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COERCIVITY FOR TRAVELLING WAVES

IN THE GROSS–PITAEVSKII EQUATION IN R2

FOR SMALL SPEED

David Chiron and Eliot Pacherie

Abstract: In a previous paper, we constructed a smooth branch of travelling waves
for the 2-dimensional Gross–Pitaevskii equation. Here, we continue the study of this
branch. We show some coercivity results, and we deduce from them the kernel of the
linearized operator, a spectral stability result, as well as a uniqueness result in the
energy space. In particular, our result proves the nondegeneracy of these travelling
waves, which is a key step in their classification and for the construction of multi-
travelling waves.
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