CANARD CYCLES AND HOMOCLINIC BIFURCATION IN A 3 PARAMETER FAMILY OF VECTOR FIELDS ON THE PLANE

Paulo Ricardo da Silva

Let the 3-parameter family of vector fields given by	
(A)	$y\frac{\partial}{\partial x} + [x^2 + \mu + y(\nu_0 + \nu_1 x + x^3)]\frac{\partial}{\partial y}$
	$\rightarrow D^2 D^2 (DDDG1) UU$

with $(x, y, \mu, \nu_0, \nu_1) \in \mathbb{R}^2 \times \mathbb{R}^3$ ([**DRS1**]). We prove that if $\mu \to -\infty$ then (A) is \mathbb{C}^0 -equivalent to

(B)
$$[y - (bx + cx^2 - 4x^3 + x^4)]\frac{\partial}{\partial x} + \varepsilon(x^2 - 2x)\frac{\partial}{\partial y}$$

for $\varepsilon \downarrow 0$, $b, c \in R$. We prove that there exists a Hopf bifurcation of codimension 1 when b = 0 and also that, if b = 0, c = 12 and $\varepsilon > 0$ then there exists a Hopf bifurcation of codimension 2. We study the "Canard Phenomenon" and the homoclinic bifurcation in the family (B). We show that when $\varepsilon \downarrow 0$, b = 0 and c = 12the attracting limit cycle, which appears in a Hopf bifurcation of codimension 2, stays with "small size" and changes to a "big size" very quickly, in a sense made precise here.