WEIGHTED SQUARE FUNCTION INEQUALITIES

ADAM OSEKOWSKI

Abstract: For an integrable function f on $[0,1)^d$, let $S(f)$ and Mf denote the corresponding dyadic square function and the dyadic maximal function of f, respectively. The paper contains the proofs of the following statements.

(i) If w is a dyadic A_1 weight on $[0,1)^d$, then

$$\|S(f)\|_{L^1(w)} \leq \sqrt{5}[w]_{A_1}^{1/2} \|Mf\|_{L^1(w)}.$$

The exponent $1/2$ is shown to be the best possible.

(ii) For any $p > 1$, there are no constants c_p, α_p depending only on p such that for all dyadic A_p weights w on $[0,1)^d$,

$$\|S(f)\|_{L^1(w)} \leq c_p[w]_{A_p}^{\alpha_p} \|Mf\|_{L^1(w)}.$$

2010 Mathematics Subject Classification: Primary: 42B25; Secondary: 46E30, 60G42.

Key words: Square function, maximal operator, dyadic, weight, Bellman function.