗},

here ∗ is any admissible patten for an S-unimodal map, that is, a pattern of
some attractor of fµ(x) = µx(1− x) for at least µ ∈ (1, 4].

Structures of transition

Below we make some short arguments on the overall structures of the transi-
tion diagram for full S-unimodal families, by considering the pattens inside
a window.

The following two facts are keys for understanding the structure of a full
family and transition of topological attractors:

• similarity: for every restrictive central periodic point p, {O(p)} is one-
to-one with {O(I)}.

• For sets of {O(p)} 6= {O(q)} of two central restrictive points p and q,
either there is an inclusion relation of {O(p)} ⊂ {O(q)} or {O(p)} ⊃
{O(q)}; or they are disjoint ({O(p)}

⋂
{O(q)} = ∅) with an order

relation of {O(p)} < {O(q)} or {O(p)} > {O(q)}. Here < and > refer
to the forcing relation when {O(p)} and {O(q)} are sets of patterns.

That is, if a window does not embed into another one as a part of it,
then they are completely independent.

Notice that, if p ∈ [q, q′], then [p, p′] ⊂ [q, q′], and so p(R) = f(c) <
q(R) implies that q is still restrictive at the moment of [p, p′] becoming
non-restrictive.

So we can try to arrange the parameter space of a full family according
to the patterns of restrictive intervals.

Using the recursive method on the above two rules, we can know more
exactly the general structures. In the general interval I = [a, b], if it is µ ∈
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[0, 1] such that f0(c) = a and f1(c) = b, there are two series of parameters
µsi and µei for i ≥ 0 with

0 = µs0 < µs1 . . . < µsi < . . . < µei . . . < µe1 < µe0 = 1,

such that a new restrictive central interval [pi, pi
′] occurs at µsi and comes to

the end at µei . That is, when µ ∈ (µsi , µ
e
i ], the attractors all have some block

structure over O([pi, pi
′]). Correspondingly, we have the following results on

the attractors:

• for µ ∈ (µsi , µ
e
i ], the period of a periodic attractor (orbit or cycle of

intervals) is s · 2i for some s ∈ Z+;

• for µ ∈ (µsi , µ
s
i+1], the attractor is a period orbit of period 2i;

• if the period of a periodic attractor (orbit or cycle of intervals) is s · 2i
for some prime number s, then it can only occur at µ ∈ (µei+1, µ

e
i ].

Notice that, any periodic orbit with prime number period can only occur
after the central interval of the repelling fixed point becomes non-restrictive,
that is, after the reverse bifurcation terminates the period 2 window. For
the logistic family fµ(x) = µx(1− x), it is after µ1 ≈ 3.6785735, just as we
discussed in Example 4.2.6. For any two such orbits at this part, each of
them corresponds an independent window. More generally, this is also the
case for all periodic orbits who are not a period-doubling type, for example,
the periodic orbit of period 4 with points p2 < p3 < p0 < p1.

The final thing is, this is the same structure in every window of restrictive
intervals µ ∈ [µ0, µ1]. We just need replace µ ∈ [0, 1] by [µ0, µ1], and change
all those period with 2i to be with 2in for n the period of the pattern of
the window (refer to Figure 4.6). Although, there are infinitely countably
many windows inside every window, and there are also infinitely countably
many windows between any two independent windows, we still get a clear
perspective of the general structure.

4.4 Quasi-periodically forced S-unimodal maps

This final section is devoted to the investigation of periodicity of attractors
of quasi-periodically forced S-unimodal maps. We propose the mechanism
of the change of periodicity of the attractor with respect to the increasing of
forcing terms by Claim E, which says that generally the pattern of attractor
goes from inner layer to outer according to the extension pattern of the
unforced S-unimodal map. Our analyses demonstrate the reason of this
mechanism, which is similar with reverse bifurcations of S-unimodal maps
and is clearly illustrated by numerical evidences.
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More precise, a quasi-periodically forced S-unimodal system is given by
map F : S1 × I → S1 × I of the form:{

θn+1 = R(θn) = θn + ω (mod 1),

xn+1 = ψ(θn, xn),
(4.2)

where (θ, x) ∈ S1 × I. Here S1 = R/Z is the unit circle and ω ∈ R r Q is
a fixed irrational number. The function R : S1 → S1 denotes an irrational
rotation of the circle S1 by the fixed angle ω as usual. Furthermore, ψ(θn, xn)
is a continuous function on both x and θ. For a fixed θ, the fibre map ψθ(x):

ψ(θ, ·) : {θ} × I → {R(θ)} × I

is a function of S-unimodal map f(x) perturbed by some function of θ, which
is in form of ψθ(x) = f(x) · gε(θ) or ψθ(x) = f(x) + gε(θ). Here ε ≥ 0 is used
as a parameter to control the perturbation given by the forcing function
g(θ). Particularly, if ψθ(x) = f(x) · gε(θ), we assume that gε(θ) ≥ 0 so that
the S-unimodal structure can be maintained in the fibre maps. In any case,
we suppose that ψθ(x) = f(x) for all θ ∈ S1 if ε = 0.

For such systems, when f is fixed, the general mechanism of the change
of periodicity with respect to the increasing of ε is as below.

Claim E. Suppose the attractor of the unforced S-unimodal map f(x) is
contained in restrictive intervals of pattern

O([pk]) = O([p0, p
′
0])nO[p0,p′0]

([p1, p
′
1])n . . .nO[pk−1,p

′
k−1]

([pk, p
′
k]).

With f being fixed, let ε increase from 0, we can see a process that the
attractor of quasi-periodically forced systems (4.2) becomes stripes on the
cylinder with patterns step by step (maybe not monotonically)

O([pk])→ O([pk−1])→ . . .→ O([p1])→ O([p0]).

That is, the attractor merges into stripes with bigger size and less period,
according to the block structure of f(x) in general order.

Moreover, each of these merging bifurcations happens at the time that
the attractor goes beyond the old block region containing them, similar with
these reverse bifurcations of restrictive intervals in S-unimodal family.

Such systems were studied extensively with numerical methods, and
many phenomena were reported already, which can be seen in an exclu-
sive summary book [24] and references therein. It was found that, similar
phenomena like bands merging, interior crisis in S-unimodal families also
occur for the attractors of such systems. Different with S-unimodal families,
the successive period-doubling bifurcations of periodic orbit, which occur
with the increasing of the maximum of S-unimodal maps, cannot always
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(a) Attractor for ε = 0.59. (b) Attractor for ε = 0.63.

(c) Attractor for ε = 0.64. (d) Attractor for ε = 0.65.

Figure 4.8: Attractors of system (4.3) for different parameter values.
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continue in any forced systems. We will make simple and informal analysis
of the reason of these bifurcations, it can be seen that this process according
to the extension pattern is certainly reasonable.

We have known that, due to the irrational rotation of the base map,
there cannot exist any fixed or periodic points in a quasi-periodically forced
system. As a closed invariant subset, the projection of any attractor to
the base space has to be the whole circle S1. The simplest invariant closed
subset can only be the graph of a map from S1 to R. Particularly, the
attractors of quasi-periodically forced S-unimodal maps (4.2) are in forms
of strips introduced in [3, 21]. That is, let π : S1 × I → S1 the projection
from S1× I to the base circle S1, a strip in S1× I is a closed set A ⊂ S1× I
such that π(A) = S1 and π−1(θ)∩A is a closed interval (perhaps degenerate
to a point) for a residual set of θ ∈ S1. Thus an attractor of system (4.2) is
in a form of union of n strips A = A1 ∪A2 ∪ . . . ∪An, such that Ai 6= Aj if
i 6= j and F (Ai) = Ai+1 (mod 1) for 1 ≤ i ≤ n. Moreover, A is also transitive,
which is the closure of a dense orbit. We call n the period of this attractor
A and each Ai a periodic strip of the attractor. Notice that, Ai 6= Aj for
i 6= j does not mean that Ai ∩ Aj = ∅, this intersection may be a nowhere
dense set.

To analyze the mechanism we claim, first let us look at a particular
example, whose transition is shown briefly in Figure 4.8.

Example 4.4.1. Let the system given by the following map:{
θn+1 = θn + ω (mod 1),

xn+1 = (1 + ε| cos(2πθn)|) 2.1xn(xn − 0.5).
(4.3)

In this example, the forcing term is 1 + ε| cos(2πθn)| with parameter ε. We
choose specially the unforced map to be 2.1xn(xn− 0.5), for the reason that
x = 0 is always an invariant graph, with a preimage x = 0.5 in this system.

In fact, it is equivalent to a change of variables of the common logistic
maps µx(1 − x), so that its second fixed point x = 1 − 1/µ is moved and
fixed to x = 0 in new system given by map 2.1xn(xn − 0.5). In forced
systems (4.3), now the region of S1 × [0, 0.5] is equivalent to the central
interval [0, 0.5] of the fixed point x = 0 of the unforced map 2.1xn(xn−0.5).

Notice that, we have xn+1 < 0 whenever 0 < xn < 0.5 and xn+1 > 0 if
xn < 0. Moreover, there must be a graph ϕ in the negative part S1×(−∞, 0)
who is one of the preimage of the graph x = 0.5. When graph x = 0
is repelling and the region enclosed by ϕ and x = 0.5 is invariant, any
attractor inside this region must be periodic strips whose period is a multiple
of 2. This is displayed clearly in the pictures of the attractors for ε from
0.59 to 0.63, which we plot in Figure 4.8 using different colors for the even
and odd iterates. Certainly, with the top of the attractor more close to
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(a) Attractor for ε = 1.236. (b) Attractor for ε = 1.237.

Figure 4.9: Attractors of |1 + ε cos(2πθn))| 3.3x(x− 0.5) for two parameters.

x = 0.5, the lower bound of its upper strip becomes more close to x = 0.
During the process that the top of the attractor approaches to x = 0.5,
the attractor looks more and more complicated, their pictures illustrate the
fractalization process proved by Jorba and Tatjer in [41]. However, notice
that the periodicity never changes as long as the top does not touch x = 0.5.

The change comes when the attractor finally goes beyond x = 0.5. This
terminates the invariance of the region enclosed by ϕ and x = 0.5, then the
period of the attractor reduces accordingly. We notice that, in the case that
there is some iterates of point with xn > 0.5, it must be xn+1 > 0 too, hence
the period must change for such orbit. Furthermore, this implies that the
attractor must intersect with the graph x = 0 and hence at a dense set on it.
What follows is, the two bands separated by x = 0 before, now both cross
over x = 0 and mix at the neighborhood of it and finally at other region
everywhere, as in Figure 4.8(d).

Another example with xn+1 = |1 + ε cos(2πθn))| 3.3xn(xn − 0.5) show
also this critical point of x = 0.5 clearly. This system is pinched since ε ≥ 1.
We can see in Figure 4.9(a) that the attractor is a periodic SNA of period
2, whose top is very close to but still lower than x = 0.5. Notice that, in
this situation, the two parts of the attractor, which are upper and lower
semicontinuous graphs respectively, are not mixed, although they intersect
at x = 0 densely. While the two parts do merge into one piece when the top
of the attractor goes forward over x = 0.5 as in Figure 4.9(b). �

Remark 4.4.2. The models of this example are modified version of the
so-called “HH” model introduced by Heagy and Hammel in [35], where
they tried to find an SNA by intersection of two periodic curves. They



112 CHAPTER 4. ATTRACTORS OF FORCED S-UNIMODAL MAPS

observed that the two curves mix into one piece immediately after their
collision, and related this phenomenon with the bands merging introduced
by Lorenz( [51]). After them, this kind of bands merging were extensively
found between couples of adjacent curves which are corresponding to period-
doubling points of unforced logistic maps. A band merging is widely thought
as the sign of terminal of period-doubling cascade of periodic invariant curves
in quasi-periodically forced systems. �

With the original “HH” model, all these analyses have to be carried
out on the base of numerical simulations, since all the invariant and pe-
riodic curves and their preimages as boundary of invariant region cannot
be expressed analytically. Unfortunately, this is the case for almost all the
quasi-periodically forced systems that we meet. Even in this artificial ex-
ample that we choose the models particularly, we cannot get the formula
of any invariant periodic curve other than x = 0 either. Even though, this
example still throws light on our investigation of the periodicity problem of
the forced systems.

Analysis on mechanism With the S-unimodal map f(x) of fibre maps
ψθ(x) fixed, the sequent bifurcations of S-unimodal families can hardly take
place with the varying of forcing term in forced system (4.2). It is because
that, those sequent bifurcations are cause by the family parameter µ of
function fµ(x), but the change of the system (4.2) comes from the parameter
ε of forcing term now. The effect of perturbation cause by ε is mostly shown
on the block structure of the attractor of forced system (4.2), rather than
to change this structure of f(x) = fµ0(x).

Precisely, let us consider the forced system (4.2) starting with the pa-
rameter of the forcing term being ε = 0. Thus each fibre map is in fact
unforced, which is just the original S-unimodal map f itself. In this case,
each periodic point of f corresponds exactly a constant periodic curve in the
forced system (4.2), with the same periodicity and stability. The pattern
structure of all the restrictive intervals of f is also preserved by correspond-
ing strips in system (4.2). In above example, they are strips enclosed by
x = 0 and x = 0.5 and by x = 0 and ϕ.

If we increase ε gradually, by the implicit function theorem, all of those
repelling periodic invariant curves in (4.2) persist and move smoothly as
hyperbolic sets. Particularly those ones who correspond to the endpoints
of restrictive intervals preserve the same block structure. Meanwhile, the
attractor also changes gradually in its shape and size with respect to the
perturbation, until it goes beyond the invariant region which corresponds a
forward invariant set of restrictive intervals.

When the attractor breaks through the old invariant region, its period
also changes, with its pattern being the new invariant block which is the
innermost layer containing it. Due to the continuity of the system, such
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(a) Attractor for ε = 0.0. (b) Attractor for ε = 0.001.

(c) Attractor for ε = 0.01. (d) Attractor for ε = 0.012.

Figure 4.10: Attractors of system (4.4) for µ = 3.635 with different ε values.
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(a) Attractor for ε = 0.0. (b) Attractor for ε = 0.0001.

(c) Attractor for ε = 0.001. (d) Attractor for ε = 0.002.

Figure 4.11: Attractors of system (4.4) for µ = 3.85 with different parameter
values.
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breakthrough leads only the attractor to the very outside layer. This means
that what we can observe for its combinatorial dynamics is the same as the
reverse bifurcation of unforced S-unimodal map f . That is, if the pattern of
the attractor before bifurcation corresponds to some O([p0]) of the unforced
map f , then it becomes O([p1]) after the bifurcation, where the central
points p0 ∈ (p1, p

′
1) with no other central restrictive point inside (p1, p

′
1).

1

More precisely, if the original blocks are of period-doubling type, then
what happens is the bands merging of halving its period; for the case of
saddle-node type, it is the interior crisis with several disjoint bands suddenly
merging into one. This mechanism works for blocks of each layer, and hence
the attractor goes all the way out to the final biggest invariant region, and
comes into one piece. The example below illustrates intuitively this process
of the mechanism we present.

Example 4.4.3. We show the transitions of attractors of two systems both
in form of: {

θn+1 = θn + ω (mod 1),

xn+1 = (1 + ε cos(2πθn))µxn(1− xn).
(4.4)

In Figure 4.10 and Figure 4.11 we plot the pictures of some attractors for
µ = 3.635 and µ = 3.85 respectively. The corresponding unforced one-
dimensional logistic maps have been discussed in Example 4.2.8, and their
block structures of restrictive intervals can refer to Figure 4.4.

As we have known, for µ = 3.635, the unforced map has an extension
pattern with two layers, the period two blocks form the lower one, with a
period three pattern over each of the two blocks. This is shown clearly in
Figure 4.10(a) too with ε = 0. This picture illustrates in addition that, the
attractor of µxn(1− xn) at µ = 3.635 is not an orbit of periodic points, but
a cycle of intervals instead. So we start here with an attractor of strips of
period six. With increasing of ε, quickly the three strips inside each block
merge into one piece, the period of the attractor becomes two, and then
these two bands also merge into one at last.

For µ = 3.85, the outer two layers are a period-doubling pattern over each
block of period three. In Figure 4.11(a) for ε = 0, we see there are periodic
curves of period twelve, this means that there are still two more layers by
period-doubling bifurcations over the two layers that we have known above.
The other pictures of Figure 4.11 exhibit each of these reverse bifurcations
in order. That is, three times of the reverse period-doubling, followed by
the final merging of the three strips of the outermost layer. �

Remark 4.4.4. Finally, we mention some facts as necessary supplements
to clarify the general situation more completely.

1In rare occasion, there may be bifurcation which yields an increase of its periodicity.
We shortly explore this non-monotonicity problem in the final Remark 4.4.4.
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(a) Attractor for ε = 0.001. (b) Attractor for ε = 0.005.

(c) Attractor for ε = 0.05. (d) Attractor for ε = 0.36.

(e) Attractor for ε = 0.377. (f) Attractor for ε = 0.378.

Figure 4.12: Attractors of system with fibre maps xn+1 = (1 +
ε cos(2πθn)) 3.3xn(xn − 0.5).
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Figure 4.13: Attractor touch boundary of basin of attraction inside invariant
region.

(1) Neither the size nor the chaoticity of the attractor increases monoton-
ically with respect to the increasing of the parameter of forcing term
completely. Instead, if the attractor lasts in a specific window for a
rather long period, its size and chaoticity may change back and forth.

Furthermore, the periodicity does not decrease all the way in every
system with a fixed forced map either. Definitively, it is the gen-
eral tendency that, we can expect bigger size, more chaoticity and
less period of the attractor with larger parameter of the forcing term.
However, backward behaviours do exist occasionally at certain periods
of time.

The precise dynamics of (4.2) depends on both the S-unimodal map
fixed and the perturbation, particularly on their actions at the po-
sition of the attractor. The attractors in Figure 4.12 are given by
fibre maps of xn+1 = (1 + ε cos(2πθn)) 3.3xn(xn − 0.5). Starting from
ε = 0, the attractor consists of periodic curves of period eight, whose
corresponding periodic orbit of xn+1 = 3.3xn(xn − 0.5) comes from
four times period-doubling bifurcations of the repelling fixed point
x = 0. Notice the situation from Figure 4.12(c) to Figure 4.12(d).
At ε = 0.05 in Figure 4.12(c), the attractor consists of complicated
strips just after a reverse bifurcation of bands merging. If the attrac-
tor is made of smooth periodic curves before the bands merging of
period-doubling type, this bifurcation is normally accompanied with
fractalization close to the critical point. However, after a long time
of transition to ε = 0.36, the two bands of the attractor become very
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simple and smooth curves.

We also point out that, sometimes the increasing of forcing parameter
even can cause a period-doubling bifurcation on the curves of some
attractors. However, usually at the next bands merging with large
enough perturbations, it takes the attractor back to the same combi-
natorial type as before. So the mechanism that the pattern decreases
according to the block structures is still valid in general.

(2) With any a fixed forcing term, whatever how small it is, the period-
doubling cascade of system (4.2) terminates at some moment.

By this we mean that, we give a parameter of the forced S-unimodal
map and increase it as what we do for S-unimodal families. Notice
that, the period-doubling cascade requires smaller and smaller spaces
for their occurrences, which tends to infinitely small finally. This cer-
tainly cannot be satisfied by a fixed forcing term, which in general
brings a fixed amplitude in any forced system.

(3) A crisis of attractor may be caused by collision inside the block strips,
not only by collision at the boundary.

We have shown that, whenever the attractor touches and then goes
beyond the boundary of invariant blocks, it breaks the limit of origi-
nal invariant region. However, it is not the only way for the attractor
to break through. Another observed possibility exists, which is illus-
trated in the case of Figure 4.13. Inside the boundary of invariant
region, there are some other points (plotted in red) mapped out of the
invariant region, instead of being attracted by the attractor. If such
points meet the attractor, then they take way all the points inside the
original invariant region.

�
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[36] M. Hénon. A two-dimensional mapping with a strange attractor.
Comm. Math. Phys., 50:69-77, 1976.
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