Publ. Mat. (2014), 111–134
Proceedings of New Trends in Dynamical Systems. Salou, 2012.
DOI: 10.5565/PUBLMAT_Extra14_06

GEOMETRIC SINGULAR PERTURBATION THEORY FOR NON-SMOOTH DYNAMICAL SYSTEMS

PEDRO T. CARDIN, PAULO R. DA SILVA, AND MARCO A. TEIXEIRA

Abstract: In this article we deal with singularly perturbed Filippov systems Z_{ε} :

(1)
$$\dot{x} = \begin{cases} F(x, y, \varepsilon) & \text{if } h(x, y, \varepsilon) \le 0, \\ G(x, y, \varepsilon) & \text{if } h(x, y, \varepsilon) \ge 0, \end{cases} \quad \varepsilon \dot{y} = H(x, y, \varepsilon),$$

where $\varepsilon \in \mathbb{R}$ is a small parameter, $x \in \mathbb{R}^n$, $n \geq 2$, and $y \in \mathbb{R}$ denote the slow and fast variables, respectively, and F, G, h, and H are smooth maps. We study the effect of singular perturbations at typical singularities of Z_0 . Special attention will be dedicated to those points satisfying $q \in \{h(x, y, 0) = 0\} \cap \{H(x, y, 0) = 0\}$ where F or G is tangent to $\{h(x, y, 0) = 0\}$. The persistence and the stability properties of those objects are investigated.

2010 Mathematics Subject Classification: Primary: 34C20, 34C26, 34D15, 34H05.

Key words: Filippov systems, singular perturbation, tangency points.