Publ. Mat. **61** (2017), 239–258 DOI: 10.5565/PUBLMAT_61117_09

CONTINUITY OF SOLUTIONS TO SPACE-VARYING POINTWISE LINEAR ELLIPTIC EQUATIONS

Lashi Bandara

Abstract: We consider pointwise linear elliptic equations of the form $L_x u_x = \eta_x$ on a smooth compact manifold where the operators L_x are in divergence form with real, bounded, measurable coefficients that vary in the space variable x. We establish L^2 -continuity of the solutions at x whenever the coefficients of L_x are L^∞ -continuous at x and the initial datum is L^2 -continuous at x. This is obtained by reducing the continuity of solutions to a homogeneous Kato square root problem. As an application, we consider a time evolving family of metrics g_t that is tangential to the Ricci flow almost-everywhere along geodesics when starting with a smooth initial metric. Under the assumption that our initial metric is a rough metric on $\mathcal M$ with a C^1 heat kernel on a "non-singular" nonempty open subset $\mathcal N$, we show that $x\mapsto g_t(x)$ is continuous whenever $x\in \mathcal N$.

2010 Mathematics Subject Classification: 58J05, 58J60, 47J35, 58D25.

Key words: Continuity equation, rough metrics, homogeneous Kato square root problem.