LOCAL RIGIDITY, BIFURCATION, AND STABILITY OF H_f -HYPERSURFACES IN WEIGHTED KILLING WARPED PRODUCTS

Marco A. L. Velásquez, Henrique F. de Lima, and André F. A. Ramalho

Abstract: In a weighted Killing warped product $M_f^n \times_{\rho} \mathbb{R}$ with warping metric $\langle , \rangle_M + \rho^2 dt$, where the warping function ρ is a real positive function defined on M^n and the weighted function f does not depend on the parameter $t \in \mathbb{R}$, we use equivariant bifurcation theory in order to establish sufficient conditions that allow us to guarantee the existence of bifurcation instants, or the local rigidity for a family of open sets $\{\Omega_{\gamma}\}_{\gamma \in I}$ whose boundaries $\partial \Omega_{\gamma}$ are hypersurfaces with constant weighted mean curvature. For this, we analyze the number of negative eigenvalues of a certain Schrödinger operator and study its evolution. Furthermore, we obtain a characterization of a stable closed hypersurface $x \colon \Sigma^n \hookrightarrow M_f^n \times_{\rho} \mathbb{R}$ with constant weighted mean curvature in terms of the first eigenvalue of the f-Laplacian of Σ^n .

2010 Mathematics Subject Classification: Primary: 58J55, 35B32, 53C42; Secondary: 35P15.

Key words: weighted Killing warped products, H_f -hypersurfaces, f-minimal hypersurfaces, local rigidity, bifurcation, f-stability.