BESOV SPACES AND THE BOUNDEDNESS OF WEIGHTED BERGMAN PROJECTIONS OVER SYMMETRIC TUBE DOMAINS

Daniele Debertol

 $Abstract _$

We extend the analysis of weighted Bergman spaces $\mathcal{A}_{\mathbf{s}}^{p,q}$ on symmetric tube domains, contained in [2], to the case where the weights are positive powers $\Delta_{\mathbf{s}} \doteq \Delta_1^{s_1-s_2} \cdot \ldots \cdot \Delta_{r-1}^{s_{r-1}-s_r} \Delta_r^{s_r}$ of the principal minors $\Delta_1, \ldots, \Delta_r$ on the symmetric cone Ω . We discuss the realization of the boundary distributions of functions in $\mathcal{A}_{\mathbf{s}}^{p,q}$ in terms of Besov-type spaces $B_{\mathbf{s}}^{p,q}$ adapted to the structure of the cone. We give a necessary and a sufficient condition on the values of p,q and \mathbf{s} for which this identification between $\mathcal{A}_{\mathbf{s}}^{p,q}$ and $B_{\mathbf{s}}^{p,q}$ holds. We also present a continuous version of these latter spaces which is new even for the case $s_1 = \cdots = s_r$ considered in [2]. We use these results to discuss multipliers between Besov spaces and the boundedness of the weighted Bergman projection $P_{\mathbf{s}} \colon L_{\mathbf{s}}^{p,q} \to \mathcal{A}_{\mathbf{s}}^{p,q}$. The situation in the rank two case is specifically dealt with.

2000 Mathematics Subject Classification. 42B35, 32A25.

 $\mathit{Key\ words}$. Bergman projection, Jordan algebra, Besov multipliers, boundary values.