RETICULOS DISTRIBUTIVOS
Y COHOMOLOGIA DE ESPACIOS
NOETHERIANOS Y COMPACTOS
CON VALORES EN UN HAZ.

Tesis presentada para aspirar al grado de Doctor en Ciencias por Amparo López Villacampa.

UNIVERSIDAD DE BARCELONA Barcelona, Diciembre, 1977

INDICE

INTRODUCCIONpg.	1
CAPITULO 0	
Reticulos distributivos: paso al cociente y lo calizaciónpg.	4
CAPITULO I	
La noción de espectro en reticulospg.	19
CAPITULO II	
Aplicaciones a la topología generalpg.	56
CAPITULO III	
Cohomología de espacios ordenados y espacios no <u>e</u>	
therianos con valores en un hazpg.	7 5
APENDICE	
Un resultado sobre la cohomología de espacios	
compactos con valores en un hazpg.	109
BIBLIOGRAFIA	113

INTRODUCCION

Esta memoria recoge alguno de los resultados inéditos que han aparecido al iniciar un tratamiento "algebraico" de la topología. Dado que el conjunto de cerrados de un espacio topológico tiene estructura de retículo distributivo con elemento máximo y mínimo, el estudio sistemático de dicha estructura en paralelo a la de anillo, apareció como el camino idóneo para introducir en topología un lenguaje más algebraico.

La noción de espectro presentaba el máximo interés en cuanto permitía recuperar ciertos espacios topológicos par tiendo de retículos - al igual que las variedades algebrai cas afines son los espectros de k - álgebras finito-genera dad y sin radical - . El Capítulo I se inicia con la definición de espectro primo de un retículo - aquí y en adelante "retículo" abrevia a "retículo distributivo con ele mento máximo y mínimo" - que es en cierta manera dual de la conocida en anillos. Todo el capítulo gira en torno a esta noción; en los dos primeros parágrafos se caracterizan respectivamente los espacios espectrales - espectros de retículos - y las aplicaciones espectrales - aplicaciones continuas inducidas por morfismos de retículos - El parágra fo 3 se ocupa de las representaciones de un retículo en sus distintos espectros y en particular da la caracterización de los espacios espectrales noetherianos y de los espacios que son espectros minimales de retículos. El capítulo acaba trasladando la noción de dimensión de Krull de anillos a reticulos.

El Capítulo II de aplicación a la topología general, muestra el interés del estudio sistemático realizado en I,

en relación al problema de compactizaciones y cuasi-compactizaciones de un espacio. En particular, para un espacio completamente regular se caracterizan aquellos retículos de cerrados, cuyo espectro maximal es una compactización del espacio. Esta caracterización es por tanto un método constructivo de compactizaciones.

Este trabajo se mueve también, en el horizonte de una teoría general de la dimensión cohomológica de un espacio o más concretamente en el del problema de hallar para la misma una cota en términos "algebraicos". El problema $\underline{s}\underline{i}$ que abierto.

Con todo en el Capítulo III se da, para un cierto dom<u>i</u>
nio de espacios, un método de cálculo de la cohomología de
un espacio con valores en un haz. El método consiste en
la construcción de una resolución "flasque" para un haz sobre:

- 1/ espacios finitos $\rm T_0{\rm -}separados y$ más generalmente espacios en que cada punto tiene un entorno mínimo median te haces de gérmenes de cocadenas de un cierto complejo semi-simplicial.
- 2/ espacios espectrales noetherianos mediante un proceso de paso al límite a partir del caso 1.

Las resoluciones construidas están en la línea de la cohomología combinatoria de Lubkin (9).

Como corolario, se obtiene el conocido teorema de la acotación de la dimensión cohomológica de un espacio noetheriano por su dimensión de Krull.

El hecho — demostrado en el apéndice — de que la coho mología de un compacto con valores en un haz coincida — en el sentido que allí se determina — con la cohomología del espectro primo de un retículo cualquiera, que sea base de cerra dos; parece abrir nuevas perspectivas para el problema de la dimensión.

El Capítulo O recoge en lenguaje algebraico las nociones

básicas y bien conocidas de retículos. Es por tanto un capí tulo de referencias.

Es una obligación y a la vez una gran satisfación terminar estas líneas, expresando mi agradecimiento al profesor Dr. Rafael Mallol sin cuyo estímulo este trabajo no hubiera visto la luz; y lo hago extensivo a todos mis profesores de licenciatura que me dieron la formación matemática básica e indispensable para poder iniciarme en la investigación.

CAPITULO 0: RETICULOS DISTRIBUTIVOS: PASO AL COCIENTE Y LO-CALIZACION.

En este capítulo se dan las definiciones y resultados previos que delimitan el campo, objeto de estudio de esta memoria.

El capítulo gira en torno a tres puntos:

1/ la noción de ideal y la noción dual de filtro de un retículo distributivo.

Los enunciados fundamentales son:

- a) cada ideal es intersección detodos los ideales primos que lo contienen.
- b) existe una correspondencia biyectiva entre los ideales primos y los filtros primos de un retículo.
- c) para retículos de dual complementado, caracterización de los ideales primos minimales como aquellos que sólo conti<u>e</u> nen divisores de cero.
- 2/el paso al cociente en retículos distributivos. A diferencia de lo que ocurre en anillos, el núcleo de un morfismo en tre retículos no determina la imagen; pero el retículo cociente A/p es un objeto universal para los morfismos de A áe núcleo p.
- 3/ la localización de un retículo A por un sistema multiplicativo S es imagen epimórfica de A. Si $\mathfrak F$ es el filtro qe nerado por S se verifica: A $^\sim_{\mathbf S}$ A $_{\mathbf F}$ y (A $_{\mathbf F}$) $^*\simeq$ A $^*/_{\mathbf F}$ lo que de muestra que el proceso de localizar es exactamente dual del proceso de paso al cociente.

El ejemplo 0.1 tiene el interés de traducir algunos de los resultdos y definiciones dadas, en términos de topología general, cuando A es el retículo de cerrados de un espacio topológico X.

<u>Notación</u>: En toda la memoria un retículo denotará un retículo distributivo con elemento mínimo y elemento máximo. Si A es un retículo, $A^{\#}$ designa su retículo dual.

Proposición 0.1:

- 1/ A es un retículo si y sólo si en A existen dos operaciones notadas +, sujetas a verificar:
- a) son asociativas, conmutativas y tienen elemento neutro notados 0,1 respectivamente.
 - b) \forall a,b,c \in A se verifica: (a+b).c = a.c + bc.
 - c) \forall a ε A se verifica: a.0 = 0

$$a_{+}1 = 1$$
.

- d) \forall a ε A se verifica: a.a = a.
- 2/ Invirtiendo el orden de las dos operaciones en un retículo A,se obtiene el retículo A * .

En lo que sigue, un retículo A será un conjunto con dos ... operaciones que verifican las propiedades anteriores...

Definición 0.1:

Sea A un retículo. Un ideal ${\bf q}$ de A, es un subconjunto de A tal que:

 $1/ \sin a, b \in q$ entonces $a + b \in q$.

2/ si a & A y b & q entonces a.b & q.

Las nociones de ideal primo, maximal o principal de un anillo, se trasladan sin dificultad al dominio de retículos. Definición 0.1':

Sea A un retículo. Un filtro $\mathcal F$ de A es un subconjunto de A tal que es un ideal de $A^\#$.

Si A es un retículo de partes de un conjunto, donde la s \underline{u} ma es la reunión y el producto la intersección; la noción da da de filtro coincide con la usual, ya que:

 $1/ \sin a, b \in \mathcal{F}$ entonces $a.b \in \mathcal{F}$

2/ sia & A y b es entonces a + b e S.

Proposición 0.2:

Sea A un retículo. La aplicación que asigna a un subconjunto de A su complementario; define una biyección entre el conjunto de los ideales primos de A y el conjunto de sus filtros primos.

Comprobación:

Si $\mathfrak p$ es un ideal primo de A, notamos A - $\mathfrak p$ su complementario.

La proposición resulta, habida cuenta de las propiedades de la aplicación paso al complementario, del hecho de ser A - p un filtro primo.

Definición 0.2:

Sea A un retículo. Un ideal primo minimal es un ideal primo $_{\rm b}$ tal que su complementario es un filtro maximal.

Definción 0.3:

Sean A_1 y A_2 reticulos. Una aplicación $\phi \colon A_1 \longrightarrow A_2$ se dice que es un morfismo de reticulos si:

1/ φ conmuta con las dos operaciones:

$$\varphi(a+b) = \varphi(a) + (b)$$

$$\varphi(a.b) = \varphi(a) \cdot (b)$$

$$2/\varphi(0) = 0 \quad y_{\varphi}(1) = 1.$$

Definición 0.4:

Sea A un retículo y q un ideal. Llamaremos retículo cociente de A módulo q, notado A/q al conjunto cociente por la relación de equivalencia: $a \sim b \longleftrightarrow \Rightarrow existe \ q \ c \ q \ tal \ que$ a $_+$ q = b $_+$ q; dotado de las operaciones inducidas por las de A.

Proposición 0.3:

Sea A un reticulo y q un ideal. Se verifica:

1/ la proyección canónica A \xrightarrow{p} A/q es un epimorfismo de retículos de núcleo q.

2/ p establece una aplicación biyectiva entre los ideales de A que contienen a q y los ideales de A/q.

Comprobación:

- 1/ es inmediato.
- 2/ se demuestra igual que para anillos, salvo el siguien te punto: sean $q_1 \neq q_2$ dos ideales de A que contienen a q. Entonces $p(q_1) \neq p(q_2)$ ya que si a ϵq_1 y a ℓq_2 , si existiera b ϵ q_2 tal que p(a) = p(b) entonces existe q q tal que q0 a + q1 do que implica q1 a q2.

Proposición 0.4:

Sea A un retículo y q un ideal. Se verifica:

- 1/q es primo si y sólo si A/q es sin divisores de cero.
- $2/_{\rm q}$ es maximal si y sólo si $A/_{\rm q} \simeq \{0,1\}$ retículo con dos únicos elementos -.

Comprobación:

- 1/ se demuestra igual que en el caso de anillos.
- 2/ es corolario de la Proposición 0.3, y del hecho de que en un retículo, un elemento ≠ 1 es no invertible y genera por tanto un ideal propio.

Corolario:

En un retículo, todo ideal maximal es primo.

Proposición 0.5:

Sea A un retículo. Se verifica:

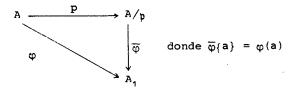
- 1/ Una imagen epimórfica de A no queda determinada por su núcleo.
- $2/A \xrightarrow{p} A/q$ es un objeto universal para los epimor fismos de A de núcleo q.

Demostración:

1/ Sea p un ideal primo, no maximal de A. La aplicación:

es un epimorfismo de retículos de núcleo $\,$ p. Por la Proposición 0.4 apartado 2/A/ $_{\rm p}$ $\not \sim$ {0,1} $\,$ y esto demuestra 1/.

2/ Sea A $\xrightarrow{\phi}$ A, un epimorfismo de retículos de núcleo q. Entonces, el diagrama



es conmutativo.

En particular existen morfismos no inyectivos de núcleo 0. Si $\mathfrak p$ es un ideal primo no maximal:

 $A/p \xrightarrow{\overline{\phi}} \{0,1\}$ donde ϕ es la aplicación del apartado 1/, es uno de ellos.

Proposición 0.6:

Sea A un retículo de Boole y $\phi:A \longrightarrow A_1$ un morfismo de núcleo 0. Entonces ϕ es inyectiva.

Comprobación:

a) Si $\varphi(a)=1$ \longrightarrow a = 1. En efecto si \overline{a} designal el complementario de a: $0=\varphi(a.\overline{a})=\varphi(a).\varphi(\overline{a})=$ $=\varphi(\overline{a})\longrightarrow \overline{a}=0.$

b) Sea $\varphi(a) = \varphi(b)$. Se verifica:

$$1 = \varphi(a_{+}\overline{a}) = \varphi(a)_{+}\varphi(\overline{a}) = \varphi(b)_{+}\varphi(\overline{a}) = \varphi(b_{+}\overline{a}) \longrightarrow b_{+}\overline{a}=1$$

$$0 = \varphi(a_{-}\overline{a}) = \varphi(a)_{-}\varphi(\overline{a}) = \varphi(b_{-}\overline{a}) = \varphi(b_{-}\overline{a}) \longrightarrow b_{-}\overline{a}=0$$

lo que demuestra b = a.

Proposición 0.7:

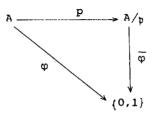
En un retículo de Boole todo ideal primo es maximal. Comprobación:

Sea p un ideal primo del retículo de Boole A. Sea

$$\phi: A \longrightarrow \{0,1\}$$

$$a \longrightarrow \phi(a) = 0 \text{ si } a \in p$$

A partir de la Proposición 0.5 apartado 2/ el diagrama:



es conmutativo. La Proposición 0.6 asegura que $\overline{\phi}$ es isomorfismo y la Proposición 0.7 se sigue entonces de la Proposición 0.4 apartado 2/.

Definición 0.5:

Sea A un retículo.

1/ Llamaremos radical de A, notado rad A, al ideal intersección de los ideales primos de A.

2/ Llamaremos radical de Jacobson de A, notado rad $_{\rm J}$ A, al ideal intersección de los ideales maximales de A.

Proposición 0.8:

Sea A un retículo. Se verifica rad A = 0.

Demostración:

La misma que para anillos sin elementos nilpotentes. Ver por ejemplo (1) de la bibliografía pág. 5.

Corolario:

Sea A un retículo y $\,_{\mbox{\scriptsize q}}$ un ideal. Entonces $\,_{\mbox{\scriptsize q}}$ es igual a la intersección de los primos que lo contienen.

Comprobación:

Basta aplicar la Proposición 0.8 al retículo A/q y tener en cuenta la Proposición 0.3 apartado 2/.

Proposición 0.9:

Sea A un retículo. Se verifica:

 $rad_J A = \{ x \mid \text{no existe } 1 \neq y \in A \text{ tal que } x + y = 1 \}.$

Comprobación:

- a) Sea $x \notin rad_J$ A. Existe entonces un ideal máximal p tal que $x \notin p$. Por ser p máximal (p,x) = (1) y de aquí $1 = ax + p \longrightarrow 1 = 1 + x = ax + x + p = x + p$.
- b) Sea x $_{\mathbb{C}}$ A tal que existe 1 \neq y $_{\mathbb{C}}$ A tal que x $_{+}$ y = 1. Entonces (y) es un ideal propio y por tanto está contenido en un ideal máximal p. En estas condiciones x $_{\mathbb{C}}$ p y a fortiori x $_{\mathbb{C}}$ rad $_{\mathbb{T}}$ A.

Los elementos de rad $_{\rm J}$ A serán llamados los no-divisores de cero al dual.

Teorema 0.1: de representación de Birkhoff.

Todo retículo A, es isomorfo a un retículo de partes de un conjunto.

Demostración: Notaciones:

Spec $_{p}$ A denota el conjunto de los filtros primos de A.

(a) $_{0}$ denota el conjunto de filtros primos de A que contienen \underline{a} .

Definimos: $\underline{A} \xrightarrow{\phi} \mathcal{F}(\operatorname{Spec}_{p} A)$

1/ o es morfismo de retículos ya que:

$$(a + b)_0 = (a)_0 \cup (b)_0$$

 $(a.b)_0 = (a)_0 \cap (b)_0$

 $2/\varphi$ es inyectiva: En un retículo si a \neq b, entonces los ideales (a) y (b) son distintos. El corolario a la Proposición 0.8 asegura entonces que (a) φ (b) φ .

Definición 0.6:

Sea A un retículo. Se dice que A es complementado si \forall a $_{\mathbb{C}}$ A, el filtro de sus divisores de cero al dual: $\mathfrak{F} = \{b \in A \mid a+b=1\}$ es principal. El generador — que es único — de dicho filtro principal se llama el complemento de a; lo notaremos a_.

Si A^{24} es complementado, diremos que A es de dual complementado y esto equivale a que \forall a $_{6}$ A, el ideal de sus divisores de cero es principal.

Proposición 0. 10:

Sea A un retículo complementado, $\phi:A \longrightarrow A$ $\phi(a) = a$ la aplicación paso al complemento.

Se verifica:

$$1/_{\varphi}(a.b) = _{\varphi}(a) + _{\varphi}(b).$$

$$2/\varphi^3 = \varphi$$

$$3/a \in Imag \otimes si y sólo si $o^2(a) = a$.$$

Lema 0.1:

Sea A un retículo de dual complementado. a ϵ A y (b) el ideal de los divisores de cero de a. Entonces a + b no es divisor de cero.

Comprobación:

Sea (c) el ideal de los divisores de cero de a_+b . Entonces: $(a_+b).c = 0 \longrightarrow a.c = 0 \longrightarrow c \varepsilon (b) \longleftrightarrow c.b = c$ y de aquí: $0 = (a_+b).c = c$.

Proposición 0.11:

Sea A un retículo de dual complementado y $\mathfrak p$ un ideal primo de A. Entonces $\mathfrak p$ es minimal si y sólo si $\mathfrak p$ contiene únicamente divisores de cero.

Comprobación:

1/ Sea $\mathfrak p$ primo minimal. $A - \mathfrak p = \mathcal F$ es entonces un filtro maximal y por tanto si a $\mathfrak e$ $\mathfrak p$ se verifica: $(a,\mathcal F) = A$. Esto asegura que existe b $\mathfrak e^{\mathcal F}$ tal que a.b = 0.

2/ Sea p un ideal primo tal que todos sus elementos son divisores de cero. Supongamos que exista un ideal primo \mathfrak{p}_1 , estrictamente contenido en p. Sea a \mathfrak{e} p y a \mathfrak{e} \mathfrak{p}_4 , y (b) el ideal de divisores de cero de a. Por ser \mathfrak{p}_1 primo: b \mathfrak{e} $\mathfrak{p}_4 \subset \mathfrak{p}$ y de aquí \mathfrak{a}_+ b \mathfrak{e}_0 p. El Lema 0.1 asegura que \mathfrak{a}_+ b no es divisor de cero y esto demuestra lo absurdo de nuestra hipótesis.

Corolario: Caracterización de retículos de Boole:

Sea A un retículo de dual complementado. A es un retículo de Boole si y sólo si todo ideal es maximal.

Comprobación:

1/ Si A es un retículo de Boole, la Proposición 0.7 as equra que todo ideal primo es maximal.

2/ Si A es de dual complementado y todo ideal primo es maximal, la Proposición 0.11 asegura que todo $1 \neq a \in A$ es divisor de cero. Sea (b) el ideal de los divisores de cero de a. Por el Lema 0.1, a_+ b es no divisor de cero; por tanto a_+ b = 1, es decir b es el complementario de a.

Definición 0.7: Límite inductivo de retículos:

Sea I un conjunto ordenado filtrante decreciente; y A_i (i ϵ I)

una familia de retículos tal que para cada par $i \ge j$ existe un morfismo.

$$f_{ij}: A_i \longrightarrow A_j$$
 verificando:
 $1/f_{ii} = identidad$ $\forall i \in I$
 $2/f_{ik} = f_{jk} \circ f_{ij}$ para toda terna $i \ge j \ge k$.

En el conjunto suma de los A_i ($i \in I$) definimos la relación de equivalencia: $A_i \ni x_i \sim x_j \in A_j$ si existe $k \in I$, $k \le i$, $k \le j$ tal que $f_{ij}(x_i) = f_{ik}(x_j)$.

El conjunto cociente, módulo esta relación de equivalencia tiene estructura de retículo, inducida canónicamente por las estructuras de los A_i (i $_{\epsilon}$ I). Se le llamará límite inductivo de los A_i (i $_{\epsilon}$ I) relativo a los morfismos f_{ij} y se notará $\lim_{i \in I} \inf_{i \in I} A_i$.

Definición 0.8: Localización de retículos:

Sea A un retículo, S un sistema multiplicativo de A tal que 1 $_{\mbox{\scriptsize c}}$ S y 0 $\mbox{\rlap/e}$ S.

S con la relación: $s_i \ge s_j \longleftrightarrow s_i \cdot s_j = s_j$; es un orden filtrante decreciente.

Si $s_i \in A$ notamos por A_{s_i} el retículo $\{a.s_i | a \in A\}$; y para todo par de elementos de $S, s_i \geq s_i$ definimos:

$$f_{ij}: A_{s_i} \longrightarrow A_{s_j}$$

$$a.s_i \longrightarrow a.s_j$$

De lo dicho hasta aquí se sigue que estamos en las condiciones de la Definición 0.7 y por tanto tiene sentido hablar de $\varinjlim_{s_i \in S} A_{s_i}$. Este límite inductivo será llamado el localisio $s_i \in S$

zado de A en S y notado As.

Proposición 0.12:

Sea A un retículo y S un sistema multiplicativo de A tal que $1 \le S$ y $0 \le S$.

Entonces existe un morfismo epiyectivo $\varphi: A \longrightarrow A_S$.

Comprobación:

 $1 \geq s_i \quad \forall \ s_i \in S \ y \ de \ aqui \ todo \ elemento \ de \ ^S_S \ tiene$ un representante en $A_1 = A$. De aqui $\phi(a) = \{a\}$ es epiyectiva.

Proposición 0.13:

Sea A un retículo, S un sistema multiplicativo de A tal que 1 $_{\rm C}$ S y 0 $_{\rm C}$ S; y $_{\rm S}$ el filtro generado por S. Se verifica A $_{\rm S}$ = A $_{\rm S}$.

Comprobación:

S es cofinal en \mathcal{F} ya que si b $_{\varepsilon}$ \mathcal{F} entonces existen a $_{\varepsilon}$ A y s $_{\varepsilon}$ S tal que b = a $_{+}$ s \longrightarrow b.s = s.

Proposición 0.14:

Sea A un retículo, S un sistema multiplicativo de A tal que 1 ϵ S y 0 ℓ S, y \Im el filtro generado por S.

Se verifica $(A_S)^* \simeq A^*/_S$.

Demostración:

A partir de la Definición 0.4 y de la Definición 0.8, se comprueba inmediatamente que la aplicación:

$$\overline{\varphi}\colon A^*/_{\overline{\zeta}} \longrightarrow (A_{\overline{\zeta}})^*$$

 $\{a\} \qquad \qquad \phi(a) \quad \text{donde } \phi \text{ es la aplicación}$ de la Proposición 0.12, es un isomorfismo de retículos.

La Proposición 0.14 resulta entonces de Proposición 0.13.

Es evidente además que $\phi = \overline{\phi}$ o p donde p: $A^* - \longrightarrow A^*/_F$ es el morfismo canónico de paso al cociente.

Proposición 0.15:

Sea A un retículo y S un sistema multiplicativo de A tal que 1 ϵ S y 0 $\not \epsilon$ S.

Entonces $\varphi:A\longrightarrow A_S$ donde φ es la aplicación de la Proposición 0.12, establece una correspondencia biyectiva entre los ideales primos de A que no cortan a S y los ideales primos de A_S .

Demostración:

- a) Se reduce al caso: S filtro de A,vía la Proposición 0.13 y teniendo en cuenta que para un ideal $\mathfrak p$ de A si $\mathfrak p$ $\mathfrak n = \emptyset$, $\mathfrak p$ $\mathfrak n = \emptyset$ donde $\mathfrak F$ es el filtro generado por S.
- b) Caso S = S: La Proposición 0.3, 2/ asegura que el morfismo canónico: $A^* \xrightarrow{p} A^*/S$ establece una correspondencia biyectiva entre los filtros primos de A que contienen a S y los filtros primos de $(A^*/S)^*$.

A partir de la Proposición 0.2, p establece entonces una correspondencia biyectiva entre los ideales primos de A que no cortan a \mathcal{F} y los ideales primos de $(\mathbb{A}^{*}/\mathbb{F})^{*}$.

La proposición se sigue ahora de que $_{\phi}$ = $_{\overline{\phi}}$ o p donde $_{\overline{\phi}}$ es la aplicación definida en la demostración de la Proposición 0.14.

Proposición 0.16:

Sea A un retículo complementado y q = (c) un ideal principal de A. Entonces A/q es complementado y $\{a\}_{c} = \{a_{c}\}$.

Comprobación:

 $\{a\}$ + $\{b\}$ = $\{1\}$ \longleftrightarrow a + b + c = 1 es decir b + c pertenece al filtro generado por a_c y por tanto b + c + a_c = b + c. En A/q esta igualdad se escribe $\{b\}$ + $\{a_c\}$ = $\{b\}$ es decir $\{b\}$ pertenece al filtro generado por $\{a_c\}$.

Notación:

Ejemplo 0.1:

En los ejemplos siguientes, si X es un espacio topológico y V una parte de X, \overline{V} denotará el cierre de V, y V^0 su interior.

Sea X un espacio topológico y A su retículo de cerrados, con las operaciones unión e intersección de conjuntos.

1/ Existe correspondencia biyectiva entre el conjunto de filtros primos principales de A y el conjunto de cerrados irreducibles de X. En efecto: $\mathfrak{F}=\mathtt{A}^{\#}\mathtt{c}$ es primo si y sólo si para todo par a,b $_{\mathbb{C}}$ A tal que (a $_{+}$ b) c = c,se verifica que c es irreducible.

2/ A es complementado.

En efecto: si a $_{\varepsilon}$ A, el filtro $\mathfrak{F} = \{b | a_+ b = 1\}$ es principal de generador $\overline{X - a}$.

3/ Los no-divisores de cero de A^* son los cerrados de interior vac**1**o.

En efecto: $c^0 = \phi \longleftrightarrow \overline{X-c} = X$.

En la literatura, los cerrados de interior vacío se llaman cerrados por todo no densos y están caracterizados como las fronteras de cerrados.

 $4/ \text{ rad}_J$ A = conjunto de cerrados de X, por todo no densos. Basta tener en cuenta la Proposición 0.9 y 3/.

5/ Los filtros minimales de A son los filtros primos que no contienen ningún cerrado por todo no denso.

Basta tener en cuenta la Proposición 0.11, dado que A es complementado.

6/ Sea c $_{\mbox{\scriptsize c}}$ A un cerrado de X. El retículo de cerrados de c es A $_{\mbox{\scriptsize c}}$.

7/ Sea U un abierto de X. Entonces el retículo de cerrados de U es isomorfo a A/ (X-U).

En efecto, si $A\left(U\right)$ designa el retículo de cerrados de U, definimos:

$$\varphi: A/(X-U)$$
 \longrightarrow $A(U)$

está bien definida ya que: $\{c\} = \{d\} \longleftrightarrow c + U - X = d + X - U$ $\longleftrightarrow c \cap U = d \cap U$ lo que demuestra además que ϕ es inyectiva. Es evidente ahora que ϕ es isomorfismo.

7/ Era de esperar, dado que A^{*} es isomorfo al retículo de abiertos de X con las operaciones unión e intersección de conjuntos.

8/ Si U es un abierto de X, A(U) es complementado, y el complemento de a \cap U es $\overline{X-a}$ \cap U.

Basta tener en cuenta 7/ y la Proposición 0.16.

Ejemplo 0.2:

Sea X un conjunto ordenado. Un subconjunto c de X se llama creciente (respectivamente decreciente) si $z \ge x$ (respectivamente $z \le x$) y x $_{\varepsilon}$ C implica z $_{\varepsilon}$ C.

Definimos en X la siguiente topología: los cerrados de X son el ϕ y los subconjunto crecientes.

1/ Si
$$x \in X$$
 $\overline{x} = \{y | y \ge x\}$.

2/ La unión cualquiera de cerrados es cerrada. En particular el cierre de un subconjunto es la unión de los cierres de sus elementos.

3/ Si x $_{\mathbb{C}}$ X, x tiene un entorno mínimo $U(x) = \{y \mid y \leq x\}$. En fecto, si V es un abierto que contiene a x: x $_{\mathbb{C}}$ X-V y pues to que X-V es creciente: $U(X) \cap X-V = _{\emptyset} \longrightarrow U(x) \subset V$. 3/ se sigue ahora de lo siguiente: si $y \not \leq x$, x $_{\mathbb{C}}$ $\overline{y} \longrightarrow x \in X-\overline{y}$ e y $_{\mathbb{C}}$ X- \overline{y} . Por tanto existe un abierto que contiene a x y no contiene a y. Dado que — a partir de 2/ — la intersección cualquiera de abiertos es abierto, U(x) es abierto.

4/ Si A es el retículo de cerrados de X, rad_J A = cerrados de A que no contienen ningún subconjunto decreciente. En efecto: a partir de 4/ del ejemplo 0.1, c ε rad_J A si y sólo si $\operatorname{c}^0 = \phi$.

4/ se sigue ahora de 3/.

Por ejemplo si $x \in X$ no es un elemento minimal: $\overline{x} \in rad_{\tau} A$.

5/ Si A es el retículo de cerrados de X, A es el dual com plementado.

En efecto: si c $_{\varepsilon}$ A por 3/ $_{\cup}$ U(x) es el mínimo abierto que x $_{\varepsilon}$ c

contiene a c. De aquí $X - \bigcup_{\mathbf{x} \in \mathbf{C}} \mathbf{U}(\mathbf{x}) = \{y | \forall \mathbf{x} \in \mathbf{C} \ (\mathbf{x}, y) \text{ es no}$

acotado superiormente) es el generador del ideal de los divisores de cero de c.

A partir de 4/ y 5/ hemos obtenido un ejemplo de un retículo él y su dual complementados, pero que no es de Boole.

CAPITULO I : LA NOCION DE ESPECTRO EN RETICULOS.

El capítulo gira en torno a la noción de espectro primo de un retículo, noción que corresponde a la definida en anillos pero con la topología dual. De hecho se define el espectro primo de un retículo A como el conjunto de sus filtros primos con la topología que tiene como base de cerrados los conjuntos (a) a E A donde (a) designa el conjunto de filtros primos que contienena. A diferencia de lo que ocurre en anillos, esta base es cerrada por la unión e intersección finitas y por tanto puede tomarse también como base de abiertos. Al hacerlo así se obtiene el espacio topológico dual, ho meomorfo al espectro primo del retículo dual.

La elección de nuestra definición se justifica por lo siguiente: la aplicación: a \longrightarrow (a) $_0$ es entonces un morfismo del retículo A en el retículo de cerrados de Spec $_p$ A.

Enunciamos brevemente los resultados del capítulo, por parágrafos.

- 1/ Espectro primo de un retículo: El estudio de las propiedades topológicas del espectro primo, culmina con la carac
 terización de los espacios topológicos que son espectros primos de retículos, en adelante llamados espacios espectrales.
 La caracterización dada aquí, define también el dominio de los
 espacios que son espectros de anillos. Ver (7) de la bibliogra
 fía.
- 2/ <u>Propiedades functoriales</u>: Un morfismo de retículos in duce de manera contravariante una aplicación continua entre es pectros primos. A diferencia de lo que ocurre en anillos los

morfismos inyectivos inducen aplicaciones continuas epiyectivas y no sólo densas.

Destacamos: a) la caracterización dada de los morfismos espectrales, entendiendo por tales las aplicaciones contínuas entre espectros inducidas por morfismos de retículo.

b) la commutación del paso al espectro con el límite $i\underline{n}$ ductivo, en el siguiente sentido:

donde el homeomorfismo es respecto a la topología límite provectivo. En particular esto permite caracterizar los espacios espectrales como límites proyectivos de espacios finitos $\mathbf{T}_0\text{-separados}.$

- 3/ Representación de un retículo en sus distintos espectros: El estudio sistemático de la representación de un retículo en sus distintos espectros -primo, maximal, minimal y atómico permite obtener las siguientes caracterizaciones:
- a) la de los espectros de retículos tales que todo filtro es principal, como los espacios espectrales noetherianos.
- b) la de los espacios topológicos que son espectros minimales de un retículo. Con todo aquí el retículo no está un<u>í</u> vocamente determinado: un mismo espacio puede ser el espectro minimal de retículos no isomorfos.
- c) la de la propiedad Hausdorff para el espectro maximal. Con esta propiedad de separación el espectro maximal resulta ser un retracto del espectro primo.

- d) la de las condiciones de separación para el espectro atómico.
- 4/ <u>Dimensión de Krull</u>: La definición dada para retículos es copia de la conocida en anillos, y resulta ser igual a la dimensión de Krull del espectro primo, entendiendo por tal el extremo superior de las longitudes de cadenas finitas estrictamente crecientes de cerrados irreducibles.

Espectro primo de un retículo.

Definición 1.1:

Sea A un retículo. Llamaremos espectro primo de A, notado Spec A, al conjunto de los filtros primos de A dotado de la topología definida por $\{(a)_0 \mid a \in A\}$ como base de cerrados. - $(a)_0$ designa los filtros primos de A que contienen \underline{a} -.

La topología anterior está bien definida ya que se verifica:

$$(a)_0 \cup (b)_0 = (a+b)_0$$

$$(a)_0 \cap (b)_0 = (a.b)_0$$

$$(0)_0 = \phi$$
 $(1)_0 = \text{Spec}_p A.$

Notaciones:

En adelante:

Spec $_{\mathbf{M}}$ A - espectro maximal de A - denotará el subespacio de Spec $_{\mathbf{D}}$ A cuyos elementos son los filtros maximales.

Spec $_{\rm m}$ A - espectro minimal de A - denotará el subespacio de Spec $_{\rm p}$ A cuyos elementos son los filtros primos minimales.

Spec $_{\rm R}$ A - espectro real de A - denotará el subespacio de Spec $_{\rm D}$ A cuyos elementos son los filtros primos principales.

Spec $_{\rm at}$ A - espectro atómico de A - denotará el subespacio de Spec $_{\rm p}$ A cuyos elementos son los filtros maximales principales,

llamados también filtros atómicos.

(a) M, (a) M, (a) M, (a) M, (a) denotará la intersección de 0 0 0 . (a) con el respectivo espectro.

Si \mathcal{F} es un filtro de A, $V(\mathcal{F})$ -variedad de \mathcal{F} - designa al conjunto de filtros primos de A que contienen a \mathcal{F} .

Proposición 1.1:

Spec $_{\rm p}$ A* es homeomorfo al conjunto de los filtros primos de A, dotado de la topología definida por $\{(a)_0 \mid a \in A\}$ como base de abiertos.

Comprobación:

Basta tener en cuenta la Proposición 0.2.

En adelante, llamaremos a Spec p $_{\rm p}^{\rm A^{\rm H}}$ el espacio topológico dual de Spec p A.

Proposición 1.2:

Sea A un retículo. Se verifica:

- 1/ Sea U \subset Spec $_{p}$ A; Y { $_{i}$ i $_{\epsilon}$ I} el conjunto de los elementos de U. Entonces \overline{U} = V($\bigcap_{i \in I}$ $_{i}$).
- 2/ Los cerrados de Spec $_p^{\ A}$ son el ϕ y los subconjuntos V(%) donde $^{\mbox{\it F}}$ es un filtro cualquiera de A.
- $_{0}^{-}$ Spec $_{p}^{-}$ A es un espacio $\rm T_{0}^{-}$ separado (para todo par de pun tos existe un abierto que contiene a uno de ellos y no contiene al otro).

4/ Spec $_{M}$ A, Spec $_{m}$ A y Spec $_{at}$ A son espacios $_{1}$ - separados (los puntos son cerrados).

5/ Sea U \subset Spec p A y $\{\mathcal{F}_i : \epsilon : I\}$ el conjunto de los elementos de U. Entonces U es denso en Spec p A si y sólo si $\cap \quad \mathcal{F}_i = 1.$ $i_{\epsilon}I$

Demostración:

1/SiacA (a) $_0$ \supset U equivale a \forall i \in I \S_i \in (a) $_0$ y esto a su vez es equivalente: a \in \cap \S_i .

De aquí:
$$\overline{U} = \bigcap_{(a)_0 \supset U} (a)_0 = \bigcap_{\substack{a \in \cap \S_1 \\ i \in I}} (a)_0 = V(\bigcap_{i \in I} \S_i)$$

2/ Por 1/ todo cerrado de Spec p A es de la forma V(\$) don de \$\$ es un filtro de A.

Si § es un filtro de A: $V(\S) = \bigcap_{a \in \S} (a)_0$ y por tanto $V(\S)$ es cerrado.

Se verifica además: $\mathfrak{T}_1 \subset \mathfrak{T}_2$ implica $V(\mathfrak{T}_1) \supset V(\mathfrak{T}_2)$.

3/ Sean $\S_1 \neq \S_2 \in \operatorname{Spec}_p A$. Entonces $\S_1 \not\in \overline{\S}_2$ o $\S_2 \not\in \overline{\S}_1$ - pues en caso contrario $\overline{\S}_1 = \overline{\S}_2$ y a partir de 1/ $\S_1 = \S_2$ -. En el primer caso $\operatorname{Spec}_p A - \S_2$ es un abierto que contiene a \S_1 y no a \S_2 .

Es claro que Spec R $^{\rm A}$ es también un espacio $^{\rm T}_0$ -separado, pues es subespacio de un espacio $^{\rm T}_0$ -separado.

4/ Inmediato a partir de 1/.

Además es evidente que los puntos cerrados de Spec A son

los puntos de Spec A.

5/ Si
$$\bigcap_{i \in I}$$
 \mathfrak{F}_{i} = 1 por 1/, U es denso en Spec A.

Si $\bigcap_{i \in I} F_i \neq 1$, a partir del corolario a la Proposición 0.8, existe un F_{ε} Spec A tal que $F \not\supset \bigcap_{i \in I} F_i$. De nuevo por 2/, U entonces no es denso en Spec A.

En particular 5/ asegura que $\mathop{\mathtt{Spec}}_{\mathsf{m}}^{}$ A es denso en $\mathop{\mathtt{Spec}}_{\mathsf{p}}^{}$ A.

$$\bigcap_{m} \in \operatorname{Spec}_{m} A \qquad \bigcap_{p_{M} \text{maximal}} (A - p_{M}) = A - \bigcup_{p_{M} \text{maximal}} p_{M} = 1.$$

Proposición 1.3:

Sea A un retículo y $\,^{\, F}\,$ un filtro de A. Entonces Spec $_{p}^{\, A}{}_{\, F}$ es homeomorfo a V(F).

Comprobación:

A partir de la Proposición 0.14 y 0.3 2/ existe una correspondencia biyectiva canónica entre los filtros de A que contienen a \$ y los filtros de A $_{\$}$. Esta correspondencia aplica los filtros primos en primos y conserva el orden. La primera con dición asegura que Spec $_{\$}$ y V(\$) están en correspondencia biyectiva, y la 2^{2} el homeomorfismo topológico.

Proposición 1.4:

Sea A un retículo. Se verifica:

 $\mbox{1/ Spec}_{p}^{\mbox{ A}}$ es conexo si y sólo si ningún elemento de A admite un complementario.

2/ Spec A es irreducible si y sólo si (1) es un filtro primo.

3/ Los cerrados irreducibles de Spec p A son los cierres de puntos.

Demostración:

 \downarrow / Sea a $_{\epsilon}$ A un elemento que admite un complementario:

$$a + b = 1$$
 $(a)_0 \cup (b)_0 = Spec_p A$ $(a)_0 \cap (b)_0 = \emptyset$ $(a)_0 \cap (b)_0 = \emptyset$

tanto Spec A no es conexo.

Reciprocamente: si Spec A no es conexo:

 $(\S_1, \S_2) = A$ asegura la existencia de elementos $a_1 \in \S_1$, $a_2 \in \S_2$ tales que $a_1.a_2 = 0$. Pero $a_1 + a_2 \in \S_1 \cap \S_2$ y por tanto $a_1 + a_2 = 1$. Por tanto $a_1 \in A$ admite un complementario y esto termina la demostración de 1/.

2/Si (1) es un filtro primo, (1) ϵ Spec A y entonces Spec A = $\overline{(1)}$ y por tanto es irreducible.

Reciprocamente: Supongamos Spec $_p$ A irreducible. Si a_1 , a_2 $_6$ A son tales que a_1 $_+$ a_2 = 1 se obtiene: Spec $_p$ A = $(a_1)_0 \cup (a_2)_0$ y por la irreducibilidad de Spec $_p$ A: $(a_1)_0$ = Spec $_p$ A δ $(a_2)_0$ = Spec $_p$ A. Pero esto es equivalente a : a_1 = 1 δ a_2 = 1 lo que demuestra que (1) es un filtro primo.

3/ Por la Proposición 1.2 2/ los cerrados de Spec $_p$ A son los conjuntos de la forma V($\mathfrak F$) donde $\mathfrak F$ es un filtro de A. Por la Proposición 1.3: V($\mathfrak F$) \simeq Spec $_p$ A $_{\mathfrak F}$, y 3/ se sigue ahora de 2/ pues en A $_{\mathfrak F}$ el filtro (1) es primo si y sólo si $\mathfrak F$ es primo de A.

Notación:

Por un espacio cuasi-compacto entenderemos un espacio topológico X tal que todo recubrimiento abierto de X, admita un subrecubrimiento finito.

Reservaremos la noción de compacto para un espacio Hausdorff cuasi-compacto.

Teorema 1.1:

Sea A un retículo. Se verifica:

 $1/\operatorname{Spec}_{p}$ A y Spec_{M} A son espacios cuasi-compactos.

 $2/\{\operatorname{Spec}_p A-(a)_0 \mid a \in A\}$ es el conjunto de los abiertos cuasi-compactos de $\operatorname{Spec}_p A$. Por tanto $\operatorname{Spec}_p A$ es un espacio en el que los abiertos cuasi-compactos constituyen una base de abiertos, base que con la únión e intersección de conjuntos tiene estructura de retículo.

Demostración:

1/ Sea $(a_i)_0$ is I, una familia de cerrados de Spec A tal que toda subfamilia finita sea de intersección no vacía. Dado que $\bigcap_{i=1}^n (a_i)_0 = (a_1 \dots a_n)_0$ esto asegura que el producto de cualquier número finito de a_i is I es nulo. De aquí $(a_i$ is I) generan un filtro propio; y por el lema de Zorn existe un filtro maximal \mathcal{F}_M que lo contiene. Entonces

 \mathcal{F}_{M} $\overset{\varepsilon}{\circ}_{\mathrm{i}}\overset{\cap}{\circ}_{\mathrm{I}}$ (\mathbf{a}_{i}) lo que demuestra que la intersección de la familia total es no vacía. Pasando a los abiertos complementarios esto demuestra que Spec $_{\mathrm{D}}$ A es cuasi-compacto.

El razonamiento anterior, asegura que la cuasi-compacidad es también una propiedad de $Spec_{M}$ A.

2/Si a ϵ A, Spec A - (a) es cuasi-compacto. En efecto:

 $(\operatorname{Spec}_{p} \overset{A}{-} \overset{(a)}{\circ}_{0}) \overset{\cap}{\underset{i \in I}{\cap}} (c_{i})_{0} = \emptyset \quad \text{es equivalente a: } (a)_{0} \overset{\cap}{\underset{i \in I}{\cap}} (c_{i})_{0}.$ El corolario a la Proposición 0.8 asegura entonces que <u>a perte</u> nece al filtro generado por $(c_{i} \ i \in I)$, Por tanto existe un número finito de $c : c_{1}, \ldots, c_{n}$ tales que $a = (b_{1} + c_{1}) \ldots (b_{n} + c_{n}) = b + c_{1} \ldots c_{n}$. De aquí $(a)_{0} \supset (c_{1} \ldots c_{n})_{0} = \overset{n}{\underset{j=1}{\cap}} (c_{j})_{0}$ lo que es equivalente a: $(\operatorname{Spec}_{p} \overset{A}{-} (a)_{0}) \overset{n}{\underset{j=1}{\cap}} (c_{j})_{0} = \emptyset$ y esto demuestra la cuasi-compacidad de $\operatorname{Spec}_{p} \overset{A}{-} (a)_{0}.$

Proposición 1.5:

Sea A un retículo. La aplicación

$$\begin{array}{ccc} A & \xrightarrow{\phi} & \mathcal{V}(\operatorname{Spec}_{p} A) \\ a & \xrightarrow{} & (a)_{0} \end{array}$$

es un isomorfismo del retículo A en el retículo de los cerrados de Spec A, complementarios de abiertos cuasi-compactos.

Comprobación:

Es una nueva formulación del Teorema 0.1, a partir del apartado 2/ del teorema anterior.

Corolario:

Sea A un retículo. Las 3 condiciones siguientes son equ $\underline{\mathbf{u}}$ valentes.

- 1/ A es un retículo de Boole.
- 2/ Todo filtro primo de A es maximal.
- 3/ Spec A es compacto.

Demostración:

- 1/ ___ 2/ ha sido demostrado en la Proposición 0.7.
- $2/\longrightarrow 3/$ Sean $\S_1 \neq \S_2 \in \operatorname{Spec}_p A$. Puesto que todo filto primo de A es maximal, la Proposición 0.2 asegura que $A-\S_1$ y $A-\S_2$ son ideales maximales de A. Por tanto: $(A-\S_1,A-\S_2)=A$ lo que implica: existen $a_1\in A-\S_1$, $a_2\in A-\S_2$ tales que $a_1+a_2=1$. Entonces $\operatorname{Spec}_p A-(a_1)_0$ y $\operatorname{Spec}_p A-(a_2)_0$ son abiertos disjuntos, entornos respectivamente de \S_1 y \S_2 . Esto demuestra que $\operatorname{Spec}_p A$ es Hausdorff y por el Teorema 1.1 $1/\operatorname{Spec}_p A$ es compacto.
- $3/\longrightarrow 1/$ Si Spec A es compacto, los cerrados de Spec A son los subconjuntos compactos. De aquí los abiertos compactos de Spec A son los abiertos que también son cerrados. A partir del Teorema 1.1 2/ el conjunto de dichos abiertos con

la unión e intersección de conjuntos, tiene entonces estructura de retículo de Boole. La Proposición 1.5 asegura ahora que A es de Boole.

En particular este corolario demuestra:

1/ El Teorema de representación de Stone: Sea A un retí
culo de Boole. Existe entonces un espacio compacto X tal que
A es isomorfo al retículo de los cerrados de X que son también abiertos.

En efecto: basta tomar $X = Spec_n A$.

2/ En el corolario a la Proposición 0.11 la condición de ser A de dual complementado es sobreabundante.

En efecto A es un retículo de Boole si y sólo si todo filtro primo es maximal.

Teorema 1.2: Caracterización de los espectros primos de retículos.

Sean X un espacio T_0 -separado. Las dos condiciones siguientes son equivalentes:

- 1/ X es el espectro primo de un retículo.
- 2/X verifica: a) el conjunto de sus abiertos cuasi-com pactos es una base de abiertos, que con la unión e intersección de conjuntos tiene estructura de retículo.
- b) Los cerrados irreducibles de X son los cierres de puntos. Demostración:
- $1/\longrightarrow 2/$ Si X = Spec_p A, X verifica a) por el Teorema 1.1 2/y verifica b) por la Proposición 1.4 3/.
- $2/\longrightarrow 1/$ Sea A el retículo de los cerrados complementarios de abiertos cuasi-compactos de X.

Definimos:
$$X \xrightarrow{\phi} Spec_p A$$

$$x \longrightarrow S_p = \{a \in A \mid x \in a\}$$

 Ψ es epiyectiva: En efecto:

La condición a) asegura en particular que X es cuasi-compacto y por tanto para todo filtro $\mathcal F$ de $A:\bigcap a\neq \emptyset$. as

Si a_{ε} a = d entonces $\mathcal{F} = \{ c \in A \mid c \supset d \}$. - hacemos notar que d no tiene por qué pertenecer a A - . En efecto: $\mathcal{F} \subset \{ c \in A \mid c \supset d \}$ y reciprocamente si $c \in A$ $c \supset d$, X-c es un abierto cuasi-compacto y de aquí la igualdad: $\phi = (X-c) \cap d = (X-c) \cap a$, implica la existencia de un $a_{\varepsilon}\mathcal{F}$ número finito: $a_1, \ldots, a_n \in \mathcal{F}$ tales que: $(X-c) \cap a_i = a_i = \phi$. Esta igualdad asegura $c \supset \bigcap_{i=1}^{n} a_i$ o equivalente: i=1

Si \mathcal{F} es un filtro primo de A y \bigcap a = d entonces d as \mathcal{F} es un cerrado irreducible de X. En efecto si suponemos lo contrario d = d₁ + d₂ con d₁ \neq d y d₂ \neq d, entonces la condición a) asegura que A es una base de cerrados y por tanto existen c₁, c₂ \in A tales que c₁ \supset d₁, c₁ $\not\preceq$ d i = 1, 2. Entonces c₁+ c₂ \in \mathcal{F} y c₁, c₂ $\not\in$ \mathcal{F} con lo que se llega a contradicción pues \mathcal{F} es primo.

Entonces por b) si \S es un filtro primo de A, \bigcap a, es a \S el cierre de un punto de X y esto demuestra que φ es epiyectiva. φ es homeomorfismo. Si d es un cerrado de X, entonces por ser

A base de cerrados, existen $c_i \in A$ i $\in I$ tales que $d = \bigcap_{i \in I} c_i$. Puesto que $x \in d = \bigcap_{i \in I} c_i$ equivale a

demuestra que o es homeomorfismo.

Definición 1.2:

Diremos que un espacio topológico T_0 separado es espectral si verifica una de las dos condiciones equivalentes del Teorema 1.2.

PROPIEDADES FUNCTORIALES

Proposición 1.6:

Sea A' $\xrightarrow{\phi}$ A un morfismos de retículos. Entonces ϕ define de forma canónica una aplicación ϕ^* : Spec p \xrightarrow{A} \longrightarrow Spec p. Se verifican además las relaciones:

1/ para todo filtro \mathfrak{F}' de A' : $(\phi^*)^{-1}$ $V(\mathfrak{F}')$ = = $V((\phi \mathfrak{F}'))$ donde $(\phi \mathfrak{F}')$ designa el filtro generado por $\phi \mathfrak{F}'$. Esto asegura que ϕ^* es continua.

2/ para todo filtro \mathcal{F} de A : $\phi^* V(\mathcal{F}) = V(\phi^{-1} \mathcal{F})$.

Demostración:

Definición de ϕ : Si $\mathcal F$ es un filtro primo de A, se com prueba inmediatamente que ϕ^{-1} $\mathcal F$ = {a' ε A' | ϕ (a') ε $\mathcal F$ } es un filtro primo de A'. Entonces ϕ^* $\mathcal F$ = ϕ^{-1} $\mathcal F$ es la aplicación de Spec A en Spec A' definida canónicamente por la ϕ .

1/ queda demostrado por la siguiente cadena de equivalen cias triviales: $\mathfrak{F} \in V ((\phi \mathfrak{F}')) \longleftrightarrow \mathfrak{F} \supset (\phi \mathfrak{F}') \longleftrightarrow \phi^{-1} \mathfrak{F} \supset \mathfrak{F}' \longleftrightarrow \phi^{\sharp} \mathfrak{F} \in V(\mathfrak{F}') \longleftrightarrow \mathfrak{F} \in (\phi^{\sharp})^{-1} V(\mathfrak{F}').$

Dado que los cerrados de Spec A' son los subconjuntos p de la forma V(5'), 1/ asegura que p p continua.

Proposición 1.7:

Sea $\phi: A' \longrightarrow A$ un morfismo de retículos. Se verifica: 1/ Si ϕ es epiyectiva, ϕ^* es inyectiva y homeomorfismo de Spec $_{D}^{A}$ en Imag ϕ^* .

la/En particular si A es un retículo y $\mathfrak p$ un ideal. Spec A/ $\mathfrak p$ es homeomorfo al subespacio de Spec A formado por los filtros primos $\mathfrak F$ tales que $\mathfrak F \cap \mathfrak p = \emptyset$.

2/ Si ϕ es inyectiva, ϕ^* es epiyectiva.

Demostración:

1/ Sean $\S_1 \neq \S_2 \in \operatorname{Spec}_p^A$. Entonces $\varphi^*\S_1 = \varphi^{-1} \ \S_1 \neq \varphi^{-1} \ \S_2 = \varphi^* \ \S_2$ pues φ es epiyectiva. Esto demuestra que φ^* es inyectiva.

A partir de la Proposición 1.6 2/ para todo filtro $\mathfrak F$ de A: $\overline{\phi^*\ V(\mathfrak F)} = V(\ \phi^{-1}\ \mathfrak F)$ y de nuevo por ser ϕ epiyectiva se comprueba inmediatamente: $V(\phi^{-1}\ \mathfrak F)\cap \text{Imag}\ \phi^*=\phi^*\ V(\mathfrak F)$. Esto demuestra que ϕ^* es cerrada como aplicación de Spec A en Imag ϕ^* .

la/ En particular si p es un ideal de un retículo A, la Proposición 0.14 asegura $(A/p)^{*}\simeq (A^{*})_{p}$ y entonces la Proposición 0.15 afirma la existencia de una correspondencia biyectiva entre ideales primos de $(A^{*})_{p}$ e ideales primos de A^{*} que no cortan a p. la/ se sigue ahora de 1/.

2/a/Se verifica: Imag $\phi^* \supset \operatorname{Spec}_M A'$. En efecto si $\mathfrak F'$ es un filtro maximal de A', entonces $\phi \mathcal F'$ genera un filtro propio de A, pues si existieran $a_i \in A$, $f_i \in \phi \mathcal F'$ i=1...n tales que $0=(a_1+f_1)...(a_n+f_n)=a+f_1...f_n$ entonces $f_1...f_n=0$ y por ser ϕ inyectiva, $\mathfrak F'$ no sería un filtro propio de A'. Por tanto, existe por el lema de Zorn un filtro maximal $\mathfrak F$ de A tal que $\mathfrak F\supset \phi \mathcal F'$. De aquí $\phi^* \mathcal F\supset \mathfrak F'$ y por ser $\mathfrak F'$ maximal $\phi^* \mathcal F=\mathfrak F'$.

b/ Sea $\mathfrak{F}'\varepsilon$ Spec p A' un filtro no maximal. Entonces $\mathfrak{F}'\varepsilon$ Imag ϕ^* . La demostración es una reducción a la situación a/ por paso al cociente.

En efecto sea $\mathfrak{p}'=A'-\mathfrak{F}'$ ideal primo de A' y \mathfrak{p} el ideal de A generado por $\mathfrak{p}\mathfrak{p}'$. Entonces la aplicación:

$$A'/p' \xrightarrow{\overline{\phi}} A/p$$

$$\{a'\} \xrightarrow{} \{\phi a'\}$$

es un morfismo inyectivo: — los elementos de p son de la forma a. φ (p') con a ε A, p' ε p' como se comprueba inmediatamente. De aquí $\{\varphi a'\} = \{\varphi b'\} \longleftrightarrow \varphi a' + a \cdot \varphi p' = \varphi b' + a \cdot \varphi p'$ implica $\varphi(a' + p') = \varphi(b' + p')$ y por ser φ inyectiva: $a' + p' = b' + p' \longleftrightarrow \{a'\} = \{b'\} \frown \overline{F}' = \{\{a'\} | a' \in F'\}$ es el único filtro maximal de A'/p' y por a/ existe un filtro

 $\overline{\mathcal{F}}$ ε Spec p A/p tal que $\overline{\mathcal{F}}$ ' = $\overline{\phi}^*$ $\overline{\mathcal{F}}$. El filtro $\mathcal{F} = \{a \in A \mid \{a\} \in \overline{\mathcal{F}}\} \in \text{Spec}_p A \text{ y } \mathcal{F}' = \phi^* \mathcal{F} \text{ lo que demuestra}$ b/.

Definición 1.3:

Sean X = Spec $_p$ A, X' = Spec $_p$ A' dos espacios espectrales. Una aplicación contínua $f:X\longrightarrow X'$ se dice que es espectral si existe un morfismo de retículos $\phi:A'\longrightarrow A$ tal que $f=\phi^*$.

Cuando no haya lugar a confusión, cometeremos a menudo el siguiente abuso de notación: escribir a' por (a')

La Proposición 1.6 l/afirma que si f es espectral para todo a' $_{\epsilon}$ A' se verifica: $_{\phi}(a')$ = f $^{-1}(a')$.

Teorema 1.3:

Sea $X = \operatorname{Spec}_p A$ un espacio espectral. Existe entonces un espacio espectral compacto \overline{X} y una aplicación espectral $f: \overline{X} \longrightarrow X$ biyectiva.

Demostración:

Sea \overline{A} el retículo de Boole generado por A y por $\{X-a \mid a \in A\}$, es decir todo elemento de \overline{A} se obtiene por unión e intersección finita de elementos de A y de elementos de $\{X-a \mid a \in A\}$.

Sea i: A $\longrightarrow \overline{A}$ la inyección natural. Por la Proposición 1.7 2/ la aplicación: Spec $\overline{A} \xrightarrow{i^*}$ Spec $\overline{A} = X$ es epi yectiva y continua. El corolario a la Proposición 1.5 afirma que $\overline{X} = \operatorname{Spec}_{\overline{P}} \overline{A}$ es un espacio espectral compacto, y por tanto el teorema queda demostrado si comprobamos que i^* es inyectiva.

<u>i* es invectiva:</u> Sea $\overline{\varsigma}$ ε Spec \overline{A} tal que i* $\overline{\varsigma}$ = x. Entonces: $\overline{\varsigma} \supset \{\overline{a} \in \overline{A} \mid x \in \overline{a} \}$ ya que

si
$$x \in C$$
, $C \in \overline{S}$ ya que $i^* \overline{S} = x$
 $\forall C \in A$

si $x \notin C$, $X - C \in \overline{S}$ ya que \overline{S} es primo,

 $C_+(X - C) = 1 \ Y \ C \notin \overline{S}$

Pero { $\overline{a} \in \overline{A} \mid x \in \overline{a}$ } es un filtro primo de \overline{A} y puesto que \overline{A} es de Boole, es maximal; de aquí $\overline{F} = \{\overline{a} \in \overline{A} \mid x \in \overline{a}\}$ lo que demuestra la inyectividad de i^x.

Definición 1.4:

Sea X un espacio espectral. Con las notaciones del teorema anterior, \overline{X} = Spec $_p$ \overline{A} será llamada la topología totalmente inconexa de X.

Teorema 1.4: Caracterización de las aplicaciones espectrales.

Sean $X = \operatorname{Spec}_p A$, $X' = \operatorname{Spec}_p A'$ dos espacios espectrales $y \ f \colon X \longrightarrow X'$ una aplicación continua.

Las siguientes condiciones son equivalentes:

1/ f es espectral.

2/ Si U' es un abierto cuasi-compacto de X', entonces $\textbf{f}^{-1}\textbf{U}$ ' es un abierto cuasi-compacto de X.

3/ f es contínua respecto a las topologías totalmente inconexas de X y X'.

 $4/\ f$ es espectral respecto a las topologías totalmente inconexas de X y X'.

Demostración:

 $1/\longrightarrow 2/$. En efecto sea $f=\varphi^{3}$, donde $A'\xrightarrow{} \varphi$ A es un morfismo de retículos. Por el Teorema 1.1 2/ los abiertos cuasi-compactos de X' son los subconjuntos de la forma X' - a', a' $_{6}$ A'.

Entonces $f^{-1}(X' - a') = X - f^{-1}(a') = X - \varphi$ (a') como hicimos notar en la Definición 1.3.

 $2/\longrightarrow 4/$. Por 2/ se verifica: \forall a' \in A' $f^{-1}(X'-a') = X - f^{-1}(a')$ es un abierto cuasi-compacto de X y por tanto $f^{-1}(a')$ \in A. Puesto que \overline{A} ' está generado por los elementos de A' y los de $\{X' - a' \mid a' \in A'\}$ y f^{-1} conserva uniones e intersecciones finitas, $f^{-1}: \overline{A}' \longrightarrow \overline{A}$ es un morfismo de retículos. Entonces $f = (f^{-1})^*: \overline{X} = \operatorname{Spec}_p \overline{A} \longrightarrow \operatorname{Spec}_p \overline{A}' = \overline{X}'$ es espectral.

 $4/\longrightarrow 1/$. La demostración de esta implicación se basará en el <u>lema</u>: Sea X = Spec A. Entonces los elementos de \overline{A} son subconjuntos cuasi-compactos de X. — seguimos la notación del Teorema 1.3. —.

 $\frac{\text{Demostración del lema:}}{\sum\limits_{i=1}^{n}c_{i}(x-d_{i}),\ c_{i},\ d_{i}\in A.\ \text{Dado que la unión finita de cuasi-}}$

compactos es cuasi-compacto el lema queda demostrado si comprobamos: \forall c, d $_{\varepsilon}$ A c.(X-d) es un cuasi-compacto de X.

Esto último es evidente: c.(X-d) \bigcap a = \emptyset implica iєI $(X-d) \bigcap_{j=1}^n a_j c = \emptyset \quad \text{pues } (X-d) \text{ es un abierto cuasi-compacto}$

de X y c un cerrado.

La demostración de la implicación es ahora como sigue: Puesto que $f: \overline{X} \longrightarrow \overline{X}'$ es espectral sea $\phi: \overline{A}' \longrightarrow \overline{A}$ el morfismo de retículos tal que $f = \phi^*$. Si comprobamos que $\phi(A') \subset A$ entonces $\phi_{|A'|}: A' \longrightarrow A$ es un morfismo de retículos y manifiestamente $(\phi_{|A'|})^*=f$ lo que demuestra que $f: X \longrightarrow X'$ es espectral.

 $\frac{\phi(A') \subset A}{\phi(X'-a') \in \overline{A}} : \text{ En efecto si a' } \varepsilon A : X - f^{-1}(a') = f^{-1}(X'-a') = \frac{\phi(X'-a')}{\varepsilon} = \frac{\overline{A}}{\varepsilon} \text{ es un abierto de X pues f es continua. Por el lema es un abierto cuasi-compacto de Xy por el Teorema 1.1 2/$

su complementario $f^{-1}(a') = \varphi(a') \in A$.

 $3/\longrightarrow 4/$ Sea $f:\overline{X}\longrightarrow \overline{X}'$ una aplicación continua. Por ser \overline{X}' espectral compacto, \overline{A}' es el conjunto de los cerrados de \overline{X}' que son también abiertos. Por ser f continua, si \overline{a}' f $f^{-1}(\overline{a}')$ es un cerrado de \overline{X} que es también abierto. Entonces $f^{-1}:\overline{A}'\longrightarrow \overline{A}$ es un morfismo de retículos y f = $(f^{-1})^*$ es es pectral.

 $4/\longrightarrow 3/.$ Es evidente.

Proposición 1.8:

Sea $X = \operatorname{Spec}_p A$ un espacio espectral e $Y \subset X$ un subespacio.

Y es espectral y la invección natural de Y en X es espectral si y sólo si Y es cerrado en la topología totalmente inconexa de X.

Demostración:

1/ Sea Y espectral e i: Y \longrightarrow X espectral. Por el Teorema 1.4, i es continua respecto a las topologías totalmente inconexas de X e Y. Pero \overline{Y} es un compacto y la imagen por una aplicación continua de un compacto es compacta; dado que \overline{X} es Haus dorff esto asegura que \overline{Y} es un cerrado de \overline{X} .

2/ Sea Y un cerrado de \overline{X} Y $\overline{Y} = \{\overline{a} \in \overline{A} | \overline{a} \supset Y\}$. A partir del diagrama A \xrightarrow{j} \overline{A} \downarrow p \downarrow $\overline{A} \in$

obtenemos:
$$Spec_{p} \overline{A}_{y} \xrightarrow{(poj)^{*}} Spec_{p} A$$
 donde

Imag $(poj)^* = Imag (j^* \circ p^*) = Y \subset X$ ya que por el Teorema 1.3 j^* es biyectiva; y por la Proposición 1.3: Imag $p^* \simeq Spec_p^A F_Y = Y$ con la topología restricción de la de \overline{X} .

A partir de la sucesión: A $\xrightarrow{\phi}$ (poj) A $\xrightarrow{j_2}$ \xrightarrow{h} \xrightarrow{g} donde φ es epiyectiva y j_2 o φ = p o j obtenemos: j^* o $p^* = \varphi^*$ o j_2^* . Dado que j_2^* es epiyectiva y φ^* es inyectiva obtenemos finalmente Spec (poj) A $\simeq \varphi^*$ Spec (poj) A = Y $\simeq X$.

Esto demuestra que Y es espectral y es claro que la inyección natural de Y en X viene entonces inducida por el morfismo de retículos: $\varphi\colon A \longrightarrow (poj)$ A.

Proposición 1.9:

Sea A_i i ϵ I una familia de retículos verificando las condiciones para que sea posible pasar al límite inductivo.

- ver Definición 0.9-. Se verifica: Spec p $\xrightarrow{lim \ ind}$ A_i es canónicamente homeomorfo a $\xrightarrow{lim \ proy}$ p A_i .

Demostración:

Sean \forall $i \geq j$ $\phi_{ij}: A_i \longrightarrow A_j$ los morfismos respecto a los cuales se toma el límite inductivo y \forall $i \in I$ sea ϕ_i el morfismo canónicamente definido de A_i en $\frac{\text{lim ind}}{\text{i} \in I} A_i$.

Es bien sabido que si i \geq j entonces ϕ_i = ϕ_j o ϕ_i j. Definimos la aplicación:

$$\operatorname{Spec}_{p} \xrightarrow{\text{lim ind}} \operatorname{A}_{i} \xrightarrow{\qquad \qquad \operatorname{II} \quad \operatorname{Spec}_{p} \operatorname{A}_{i}}$$

$$1/\varphi$$
 es inyectiva: Sean $\$ \neq \$$ ε Spec $\underset{i \in I}{\underset{i \in I}{\text{lim ind}}} A_i$.

Existe entonces a ε \varinjlim ind A \varinjlim que pertenece a uno de i ε I ellos y no al otro. Por la definición de límite inductivo,

existe jel y a e A tal que ϕ_j (a j) = a. De aquí ϕ_j^* $\mathcal{F} \neq \phi_j^*$ \mathcal{F}' .

 $3/\frac{\phi \text{ es un homeomorfismo}}{\text{i e I}}$ de Spec $_{p} \xrightarrow{\text{lim ind}} A_{i}$ en

Imag ϕ . En efecto: sea \mathcal{F}_1 un filtro cualquiera de Spec $p \xrightarrow{\text{lim ind}} A_i$. A partir de la definición de ϕ es una comprobación ver que:

$$\overline{\varphi^{V(S_1)}} \subset \prod_{i \in I} \overline{\varphi_i^* V(S_1)} = \prod_{i \in I} V(\varphi_i^{-1} S_1)$$

donde esta última igualdad viene dada por la Proposición 1.6 2/.

Entonces $\prod_{i \in I} V(\phi_i^{-1} \ \mathcal{F}_1) \cap Imag \ \phi = \phi \ V(\mathcal{F}_1) \ ya \ que \ si$ $(\phi_i^* \ \mathcal{F})_{i \in I} \in \prod_{i \in I} V(\phi_i^{-1} \ \mathcal{F}_1) \ entonces \ \phi_i^* \ \mathcal{F} \supset \phi_i^{-1} \ \mathcal{F}_1, \ i \in I$ $y \ esto \ implica \ \mathcal{F} \supset \phi_i \ \phi_i^* \ \mathcal{F} \supset \phi_i \phi_i^{-1} \ \mathcal{F}_1, \ i \in I \ e \ incluso$ $\mathcal{F} \supset \bigcup_{i \in I} \phi_i \ \phi_i^{-1} \ \mathcal{F}_1 = \mathcal{F}_1. \ Esto \ demuestra \ que \ \phi V(\mathcal{F}_1) \ es \ un$ $i \in I$ $cerrado \ de \ Imag \ \phi \ y \ por \ tanto \ se \ verifica \ 3/.$

$$4/ \text{Imag } \varphi = \underbrace{\text{lim proy}}_{i \in I} \quad \text{Spec}_{p} \quad A_{i}$$

Imag $\varphi \subset \underbrace{\lim \text{proy}}_{i \in I}$ Spec $_{p}$ $_{i}$ es claro pues dado $(\varphi_{i}^{*} \, \, \, \, \,)_{i \in I}$ si $i \geq j$ $(\varphi_{ij}^{*} \, \, \circ \, \, \, \varphi_{j}^{*} \,)$ $\mathcal{F} = (\varphi_{j} \, \, \, \circ \, \, \, \, \varphi_{ij})^{*} \, \, \mathcal{F} = \varphi_{i}^{*} \, \, \mathcal{F}$ Imag $\varphi \supset \underbrace{\lim \text{proy}}_{i \in I}$ Spec $_{p}$ $_{i}$. En efecto sea $(\mathcal{F}_{i})_{i \in I}$ ε ε $\underbrace{\lim \text{proy}}_{i \in I}$ Spec $_{p}$ $_{i}$ y por tanto para todo $i \geq j$ se verifical: ε : $\varphi_{ij}^{-1} \, \, \mathcal{F}_{j} = \varphi_{ij}^{*} \, \, \mathcal{F}_{j} = \mathcal{F}_{i}$.

Sea
$$\mathcal{F} = \{a \in \underset{i \in I}{\underline{\lim \ ind}} A_i \mid existe \ j \in I \ y \ a_j \in \mathcal{F}_j \}$$
 tal que $\varphi_j(a_j) = a \}$.

Si a, b
$$\varepsilon^{\S}$$
 a = $\varphi_{i}(a_{i}) = \varphi_{k}(\varphi_{ik}a_{i})$, $a_{i} \varepsilon^{\S}_{i} \longrightarrow \varphi_{ik}a_{i}\varepsilon^{\S}_{k}$
b = $\varphi_{j}(b_{j}) = \varphi_{k}(\varphi_{jk}b_{j})$, $b_{j} \varepsilon^{\S}_{j} \longrightarrow \varphi_{jk}b_{j}\varepsilon^{\S}_{k}$

si $a_i \in \varphi_i^{x}$ existe $j \in I$ $y \mapsto_j \in \mathbb{F}_j$ tal que $\varphi_i(a_i) = \varphi_j$ (b_j) y esto asegura la existencia de un $k \le i$, j tal que $\varphi_{ik}(a_i) = \varphi_{jk}(b_j)$ donde $\varphi_{jk}(b_j) \in \mathbb{F}_k$ y por tanto $a_i \in \mathbb{F}_i$. De aquí $\varphi_i = (\mathbb{F}_i)_{i \in I}$ y esto termina la demostración de 4/.

Proposición 1.10:

Un espacio topológico X es espectral si y sólo si $X \simeq \underbrace{\begin{array}{ccc} \text{lim proy} & \text{X}_{i} & \text{donde los } \textbf{X}_{i} & \text{son espacios topológicos} \\ \text{i } \varepsilon \text{ I} & \end{array}}_{\text{i}}$

 T_0 -separados con un número finito de puntos.

Demostración:

Lema previo:

Sea X un espacio T_0 -separado con un número finito de puntos — en adelante diremos simplemente que X es finito —. Enton ces X \simeq Spec A.

En efecto: a) cada subconjunto de X y en particular cada abierto de X es cuasi-compacto.

b) todo cerrado irreducible de X es el cierre de un punto,
 pues cada cerrado c de X tiene un número finito de puntos

 $x_1 \dots x_n$ y entonces $c = \overline{x}_1 + \dots + \overline{x}_n$.

El lema resulta ahora del razonamiento seguido en el Teorema 1.2.

1/ Si X = Spec $_{p}$ A, entonces A se puede expresar como l<u>f</u> mite inductivo, respecto a las inclusiones naturales, de sus sub retículos finitos: A = $\underset{i \in I}{\underline{\lim} \ \underline{\inf}}$ A $_{i}$. Por la proposición ante-

rior: X $\simeq \varprojlim_{i \in I} \operatorname{Spec}_p A_i$ donde Spec $_p A_i$ son espacios finitos T_0 -separados.

REPRESENTACION DE UN RETICULO EN SUS DISTINTOS ESPECTROS.

Definición 1.5:

Sea A un retículo y X un espacio topológico. Una representación de A en X es un morfismo ϕ de A en el retículo de cerrados de X.

La representación se llama fiel si ϕ es inyectiva. La representación se llama completa si ϕ es epiyectiva.

Ejemplo 1.1:

Dado un retículo A el morfismo $\varphi_{\mathbf{p}}^{(\mathbf{a})} = (\mathbf{a})_{0}$ se llama la

representación natural de A en Spec $_{\rm p}$ A. Por el Teorema 0.1 esta representación es fiel.

De manera análoga definiremos la representación natural de A en cada uno de sus espectros. Así $\phi_m(a)=(a)_0^m$ es la representación natural de A en Spec_ A.

Proposición 1.11:

Sea A un retículo. Las siguientes condiciones son equivalentes:

- 1/ La representación natural de A en Spec ${\tt p}$ A es completa.
- $2/\ {\rm Spec}_{\rm p}$ A es un espacio noetheriano, es decir todo abierto de ${\rm Spec}_{\rm p}$ A es cuasi-compacto.
 - 3/ Todo filtro de A es principal.
- 4/ La intersección de una familia cualquiera de abiertos cuasi-compactos de Spec $_{\rm p}$ $^{\rm *}$ $\,$ es un abierto cuasi-compacto.

<u>Demostración:</u>

- $2/\longrightarrow 3/$ Sea \mathcal{F} un filtro cualquiera de A. Por 2/ Spec $A V(\mathcal{F})$ es un abierto cuasi-compacto y de nuevo por el Teorema 1.1 2/ existe $a \in A$ tal que Spec $A V(\mathcal{F}) = Spec A (a)_0$. En esta situación el corolario a la Proposición 0.8 asegura que \mathcal{F} es el filtro generado por a.
- 3/ \longrightarrow 4/ Hacemos notar que en los siguientes razonnamientos consideraremos siempre $\operatorname{Spec}_p A^*$ como el conjunto de los filtros primos de A con $\{(a)_0 \mid a \in A\}$ como base de abiertos, lo que es lícito por la Proposición 1.1. El Teorema 1.1 2/asegura entonces que los abiertos cuasi-compactos de $\operatorname{Spec}_p A^*$

son precisamente los elementos de dicha base.

Dicho esto, pasamos a la demostración de nuestra implicación: Sea c_i , i ε I una familia de elementos de A y $\mathscr F$ el filtro generado por ella. Entonces $\cap (c_i)_0 = V(\mathscr F) \text{ y puesto que } \mathscr F \text{ es principal, existe a } \varepsilon \text{ A } i_\varepsilon \text{I}$ tal que $\cap (c_i)_0 = (a)_0$. Por tanto la intersección de una $i_\varepsilon \text{I}$ familia cualquiera de abiertos cuasi-compactos de Spec p sique siendo un abierto cuasi-compacto.

 $4/\longrightarrow 1/$ Puesto que los abiertos cuasi-compactos de Spec $_{p}$ A* son los conjuntos de la forma (a) $_{0}$, a $_{6}$ A; dada una familia cualquiera $_{i}$ i $_{6}$ I de elementos de A, $_{4}$ / asegura la existencia de b $_{6}$ A tal que $_{i_{6}}$ I ($_{i}$) $_{0}$ = (b) $_{0}$ y esto demuestra $_{1}$ /.

Corolario:

Sea A un retículo que verifica alguna de las condiciones equivalentes de la proposición anterior. Entonces se verifica:

1/ Cada punto de Spec $p^{\,\,\text{A}^{\frac{1}{12}}}$ tiene un entorno mínimo que es además cuasi-compacto.

2/ El cierre de un subconjunto de Spec $_{p}^{\ A^{\#}}$ es igual a la unión de los cierres de sus puntos.

3/ Los cerrados de Spec $_{\mathbf{p}}$ A* son los subconjuntos decrecientes, es decir c $_{\mathbf{c}}$ Spec $_{\mathbf{p}}$ A es cerrado si y sólo si \mathfrak{F}_{1} $_{\mathbf{c}}$ c y \mathfrak{F}_{2} $_{\mathbf{c}}$ $_{\mathbf{f}}$ implica \mathfrak{F}_{2} $_{\mathbf{c}}$ c.

Comprobación:

1/ Sea \mathcal{F} un filtro primo de A. Por la condición 4/ de la proposición anterior $\bigcap_{\mathbf{a} \in \mathcal{F}} (\mathbf{a})_0 = \mathbf{V}(\mathcal{F})$ es un abierto cuasicompacto de Spec \mathbf{A}^{*} . Puesto que $\{(\mathbf{a})_0 \mid \mathbf{a} \in \mathbf{A}\}$ es una base de

abiertos de Spec $p^{\frac{3}{2}}$ es claro que $V(\mathfrak{F})$ es el mínimo abierto de Spec $p^{\frac{3}{2}}$ que contiene a \mathfrak{F} .

2/ Se sigue de 1/. En efecto si c i є I es una familia de cerrados de Spec p A^{*} y f_{*} \bigcup c entonces i f_{*} f_{*} f_{*}

 $\mathcal{F}_{\varepsilon} \bigcap_{i \in I} (\operatorname{Spec}_{p} A^{*} - c_{i}) \text{ y si } U(\mathcal{F}) \text{ designa el entorno mínimo}$

de F se verifica: $U(F) \subset \bigcap_{i \in I} (Spec_p A^* - c_i)$ lo que demues

tra que \bigcup c es un cerrado de Spec A^* .

3/ es inmediato a partir de 2/ teniendo en cuenta que si \mathcal{F} es un filtro primo de A y $\overline{\mathcal{F}}$ designa el cierre de \mathcal{F} en Spec \mathbf{p} A* entonces $\overline{\mathcal{F}}$ *= { \mathcal{F} \mathbf{c} Spec \mathbf{p} A* | \mathcal{F} \mathbf{c} \mathcal{F} }.

Proposición 1.12:

Sea A un retículo $\phi_m(a)=(a)_0^m$ su representación natural en Spec_m A. Se verifica:

$$1/\varphi_m(a) = Spec_m \land ---- \Rightarrow a = 1.$$

$$2/\text{Ker }\phi_{m}=\text{rad}_{J}$$
 A

3/ Los elementos de Imag ϕ_m son también abiertos de Spec $_m$ A. En particular Spec $_m$ A es Hausdorff.

4/ Para toda familia a_i , $i \in I$ de elementos de A tal que $(a_i)_0^m = \operatorname{Spec}_m A$, existe una subfamilia finita $a_1 \dots a_n$ tal que $(a_i)_0^m = \operatorname{Spec}_m A$.

5/ Si A es un retículo complementado, se tiene:

- a) Imag ϕ_m es un reticulo de Boole.
- b) Imag $\phi_m \cong A/_{Ker'} \phi_m$
- c) Spec $_{m}$ A $\stackrel{\sim}{-}$ Spec $_{p}$ Imag ϕ_{m} y por tanto es compacto.

Demostración:

1/ Por la Proposición 1.2 5/ sabemos que ${\tt Spec}_{\underline{m}}$ A es denso en ${\tt Spec}_{\underline{p}}$ A y esto demustra 1/.

2/ Sea a ε rad $_J$ A $_J$ supongamos existe $_m^{\circ}$ ε Spec $_m$ A tal que a ε $_m^{\circ}$. Por la Proposición 0.2, A - $_m^{\circ}$ es entonces un ideal maximal $_J$ por tanto $_J$ (A - $_m^{\circ}$, a) = A lo que implica existe b $_J$ $_m$ tal que a $_J$ b = 1; $_J$ por tanto a $_J$ rad $_J$ A. La contradicción a la que hemos llegado asegura que rad $_J$ A $_J$ Ker $_m$.

Reciprocamente si a ϵ Ker ϕ_m sea b tal que a+b=1. Pues to que $\phi_m(a)=\phi$ la igualdad anterior asegura $\phi_m(b)=\operatorname{Spec}_m A$; y por 1/b=1 lo que demuestra que a ϵ rad, A.

3/ Sea a & Ker φ_m y sea $\mathfrak{F} = \{ b_i \in A \mid a+b_i=1 \}$.

De aquí: $\forall b_i \in \mathfrak{F}$ (a) $_0^m \cup (b_i)_0^m = \operatorname{Spec}_m A$ y por tanto:

(a) $_0^m \cup (\bigcap_{i \in \mathfrak{F}} (b_i)_0^m) = \operatorname{Spec}_m A$. Dado que si a $\in \mathfrak{F}_m$ existe b $\notin \mathfrak{F}_m$ tal que a+b=1 obtenemos (a) $_0^m \cap (b_i)_0^m = \emptyset$ y por tanto $b_i \in \mathfrak{F}$

(a) m es abierto pues es el complementario de un cerrado.

Si \mathcal{F}_m y \mathcal{F}_m' son dos filtros minimales distintos, existe a que pertenece a uno de ellos y no pertenece al otro. (a) $_0^m$ y su complementario son entonces abiertos disjuntos y cada uno de ellos contiene a uno de los filtros \mathcal{F}_m , \mathcal{F}_m' . Por tanto Spec A es Hausdorff.

4/ Por la Proposición 0.2, $\bigcup_{i \in I} (a_i)_0^m = \operatorname{Spec}_m A$ es equivalente a afirmar que la familia $(a_i, i_{\in I})$ no está contenida en ningún ideal maximal de A; por tanto existe un número finito de elementos de la familia: $a_1 \dots a_n$ tales que $a_1 + \dots + a_n = 1$.

Es obvio que $\bigcup_{j=1}^{n} (a_{j})_{0}^{m} = \operatorname{Spec}_{m} A$ y esto demuestra 4/.

- 5/a) Si A es complementado: $(a)_0^m \cdot (a_c)_0^m = \operatorname{Spec}_m A y$ por el lema 0.1 $(a)_0^m \cap (a_c)_0^m = \emptyset$. Por tanto Imag ϕ_m es un retículo de Boole.
- b) Sean $(a)_0^m = (b)_0^m$. Entonces a) asegura que $a_c^{b+b}_c$ a ϵ Ker ϕ_m y puesto que $a_a^{b+b}_c = (a_a^{b+b}_c)(a_a^{b+b}_c) = b_a^{b+a}_c$ b $= (a_a^{b+b}_c)(a_a^{b+b}_c) = b_a^{b+a}_c$ a ha quedado comprobada la existencia de d ϵ Ker ϕ_m tal que $a_a^{b+b}_c = b_a^{b+b}_c$. Esto demuestra b).
- c) Spec $_{p}$ Imag $_{\phi_{m}}$ es homeomorfo por b) a Spec $_{p}^{A}/_{Ker}$ $_{\phi_{m}}$ y por la Proposición 1.7 la/ este último es homeomorfo al subconjunto de Spec $_{p}$ A formado por los filtros primos que no cortan a Ker $_{\phi_{m}}$. Dado que Ker $_{\phi_{m}}$ = rad $_{J}$ A y que A es complementado, la Proposición 0.11 asegura que aquel subconjunto es exactamente Spec $_{m}$ A.

Corolario:

Sea A un retículo que verifica alguna de las condiciones equivalentes de la Proposición 1.11. Entonces Spec A es finito.

Comprobación:

Puesto que todo filtro de A es principal, en particular lo son los filtros minimales. El corolario es ahora inmediato a partir de 4/ de la proposición anterior.

Teorema 1.5: Caracterización de los espectros minimales de retículos.

Sea X un espacio topológico. Las condiciones siguientes son equivalentes:

- 1/ Existe un reticulo A tal que X = Spec_m A.
- 2/ X es un espacio Hausdorff y tiene una base de cerrados

tal que: a) dicha base tiene estructura de retículo con la unión e intersección ordinarias de conjuntos.

b) si una familia de cerrados de la base recubre X, existe una subfamilia finita que también recubre a X.

Demostración:

 $1/\longrightarrow 2/$. Ha quedado demostrado en la Proposición 1.12.

2/ \longrightarrow 1/. Sea A el retículo de la base de cerrados de X que verifica las condiciones a) y b).

Definimos: $X \xrightarrow{f} Spec_{m} A$

$$x \longrightarrow \mathcal{F}_x = \{a \in A \mid x \in a\}$$

<u>f está bien definida</u> es decir $\mathcal{T}_{\mathbf{x}}$ es un filtro minimal de A. En efecto sea c $\mathcal{C}_{\mathbf{x}}$. Por ser X Hausdorff:c $\bigcup_{\mathbf{x} \notin d_i} \mathbf{d}_i = \mathbf{x}$ y

por la condición b), existe un número finito $d_1 \dots d_n$ de cerrados que no contienen a x tales que $c_+d_1+\dots+d_n=1$. Por tanto si $c_{\varepsilon} \mathcal{F}_{\mathbf{x}}$ existe $d=d_1+\dots+d_n \not\in \mathcal{F}_{\mathbf{x}}$ tal que $c_+d=1$ y esto equivale a $(A-\mathcal{F}_{\mathbf{x}}, c)=A$, $\forall c_{\varepsilon} \mathcal{F}_{\mathbf{x}}$ lo que demuestra que $\mathcal{F}_{\mathbf{x}}$ es un filtro minimal.

<u>f es invectiva:</u> En efecto por ser X Hausdorffy A una base de cerr<u>a</u> $dos \cap a = x.$ $a \in \mathcal{F}_{\mathbf{v}}$

<u>f es epiyectiva</u>: es equivalente a demostrar que si \mathcal{F}_m espec_m A entonces $\bigcap_{\mathbf{a_i} \in \mathcal{F}_m} \mathbf{a_i} \neq \emptyset$. Esto último es fácil de ver: por ser

 \mathcal{F}_{m} minimals $\mathbf{a}_{i} \in \mathcal{F}_{m}$ existe $\mathbf{b}_{i} \notin \mathcal{F}_{m}$ tal que $\mathbf{a}_{i} + \mathbf{b}_{i} = 1$. Por tanto $(\bigcap_{\mathbf{a}_{i}} \mathbf{a}_{i}) \cup (\bigcap_{\mathbf{b}_{i}} \mathbf{b}_{i}) = \mathbf{X}$ y si $\bigcap_{\mathbf{a}_{i}} \mathbf{a}_{i} \in \mathcal{F}_{m}$ entonces $\mathbf{a}_{i} \in \mathcal{F}_{m}$

por la condición b) existe un nº finito de b_i : $b_i ldots b_n$ tales que $\bigcup_{j=1}^n$ $b_j = X$ es decir $b_i + \ldots + b_n = 1$ con lo que llegamos a j=1

contradicción pues $b_j \in \mathcal{F}_m$ j = 1...n

f es ahora un homeomorfismo.

Proposición 1.13:

Sea A un retículo tal que Spec_M^A A es denso en Spec_p^A $\operatorname{Spec}_M^A \text{ es un espacio Hausdorff si y sólo si, dados dos filtros maximales de A cualesquiera, no existe ningún filtro primo contenido en ambos.}$

Demostración:

1/ Sean $\mathfrak{T}_{\mathbf{M}}$, $\mathfrak{T}_{\mathbf{M}}^{'}$ \mathfrak{E} Spec_M A y supongamos que no existe ningún filtro primo contenido en los dos. Por la Proposición 0.2 esto equivale a $(A - \mathfrak{T}_{\mathbf{M}}^{'}, A - \mathfrak{T}_{\mathbf{M}}^{'}) = A$ y por tanto existen a \mathfrak{E} $\mathfrak{T}_{\mathbf{M}}$ y b \mathfrak{E} $\mathfrak{T}_{\mathbf{M}}^{'}$ tales que a + b = 1.

2/ Reciprocamente supongamos que Spec_M A es Hausdorff y sean \mathfrak{F}_M , \mathfrak{F}_M' ε Spec_M A. Por ser Hausdorff existen cerrados de la base de Spec_M A : $\mathfrak{F}_M \not\in (a)_0^M$, $\mathfrak{F}_M' \not\in (b)_0^M$ tales que $(a)_0^M \cup (b)_0^M = \operatorname{Spec}_M$ A. Puesto que Spec_M A es denso en Spec_M esto asegura a+b=1 y por tanto $(A-\mathfrak{F}_M$, $A-\mathfrak{F}_M')=A$. Esto termina la demostración.

Proposición 1.14:

Sea A un retículo tal que $\operatorname{Spec}_{\mathbf{M}}$ A es un espacio Hausdorff

y denso en Spec A.

Entonces $\operatorname{Spec}_M^{}$ A es un retracto de $\operatorname{Spec}_p^{}$ A, es decir existe una aplicación contínua $f\colon \operatorname{Spec}_p^{}$ A $\longrightarrow \operatorname{Spec}_M^{}$ A tal que $f\mid \operatorname{Spec}_M^{}$ A es la identidad.

Demostración:

Por la Proposición 1.13 podemos definir la aplicación: $\operatorname{Spec}_p A \xrightarrow{f} \operatorname{Spec}_M A$

$$\mathfrak{T}_{\mathbf{p}} \xrightarrow{} \mathfrak{T}_{\mathbf{M}} = \text{ finico filtro maximal que contiene}$$
 a $\mathfrak{T}_{\mathbf{p}}.$

 $\frac{f \text{ es continua:}}{a \in A, \ f^{-1}(a) \stackrel{M}{\circ} \cap Spec_{M}^{} A = (a) \stackrel{M}{\circ} pues \text{ entonces si} \quad \mathfrak{F}_{\varepsilon} \ f^{-1}(a) \stackrel{M}{\circ} existe \quad \mathfrak{F}_{M} \in Spec_{M}^{} A \text{ tal que } a_{\varepsilon} \mathcal{F}_{M} \text{ y} \quad \mathfrak{F}_{\varepsilon} \mathcal{F}_{M} \text{ y por tanto}$ $\mathfrak{F}_{\varepsilon} \ f^{-1}(a) \stackrel{M}{\circ}.$

Pasamos pues a comprobar la igualdad: $f^{-1}(a)_0^M \cap \operatorname{Spec}_M^{A} = (a)_0^M \cdot \operatorname{Sea}_M \in \operatorname{Spec}_M^A$. Por ser Spec_M^A máximal existe $b \in \operatorname{Spec}_M^A$ tal que $a \cdot b = 0$. Puesto que Spec_M^A es compacto, es normal (dados dos cerrados disjuntos tienen entornos abiertos disjuntos) y de aquí existen c, $d \in A$ tales que $(a)_0^M \cap (c)_0^M = \emptyset$, $(b)_0^M \cap (d)_0^M = \emptyset$ y $(c)_0^M \cup (d)_0^M = \operatorname{Spec}_M^A$. Dado que Spec_M^A a es denso en Spec_M^A esto equivale a : $a \cdot c = 0$ b.d = 0 y c + d = 1.

Puesto que b ε \S_M , $d \not \varepsilon$ \S_M y por tanto $\operatorname{Spec}_p A - (d)_0$ es un abierto que contiene a \S_M . Si \S_ε $\operatorname{f}^{-1}(a)_0^M$, $\operatorname{c} \not \varepsilon \S$ obviamente y por tanto $\operatorname{d}_\varepsilon \S$. Esto demuestra que $(\operatorname{Spec}_p A - (d)_0) \cap \operatorname{f}^{-1}(a)_0^M = \emptyset$ y por tanto $\operatorname{S}_M \not \varepsilon$ $\operatorname{f}^{-1}(a)_0^M$. Esto demuestra la igualdad pues el contenido en el otro sentido es obvio.

Proposición 1.15

Sea A un retículo tal que Spec A es denso en Spec A.

1/ Entonces Spec at A es un espacio Hausdorff si y sólo si, dados dos filtros atómicos cualesquiera de A, no existe ningún filtro primo contenido en ambos.

Si la representación natural de A en Specat A $\phi_{a+}(a) = (a) at completa se verifica:$

2/ Spec A es un espacio regular, si y sólo si, dado un filtro atómico cualquiera de A y un filtro maximal cualquiera de A, no existe ningún filtro primo contenido en ambos.

3/ Spec at A es un espacio normal, si y sólo si dados dos filtros maximales cualesquiera de A, no existe ningún filtro primo contenido en ambos.

Demostración:

1/ Se demuestra exactamente igual que la Proposición 1.13.

2/ Supongamos que se verifica la condición y sea \mathfrak{F}_{ϵ} Spec_{at} A y \mathfrak{F}_{ℓ} (a) $_{0}^{\mathrm{at}}$. Para cada \mathfrak{F}_{i} ϵ (a) $_{0}^{\mathrm{M}}$ puesto que $(A-\mathfrak{F}, A-\mathfrak{F}_{i})=A$ existen b_{i} ℓ \mathfrak{F} y c_{i} ℓ \mathfrak{F}_{i} tales que $b_{i}+c_{i}=1$. Si $(a)_{0}^{\mathrm{M}}=\{\mathfrak{F}_{i} \ \text{iel}\}$ se verifica entonces $(a)_{0}^{\mathrm{M}} \cap (c_{i})_{0}^{\mathrm{M}}=\emptyset$ y puesto que $\mathrm{Spec}_{\mathrm{M}}$ A es cuasi-compacto iel

(Teorema 1.1 1/) existe un número finito $c_1 \dots c_n$ tales que $(a.c_1 \dots c_n)_0^M = \emptyset$. Si designamos: $c = c_1 \dots c_n$ y $b = b_1 + \dots + b_n$ obviamente $b \notin S$, b + c = 1 y $(a)_0^M \cap (c)_0^M = \emptyset$. Por tanto $S \notin (b)_0^{at}$, $(a)_0^{at} \cap (c)_0^{at} = \emptyset$ y $(b)_0^{at} \cup (c)_0^{at} = Spec_{at}^A$ lo que demues tra que $Spec_{at}^A$ es un espacio regular.

Reciprocamente: sea Spec A regular. Sean $\mathfrak{F}_{\varepsilon}$ Spec A $\mathfrak{F}_{\mathsf{M}}$ $\mathfrak{F}_{\mathsf{M}}$ $\mathfrak{F}_{\mathsf{M}}$ $\mathfrak{F}_{\mathsf{M}}$ $\mathfrak{F}_{\mathsf{M}}$ $\mathfrak{F}_{\mathsf{M}}$ A cualesquiera. Entonces existe $\mathfrak{A}_{\varepsilon}$ $\mathfrak{F}_{\mathsf{M}}$ \mathfrak{F}_{M

— la afirmación anterior presupone que la representación na tural de A en Spec A es completa — . Puesto que la representación de A en Spec A es fiel, lo anterior se traduce: existen b $\mbox{\ensuremath{\wp}} \mbox{\ensuremath{\wp}} \mbox{\ensur$

3/ Supongamos que se verifica la condición y sean a,b_{ε} A tales que $(a)_0^{at} \cap (b)_0^{at} = \phi$. Sean $(a)_0^M = \{S_i \ i \in I\}$ y $(b)_0^M = \{S_j \ j \in J\}$. Puesto que la representación de A en Specat A es fiel $(a)_0^M \cap (b)_0^M = \phi$ y de aquí $\forall i \in I$ y $\forall j \in J$ se verifica: existen

$$c_{ij} \notin \mathcal{T}_i$$

$$\text{tales que } c_{ij} + d_{ij} = 1 \text{ pues } (A - \mathcal{T}_i, A - \mathcal{T}_j) = A$$

$$d_{ij} \notin \mathcal{T}_j$$

Por tanto para cada $i_{\varepsilon} I$: $\bigcap_{j \in J} (d_{ij})_{0}^{M} \cap (b)_{0}^{M} = \emptyset$ y por ser $j_{\varepsilon}J$ Spec_M A cuasi-compacto existen $d_{i1}, \ldots d_{in}$ tales que $(d_{i1} \ldots d_{in} \cdot b)_{0}^{M} = \emptyset$. Si ahora notamos $d_{i} = d_{i1} \ldots d_{in}$ y $c_{i} = c_{i1} + \ldots + c_{in}$ se obtiene:

$$c_{i} \notin S_{i}$$
 $d_{i} \cdot b = 0$ $y c_{i} + d_{i} = 1$ $\forall i \in I$.

Puesto que $\bigcap_{i\in I} (c_i)_0^M \cap (a)_0^M = \emptyset$ un razonamiento idéntico al anterior demuestra que existen c,d \in A tales que c.a = 0, d.b = 0 y c+d=1. Si ahora hacemos la representación natural de A en Specat A obtenemos:

$$(c)_{0}^{\text{at}} \cap (a)_{0}^{\text{at}} = \emptyset$$
, $(d)_{0}^{\text{at}} \cap (b)_{0}^{\text{at}} = \emptyset$ $y (c)_{0}^{\text{at}} + (b)_{0}^{\text{at}} =$

$$= \text{Spec}_{\text{at}}^{\text{A}}$$

lo que demuestra que Spec A es un espacio normal.

Reciprocamente: sea Spec_{at} A un espacio normal. Sean \mathcal{F} , $\mathcal{F}' \in \operatorname{Spec}_M$ A. Por ser maximales existe a $\mathcal{E} \mathcal{F}$ y b $\mathcal{E} \mathcal{F}'$ tales que a.b = 0. De aquí (a) $\mathcal{F} \cap \mathcal{F}$ (b) $\mathcal{F} \cap \mathcal{F}$ por ser Spec_{at} A normal existen cerrados:

(c)
$$_{0}^{\text{at}} \cap (a)_{0}^{\text{at}} = \phi$$

, $y(c)_{0}^{\text{at}} \cap (d)_{0}^{\text{at}} = \text{Spec}_{\text{at}}^{\text{A}}$
(d) $_{0}^{\text{at}} \cap (b)_{0}^{\text{at}} = \phi$

- también aquí hemos usado que la representación natural de A en $\operatorname{Spec}_{\operatorname{at}}$ A es completa — . Dado que la representación natural de A en $\operatorname{Spec}_{\operatorname{at}}$ A es fiel, lo anterior se traduce: existen $\operatorname{c.d}_{\mathfrak E}$ A tales que $\operatorname{c.a}=0$, $\operatorname{d.b}=0$ y $\operatorname{c+d}=1$. Dado que $\operatorname{c.f}$ y $\operatorname{d.f}$ s' esto demuestra que $\operatorname{(A-F,A-F')}=A$ o equivalentemente $\operatorname{FnF'}$ no contiene ningún filtro primo.

Corolario:

Sea A un retículo, tal que su representación natural en Spec_{at} A es fiel y completa. Spec_M A es compacto si y sólo si Spec_{at} A es normal.

Comprobación:

El que la representación natural de A en Specat A sea fiel implica que Specat A es denso en Specat A y a fortiori lo será Specat A. El corolario es ahora inmediato a partir de la Proposición 1.13 y de la Proposición 1.15 3/.

DIMENSION DE KRULL DE UN RETICULO

Definición 1.6:

Sea A un retículo. Llamaremos dimensión de Krull de A, no tado dim $_k$ A al estremo superior de las longitudes de cadenas finitas estrictamente crecientes $\mathfrak{p_0} \subset \mathfrak{p_1} \subset \cdots \subset \mathfrak{p_n} \quad \text{de ideales primos de A} - \text{se recuerda que la longitud de una cadena es igual al número de elementos de que consta menos uno --.}$

Lema 1.1:

Sea A un retículo. Se verifica:

 $1/ \ \text{dim}_k^{\quad A} \ = \ \text{al extremo superior de las longitudes de}$ cadenas finitas estrictamente decrecientes de filtros primos de A.

 $\label{eq:local_p} 2 / \dim_k^{\ A} = \dim_k^{\ Spec}_p^{\ A} \quad \text{donde dim}_k^{\ Spec}_p^{\ A} \quad \text{denota al}$ extremo superior de las longitudes de cadenas finitas estrictamente crecientes de cerrados irreducibles de Spec_p^A.

Comprobación:

- 1/ Inmediato a partir de la Proposición 0.2.
- 2/ Inmediato a partir de 1/ y de la Proposición 1.4 3/ pues si dos filtros primos verifican $S_1 \subset S_2$ entonces $V(S_1) \supset V(S_2)$.

Lema 1.2:

Sea A un retículo. $\dim_{\mathbf{k}} A = 0$ si y sólo si A es de Boole. Comprobación:

Ha quedado demostrado en el corolario a la Proposición 1.5. Lema 1.3:

Sea A un retículo. Se verifica:

- 1/ Si dim A es finita, dim A = dim A*.
- 2/ Si dim_k A es infinita, dim_k A* es también infinita. Comprobación:
 - 1/ es obvio.
 - 2/ se sigue de 1/ dado que A** = A

Proposición 1.16:

Sea A un retículo complementado y B el conjunto

$$\{1, a \in A \mid a + b = 1 \longrightarrow b = 1\}$$

Entonces B es un retículo y $\dim_k B \ge \dim_k A$.

Demostración:

La comprobación de que B es retículo es inmediata. Sea B $\stackrel{i}{\longleftarrow}$ A la inyección natural, entonces

$$Spec_{p} A \xrightarrow{i*} Spec_{p} B$$

 $\mathfrak{F} \longrightarrow \mathfrak{F} \cap B$ es epimorfismo.

La proposición quedará demostrada, si comprobamos que para todo par de filtros primos \S_1 \supset \S_2 de A se verifica: \S_1 \cap B \supset \S_2 \cap B. Y esto es fácil de ver: en efecto si a ε \S_2 \cap y a ε \S_2 \cap y a designa el complemento de a, se verifica a ε ε \S_2 \subset \S_1 \cap y de aquí a.a ε ε \circ \circ y a.a ε \circ \circ \circ Por el Lema 0.1 a.a ε ε B y por tanto \S_1 \cap B \supset \S_2 \cap B.

CAPITULO II : APLICACIONES A LA TOPOLOGIA GENERAL.

En este capítulo se aplican los resultados del capítulo precedente a la topología general. Esta aplicación se hace asignando a cada espacio topológico X su retículo de cerrados A, y trata dos temas:

- 1/ Caracterizaciones de espacios: Destacamos en este punto:
- a) Caracterización de las condiciones de separación en términos de Spec_n A.
- b) Caracterización de los espacios noetherianos como aquellos cuyo retículo de cerrados es tal que todo filtro es principal.
- 2/ Cuasi-compactizaciones y compactizaciones de un espacio. Señalamos como resultados principales:
- a) Si X es un espacio T_0 -separado y A su retículo de cerrados, Spec A es una cuasi-compactización de Y tal que toda aplicación continua de X en un compacto Y, extiende a una aplicación continua de Spec A en Y.

Análogamente si X es un espacio T_1 -separado y A su retículo de cerrados, Spec_M A es una cuasi-compactización de X con la misma propiedad de extensión. De aquí se sigue que para aquellos espacios para los que Spec_M A es Hausdorff, Spec_M A es un modelo de la compactización de Stone-Čech. El dominio de dichos espacios se caracteriza en la $1^{\underline{n}}$ parte del capítulo como el de los espacios normales.

b) Para el dominio de los espacios completamente regulares, existen retículos "suficientemente buenos" de cerrados cuyo espectro maximal son compactizaciones del espacio. Esto da un método constructivo de compactizaciones de un espacio com pletamente regular, método que en particular, construye un modelo de la compactización de Stone-Čech de un espacio no normal, y la compactización de Alexandroff de un espacio localmente compacto.

CARACTERIZACIONES DE ESPACIOS

Proposición 2.1:

Sea X un espacio topológico y A su retículo de cerrados. Se verifica:

- $1/\ {\rm X}$ es ${\rm T_0-separado}$ si y sólo si X es homeomorfora un subespacio de ${\rm Spec_p}\ {\rm A.}$
- 2/ X es T₁-separado si y sólo si X es homeomorfo a Spec A. Comprobación:

1/ Si X es T_0 -separado, para cada par de puntos $x_4 \neq x_2 \in X$ se verifica $\overline{x}_4 \neq \overline{x}_2$. Entonces la aplicación:

está bien definida, pues $\overline{\mathbf{x}}$ es un cerrado irreducible y por tanto genera un filtro primo; es inyectiva y manifiestamente es un homeomorfismo.

El recíproco es obvio pues $Spec_R$ A es T_0 -separado.

Nôtese que X, T_0 -separado es homeomorfo a Spec $_R$ A si y sólo si todo cerrado irreducible de X es el cierre de un punto.

2/ Sea X, T, -separado. Entonces la aplicación:

$$x \xrightarrow{f} \operatorname{Spec}_{at} A$$

$$x \xrightarrow{f} \{a \in A \mid x \in a\}$$

está bien definida pues $x \in \mathcal{T}_{\mathbf{x}}$ y si a $f \in \mathcal{T}_{\mathbf{x}}$ a.x = 0 lo que demuestra que $\mathcal{T}_{\mathbf{x}}$, filtro generado por x es máximal. Es manifiestamente inyectiva y también epiyectiva, pues si f = (a) es

un filtro atómico de A y x_{ε} a $\mathfrak{F}_{\subset} \mathfrak{F}_{x}$ y puesto que \mathfrak{F} es máximal $\mathfrak{F} = \mathfrak{F}_{x}$. Es claro por último que f es ahora un homeomorfismo.

Nótese que dado que f es un homeomorfismo, entonces la representación de A en Spec at A es fiel y completa pues si a, i g I es una familia de elementos de A se verifica:

$$\bigcap_{i \in I} (a_i)_0^{at} = (\bigcap_{i \in I} a_i)_0^{at}$$

El recíproco es obvio pues Spec $_{\mbox{at}}$ A es un espacio $_{\mbox{T}_{4}}$ -separado.

Proposición 2.2:

Sea X un espacio T_1 -separado y A su retículo de cerrados. Se verifica:

- 1/ X es Hausdorff si y sólo si dados dos filtros atóm<u>i</u> cos cualesquiera de A, no existe ningún filtro primo contenido en ambos.
- 2/ X es regular si y sólo si dados un filtro atómico cualquiera de A y un filtro máximal cualquiera de A,no existe ningún filtro primo contenido en ambos.
- 3/ X es normal si y sólo si dados dos filtros máximales cualesquiera de A no existe ningún filtro primo contenido en ambos.

Comprobación:

Por ser X un espacio T_1 -separado es homeomofo a Spec_{at} A y la representación natural de A en Spec_{at} A es fiel y completa — proposición anterior—.

Ahora nuestra proposición se sigue inmediatamente de la Proposición 1.15

Proposición 2.3:

Sea X un espacio topológico y A su retículo de cerrados. Se verifica:

1/X es un espacio irredu si y sólo si Spec p A es irreducible.

2/ X es un espacio conexo si y sólo si Spec p A es conexo. Comprobación:

1/ Si X es irreducible entonces (1) es un filtro primo de A y por Proposición 1.4 2/ Spec A es irreducible.

La misma proposición asegura que $Spec_p$ A irreducible, implica que (1) es un filtro primo de A y esto es equivalente a que X sea irreducible.

2/ Si X es conexo, no existe ningún cerrado de X que sea también abierto, y por tanto ningún elemento de A admite un complementario. Por la Proposición 1.4 1/ eso implica que Spec_p A es conexo.

La misma proposición asegura que si Spec_p A es conexo ningún elemento de A admite complementario y por tanto no hay ningún cerrado de X que sea tambén abierto. Por tanto X es conexo. Proposición 2.4:

Sea X un espacio T_0 -separado y A su retículo de cerrados. X es noetheriano si y sólo si todo filtro de A es principal. Comprobación:

Si X es un espacio T_0 -separado y noetheriano, dada una familia cualquiera de cerrados c_i i ϵ I de X, X - \bigcap c_i es un abierto cuasi-compacto y por tanto dado que $(X - \bigcap_{i \in I} c_i) \bigcap_{i \in I} c_i = \emptyset \quad \text{existe una subfamilia finita } c_1 \dots c_n$ tal que $(X - \bigcap_{i \in I} c_i) \bigcap_{j = 1} c_j = \emptyset$ o equivalentemente $\bigcap_{i \in I} c_i = \bigcap_{j = 1} c_j.$ Esto asegura que todo filtro de A es principal $i \in I$ i = 1

va que la intersección de todos sus elementos , pertenece ento $\underline{\mathbf{n}}$ cès al filtro.

El recíproco es obvio ya que si A es principal por la Proposición 1.11, Spec_p^A es un espacio noetheriano y dado que por la Proposición 2.1 1/X es un subespacio de Spec_p^A , es también noetheriano.

Nota: Como es obvio, la caracterización de cuando un es pacio X T_0 -separado es noetheriano puede hacerse en términos de verificación para su retículo de cerrados A, de cualquiera de las condiciones equivalentes de la Proposición 1.11. Corolario:

Sea X un espacio T_0 -separado noetheriano. Entonces el número de sus componentes irreducibles es finito. Comprobación:

Si X es T₀-separado y noetheriano y A su retículo de cerra dos, todo filtro de A es principal. De aquí los filtros minimales de A son los filtros generados por las componentes irreducibles de X. Basta ahora tener en cuenta el corolario a la Proposición 1.12.

Proposición 2.5:

Sean $X_1\subset X_2$ espacios topológicos T_0 -separados y A_1 , A_2 sus respectivos retículos de cerrados. X_1 es un subespacio de X_2 si y sólo si la inyección natural de X_1 en X_2 extiende a una inyección espectral y homeomorfismo en, de Spec $_p$ A_1 en Spec $_p$ A_2 .

Comprobación:

Si X_1 es un subespacio de X_2 , la aplicación:

$$A_2 \xrightarrow{\phi} A_1$$

 $a \xrightarrow{\hspace*{1cm}} a \cap X_1 \text{ es un morfismo epiyectivo de }$ retículos y de aquí:

$$\operatorname{Spec}_{p} A_{1} \xrightarrow{\phi^{*}} \operatorname{Spec}_{p} A_{2}$$

El recíproco es obvio pues X_4 es un subespacio de $\operatorname{Spec}_p A_4$ el cual a su vez, es subespacio de $\operatorname{Spec}_p A_2$.

Nota: Si X_1 es un subespacio de X_2 , $\operatorname{Spec}_p A_1 \xrightarrow{\varphi^*} \operatorname{Spec}_p A_2$ la inyección espectral que prolonga a la inyección natural de X_1 en X_2 , Y S_M es un filtro maximal, no atómico de A_1 entonces φ^* S_M no está contenido en ningún filtro de φ^* ($\operatorname{Spec}_{\operatorname{at}} A_1$) ya que $\varphi^* S_M = \{a \in A_2 \mid a \cap X_1 \in S_M\} \subset \varphi^*$ ($S_M \in S_M$) implica: si $b \in S_M$ entonces $x_1 \in b$ en contra de ser S_M un filtro maximal no atómico.

Esto aclara porque los subespacios de un espacio Hausdorff o regular siguen teniendo la misma propiedad, mientras que esta situación no es cierta para la propiedad de normalidad. En efecto: Spec $_{\bf p}$ $^{\rm A}_{\rm 1}\simeq \phi^{\rm *}({\rm Spec}_{\bf p}$ $^{\rm A}_{\rm 1})$ $^{\rm C}$ Spec $_{\bf p}$ $^{\rm A}_{\rm 2}$ y $\phi^{\rm *}$ $^{\rm F}_{\rm 1}$ $^{\rm C}$ $\phi^{\rm *}$ $^{\rm F}_{\rm 2}$ si y sólo si $^{\rm F}_{\rm 1}$ $^{\rm C}$ $^{\rm F}_{\rm 2}$.

1/ Dados dos filtros atómicos cualesquiera de ${\rm A_1}$, sus imágenes por $_{\rm O}^{\rm ++}$ son filtros atómicos de ${\rm A_2}$ y si ${\rm X_2}$ es Hausdorff por la Proposición 2.2 1/ no existe ningún filtro primo de ${\rm A_2}$ contenido en ambos. Por la misma Proposición ${\rm X_1}$ es entonces Hausdorff.

2/ Dado un filtro atómico \mathcal{F}_a y un filtro máximal \mathcal{F}_M cualesquiera de A_1 entonces $\phi^\#$ $\mathcal{F}_M \not\subset \phi^\#$ \mathcal{F}_a y si X_2 es regular la Proposición 2.2 2/ asegura entonces que no existe ningún filtro primo de A_2 contenido en $\phi^\#$ \mathcal{F}_M Y $\phi^\#$ \mathcal{F}_a . La misma pro

posición asegura entonces que X, es regular.

3/ Dos filtros maximales de A_1 pueden tener como imagen por ϕ^X , filtros primos de A_2 contenidos en un mismo filtro máximal de A_2 . De aquí la normalidad de X_2 no implica la normalidad de X_4 .

Proposición 2.6:

Sea X un espacio T_1 -separado. X es cuasi-compacto si y sólo si X es homeomorfo a Spec $_{M}$ A donde A es el retículo de cerrados de X.

Comprobación:

Si X es cuasi-compacto y $\mathfrak F$ un filtro de $\mathbb A$, $\bigcap_{\mathsf a \in \mathfrak F} \mathsf a \neq \emptyset$

pues por ser \mathcal{F} un filtro las intersecciones finitas de elementos de \mathcal{F} son no vacías. De aquí todo filtro maximal de A es atómico. Por la Proposición 2.1 2/ entonces X es homeo morfo a Spec_M A.

El recíproco es obvio pues en el Teorema 1.1 1/ quedó de mostrado que ${\rm Spec}_{_{M}}$ A es un espacio cuasi-compacto.

Corolario:

Sea X un espacio T_1 -separado, A un retículo de cerrados y a ϵ A. Entonces a es cuasi-compacto si y sólo si es homeomorfo a $\binom{M}{0}$.

Comprobación:

Proposición 2.7:

Sea X un espacio T_1 -separado y cuasi-compacto y A su ret<u>f</u> culo de cerrados. Sea B un ret<u>fculo</u> contenido en A. Entonces B es una base de cerrados de X si y sólo si Spec p A $\xrightarrow{i^*}$ Spec p B

es un homeomorfismo entre los espectros maximales.

Demostración:

1/ Supongamos que B es una base de cerrados de X. Seai: B A la inyección natural. Pasando a espectros:

- a) i* \mid (Spec $_M$ A \simeq X) es invectiva ya que por ser B base de cerrados de X, separa puntos de X.
- b) i^* (Spec_M A) \subset Spec_M B. En efecto: $si \times = \mathcal{F}_M \varepsilon \operatorname{Spec}_M A$ sea $b \in B$ tal que $b \notin i^* = \mathcal{F}_M \cap B$ y esto implica $x \notin b$.

Por ser B base de cerrados existe una familia c_i i ϵ I de i^* \mathcal{F}_M tal que $\bigcap_{i \in I} c_i = x$. De aquí $b \bigcap_{i \in I} c_i = \emptyset$ y dado que X es cuas compacto existe un número finito c_1, \ldots, c_n de elementos de la familia tales que $b.c_1 \ldots c_n = 0$. Pero $c_1 \ldots c_n \in i^*$ \mathcal{F}_M y por tanto i^* \mathcal{F}_M es maximal.

Dado que i^* es epiyectiva y i^* $S_M = S_M \cap B$ b) asegura: $i^*(Spec_M A) = Spec_M B$.

c) i^* : $Spec_M A \longrightarrow Spec_M B$ es cerrada. En efecto por ser $X \simeq Spec_M A$ la representación natural de A en $Spec_M A$ es fiel y completa y se comprueba inmediatamente que si a e A, $i^*(a)_0^M = \bigcap_{i \ge a} (b_i)_0^M$

$$2/ \text{Si Spec}_{p} \land \xrightarrow{i^{\#}} \text{Spec}_{p} \mathrel{B}$$

Dado que X \simeq Spec A y que la representación natural de A en M

 $\operatorname{Spec}_{M}^{}$ A es entonces fiel y completa esto demuestra que B es una base de cerrados de X.

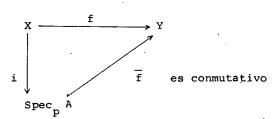
COMPACTIZACIONES Y CUASI-COMPACTIZACIONES.

Definición 2.1:

Sea X un espacio T_0 -seprado.Diremos que un espacio Y es una cuasi-compactización de X, si Y es un espacio T_0 -separado cuasi-compacto y X es homeomorfo a un subespacio de Y, denso en Y. Si Y es Hausdorff y una cuasi-compactización de X, se dirá que Y es una compactización de X.

Proposición 2.8:

Sea X un espacio T_0 -separado y A su retículo de cerrados. Entonces Spec_p A es una cuasi-compactización de X tal que para todo compacto Y y toda aplicación continua $f: X \longrightarrow Y$ existe una aplicación continua $\overline{f}: \operatorname{Spec}_p A \longrightarrow Y$ tal que el diagrama:



 \underline{i} denota la invección natural de X en Spec A definida en la comprobación de la Proposición 2.1 1/.

Demostración:

Es obvio que Spec $_p$ A es una cuasi-compactización de X, ya que $\bigcap_{\mathbf{X} \in \mathbf{X}} \mathbf{\bar{x}} = 1$ implica por la Proposición 1.2 5/ que iX \simeq X es denso en Spec $_p$ A; y por el Teorema 1.1 1/ Spec $_p$ A es un

espacio T_0 -separado y cuasi-compacto.

a \longrightarrow $f^{-1}(a)$ es un morfismo de retículos y por tanto define una aplicación continua:

$$\operatorname{Spec}_{p}^{A} \xrightarrow{(f^{-1})^{\#}} \operatorname{Spec}_{p}^{A}_{Y}$$

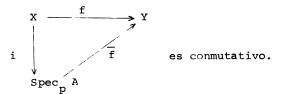
$$\S \xrightarrow{(f^{-1})^{\#}} \S = \{a \in A_{Y} | f^{-1}(a) \in \S\}$$

Pero por la Proposición 2.6 Y \simeq Spec $_{M}$ A $_{Y}$ y dado que Y es Hausdorff la Proposición 1.14 asegura que la aplicación

el único filtro maximal que contiene a $\,\overline{\S}\,$, es continua.

Si designamos $\bar{f} = \varphi$ o $(f^{-1})^*$ se verifica:

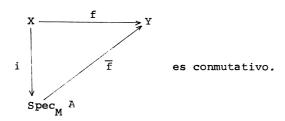
$$\forall \mathbf{x} \in \mathbf{X} : \overline{\mathbf{f}}(\mathbf{x}) = \varphi \left(\left\{ \mathbf{a} \in \mathbf{A}_{\mathbf{Y}} \mid \mathbf{f}^{-1}(\mathbf{a}) \ni \mathbf{x} \right\} \right) = \varphi \left(\left\{ \mathbf{a} \in \mathbf{A}_{\mathbf{Y}} \mid \mathbf{f}(\mathbf{x}) \in \mathbf{a} \right\} \right) = \mathbf{f}(\mathbf{x}) \text{ y por tanto el diagrama:}$$



En adelante Spec A se llamará la cuasi-compactización de Grothendieck de X.

Proposición 2.9:

Sea X un espacio T_1 -separado y A su retículo de cerrados. Entonces Spec_M A es una cuasi-compactización de X tal que para todo compacto Y y toda aplicación continua $f: X \longrightarrow Y$, existe una aplicación continua $f: \operatorname{Spec}_M$ A \longrightarrow Y tal que el diagrama:



Demostración:

Por ser X T_1 -separado, i $X \subset \operatorname{Spec}_M^{} A$ y es denso en él. La demostración es ahora análoga a la de la proposición anterior.

En adelante, si X es un espacio T_1 -separado y A su retículo de cerrados, Spec A se llamará la cuasi-compactización de Wallman de X.

Proposición 2.10:

Sea X un espacio T_1 -separado, A su retículo de cerrados y B \subset A un retículo tal que:

- a) Si b ϵ B y x ϵ b existe c ϵ B tal que x ϵ c y b.c=0.
- b) B es una base de cerrados de X. Entonces Spec $_{M}$ B es una cuasi-compactización de X.

Demostración:

Sea Spec_p A
$$\xrightarrow{i^*}$$
 Spec_p B la aplicación
$$5 \longrightarrow \longrightarrow 5 \cap B$$

definida entre espectros por la inclusión de B en A. Entonces a) asegura que i * (Spec A) $_{\rm C}$ Spec B, y entonces la representación de B en Spec B es fiel. En particular Spec B es denso en Spec B.

Notamos por ϕ la restricción de i* a Spec A :

$$\phi: \operatorname{Spec}_{\operatorname{at}} A \longrightarrow \operatorname{Spec}_{\operatorname{M}} B$$

$$\times \longrightarrow \mathcal{F}_{\bullet} \cap B$$

Entonces: $\underline{\phi}$ es inyectiva: ya que por b) B separa puntos de X. $\underline{\phi}$ es homeomorfismo de Specat \underline{A} en Imaq $\underline{\phi}$: ya que por b) si a $\underline{\epsilon}$ A se puede expresar en la forma a = $\bigcap_{i \in I} b_i$, b_i $\underline{\epsilon}$ B; y se comprueba inmediatamente que $\underline{\phi}(a)_0^{at} = \bigcap_{i \in I} (b_i)_0^M$ $\underline{\cap}$ Imag $\underline{\phi}$

 $\frac{\phi(Spec}{at} \xrightarrow{A) \text{ es denso en } Spec}_{M} \xrightarrow{B} : \text{como se deduce de la}$ Proposición 1.2 5/ teniendo en cuenta que 1 es el único elemento de B que pertenece a todos los filtros de $\phi(Spec_{at} \xrightarrow{A})$.

Definición 2.2:

Un retículo A se dirá que es normal si $\forall a_1$, a_2 \in A tales que $a_1 \cdot a_2 = 0$ existen $c_1 \cdot c_2 \in$ A tales que: $a_1 \cdot c_1 = 0$, $a_2 \cdot c_2 = 0$ y $c_1 + c_2 = 1$.

Proposición 2.11:

Sea X un espacio T_1 -separado, A su retículo de cerrados y B $_{\rm C}$ A un retículo que verifica las condiciones a) y b) de la Proposición 2.10. Entonces Spec $_{\rm M}$ B es Hausdorff si y sólo si B es normal.

Comprobación:

Sea B normal; y sean \mathcal{F}_1 , \mathcal{F}_2 dos filtros maximales cuales quiera de B.Dada la maximalidad de \mathcal{F}_1 y \mathcal{F}_2 existen $\mathbf{b}_1 \in \mathcal{F}_1$ $\mathbf{b}_2 \in \mathcal{F}_2$ tales que $\mathbf{b}_1 \cdot \mathbf{b}_2 = 0$. Dado que B es normal, existen \mathbf{c}_1 , $\mathbf{c}_2 \in \mathbf{B}$ tales que $\mathbf{c}_1 \cdot \mathbf{b}_1 = 0$, $\mathbf{c}_2 \cdot \mathbf{b}_2 = 0$ y $\mathbf{c}_{1+} \cdot \mathbf{c}_2 = 1$. Enton ces $\mathbf{c}_1 \not\in \mathcal{F}_1$ $\mathbf{c}_2 \not\in \mathcal{F}_2$ y por tanto no existe ningún filtro primo de B contenido en ambos. Dado que \mathbf{Spec}_M B es denso en \mathbf{Spec}_D B a proposición 1.13 asegura que \mathbf{Spec}_M B es Hausdorff.

El recíproco se obtiene fácilmente dado que si $\operatorname{Spec}_{\overset{}{M}}$ B es Hausdorff, por ser cuasi-compacto es normal.

Corolario:

Sea X un espacio T_4 -separado, A su retículo de cerrados y $B \subset A$ un retículo normal que verifica las condiciones a) y b) de la Proposición 2.10. Entonces X es completamente regular. Comprobación:

Se recuerda que un espacio X completamente regular es un espacio de Hausdorff tal que los ceros de las funciones continuas reales de X constituyen una base de cerrados. Es inmediato que los subespacios de un espacio completamente regular son completamente regulares y el lema de Urysohn afirma que un espacio normal es completamente regular. Por tanto si un espacio T_4 -se parado admite una compactización es completamente regular.

El corolario se sigue ahora de las Proposiciones 2.10 y 2.11.

Definición 2.3:

Sea X un espacio completamente regular. Llamaremos compactización de Stone-Čech de X, notada βX , al elemento universal, determinado salvo homeomorfismos, de sus compactizaciones; es decir para todo compacto Y y toda aplicación continua

Proposición 2.12:

Sea X un espacio T_4 -separado y A su retículo de cerrados. Entonces Spec_M A = βX si y sólo si X es normal.

Comprobación:

Por las Proposiciones 2.2 3/ y 1.13 X es normal si y sólo si $\operatorname{Spec}_{\scriptscriptstyle{\mathbf{M}}}$ A es Hausdorff.

Basta ahora tener en cuenta la Proposición 2.9.

Proposición 2.13:

Sea X un espacio completamente regular, $\mathcal{E}(X)$ su anillo de funciones continuas $y \in \mathcal{E} = \{\mathbf{Z}(f) = f^{-1}(0) \mid f_{\mathcal{E}}\mathcal{E}(X)\}$. Enton ces:

 $1/\mathcal{Z}$ es un retículo normal que verifica las condiciones a) y b) de la Proposición 2.10.

$$2/\operatorname{Spec}_{M} Z = _{\beta}X.$$

Demostración:

1/2 es un retículo con la unión e intersección ordinarias ya que: Z(f,g) = Z(f) + Z(g).

$$Z(f^2+g^2) = Z(f) \cdot Z(g)$$
.

$$Z(0) = 1 \cdot Z(1) = 0.$$

 $\not\cong$ verifica la condición a) de la Proposición 2.10: en efecto si $x \not\in Z(f)$ por ser X completamente regular, existe $g \in \mathcal{C}(X)$ tal que g(x) = 0 y $g \mid Z(f) \equiv 1$.

₹ verifica la condición b) de la Proposición 2.10: por la definición de espacio completamente regular.

 $\not\ge$ es normal: en efecto si $Z(f_1)$. $Z(f_2)$ = 0 definimos:

$$h = \frac{f_1^2}{f_1^2 + f_2^2} \in \mathcal{C}(X) \text{ pues } Z(f_1^2 + f_2^2) = \emptyset.$$

Sean ahora las funciones reales: $g_1(x) = \min(h(x) - \frac{1}{3}, 0)$ $g_2(x) = \max(h(x) - \frac{1}{3}, 0)$, que como es bien sabido, siguen siendo continuas. Dado que $Z(g_1) = \{x \in X | h(x) \le \frac{1}{3} \}$ y $Z(g_2) = \{x \in X | h(x) \ge \frac{1}{3} \}$ se tiene $Z(f_1) \cdot Z(g_2) = 0$, $Z(f_2) \cdot Z(g_1) = 0$ y $Z(g_1) + Z(g_2) = 1$.

Ahora las proposiciones 2.10 y 2.11 demuestran que $\operatorname{Spec}_{_{\mathbf{M}}} \mathcal{X}$ es una compactización de X.

2/ Sea Y un espacio compacto y \mathcal{X}_{y} su retículo de ceros de funciones contínuas. Sea $f: X \longrightarrow Y$ una aplicación continua. Entonces: $\mathcal{X}_{y} \xrightarrow{f^{-1}} \mathcal{X}$ es un morfismo de retículos ya que si $g \in \mathcal{C}(X)$ $f^{-1}(Z(g)) = Z(g \circ f)$.

Por tanto define una aplicación continua:

$$\operatorname{Spec}_{p}^{\not z} \xrightarrow{(f^{-1})^{\ast}} \operatorname{Spec}_{p}^{\not z}_{Y}$$

Pero por ser Y compacto y $\not z_Y$ una base de cerrados, la Proposición 2.7 asegura que Y \simeq Spec $_M$ $\not z_Y$ y por ser Y Hausdorff la Proposición 1.14 afirma que la aplicación:

el único filtro máximal de $\mathbf{z}_{\mathbf{v}}$ que contiene a 5-, es continua.

Si ahora designamos: $\overline{f} = {}^{x}_{\varphi} \circ (f^{-1})^{*}$: Spec_M $\not \simeq \longrightarrow Y$, \overline{f} extiende a f y esto demuestra que Spec_M $\not \simeq = {}_{\beta}X$.

Nota: Sea X un espacio completamente regular, $\mathscr{C}(X)$ su anillo de funciones continuas reales y $\mathbb{Z}=\{Z(f)\mid f\in \mathscr{C}(X)\}$

Se comprueba fácilmente que la aplicación:

$$\operatorname{Spec}_{M} \ \mathcal{E}(X) \xrightarrow{\quad \varphi \quad} \operatorname{Spec}_{M} \ \mathcal{Z}$$

$$\mathfrak{p} \xrightarrow{\quad \varphi \quad} \mathfrak{F}_{p} = \{ Z(f) \mid f \in \mathfrak{p} \}$$

es un homeomorfismo y por tanto:

- $1/\mbox{ Spec}_{\mbox{\scriptsize M}}$ & (X) es un modelo de la compactización de Stone-Čech del espacio X.
- 2/ Dado que rad $_{J}$ $\mathcal{C}\left(X\right)$ es decir la intersección de todos los ideales maximales es cero y Spec_{M} $\mathcal{C}\left(X\right)$ es un espacio normal, cada ideal primo de $\mathcal{C}(X)$ está contenido en un único ideal maximal.

Definición 2.4:

Un espacio X Hausdorff diremos que es localmente compacto si cada punto tiene un entorno compacto. Es bien sabido que entonces los entornos compactos de cada punto x constituyen una base de entornos de dicho punto.

Si X es localmente compacto, X^{\sharp} designa al espacio X unión con un punto no perteneciente a X, que notaremos ∞ , con la topología cuyos cerrados son los cerrados compactos de X y los conjuntos de la forma $c_U\infty$ donde c es un cerrado cualquiera de X. X^{\sharp} se llama la compactización de Alexandroff de X.

Proposición 2.14:

Sea X un espacio localmente compacto y no compacto. Sea Bel retículo generado por el conjunto $\{K, \overline{X-K} | K \text{ compacto de } X\}$.

Entonces $\text{Spec}_{\overset{}{M}}$ B es una compactización de X y $\text{Spec}_{\overset{}{M}}$ B \simeq $\overset{*}{X}$. Demostración:

- 1/ B verifica las dos condiciones de la Proposición 2.10 y por tanto ${\rm Spec}_{{\rm M}}$ B es una cuasi-compactización de X. En efecto:
- a) Si b $_{\mathfrak{C}}$ B y x $_{\mathfrak{C}}$ b entonces x $_{\mathfrak{C}}$ X-b y puesto que los entornos compactos son una base de entornos del punto, existe un compacto K de X tal que X-b \supset K \ni x. Por tanto x $_{\mathfrak{C}}$ K y K.b = 0.
- b) B es una base de cerrados de X: pues si x € c donde c es un cerrado de X, existe entonces un compacto K de X tal que

 $X - C \supset K^0 \rightarrow X$. De aqui $x \not\in \overline{X - K}$ $y : \overline{X - K} \supset C$.

2/ B tiene un único filtro maximal no atómico que notaremos \mathfrak{F}_{∞} . Es consecuencia de las siguientes afirmaciones:

Los puntos de X por ser compactos pertencen a B y de aquí son los átomos de B.

Sea K un compacto de X. Si K ε \mathcal{F}_{M} filtro maximal de B, entonces \mathcal{F}_{M} es atómico, ya que en caso contrario K \cap b = b ε \mathcal{F} y por ser K compacto existen b₁...b_n tales que K.b₁...b_n = 0 en contra de ser \mathcal{F}_{M} filtro propio.

El filtro 5 de B generado por la familia $\{X - K \mid K \text{ compacto de } X\}$ es un filtro maximal no atómico. En efecto:

 \mathcal{F} es un filtro no contenido en ningún filtro atómico, pues por ser X localmente compacto $\bigcap_{b \in \mathcal{F}} b = \phi$.

Ses un filtro maximal, ya que si K es un compacto de X, $K \cap b = \emptyset \quad \text{implica la existencia de un número finito b}_i$ be S

i = 1...n de elementos de f tales que f. $b_1...b_n = 0$.

3/ Spec $_{M}$ B es un espacio Hausdorff. Por la Proposición 1.13 esto equivale a probar que dados dos filtros maximales cualesquiera de B, no existe ningún filtro primo contenido en ambos.

$$K \notin S_{\infty}$$
 $Y K + \overline{X - K} = 1$

4/
$$Spec_M^B \simeq X^*$$
.

En efecto, la representación natural de B en ${\rm Spec}_{M}$ B da una base de cerrados y es obvio que se verifica: si K es un compacto de X:

$$(K)_{M}^{O} = K$$
 $(X - K)_{M}^{O} = X - K \cap 2^{\infty}$

De aquí los cerrados de Spec $_{M}$ B son los compactos de X y los conjuntos de la forma c $_{\bigcup \infty}$, donde c es un cerrado de X. Ejemplo 2.1:

Sea A el retículo generado por unión e intersección finita de las semirectas cerradas de la recta real R.

Entonces $\operatorname{Spec}_M^{}$ A es la compactización ordinaria de la recta real por dos puntos (conjunto de los reales extendidos).

En efecto:

- 1/ Puesto que A contiene a los intérvales cerrados, es inmediato comprobar que A verifica las condiciones a) y b) de la Proposición 2.10 y por tanto ${\rm Spec}_{\rm M}$ A es una cuasi-compactización de la recta real.
- $2/\ {\rm Spec}_{M}^{}$ A consta de los filtros atómicos definidos por puntos de R y dos filtros maximales no atómicos. Se sigue de las siquientes afirmaciones:

Los puntos de R pertenecen a A y por tanto son sus atómos.

- Si $\mathfrak{F}_{\mathfrak{C}}$ Spec $_{\widetilde{M}}$ A contiene un intervalo cerrado, entonces \mathfrak{F} es atómico.
- Si $\mathfrak{F}_{+\infty}$ denota el filtro generado por las semirectas de la forma $x \geq r$ $r \in \mathbb{R}$, entonces $\mathfrak{F}_{+\infty} \in \operatorname{Spec}_M^A$. En efecto si b $\mathfrak{F}_{+\infty}$, b no contiene ninguna semirecta de la forma $x \geq r$

y entonces existe $s \in \mathbb{R}$ tal que $s \ge y \ \forall \ y \in b$. De aqui $b \cdot (x \ge s) = 0$ y por tanto $\mathcal{F}_{+\infty}$ es un filtro maximal.

Análogamente si $\S_{-\infty}$ denota el filtro generado por las semirectas de la forma $x \le r$, entonces $\S_{-\infty} \in \operatorname{Spec}_M A$.

3/ Spec $_{\rm M}$ A es Hausdorff. En efecto: A es complementado y dado que los elementos de ${\mathbb F}_{+\infty}$ y de ${\mathbb F}_{-\infty}$ son divisores de cero al dual, la Proposición 0.11 asegura que ${\mathbb F}_{+\infty}$ y ${\mathbb F}_{-\infty}$ son filtros primos minimales. Por tanto, dados dos filtros maximales cualesquiera de A , no existe ningún filtro primo contenido en ambos, y de aquí Spec $_{\rm M}$ A es Hausdorff.

4/ Si en Spec_M A se define el orden: $\mathcal{T}_{\mathbf{x}} \leq \mathcal{T}_{\mathbf{y}} \longleftrightarrow \mathbf{x} \leq \mathbf{y}$ $\mathcal{T}_{+\infty} \geq \mathcal{T}_{\mathbf{x}} \geq \mathcal{T}_{-\infty} \quad \forall \mathbf{x} \in \mathbb{R}, \text{ la topología de Spec_M A coincide}$ con la topología de dicho orden. Comprobación imediata.

CAPITULO III: COHOMOLOGIA DE ESPACIOS ORDENADOS Y ESPACIOS NOETHERIANOS CON VALORES EN UN HAZ.

Este capítulo aborda el problema de hallar para ciertos dominios de espacios, un método para computar su cohomología con valores en un haz.

- 1/ Espacios ordenados: A lo largo del capítulo,un espacio ordenado es un conjunto ordenado con la topología cuyos cerra dos son los subconjuntos crecientes y el $_{\phi}$. En un tal espacio cada punto tiene un entorno mínimo: el conjunto de puntos meno reso iguales que él. Ejemplos de tales espacios son los espacios finitos $\rm T_{\rm O}$ -separados y los espacios topológicos duales de espacios espectrales noetherianos.
- Si $\mathcal A$ es un haz de grupos sobre un tal espacio, se le asigna un complejo semi-simplicial de cocadenas con valores en $\mathcal A$, al que se dota de estructura diferencial. Dado que los abiertos, de un espacio ordenado siguen siendo ordenados, la asignación anterior permite construir un complejo diferencial de haces que son una resolución "flasque" de $\mathcal A$. El hecho de que cada punto tenga un entorno mínimo es aquí esencial.

Al tomar secciones en dicha resolución "flasque" se obtiene el complejo semi-simplicial de cocadenas con valores en $\mathcal X$ y por tanto los grupos de cohomología de éste, coinciden con los grupos de cohomología del espacio con valores el haz $\mathcal X$. La demostración de que la cohomología del complejo semi-simplicial de cocadenas coincide con la del subcomplejo de cocadenas no-degeneradas, da la acotación de la dimensión cohomológica del espacio por su dimensión de Krull.

2/ Espacios noetherianos: El problema se resuelve en un

doble paso: A/ Espacios espectrales noetherianos: Si X es un espacio tal que $X = \underbrace{\lim_{i \in I} \operatorname{proy}}_{i \in I} X_{i}$ -donde los X_{i} son espa-

cios finitos T_0 -separados y $\mathcal A$ un haz de grupos sobre X, se le asigna el complejo diferencial límite inductivo de los complejos semi-simpliciales de cocadenas de los espacios X_i con valores el haz ϕ_i $\mathcal A$ — haz imagen directa por la proyección

natural de X en $\mathbf{X_i}$ — . También aquí, pero por un proceso mucho más laborioso, dicha asignación permite definir un complejo diferencial de haces que es una resolución "flasque" de $\mathcal A$ tal que al tomar secciones se obtiene el complejo primitivo. Sus grupos de cohomología, límite inductivo de los grupos de cohomología de los complejos semi-simpliciales de cocadenas de $\mathbf{X_i}$ con valores en $\mathbf{\phi_i}$ $\mathcal A$ coinciden entonces con

los grupos de cohomología de X con valores el haz $\mathcal A$.

De aquí se sigue:

- a) la cohomología del espacio X con valores el haz $\mathcal A$ es límite inductivo de la cohomología de los espacios X con valores el haz ϕ_{1} .
- b) la demostración de que todo retículo de dimensión de Krull n y tal que todo filtro es principal, es límite inductivo de retículos finitos de dimensión de Krull \leq n, da la acotación de la dimensión cohomológica del espacio por su dimensión de Krull.
- B/ Espacios noetherianos no espectrales: Si X es un tal espacio y A su retículo de cerrados, Spec A es espacio espectral noetheriano y entonces la cohomología de X convalores en un haz coincide con la de Spec A en el sentido siguiente:
 - 1/ Si \Re es un haz de grupos sobre S_{pec} A; se verifica:

$$H^{p}(\operatorname{Spec}_{p} A, \mathcal{A}) = H^{p}(x, \mathcal{A}|x) \quad \forall p \geq 0$$

2/ Si $\ensuremath{\mathfrak{A}}$ es un haz de grupos sobre X, se verifica:

$$H^{p}(x, \mathcal{A}) = H^{p}(Spec_{p} A, i_{*} \mathcal{A}) \quad \forall p \geq 0$$

donde i $_{\Re}\,\mathcal{A}\,$ designa el haz imagen directa de $\mathcal{A}\,$ por la inyección natural de X en Spec $_{\rm p}$ A.

COHOMOLOGIA DE ESPACIOS ORDENADOS CON VALORES EN UN HAZ

Definición 3.1:

Sea X un espacio topológico. Llamaremos dimensión cohomológica de X, notada dim X, al menor entero n tal que para todo haz de grupos $\mathcal A$ sobre X se verifica:

$$H^{i}(A, \mathcal{A}) = 0 \quad \forall i > n$$

Definición 3.2:

Sea X un conjunto ordenado con la topología cuyos cerrados son el ϕ y los conjuntos crecientes — ejemplo 0.2 — y ${\mathbb R}$ un haz de grupos sobre X.

Vamos a definir un complejo semi-simplicial de cocadenas de X con valores en $\mathcal A$.

Un simplice de orden p de X, s p ,es un morfismo del orden de $\Delta_p = \{ \text{ 0,1... p} \} \text{ en X}$

$$\Delta_{p} \xrightarrow{s_{p}} X$$

$$\{0, 1, \dots p\} \xrightarrow{s_{0} \le x_{1} \le \dots \le x_{p}}$$

Notaremos X_p el conjunto de los símplices de orden p de X. Si $x \in X$ notamos U(x) el conjunto $\{y \in X \mid y \leq x\}$. Como se demostró en el ejemplo 0.2, U(x) es el mínimo entorno del punto x.

Asignamos a cada $s_p \in X_p$ el grupo $\Gamma(U(s_p(0)), \mathcal{X})$ de las secciones del haz \mathcal{X} en el abierto $U(s_p(0))$; y por último notamos: $c^p(x,\mathcal{X}) = \prod_{s_p \in X_p} \Gamma(U(s_p(0)), \mathcal{X})$, $p \geq 0$.

El grupo graduado $C^*(X, A) = (C^p(X, A))_{p \ge 0}$ tiene entonces

estructura de complejo semi-simplicial de cocadenas. En efecto: si f: Δ_p ————————— $\Delta_{\bf q}$ es un morfismo del orden,

define una aplicación: $x_q \xrightarrow{\hspace*{1cm}} x_p$ $s_q \xrightarrow{\hspace*{1cm}} s_q \circ f$

y esta a su vez por trasposición, permite definir un morfismo de grupos:

$$c^{p}(x, \mathcal{A}) \xrightarrow{f} c^{q}(x, \mathcal{A})$$

$$\alpha = (\alpha(s_{p}))_{s_{p} \in X_{p}} \xrightarrow{f} \alpha \qquad \text{donde:}$$

 $(\vec{f}_{\alpha})(s_q)$ = restricción de $\alpha(s_q \circ f)$ a $U(s_q(0))$, $\forall s_q \in X_q$

Nota:

En la definición anterior, la palabra restricción designa el morfismo de restricción de haces:

$$\Gamma(U(s_q(f(0))), \mathcal{A}) \longrightarrow \Gamma(U(s_q(0)), \mathcal{A}).$$

La necesidad de restringir $\alpha(s_q \circ f)$ a $U(s_q(0))$ es clara, ya que si $\overline{f} \alpha \in C^q(X, \lambda)$, $(\overline{f} \alpha)(s_q) \in \Gamma(U(s_q(0)), \lambda)$ $\forall s_q \in X_q$.

Se comprueba ahora inmediatamente, que la asignación a cada morfismo del orden f: $\Delta_p \longrightarrow \Delta_q$, de un morfismo de grupos: $\overline{f}: C^{\overset{\circ}{p}}(x, \mathbb{A}) \longrightarrow C^{\overset{\circ}{q}}(x, \mathbb{A})$ es functorial es decir:

$$f = identidad$$
 \longrightarrow $f = identidad$
 $f = f_1 \circ f_2$ \longrightarrow $f = f_1 \circ f_2$

y por tanto $C^{\#}(X,\mathcal{A})$ es un complejo semi-simplicial de cocadenas. Definición 3.3:

Manteniendo las notaciones de la definición anterior, vamos ahora a definir una diferencial sobre el complejo $C^{*}(X,\mathcal{X})$.

Sea $n \ge 1$. Para cada $0 \le i \le n$ se define, la aplicación estrictamente creciente:

y sea \overline{F}_n^i : $c^{n-1}(x, \mathcal{A}) \longrightarrow c^n(x, \mathcal{A})$ el morfismo de grupos inducido por F_n^i .

Se define ahora: d: $C^{n-1}(x, \mathcal{A}) \longrightarrow C^{n}(x, \mathcal{A})$ d = $\sum_{i=0}^{n} (-1)^{i} \overline{F}_{n}^{i}(\alpha)$.

La comprobación de que $d^2 = 0$ es un cálculo: es efecto si $\alpha \in C^{n-1}(X, \mathfrak{A})$ y s_{n+1} es el símplice $x_0 \le \ldots \le x_{n+1}$ se tiene: $(d^2\alpha) (s_{n+1}) = \sum_{j=0}^{n+1} (-1)^j \overline{F}_{n+1}^j (\sum_{i=0}^n (-1)^i - \overline{F}_n^i (\alpha)) (s_{n+1}) = \text{restricción}$

a
$$U(x_0)$$
 de $\sum_{j=0}^{n+1} (-1)^{j} (\sum_{i=0}^{j-1} (-1)^{i} \alpha (x_0 \le ... \hat{x}_i \le ... \hat{x}_j \le ... x_{n+1}) +$

 $+ \sum_{i=j+1}^{n+1} (-1)^{i-1} \alpha(\mathbf{x}_0 \leq \dots \hat{\mathbf{x}}_j \leq \dots \hat{\mathbf{x}}_{i} \leq \dots \mathbf{x}_{n+1})) = 0 \text{ ya que en el sum}$

torio anterior para cada símplice $x_0 \le ... \hat{x_i} \le ... \hat{x_j} \le ... x_{n+1}$ aparecen los términos

$$(-1)^{j+1} \alpha (x_0 \le \dots \hat{x}_i \le \dots \hat{x}_j \le \dots x_{n+1}) y$$

$$(-1)^{j+i-1} \alpha (\mathbf{x}_0 \leq \ldots \hat{\mathbf{x}}_i \leq \ldots \hat{\mathbf{x}}_j \leq \ldots \mathbf{x}_{n+1}).$$

Por tanto $c^{\#}(x,\ell)$ con la <u>d</u> definida, tiene estructura de grupo diferencial graduado y por tanto tiene sentido hablar de sus grupos de cohomología. Dichos grupos serán notado en adelante $\operatorname{H}^n(x,\ell)$.

Proposición 3.1:

Con las notaciones de las definiciones anteriores, si X tiene elemento máximo que notaremos a, entonces:

$$H_{\perp}^{n}(X,\mathcal{A}) = 0 \qquad \forall n > 0.$$

Demostración:

Se reduce a la construcción de un operador de homotopia T tal que Td + dT = I donde I denota la identidad.

Definimos:
$$C^{P}(X, \mathcal{A}) \xrightarrow{T} C^{P-1}(X, \mathcal{A})$$

$$\alpha \longrightarrow T\alpha$$
 donde T_{α} se define por

la siguiente fórmula: si s $_{p-1}$ es el símplice $x_0 \le \dots \le x_{p-1}$

$$(T_{\alpha})(s_{p-1}) = (-1)^{p} \alpha(x_{0} \leq \dots x_{p-1} \leq a).$$

La comprobación de que Td + dT = I es un cálculo inmediato:

$$(\mathrm{Td}_{+}\mathrm{dT}) \; (_{\alpha}) \; (\mathrm{x}_{_{0}} \; \leq \ldots \leq \; \mathrm{x}_{_{p}}) \; = (-1)^{p} \; + 1 \quad \mathrm{d}_{\alpha} \; (\mathrm{x}_{_{0}} \leq \ldots \; \mathrm{x}_{_{p}} \leq \mathrm{a}) \; + \; \mathrm{restricción}$$

a
$$U(x_0)$$
 de $\sum_{i=0}^{p} (-1)^i T_0(x_0 \le \dots \hat{x}_i \le \dots x_p) = restricción a$

$$U(\mathbf{x}_0) \text{ de } \sum_{i=0}^{p} (-1)^{i+p} (\mathbf{x}_0 \leq \dots \hat{\mathbf{x}}_i \leq \dots \mathbf{x}_p \leq a) +$$

$$+ (-1)^{p+1} (\sum_{i=0}^{p} (-1)^{i} \alpha (x_{0} \leq \dots \hat{x}_{i} \leq \dots x_{p} \leq a) + (1)^{p+1} \alpha (x_{0} \leq \dots \leq x_{p}) =$$

$$= \alpha (x_{0} \leq \dots \leq x_{p}).$$

La existencia de dicho operador de hopotopia, asegura que

 $\forall n \geq 0$,un n-cociclo es un n-coborde y esto demuestra la proposición.

Notaciones:

 x_p^+ designará el conjunto de los símplices de orden p de X que son aplicaciones estrictamente crecientes; es decir $s_p \in x_p^+$ si y sólo si $s_p \colon \Delta_p \xrightarrow{} X$

$$\{0 \dots p\} \longrightarrow \mathbf{x}_0 < \mathbf{x}_1 < \dots < \mathbf{x}_p$$

Si $s_p \in X_p y$ $s_p \notin X_p^+$ se dice que s_p es un símplice degenerado. $C_p^+(X,\mathcal{R}) = \{\alpha \in C_p(X,\mathcal{R}) \mid \alpha(s_p) = 0 \quad \forall s_p \notin X_p^+ \}$ designa el conjunto de las cocadenas de orden p que se anulan sobre los símplices degenerados de orden p.

Por último, $C_+^*(x,\ell)$ designará el grupo graduado $(C_+^p\ (x,\ell))_{p\,\geq\,0}.$

Proposición 3.2:

Con las notaciones anteriores:

- $1/C^*(X,\mathcal{A})$ es un subcomplejo diferencial de $C^*(X,\mathcal{A})$.
- 2/ Si notamos H^p (X, \mathcal{X}) , $p \ge 0$ los grupos de cohomología del complejo C (X, \mathcal{X}) se verifica:
 - a) $H^{0}(X, \mathcal{X}) = H^{0}(X, \mathcal{X})$.
 - b) $\forall p \geq 1$ $H_{++}^{\mathbf{p}}(X, \mathcal{X})$ es sumando directo de $H_{+}^{\mathbf{p}}(X, \mathcal{X})$.

Demostración:

1/ Basta ver que si $\alpha \in C_+^{p-1}(X, \mathcal{A})$, d $\alpha \in C_+^p(X, \mathcal{A})$ y esto es inmediato: si $s_p = (x_0 \le \ldots \le x_p) \not\in X_p^+$ existe $0 \le r < p$ tal que $x_r = x_{r+1}$.

Entonces:
$$(d\alpha)(s_n) = restricción a U(x_0) de$$

$$\sum_{i=0}^{p} (-1)^{i} \alpha(x_{0} \leq \dots \hat{x}_{i} \leq \dots x_{p}) = restricción a U(x_{0}) de$$

$$(-1)^{r} \alpha (x_0 \le ... x_{r-1} \le x_{r+1} \le ... x_p) + (-1)^{r+1} \alpha (x_0 \le ... x_r \le x_s \le ... x_p)$$

$$2/a$$
) Es obvio pues $C(X, \mathcal{A}) = C(X, \mathcal{A})$.

2/b) Definimos:
$$c^{p}(x, x) \xrightarrow{\prod p} c^{p}(x, x)$$

$$\alpha \longrightarrow \Pi_{\mathbf{p}} \alpha$$

donde
$$(\Pi_p \alpha)(s_p) = \alpha(s_p)$$
 si $s_p \in X_p^+$

$$(\prod_{p \mid \alpha})(s_p) = 0$$
 si $s_p \notin X_p^+$

y designamos $\Pi = (\Pi_p)_{p \ge 0}$. Entonces Π es un morfismo de complejos diferenciales es decir Π o d = d o Π . La comprobación se un cálculo análogo al de 1/.

Si $i_p : C_+^p(x, x) \longrightarrow C_-^p(x, x)$ designa la inclusiⁿ na-, tural se verifica \prod_p o i_p = identidad en $C_+^p(x, x)$.

Puesto que $\[\]$ e $\[\]$ i son morfismos de complejos ^{lferencia}les definen morfismos:

$$H_{++}^{p}(X,\mathcal{A}) \xrightarrow{i_{p}^{*}} H_{+}^{p}(X')$$

$$\{\alpha\} \xrightarrow{\{i^{i,t}\}}$$

$$H_{+}^{\mathbf{p}}(\mathbf{X}, \mathcal{A}) \xrightarrow{\Pi_{\mathbf{p}}^{\mathbf{p}}} H_{++}^{\mathbf{p}}(\mathbf{X}, \mathcal{A})$$

$$\alpha \longrightarrow \{\Pi_{\mathbf{p}} \alpha\}$$

 $y \prod_{p=0}^{*} o i_{p}^{*} = identidad en H_{++}^{p}(x, x)$. Esto acaba la demostración de b).

Corolario:

Con las notaciones anteriores, si X tiene elemento máximo se verifica

$$\forall p \geq 0$$
 $H_{++}^{p}(X, \mathcal{A}) = H_{+}^{p}(X, \mathcal{A}).$

Demostración:

Para p = 0 el resultado lo hemos obtenido en la proposición anterior.

Si p>0 la Proposición 3.1 afirma $H_{++}^p(X, \ell)=0$ y puesto que por la proposición anterior $H_{++}^p(X, \ell)$ es sumando directo de $H^p(X, \ell)$, se tiene $H_{-+}^p(X, \ell)=0$.

Lema 3.1:

Sean X_1 , X_2 conjuntos ordenados con la topología cuyos cerras son el ϕ y los subconjuntos crecientes.

, 1/Si U es un abierto de X_4 , los cerrados de U son el ϕ y subcolajuntos crecientes de U.

2/ Una aplicación $\varphi: X_1 \longrightarrow X_2$ es continua si y sólo un morfismo del orden.

bación:

'es inmediato.

 $\varsigma Sea_{\ \phi}$ un morfismo del orden; y ${\rm C_2}$ un cerrado de ${\rm X_2}$.

, , y $\varepsilon_{\phi}^{-1}(c_2)$; por ser ϕ morfismo del orden: $\phi(y) \leq \phi(x)$.

Puesto que $_{\phi}(y)$ $_{\varepsilon}$ $c_{_2}$ y $c_{_2}$ es creciente: $_{\phi}(x)$ $_{\varepsilon}$ $c_{_2}$ y por tanto $_{\phi}^{-1}(c_{_2})$ es un conjunto creciente. Esto demuestra que $_{\phi}$ es continua.

Sea $_{\mathfrak{Q}}$ continua; $\mathbf{x} \geq y$ puntos de X_1 . Por ser $_{\mathfrak{Q}}$ continua $_{\mathfrak{Q}}^{-1}(\overline{_{\mathfrak{Q}}(y)})$ es un conjunto creciente de X_1 que contiene a y.

De aquí $x \in \phi^{-1}(\overline{\phi(y)}) \longleftrightarrow \phi(x) \in \overline{\phi(y)} \longleftrightarrow \phi(x) \ge \phi(y)$. Esto demuestra que ϕ es un morfismo del orden.

Definición 3.4:

<u>Haces de gérmenes de cocadenas:</u> Sea X un espacio ordenado con la topología cuyos cerrados son el ϕ y los subconjuntos crecientes, y $\mathcal A$ un haz de grupos sobre X.

Para cada p > 0 se define el prehaz sobre X:

donde el morfismo de restricción ϕ es la proyección natural pues U \supset V implica U $_{\text{p}}$ \supset V $_{\text{p}}.$

Dado que para toda familia de abiertos U_i i $_{\hat{\epsilon}}$ I se $ver\underline{i}$ fica: $(\bigcup_{i\in I}U_i)_p=\bigcup_{i\in I}(U_i)_p$ — ya que si $s_{\hat{p}}(\Delta_p)\subset\bigcup_{i\in I}U_i$

 $s_p(p) \in U_i$ para algún i y por ser U_i abierto entonces $s_p(h_p) \subset U_i$ — se comprueba fácilmente que el prehaz definido es un haz. En adelante lo notaremos $\mathcal{C}^p(x, \mathcal{X})$.

Por su misma definición $\mathcal{C}^{p}(x, \mathcal{X})$ $p \geq 0$ son haces "flasques

Se definen análogamente los haces $\mathcal{C}^p_+(x,\mathfrak{L})$ que también son "flasques".

Teorema 3.1:

Sea X un conjunto ordenado con la topología cuyos cerrados son el ϕ y los conjuntos crecientes; y $\mathcal X$ un haz de grupos sobre X.

Si $H^p(X,\mathcal{A})$ $p\geq 0$, denotan los grupos de cohomología de X con valores en el haz \mathcal{A} , se verifica:

$$H^{\mathbf{p}}(\mathbf{x}, \mathcal{A}) = H^{\mathbf{p}}(\mathbf{x}, \mathcal{A}) = H^{\mathbf{p}}(\mathbf{x}, \mathcal{A}) \quad \forall \mathbf{p} \geq 0$$

Demostración:

- 1/ Los haces $(\mathcal{C}^p(x,\mathcal{R}))_{p\geq 0}$ constituyen una resolución "flasque" del haz \mathcal{R} . En efecto:
- a) la diferencial \underline{d} de los complejos $(c^p(u, \mathcal{R}|u))_{p\geq 0}$ define un morfismo de haces: $\mathcal{C}^p(x, \mathcal{R}) \xrightarrow{d} \mathcal{C}^{p+1}(x, \mathcal{R})$, $p\geq 0$, que seguiremos notando d.
- b) definimos $\varepsilon: \mathcal{A} \longrightarrow \mathcal{C}^0(X,\mathcal{A})$ de la forma siguiente: $\Gamma(U,\mathcal{A}) \ni f_U \longrightarrow \varepsilon(f_U) \varepsilon C^0(U,\mathcal{A}|U) \text{ donde si } \mathbf{x} \varepsilon U$ $\varepsilon(f_U)(\mathbf{x}) = \text{restricción de } f_U = U(\mathbf{x}).$
 - c) la sucesión de haces:

$$0 \longrightarrow \mathcal{R} \xrightarrow{\epsilon} \mathcal{C}^{0}(x,x) \xrightarrow{d} \mathcal{C}^{1}(x,x) \longrightarrow \cdots$$

es exacta ya que pasando a fibra, para x $_{\varepsilon}$ X se tiene:

$$0 \longrightarrow \Gamma(U(\mathbf{x}), \mathcal{R}) \xrightarrow{\mathcal{E}} C^{0}(U(\mathbf{x}), \mathcal{R}|U(\mathbf{x})) \xrightarrow{d} C^{1}(U(\mathbf{x}), \mathcal{R}|U(\mathbf{x})) \longrightarrow$$

cuya exactitud queda asegurada por la Proposición 3.1 y por el hecho de que Imag ε = Ker d. Justificamos este último hecho

si $\alpha \in C^0(U(x), \mathcal{X}|U(x))$ es tal que $d_{\alpha} = 0$, entonces para todo par de puntos $\mathbf{x}_0 \leq \mathbf{x}_1$ de $U(\mathbf{x})$ se verifica:

 $0 = (d\alpha) (x_0 \le x_1) = \text{restricción a } U(x_0) \text{ de } (\alpha(x_1) - \alpha(x_0))$ y esto es equivalente a: $\alpha = \epsilon(f_{U(x)})$ donde

$$f_{U(x)}(y) = g(y)$$
 $\forall y \in U(x)$.

2/ La primera igualdad resulta ahora del hecho de que

$$\Gamma(\mathbf{x}, \ell^{\mathbf{p}}(\mathbf{x}, \mathcal{X})) = C^{\mathbf{p}}(\mathbf{x}, \mathcal{X}).$$

3/ Para demostrar que $\operatorname{H}^p(X,\mathfrak{K})=\operatorname{H}^p_{++}(X,\mathfrak{K})$ se comprueba de manera análoga que los haces $(\mathcal{C}^p_+(X,\mathfrak{K}))_{p\geq 0}$ constituyen una resolución "fasque" del haz \mathfrak{K} . La exactitud de la sucesión de haces resulta aquí del corolario a la Proposición 3.2.

Nota:

En particular, el teorema anterior generaliza el resultado del corolario a la Proposición 3.2 en el sentido de que la hipótesis de que X tenga elemento máximo es innecesaria.

Corolario:

Con las notaciones del teorema anterior, si $\mathcal A$ es un haz "fasque", el complejo de cocadenas $(c^p(x,\mathcal A))_{p\geq 0}$ esacíclico.

Comprobación:

Es obvio pues si $\mathcal A$ es "fasque" $\operatorname{H}^p(X,\mathcal A)=0 \quad \forall p>0$. Teorema 3.2:

Sea A un retículo tal que todo ideal es principal y de dimensión de Krull finita.

Entonces dim Spec $A \leq \dim_{k} A$.

Demostración:

Si todo ideal de A es principal, todo filtro de A* es pri

cipal y entonces por el corolario a la Proposición 1.11, Spec $_{\rm p}$ A es un conjunto ordenado con la topología cuyos cerrados son el $_{\rm d}$ y los conjuntos crecientes.

Por tanto para todo haz de grupos $\mathcal A$ sobre Spec A se verifica:

$$H^{n}(\operatorname{Spec}_{p} A, \mathcal{A}) = H^{n}(\operatorname{Spec}_{p} A, \mathcal{A}) \quad \forall n \geq 0.$$

Pero si $n > \dim_k A$ — por el Lema 1.3 — todo símplice de orden n de Spec $_p A$ es generado y por tanto $_{++}^n (\operatorname{Spec}_p A, \mathcal{A}) = 0$. Esto demuestra la proposición.

Nota:

El Teorema 3.2 engloba el caso de los espacios finitos T_0 -separados y el caso de los espacios duales de espacios espectrales noetherianos.

Ejemplo 3.1:

Sea X un conjunto que consta de 3 puntos x_1 , x_2 , x_3 con la relación de orden: $x_3 < x_1$, $x_3 < x_2$ con la topología cuyos cerrados son el ϕ y los subconjuntos crecientes:

Por el Teorema 3.2 dimX \leq dim $_k$ A = 1 conde A es el reticulo de cerrados de X.

Vamos ahora a construir un haz de grupos sobre X cuyo primer grupo de cohomología sea no nulo. Esto demostrará que dim X=1 y que por tanto la cota del Teorema 3.2 no es mejorable.

Sea
$$Z_{\mathbf{x}_3}$$
 el haz sobre X, definido:
 $X \longrightarrow 0$

$$U(\mathbf{x}_1) \longrightarrow 0$$

$$U(\mathbf{x}_2) \longrightarrow 0$$

$$U(\mathbf{x}_3) = \mathbf{x}_3 \longrightarrow \mathbf{Z} \quad \text{con los morfismos de}$$

restricción evidentes.

Entonces
$$C_{+}^{0}(X, Z_{X_{3}}) = \prod_{i=1}^{3} \Gamma(U(x_{i}), Z_{X_{3}}) \simeq \Gamma(X_{3}, Z_{X_{3}}) = Z.$$

Dado que los 1-símplices no degenerados de X son $s_1 = (x_3 < x_1)$ y $s_1' = (x_3 < x_2)$ se tiene:

$$C_1^+(X, \mathbf{Z}_{\mathbf{X}_3}) = \Gamma(U(\mathbf{x}_3), \mathbf{Z}_{\mathbf{X}_3}) \oplus \Gamma(U(\mathbf{x}_3), \mathbf{Z}_{\mathbf{X}_3}) = \mathbf{Z} \oplus \mathbf{Z}.$$

Cálculamos ahora la imagen del morfismo:

$$C^0_+(X, \mathbf{Z}_{\mathbf{X}_3}) \xrightarrow{d} C^1_+(X, \mathbf{Z}_{\mathbf{X}_3})$$

$$\operatorname{si}_{\alpha} \in \operatorname{C}^{\circ}(X, \mathbf{Z}_{3}), (\operatorname{d}_{\alpha})(\operatorname{s}_{1}) = \operatorname{restricción} \operatorname{a} \operatorname{x}_{3} \operatorname{de}(\operatorname{a}(\operatorname{x}_{3}) - \operatorname{a}(\operatorname{x}_{1})) =$$

$$= \alpha (x_3) \in \mathbb{Z}$$
.

$$(d\alpha)(s_1)$$
 = restriction a x_3 de $(\alpha(x_3)-\alpha(x_2))=\alpha(x_3)$ \in Z .

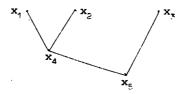
y por tanto Imag
$$d = \{\beta \in C_{+}^{1}(X, \mathbf{Z}_{\mathbf{x}_{3}}) \mid \beta(\mathbf{s}_{1}) = \beta(\mathbf{s}_{1}^{1})\}.$$
De aquí $H_{++}^{1}(H, \mathbf{Z}_{\mathbf{x}_{3}}) = \frac{\mathbf{Z} \oplus \mathbf{Z}}{Imag d} = \frac{\mathbf{Z} \oplus \mathbf{Z}}{\Delta} \sim \mathbf{Z}, \text{donde } \Delta \text{ denota}$

la diagonal de $\mathbf{Z} \oplus \mathbf{Z}$.

El Teorema 3.1 asegura ahora $H^1(X, \mathbf{Z}_{\mathbf{x}_3}) = \mathbf{Z}$.

Ejemplo 3.2:

Sea X un conjunto con 5 elementos $\mathbf{x_1}$, $\mathbf{x_2}$, $\mathbf{x_3}$, $\mathbf{x_4}$, $\mathbf{x_5}$ con la relación de orden: $\mathbf{x_5} < \mathbf{x_4}$, $\mathbf{x_5} < \mathbf{x_3}$, $\mathbf{x_4} < \mathbf{x_1}$, $\mathbf{x_4} < \mathbf{x_2}$; dotado de la topología cuyos cerrados son el ϕ y los subconjuntos crecientes:



Por el Teorema 3.2 dim $X \le \dim_k^- A = 2$, donde A es el retículo de cerrados de X.

Vamos ahora a demostrar que todo haz de grupos $\mathcal X$ sobre X tiene grupo 2 de cohomología nulo. Esto demostrará que el resultado del teorema 3.2 no se puede refinar en el sentido de que valga la igualdad.

Simplices no degenerados de orden 1, de X: $s_1^1 = (x_5 < x_4)$

$$s \not= (x_5 < x_1)$$
, $s_1^3 = (x_5 < x_2)$, $s_1^4 = (x_5 < x_3)$, $x_1^5 = (x_4 < x_1)$, $s \not= (x_4 < x_2)$.

Simplices no degenerados de orden 2, de X:

$$s_2^1 = (x_5 < x_4 < x_1)$$
 $s_2^2 = (x_5 < x_4 < x_2)$

Por tanto:

$$c_{+}^{1}(\mathbf{X};\mathcal{R}) = \Gamma(\mathbf{x}_{5},\mathcal{R}) \oplus \Gamma(\mathbf{x}_{5},\mathcal{R}) \oplus \Gamma(\mathbf{x}_{5},\mathcal{R}) \oplus \Gamma(\mathbf{x}_{5},\mathcal{R}) \oplus \Gamma(\mathbf{U}(\mathbf{x}_{4}),\mathcal{R}) \oplus \Gamma(\mathbf{U}(\mathbf{x}_{4}),\mathcal{R})$$

$$c_+^2(\mathbf{x},\mathfrak{A}) \; = \; \mathbf{r}(\mathbf{x}_5\,,\mathfrak{A}) \; \oplus \; \mathbf{r}(\mathbf{x}_5\,,\mathfrak{A}) \; .$$

Vamos ahora a comprobar que el morfismo:

$$C^{1}_{+}(X,\mathcal{X}) \xrightarrow{d} C^{2}_{+}(X,\mathcal{X})$$
 es epiyectivo.

En efecto si $\beta \in C^2(X, \ell)$ definimos $\alpha \in C^1_+(X, \ell)$ por las igualdades siguientes: $\alpha(s_1^1) = \alpha(s_1^4) = \alpha(s_1^5) = \alpha(s_1^6) = 0$

$$\alpha(s_1^2) = -\beta(s_2^1)$$

$$\alpha(s_1^3) = -\beta(s_2^2)$$

y ahora es inmediato comprobar que $d\alpha = \beta$.

Esto demuestra que H^2 (X, Ω) = 0 y por el Teorema 3.1 H^2 (X, Ω) = 0.

COHOMOLOGIA DE ESPACIOS NOETHERIANOS CON VALORES EN UN HAZ.

Teorema 3.3:

Sea A un retículo tal que todo filtro es principal. Si $\dim_{\mathbf{k}} A = n, \text{ existe una familia filtrante, respecto a la inclusión natural, de retículos finitos } A_{\mathbf{i}} \subset A \quad \mathbf{i}_{\varepsilon} \mathbf{I}, \text{tales que}$ $A = \underbrace{\lim \text{ ind }}_{\mathbf{i}_{\varepsilon} \mathbf{I}} A_{\mathbf{i}} \quad \text{y } \dim_{\mathbf{k}} A_{\mathbf{i}} \leq n \qquad \forall \mathbf{i}_{\varepsilon} \mathbf{I}.$

Demostración:

Por inducción sobre dim, A.

Si $\dim_k A = 0$, por el corolario a la Proposición 1.5, A es un retículo de Boole y manifiestamente es límite inductivo de sus subretículos de Boole finitos.

Sea $\dim_k A = n$ y notamos p el ideal de A generado por los átomos de A. Por la Proposición 1.7 la/, $\operatorname{Spec}_p A/p \simeq \operatorname{Spec}_p A$ - $\operatorname{Spec}_M A$ y por tanto $\dim_k A/p = n-1$. Por último la comprobación de que todo filtro de A/p es principal es inmediata.

Sea ahora $A_i \subset A$ un retículo finito; y notamos por \overline{A}_i el retículo $\subset A/p$, imagen de A_i por la aplicación canónica: $A \xrightarrow{p} A/p$.

Por hipótesis la inducción existe un retículo finito \overline{A}_j tal que $\overline{A}_i \subset \overline{A}_j \subset A/p$ y $\dim_k \overline{A}_i \leq n-1$.

Sea B_j^i una familia de antiimágenes por p de \overline{A}_j , que contenga a A_i ; y A_j^i el retículo generado por B_j^i . Designamos por A_j^i el retículo generado por A_j^i y una familia finita de átomos

فعافيها فيها المناها والمتعالف

de A de manera que $A_j/\mathfrak{p}\cap A_j \cong \overline{A_j}$ — La existencia de tal familia finita de âtomos está asegurada por la finitud de A_j — Dado que $\mathfrak{p}\cap A_j$ no interseca más que a filtros maximales de A_j , por la Proposición 1.7 la/:

$$\dim_k A_j \le 1 + \dim_k A_j /_{A_j \cap p} \le 1 + n-1 = n.$$

Dado que $A_i \subset A_j$, esto demuestra que todo retículo finito de A está contenido en un retículo finito de dimensión de Krull \leq n y esto acaba el teorema.

Definición 3.5:

Sea A un retículo tal que todo filtro es principal. Sea A i ϵ I una familia filtrante — respecto a la inclusión natural— de retículos finitos contenidos en A tales que $A = \underset{i=1}{\underline{\lim}} \underset{i=1}{\underline{\inf}} A_i$

Si $A_i \subset A_j$ notamos $\phi_{ji}: X_j \longrightarrow X_i$ la aplicación continua epiyectiva inducida entre espectros; y por $\phi_i: \operatorname{Spec}_p A \longrightarrow X_i$ la aplicación continua inducida entre espectros por la inclusión natural de A_i en A.

Læ hipótesis anteriores son equivalentes por la Proposición 1.9 a decir que Spec p $\stackrel{A}{p} = \underbrace{\lim \text{ proy}}_{i} \stackrel{X}{i}$ donde los $\stackrel{X}{i}$ son espacios finitos y los $\stackrel{}{\phi}_{ii}$ aplicaciones continuas epiyectivas.

Sea ${\mathfrak A}$ un haz de grupos sobre Spec ${\mathfrak A}$; notaremos ${\mathfrak p}_i$ ${\mathfrak A}$ el haz imagen directa de ${\mathfrak A}$ por la aplicación:

$$\alpha \longrightarrow \psi_{ij} \alpha$$
 donde

si
$$s_p^j : \Delta_p \longrightarrow X_j$$
, $(\psi_{i,j} \alpha)(s_p^j) = restricción a$

$$\phi_j^{-1} U(s_p^j(0)) de \alpha(\phi_{ji} \circ s_p^j).$$

Indicamos brevemente cual es el sentido de la restricción anterior:

$$\alpha^{(\phi_{ji} \circ s_p^j)} \circ \Gamma(U(\phi_{ji} \circ s_p^j(0)), \phi_{i_{\#}} \mathcal{X}) = \Gamma(\phi_i^{-1} U(\phi_{ji} \circ s_p^j(0)), \mathcal{X})$$

$$= \Gamma(\phi_j^{-1}(\phi_{ji}^{-1} U(\phi_{ji} \circ s_p^j(0)), \mathcal{X})).$$

Por el Lema 3.1 2/ ϕ_{ji} es un morfismo del orden y de aquí se comprueba inmediatamente que ϕ_{ji}^{-1} $U(\phi_{ji} \circ s_p^j(0)) \supset U(s_p^j(0))$.

Por tanto la restricción anterior es el morfismo de restricción del haz \Re del abierto ϕ_j^{-1} (ϕ_{ji}^{-1} U(ϕ_{ji} o $s_p^j(0)$) al abierto ϕ_j^{-1} U($s_p^j(0)$).

Se comprueba inmediatamente que los morfismos ψ_{ij} verifican las condiciones para que tenga sentido pasar al $\varinjlim_{\psi_{ij}} c^p(x_i, \phi_i, \phi_i).$

Proposición 3.3:

Para cada $p \ge 0$ y cada par $x_j \xrightarrow{\varphi_{ji}} x_i$ el diagra

ma:

$$c^{\mathbf{p}}(\mathbf{x}_{\mathbf{i}}, \varphi_{\mathbf{i}}, \emptyset) \xrightarrow{\psi_{\mathbf{i}\mathbf{j}}} c^{\mathbf{p}}(\mathbf{x}_{\mathbf{j}}, \varphi_{\mathbf{j}}, \emptyset)$$

$$\downarrow^{\mathbf{d}} \qquad \qquad \downarrow^{\mathbf{d}} \qquad \qquad \downarrow^{\mathbf{d}} \qquad \downarrow^{\mathbf{$$

es conmutativo.

Comprobación:

Sea
$$\alpha \in C^{p}(X_{1}, \varphi_{1}, \emptyset)$$
 $y \stackrel{j}{s_{p+1}}: \Delta_{p+1} \longrightarrow X_{j}$

$$\{0,1... p + 1\} \longrightarrow X_{0} \leq ... \leq X_{p+1}$$
Entonces: $(\psi_{ij} \circ d)(\alpha)(s_{p+1}^{j}) = \text{restricción a } \varphi_{j}^{-1}U(s_{p+1}^{j}(0)) \text{ de}$

$$d\alpha (\varphi_{ji} \circ s_{p+1}^{j}) = \text{restricción a } \varphi_{j}^{-1}U(s_{p+1}^{j}(0)) \text{ de}$$

$$\stackrel{p+1}{\Sigma}(-1)^{k} \alpha(\varphi_{ji} \times_{0} \leq ... \varphi_{ji} \times_{k} \leq ... \varphi_{ji} \times_{p+1})$$

$$(d \circ \psi_{ij})(\alpha)(s_{p+1}^{j}) = \text{restricción a } \varphi_{j}^{-1}U(s_{p+1}^{j}(0)) \text{ de}$$

$$\stackrel{p+1}{\Sigma}(-1)^{k}(\psi_{ij} \alpha)(x_{0} \leq ... \hat{x}_{k} \leq ... x_{p+1}) = \text{restricción a}$$

$$\varphi_{j}^{-1}U(s_{p+1}^{j}(0)) \stackrel{p+1}{\boxtimes}(-1)^{k} \alpha(\varphi_{ji} \times_{0} \leq ... \varphi_{ji}^{-1} \times_{k} \leq ... \varphi_{ji}^{-1} \times_{p+1})$$

Corolario:

$$(\underbrace{\underset{\forall ij}{\text{lim ind}}}, C^{p}(X_{i}, \varphi_{i}, \mathcal{A}))_{p \geq 0}$$
 es un complejo diferencial de

cocadenas, cuyos grupos de cohomología que notaremos $\operatorname{H}^p_{\mathbb{C}}(\operatorname{Spec}_p^A,\mathfrak{K})$, $p\geq 0$ verifican:

$$H^{\mathbf{p}}(\operatorname{Spec}_{\mathbf{p}} A, \mathcal{A}) = \underset{\psi_{ij}}{\underline{\lim}} H^{\mathbf{p}}(x_{i}, \varphi_{i}, \mathcal{A})$$

Comprobación:

Es conocido — ver por ejemplo E. Godement: Topologie algebrique et theorie des faisceaux, pg. 21 — que en esta situación se verifica la conmutatividad de la cohomología con el límite inductivo.

Lema 3.2:

En las condiciones de la Definición 3.5 se verifica: $1/Si U = Spec_p A - (C)_0$ es un abierto de $Spec_p A$,

 $U \simeq Spec_p ^{A/}(c) \qquad donde \ (c) \ denota \ el \ ideal \ generado$ por c; y todo filtro de A/(c) es principal.

$$2/U = \underbrace{\lim proy}_{\phi_{i}} \phi_{i}^{U}$$

Comprobación:

1/ se sigue de la proposición 1.7 la/.

2/ es obvio pues Spec
$$_{p}$$
 A = lim proy X_{i} . ϕ_{ji}

Lema 3.3:

En las condiciones de la Definición 3.5, si $A_i \subset A$, $c_1, c_2 \in A_i \quad y \varphi_i : Spec_p A \xrightarrow{} X_i \text{ es la aplicación inducida por la inclusión natural, se verifica:}$

$$1/ \varphi_{i}(c_{1} + c_{2})_{0} = \varphi_{i}(c_{1})_{0} \cup \varphi_{i}(c_{2})_{0}$$

$$2/ \varphi_{i}(c_{1} \cdot c_{2})_{0} = \varphi_{i}(c_{1})_{0} \cap \varphi_{i}(c_{2})_{0}$$

$$3/ \varphi_{i}(Spec_{p} A - (c_{k})_{0}) = X_{i} - \varphi_{i}(c_{k})$$

$$k = 1.2$$

Comprobación:

Inmediato a partir del siguiente hecho: si c ϵ $A_i \subset A$ entonces ϕ_i (c) = (c) 0, donde (c) designa el conjunto de los filtros primos de A_i que contienen a c.

Lema 3.4:

En las condiciones de la Definición 3.5 si $x \in U$ donde U es un abierto de Spec $_p$ A, existen $A_i \subset A$ finito $y x \in V \subset U$ donde V es un abierto de Spec $_p$ A, tales que $\phi_i V$ es el mínimo abierto de X_i que contiene a $\phi_i (x)$.

Comprobación:

Sea $U = \operatorname{Spec}_{p} A - (c)_{0}$. Sea $A_{i} \subset A$ un reticulo finito tal que $c \in A_{i}$.

Por el lema anterior $\phi_{\bf i}^{\ U}$ es un abierto de $X_{\bf i}$ tal que $\phi_{\bf i}^{-1}$, $_{\phi_{\bf i}}$, $_{\phi_{\bf i}}$, $_{\phi_{\bf i}}$, $_{\phi_{\bf i}}$

Sea $\mathrm{U}(\phi_i \ \mathbf{x})$ el mínimo abierto de X_i que contiene a $\phi_i(\mathbf{x})$.

Puesto que $\varphi_i(x)$ ε φ_i U y este es abierto: φ_i U \supset U(φ_i x).

Si ahora designamos $V = \phi_i^{-1} \quad U(\phi_i(\mathbf{x}))$, $\mathbf{x} \in V \ y \ \phi_i \quad V = U(\phi_i(\mathbf{x}))$ y por tanto V verifica el lema.

Definición 3.6:

Con las notaciones anteriores, si U \supset V son abiertos de Spec A definimos, el morfismo de restricción:

$$\forall p \geq 0$$
 $c^{p}(\varphi_{\mathbf{i}}U, \varphi_{\mathbf{i}}) \xrightarrow{\pi} c^{p}(\varphi_{\mathbf{i}}V, \varphi_{\mathbf{i}}) \xrightarrow{\pi} c^{p}(\emptyset V, \varphi_{\mathbf{i}})$

$$\alpha \longrightarrow \Pi \alpha$$
 donde si

$$\begin{split} \mathbf{s}_p(\Delta_p) &\subset \phi_i \ \ V \subset \phi_i \ \ ^{U, \quad (\text{\mathbb{H}}\alpha) \, (\mathbf{s}_p)$ = restricción a} \\ \phi_i^{-1} \ \ \text{\mathbb{U}}(\mathbf{s}_p(0)) \, \cap \, \, \text{\mathbb{V} de } \ \ \alpha\, (\mathbf{s}_p) \, . \end{split}$$

Nota justificativa:

 $\alpha(s_p) \in \Gamma(U(s_p(0)) \cap U_i, \varphi_i \quad (\mathcal{L} \mid U)) \text{ donde } U(s_p(0)) \text{ es el}$ minimo abierto de X_i que contiene a $s_p(0)$. Es claro que el minimo abierto de U_i que contiene a $s_p(0)$ es $U(s_p(0)) \cap U_i$.

Lema 3.5:

$$c^{p}(\phi_{\mathbf{i}} \ \mathbf{U}, \ \phi_{\mathbf{i}_{\mathbf{i}}} (\ \mathcal{A} | \ \mathbf{U})) \xrightarrow{\quad \psi_{\mathbf{i}\mathbf{j}} \quad } c^{p}(\phi_{\mathbf{j}} \ \mathbf{U}, \ \phi_{\mathbf{j}_{\mathbf{i}}} (\ \mathcal{A} | \ \mathbf{U}))$$

$$c^{p}(\phi_{\mathbf{i}} \ \mathbf{V}, \ \phi_{\mathbf{i}_{\mathbf{i}}} (\ \mathcal{A} | \ \mathbf{U})) \xrightarrow{\quad \psi_{\mathbf{i}\mathbf{j}} \quad } c^{p}(\phi_{\mathbf{j}} \ \mathbf{V}, \ \phi_{\mathbf{j}_{\mathbf{i}}} (\ \mathcal{A} | \ \mathbf{V}))$$

es conmutativo.

Comprobación:

Sea $\alpha \in C^p(\varphi_i \cup \varphi_i \cup \varphi_i \cup \varphi_i) \cup \varphi_j \cup \varphi_j \cup \varphi_j \cup \varphi_i \cup \varphi_i$

Definición 3.7:

Pre-haces de gérmenes de cocadenas sobre Spec A:

Para cada $n \ge 0$ definimos sobre Spec_p A el prehaz:

donde el morfismo de restricción que seguimos notando Π , se define a través de representantes: $\Pi\{\alpha\} = \{\Pi|\alpha\}$. La proposición anterior asegura que esta definición es correcta.

Proposición 3.4:

Para cada $n \ge 0$ el prehaz definido en Definición 3.7 es un haz "flasque" sobre Spec A que notaremos ℓ^n (Spec A, \mathfrak{A}).

Demostración:

Puesto que todo abierto de Spec $_{\rm p}$ A es cuasi-compacto, basta comprobar las dos condiciones de haz para uniones finitas de abiertos.

Sea $U = \bigcup_{k=1}^{n} U^{k}$ donde $U^{k} = \operatorname{Spec}_{p} A - (c_{k})_{0}$ son abiertos de $\operatorname{Spec}_{p} A$.

Si A_i c A es un retículo finito tal que c_k ϵ A_i k=1...n, entonces el Lema 3.3 asegura:

$$\begin{array}{l} \phi_{\mathbf{i}}\left(\mathbf{U}^{k}\right), \ k=1..n \ \text{son abiertos de} \ \mathbf{X}_{\mathbf{i}} \ \mathbf{y} \ \phi_{\mathbf{i}}^{-1} \ \phi_{\mathbf{i}} \ \mathbf{U}^{k} = \mathbf{U}^{k} \\ \\ \phi_{\mathbf{i}}\left(\mathbf{U}\right) \ = \ \mathop{\cup}_{k=1}^{n} \ \phi_{\mathbf{i}}\left(\mathbf{U}^{k}\right) \\ \\ \phi_{\mathbf{i}}\left(\mathbf{U}^{r}\right) \ \cap \ \phi_{\mathbf{i}}\left(\mathbf{U}^{s}\right) \ = \ \phi_{\mathbf{i}}\left(\mathbf{U}^{r} \ \cap \ \mathbf{U}^{s}\right) \\ \end{array} \quad r,s = 1,\ldots,n \end{array}$$

Sean ahora $\{\alpha_1\}$, $\{\alpha_2\}$ \in $\underset{\psi_{ij}}{\underline{\text{lim ind}}}$ $\overset{c^n}{\circ}(\varphi_i, \psi_i, (\mathcal{A} \mid U))$

tales que sus restricciones a cada U^k , k = 1...n coincidan.

Es obvio que puesto que A = <u>lim ind</u> A se puede hallar A_i^{C} A tal que c_k ϵ A_i , k = 1,...,n; y representantes α_1' , α_2' de $\{\alpha_1\}$, $\{\alpha_2\}$ en $C^n(\phi_i^{C})$ U, ϕ_i^{C} ($\mathcal{A}|$ U)) tales que sus restricciones a cada ϕ_i^{C} k, k = 1,...n coincidan.

Dado que $\varphi_{\mathbf{i}}^{-1} \varphi_{\mathbf{i}} U^{k} = U^{k} \quad k = 1, \dots n$ se comprueba inmedia tamente que los haces sobre $\varphi_{\mathbf{i}} U^{k} \colon \varphi_{\mathbf{i}_{\#}} (\mathcal{A} \mid U^{k})$ y

 $\begin{array}{l} \phi_{i_{\frac{1}{2}}}\left(\left.\mathfrak{A}\right|\right.U) \mid \phi_{i}\mid U^{k} \text{ son isomorfos. Esto permite considerar } \alpha_{1}^{'},\alpha_{2}^{'}\\ \\ \text{como secciones del haz } \mathcal{C}^{n}(\phi_{i}\mid U,\phi_{i_{\frac{1}{2}}}\left(\left.\mathfrak{A}\right|\right.U)) \text{ tales que sus}\\ \\ \text{restricciones a } \phi_{i}\mid U^{k},\ k=1,\ldots n \text{ coinciden. De aquí } \alpha_{1}^{'}=\alpha_{2}^{'}\\ \\ \text{y por tanto } \{\alpha_{1}\}=\{\alpha_{2}\}\,. \end{array}$

La segunda condición se comprueba de manera análoga. Por tanto, $\forall n \geq 0$ el prehaz sobre $\operatorname{Spec}_p A$ de la Definición 3.7 es un haz que notaremos $\operatorname{\mathscr{C}}^n(\operatorname{Spec}_p A, \mathfrak{A})$.

La proposición quedará totalmente demostrada si comprobamos que ℓ (Spec $_p$ A, \mathfrak{A}) $\forall n \geq 0$ son haces "flasques" o equivalentemente, si para todo abierto U de Spec $_p$ A el morfismo de restricción

$$\Pi: \xrightarrow{\text{lim ind}} C^{n}(X_{i}, \varphi_{i}, \mathcal{A}) \longrightarrow \xrightarrow{\text{lim ind}} C^{n}(\varphi_{i}U, \varphi_{i}, \varphi_{i})$$

es epiyectivo.

La comprobación de este hecho es como sigue: sea $\{\alpha\} \ \ \epsilon \ \ \underset{\psi}{\text{lim ind}} \ C^n(\phi_i \ U, \ \phi_i \ (\mathcal{A} \mid U)). \ \ \text{Por el Lema 3.3 existe}$

un retículo finito $A_i \subset A$ tal que ϕ_i U es un abierto de X_i $y \phi_i^{-1} \phi_i \ U = U. \ \text{Sea} \ \alpha' \in C^n(\phi_i \ U, \ \phi_i \ (\mathcal{S} \mid U)) \ \text{un representante de } \{\alpha\}.$

Definimos ahora $\beta \in C^{n}(X_{1}, \phi_{1}, \mathcal{A})$ de la siguiente manera:

$$\beta(s_n) = \alpha'(s_n)$$
 si $s_n(\Delta_n) \subset \varphi_i$ U
$$= 0$$
 si $s_n(\Delta_n) \not\subset \varphi_i$ U.

La definición anterior es correcta, ya que por ser ϕ_i U abier to de X_i , si $s_n(\Delta_n) \subset \phi_i$ U entonces $U(s_n(0)) \subset \phi_i$ U y de aquí: $\phi_i^{-1} \ U(s_n(0)) \subset \phi_i^{-1} \ \phi_i \ U = U. \ \text{Esto asegura que}$ $\alpha'(s_n) \ \varepsilon \ \Gamma(\phi_i^{-1} \ U(s_n(0)), \emptyset). \ \text{Es immediato ahora que } \Pi\beta = \alpha'$ y por el Lema 3.5 se sigue: $\Pi\{\beta\} = \{\alpha\}$.

Teorema 3.4:

Sea A un retículo tal que todo filtro es principal. Sea A i ϵ I una familia filtrante — respecto a la inclusión natural — de retículos finitos contenidos en A tales que $A = \varinjlim_{i \in I} A_i.$

Sea $\mathcal X$ un haz de grupos sobre $\operatorname{Spec}_p A y \overset{n}{H} (\operatorname{Spec}_p A, \mathcal X)$ $n \geq 0$ los grupos de cohomología de $\operatorname{Spec}_p A$ convalores en $\mathcal X$. Con las notaciones del corolario a la Proposición 3.3 se verifica:

$$\forall_{n \geq 0} \quad \overset{n}{\text{H}} (\text{Spec}_{p} A, \mathcal{A}) = \overset{n}{\text{H}} (\text{Spec}_{p} A, \mathcal{A}) =$$

$$= \underbrace{\text{lim ind}}_{\psi_{ij}} \quad \overset{n}{\text{H}} (X_{i}, \varphi_{i} A).$$

Demostración:

1/ Lema previo: para cada $n \ge 0$, cada A y cada par de abiertos U \supset V el diagrama:

es conmutativo.

La comprobación se omite por ser análoga a la de la Properce posición 3.3.

La commutatividad del diagrama anterior, junto con la Proposición 3.3, permite definir un morfismo de haces:

$$e^n (\operatorname{Spec}_{p} A, A) \xrightarrow{d^n} e^{n+1} (\operatorname{Spec}_{p} A, A)$$

2/ Definimos un morfismo de haces: $A \xrightarrow{\epsilon} \mathcal{C}^{0}(\operatorname{Spec}_{p}A;A)$ de la siguiente manera:

$$\begin{array}{ll} \text{si f}_{u} \in \Gamma(U, \mathfrak{K}) & \quad \mathfrak{e}(f_{u}) = \{\alpha\} & \text{donde } \alpha \in C^{\circ}\left(\phi_{i} \mid U, \phi_{i_{\mathfrak{K}}}\left(\mathfrak{K} \mid U\right)\right) \\ -\text{siendo } \phi_{i} \mid U \quad \text{un abierto de } X_{i} \quad \text{tal que } \phi_{i}^{-1} \mid \phi_{i} \mid U = U - \text{est\'a} \quad \underline{de} \end{array}$$

finida: si $x_i \in \phi_i$ U, $\alpha(x_i)$ = restricción a ϕ_i^{-1} U(x_i) de f_u .

3/ Teniendo en cuenta la Proposición 3.4 el Teorema quedará demostrado si comprobamos que:

$$0 \longrightarrow \mathcal{A} \xrightarrow{\varepsilon} \mathcal{C}^{0} \text{ (Spec } A, \mathcal{A}) \xrightarrow{d^{0}} \mathcal{C}^{1} \text{ (Spec } A, \mathcal{A}) \xrightarrow{d^{1}} \dots$$
es un sucesión exacta de haces.

a) Ker ϵ = 0. En efecto si f_x & \mathcal{A}_x es tal que $\epsilon(f_x)$ = 0 existe f_u & $\Gamma(U, \ell)$ representante de f_x tal que $\epsilon(f_u)$ = 0. Por la definición de ϵ , entonces la restricción de f_u a cada ϕ_i^{-1} $U(\mathbf{x}_i)$, \mathbf{x}_i & ϕ_i U es cero; dado que $\mathbf{U} = \bigcup_{\mathbf{x}_i} \phi_i^{-1} U(\mathbf{x}_i)$ entonces f_u = 0 y de aquí f_x = 0.

b/ Imag $\varepsilon = \ker d^0$.

Sea $g_{\mathbf{x}} \in \mathcal{C}^{0}(\operatorname{Spec}_{\mathbf{p}} A, \mathcal{X})_{\mathbf{x}}$ tal que $d^{0}g_{\mathbf{x}} = 0$. Entonces exigite $\mathbf{x} \in U$, un $\mathbf{X}_{\mathbf{i}}$ tal que $\phi_{\mathbf{i}}U$ es abierto de $\mathbf{X}_{\mathbf{i}} \neq \phi_{\mathbf{i}}^{-1}\phi_{\mathbf{i}} = U$; $\mathbf{y} \in \mathcal{E}^{0}(\phi_{\mathbf{i}} \cup \mathbf{y}, \phi_{\mathbf{i}} \otimes (\mathcal{X} \mid \mathbf{y}))$ tal que \mathbf{y}_{α} es un representante de $\mathbf{y} \in \mathcal{C}^{0}(\phi_{\mathbf{i}} \cup \mathbf{y}, \phi_{\mathbf{i}} \otimes (\mathcal{X} \mid \mathbf{y}))$ tal que \mathbf{y}_{α} es un representante de $\mathbf{y} \in \mathcal{C}^{0}(\phi_{\mathbf{i}} \cup \mathbf{y}, \phi_{\mathbf{i}} \otimes (\mathcal{X} \mid \mathbf{y}))$ tal que \mathbf{y}_{α} define una sección \mathbf{x}' del haz $\mathbf{y}_{\mathbf{i},\mathbf{y}}(\mathcal{X} \mid \mathbf{y})$ y por tanto $\mathbf{x}' \in \Gamma(\phi_{\mathbf{i}}^{-1} \cup \mathbf{y}, \mathcal{X})$. Si $\mathbf{f}_{\mathbf{x}} \in \mathcal{K}_{\mathbf{x}}$ es el germen definido por \mathbf{x}' se comprueba inmediatamente que $\mathbf{x} \in \mathcal{C}_{\mathbf{x}} = \mathbf{y}_{\mathbf{x}}$ lo que demuestra: Ker $\mathbf{d}^{0} \supset \operatorname{Imag} \mathcal{E}$.

El contenido en el otro sentido, se comprueba inmediat $\underline{\mathbf{a}}$ mente.

c/ Imag $d^{n-1} = \text{Ker } d^n$ $\forall n \ge 1$ Imag $d^{n-1} \subset \text{Ker } d^n$ es obvio.

Sea ahora $f_x \in \mathcal{C}^n(\operatorname{spec}_p A, \mathcal{R})_x$ tal que $d^n f_x = 0$. Por el Lema 3.4 existe un abierto $x \in V$ de $\operatorname{Spec}_p A$, un X_i tal que ϕ_i V es el mínimo abierto de X_i que contiene a $\phi_i(x)$ Y $\alpha \in C^n(\phi_i V, \phi_i (\mathcal{R}|V))$ tal que $\{\alpha\}$ es un representante de f_x Y $d^n_\alpha = 0$. Puesto que ϕ_i V es un orden con elemento máximo

la Proposición 3.1 asegura la existencia de $\beta \in C^{n-1}(\phi_i \mid V, \phi_{i_{\#}}(\mathcal{R} \mid V)) \text{ tal que } \alpha^{n-1}\beta = \alpha. \text{ Si ahora notamos } g_{\mathbf{x}} \in \mathcal{C}^{n-1}(\operatorname{Spec}_{\mathbf{p}} \mid A, \mathcal{R})_{\mathbf{x}} \text{ el germen definido por } \{\beta\} \text{ es obvio } que \ \alpha^{n-1} = g_{\mathbf{x}} = f_{\mathbf{x}} \text{ lo que demuestra que Ker } \alpha^n \in \operatorname{Imag } \alpha^{n-1}.$

Teorema 3.5:

Sea A un retículo tal que todo filtro es principal y $\dim_k A = n$.

Entonces: 1/ dim Spec
$$p^{A} \le n$$

2/ dim Spec $p^{A^{\#}} \le n$

Demostración:

1/ Por el Teorema 3.3, A = $\liminf_{k \to \infty} A_k$ donde los A_k son retículos finitos tales que $\dim_k A_k \le n$.

En estas condiciones si X_i = Spec $_p$ $_i$, obtenemos a partir de los Teoremas 3.4 y 3.1: para todo haz de grupos $\mathcal A$ sobre Spec $_p$ $^{\lambda}$:

$$H^{q}(\text{Spec}_{p} A, \mathcal{X}) = \underset{\psi_{ij}}{\underline{\text{lim ind}}} H^{q}(X_{i}, \phi_{i} \mathcal{X}) \quad \forall q \geq 0$$

Lema 3.6:

Sea X un espacio noetheriano y A su retículo de cerrados. Sea X \xrightarrow{i} Spec A la inyección natural definida en la Proposición 2.1.

Si U es un abierto de Spec $_p$ A, U es el mínimo entorno de U \cap iX en Spec $_p$ A.

Demostración:

Usaremos el siguiente abuso de notación: escribir X en vez de iX.

Por las Proposiciones 2:4 y 1.11,todo abierto de Spec p A es de la forma Spec p A - (d) o con d $_{\varepsilon}$ A.

Es inmediato comprobar que (Spec $_p$ A - (d) $_0$) \cap X = X - d. Supongamos ahora que existe c $_\varepsilon$ A tal que :

$$\operatorname{Spec}_{\mathbf{p}} A - (d)_{0} \supset \operatorname{Spec}_{\mathbf{p}} A - (c)_{0} \supset X - d$$

La $1^{\underline{a}}$ inclusion asegura $(d)_0 \subset (c)_0 \longleftrightarrow c \supset d$. La $2^{\underline{a}}$ inclusion asegura: si $x \notin d$ ix = $\begin{cases} x \notin (c)_0 \longleftrightarrow x \notin c \end{cases}$ y por tanto $c \subset d$. De aquí c = d lo que demuestra el lema. Proposición 3.5:

Sea X un espacio noetheriano, A su retículo de cerrados y $\mathcal A$ un haz de grupos sobre Spec A.Se verifica:

 $\Gamma(U,\mathcal{A}) \ \simeq \ \Gamma(U \ \cap \ X, \ \ \mathcal{A}|\ X) \, , \ \ para \ todo \ abierto \ U \ de \ Spec_p \ A \, .$ Demostración:

Definimos el morfismo de grupos:

$$\Gamma(U, \mathfrak{A}) \xrightarrow{\varphi} \Gamma(U \cap X, \mathfrak{A} \mid X)$$

$$s \xrightarrow{\varphi} \varphi(s) = s \mid U \cap X$$

 $1/\phi \ \underline{\text{es invectiva:}} \ \text{Sean s}_4, \ s_2 \in \Gamma(U, \mathfrak{X}) \ \text{tales que}$ $\phi(s_4) = \phi(s_2). \ \text{Dado que si dos secciones coinciden en un punto,}$ coinciden en un entorno; y que U es el mínimo abierto de Spec paque contiene a U \cap X - lema 3.6 - se sigue: $s_4 = s_2$.

 $2/_{\mathfrak{P}} \ \underline{\text{es epiyectiva:}} \ \text{Sea s'}_{\mathfrak{E}} \ \Gamma(U \cap X, \ \mathfrak{A}|\ X) \ . \ \text{Si} \ \mathbf{x}_{\mathfrak{E}} \ U \cap V$ existe un abierto x $_{\mathfrak{E}} \ V(x)$ de Spec A y una sección

 $s_{\mathbf{x}} \in \Gamma(V(\mathbf{x}), \mathcal{A})$ tal que $s_{\mathbf{x}}(\mathbf{x}) = s'(\mathbf{x})$. Por tanto las secciones $s_{\mathbf{x}} | V(\mathbf{x}) \cap X \neq s' | V(\mathbf{x}) \cap X \text{ del haz}$. $\mathcal{A} | X$ coinciden en un cierto abierto $W(\mathbf{x}) \cap X \subset V(\mathbf{x}) \cap X$. Por abuso de notación seguiremos notando $s_{\mathbf{x}}$ a $s_{\mathbf{x}} | W(\mathbf{x})$.

The part of the first part of the first part of the first of the first

La situación es ahora la siguiente: para cada $x \in U \cap X$ existe un abierto $x \in W(x)$ de $\operatorname{Spec}_p A y s_x \in \Gamma(W(x), \mathcal{A})$ tal que $s_x | W(x) \cap X = s^* | W(x) \cap X$.

Por el Lema 3.6 U = $\bigcup_{\mathbf{x} \in U \cap X} W(\mathbf{x})$ y dado que es cuasicompac $\mathbf{x} \in U \cap X$ to, existen $\mathbf{x}_1, \dots, \mathbf{x}_n \in U \cap X$ tales que $U = \bigcup_{i=1}^n W(\mathbf{x}_i)$. Las $\mathbf{x}_i \in \Gamma(W(\mathbf{x}_i), \mathcal{A})$ definen ahora una sección $\mathbf{x} \in \Gamma(U, \mathcal{A}) : \mathbf{x} | W(\mathbf{x}_i) = \mathbf{x}_i$ ya que por definición $\mathbf{x}_i | W(\mathbf{x}_i) \cap W(\mathbf{x}_j) \cap X = \mathbf{x}_j | W(\mathbf{x}_i) \cap W(\mathbf{x}_j) \cap X$ i, j = 1...n; y por 1/ $\mathbf{x}_i | W(\mathbf{x}_i) \cap W(\mathbf{x}_j) = \mathbf{x}_i | W(\mathbf{x}_i) \cap W(\mathbf{x}_j)$.

Corolario:

Sea X un espacio noetheriano, A su reticulo de cerrados y $\mathcal A$ un haz de grupos sobre X. Si i designa la inyección natural de X en Spec $_{\mathbf p}$ A se verifica:

$$i_{\mathbf{x}}\mathcal{A} \mid \mathbf{X} = \mathcal{A}$$

Comprobación:

Todo abierto de X es de la forma U \cap X donde U es un abierto de Spec $_{\rm p}$ A.

Entonces: $\Gamma(U \cap X, i_{\#} \mathcal{A} \mid X) \simeq \Gamma(U, i_{\#} \mathcal{A}) = \Gamma(U \cap X, \mathcal{A})$.

Teorema_3.6:

Sea X un espacio noetheriano, A su retículo de cerrados

y $\mathcal A$ un haz de grupos sobre $\operatorname{Spec}_p A$. Se verifica: $\operatorname{H}^n(\operatorname{Spec}_p A, \mathcal A) = \operatorname{H}^n(X, \mathcal A \mid X) \qquad \forall \ n \geq 0$.

Demostración:

Sea $0 \longrightarrow \mathcal{A} \longrightarrow \mathcal{A}^0 \longrightarrow \mathcal{A}^1 \longrightarrow \dots$ una resolución "flasque" del haz \mathcal{A} .

Es bien conocido que: $0 \longrightarrow \mathcal{A} | X \longrightarrow \mathcal{A}^0 | X \longrightarrow \mathcal{A}^1 | X \longrightarrow \cdots$ sigue siendo sucesión exacta.

La Proposición 3.5 asegura:

- a) los haces & i | X son "flasques".
- b) Al tomar secciones en la resolución de $\mathcal X$ y en la resolución de $\mathcal X$ | X , se obtiene el mismo complejo diferencial. Esto demuestra el teorema.

Corolario:

Sea X un espacio noetheriano, A su retículo de cerrados y $\mathcal A$ un haz de grupos sobre X.

Se verifica: $H^{n}(X, \mathcal{A}) = H^{n}(Spec_{p} A, i_{x} \mathcal{A}) \forall n \geq 0.$

Comprobación:

Inmediato a partir del teorema anterior y del corolario a la Proposición 3.5.

Proposición 3.6:

Sea X un espacio noetheriano. Se recuerda que para un tal espacio, $\dim_{\mathbb{K}} X$ designa el extremo superior de las longitudes de cadenas finitas, estrictamente crecientes, de cerrados irreducibles de X.

Si $\dim_k X$ es finita, se verifica: $\dim X \leq \dim_k X$.

Demostración:

Sea A el retículo de cerrados de X. El teorema 3.6 y su corolario afirman que dim X = dim Spec $_p$ A. Dado que dim $_k$ X = dim $_k$ A — como se comprueba fácilmente — el Teorema

3.5 demuestra la proposición:

 $\dim \ X = \dim \ \operatorname{Spec}_{\widetilde{p}} \ A \le \dim_{\widehat{k}} \ A = \dim_{k} \ X.$

APENDICE: UN RESULTADO SOBRE LA COHOMOLOGIA DE ESPACIOS COMPACTOS CON VALORES EN UN HAZ.

Este apéndice da el teorema de "igualdad" de los grupos de cohomología de Spec_p^A y Spec_M^A cuando Spec_M^A es un retracto de Spec_p^A ; y por tanto como corolario la igualdad de sus dimensiones cohomológicas.

Esta situación es aplicable a los espacios compactos en el sentido: si B es un retículo, base de cerrados de un compacto X, se verifica dim $X = \dim \operatorname{Spec}_D B$.

De aquí, si el Teorema 3.5 1/ fuera generalizable a un retículo cualquiera, y por tanto dim $\operatorname{Spec}_p B \leq \dim_k B$ se habría obtenido como cota para la dimensión cohomológica de X, el extremo inferior de las dimensiones de Krull de los retículos bases de cerrados de X.

Señalamos las dificultades que una tal posible generalización encuentra:

1/ La resolución de un haz $\mathcal A$ dada en el Teorema 3.4 no es válida aquí, ya que al no ser todo abierto cuasi-compacto los pre-haces de la Definición 3.7 no son haces. Esta dificultad tal vez pudiera obviarse tomando Spec p $B = \underbrace{lim \ proy}_{i \in I} X_i$ donde X_i fueran espacios espectrales ordenados — en el sentido del Capítulo III — .

2/ Supuesto que la cohomología de B fuera entonces límite inductivo de las cohomologías de los $X_i = \operatorname{Spec}_p A_i$ quedaría por ver que si $\dim_k B = n$, existe una familia cofinal $J \subset I$ de los X_i i ϵ I tal que $\dim_k A_j \leq n \ \forall \ j \ \epsilon \ J.$ El razonamiento seguido en la demostración del Teorema 3.3 es manifiestamente no aplicable a este caso general.

Teorema 4.1:

Sea A un retículo tal que Spec $_{M}$ A es un espacio Hausdorff y denso en Spec $_{p}$ A. En estas condiciones la Proposición 1.14 asequra que la aplicación:

$$\operatorname{Spec}_{\mathbf{p}} \operatorname{A} \xrightarrow{\qquad \Pi \qquad } \operatorname{Spec}_{\operatorname{M}} \operatorname{A}$$

Se verifica:

$$H^{n}(\operatorname{Spec}_{p} A, \mathcal{A}) = H^{n}(\operatorname{Spec}_{M} A, \Pi_{*} A) \quad \forall n \geq 0.$$

Demostración:

Sea $0 \longrightarrow \mathbb{A} \longrightarrow \mathbb{A}^0 \longrightarrow \mathbb{A}^1 \longrightarrow \mathbb{A}^2 \longrightarrow \dots$ una resolución "flasque" del haz \mathbb{A} .

1/ La sucesión (1) $0 \longrightarrow \Pi_{\mathbf{x}} \mathcal{A} \longrightarrow \Pi_{\mathbf{x}} \mathcal{A} \xrightarrow{1} \dots$ es una sucesión exacta de haces: para verlo basta comprobar que si $\mathbf{x} \in \operatorname{Spec}_{\mathbf{M}} A$ entonces $(\Pi_{\mathbf{x}} \mathcal{A})_{\mathbf{x}} = \mathcal{A}_{\mathbf{x}}$ y esto resulta de lo siquiente:

a) Si U_i (i ε I) designa la familia de entornos abiertos de x en Spec_M A, entonces Π^{-1} U_i (i ε I) es una familia cofinal de los entornos abiertos de x en Spec_p A. En efecto sea $x \varepsilon V = \operatorname{Spec}_p A - (a)_0 \quad y \quad z \varepsilon \Pi^{-1} (V \cap \operatorname{Spec}_M A); entonces$ $\Pi(z) \varepsilon \operatorname{Spec}_M A - (a)_0^M \quad o \quad equivalentemente: a \not \in \Pi(z). \text{ Por la de finición de }\Pi: z \subset \Pi(z) \text{ y por tanto } z \varepsilon \operatorname{Spec}_p A - (a)_0. \text{ De }$ $\operatorname{aquí}_{\Pi^{-1}}(V \cap \operatorname{Spec}_M A) \subseteq V \text{ y esto demuestra a).}$

De aquí
$$(\Pi_{\#} \mathcal{R})_{\mathbf{X}} = \frac{\text{lim ind}}{\mathbf{x} \in \Pi_{\mathbf{i}}} \Gamma(\Pi_{\mathbf{i}}, \Pi_{\#} \mathcal{R}) = \frac{\text{lim ind}}{\mathbf{x} \in \Pi^{-1} \Pi_{\mathbf{i}}} \Gamma(\Pi^{-1} \Pi_{\mathbf{i}}, \mathcal{R}) = \mathcal{R}_{\mathbf{X}} \quad \text{a partir de a)}.$$

2/ La imagen directa de un haz "flasque" es "flasque" y por tanto (1) es una resolución "flasque" del haz $\prod_{*} \mathcal{A}$. Por la definición de haz imagen directa, al tomar secciones en las resoluciones de los haces \mathcal{A} y $\prod_{*} \mathcal{A}$ se obtiene el mismo complejo diferencial. Esto termina la demostración.

Corolario 1:

Sea A un reticulo tal que Spec_M A es Hausdorff y denso en Spec_p A; y $\mathcal A$ un haz de grupos sobre Spec_M A. Si i designa la inclusión natural de Spec_M A en Spec_n A se verifica:

$$H^{n}(\operatorname{Spec}_{M} A, \mathcal{X}) = H^{n}(\operatorname{Spec}_{p} A, i_{*} \mathcal{X}) \quad \forall n \geq 0.$$

Comprobación:

Dado que Π o i = identidad, Π_{*} i \mathcal{A} = \mathcal{A} y ahora basta aplicar el teorema anterior.

Corolario 2:

Sea A un reticulo tal que $\operatorname{Spec}_{\begin{subarray}{c} M\end{subarray}}$ A es Hausdorff y denso en $\operatorname{Spec}_{\begin{subarray}{c} D\end{subarray}}$ A.

Entonces dim Spec_M $A = dim Spec_{p} A$.

Comprobación:

Inmediato a partir del Teorema 4.1 y del Corolario 1.

Proposición 4.1:

Sea X un espacio topológico compacto y B un retículo base de cerrados de X.

Entonces dim $X = \dim Spec_{D} B$.

Demostración:

La Proposición 2.7 asegura que por ser X cuasi-compacto: $X \simeq Spec_{\stackrel{\cdot}{M}} \text{ B. Dado que X es Hausdorff, B es un retículo que ver} \underline{i}$ fica las condiciones del Corolario 2; y esto da el resultado enunciado.

Ejemplo 4.1:

Sea X el intérvalo cerrado [0,1]. Sea B el retículo generado por los subintérvalos cerrados y el ϕ . B es una base de cerrados de X y por tanto dim X = dim Spec B.

Detallamos cuales son los puntos de Spec B: si $x \in (0,1)$ sea \Re el filtro atómico definido por x. Notamos ahora: \Re = filtro de B generado por los elementos del conjunto $\Re^+ \{ [r,x] \mid 0 \le r < x \}.$

 $\Re_{\mathbf{x}^-} = \text{filtro de B generado por los elementos del conjunto}$ $\{[\mathbf{x}, \mathbf{s}] | \mathbf{x} < \mathbf{s} \le 1\}$.

- 1/ Obviamente 5 y 5 son filtros primos.
- 2/ $^{\S}_{\mathbf{x}^{+}}$ $^{\S}_{\mathbf{x}^{-}}$ son los dos únicos filtros primos de B contenidos en $^{\S}_{\mathbf{x}}$. Esto resulta de los siguiente:
- a) Si $\mathcal F$ es un filtro primo tal que existen números reales $0 \le r < x$ y $x < s \le 1$, tales que $[r,x] \in \mathcal F$ y $[x,s] \in \mathcal F$ enton ces $x \in \mathcal F$.
- b) $\mathcal{F}_{\mathbf{x}^+}$ es un filtro primo minimal ya que B es complentado y todo elemento de $\mathcal{F}_{\mathbf{x}^+}$ es no frontera.
 - El mismo resultado es cierto para $\mathcal{S}_{\mathbf{v}}$.
- Si x=0 6 x=1 entonces ^{5}x contiene un único filtro primo: el filtro constituido por todos los elementos de B que contienen al punto x y son distintos de x. La comprobación es análoga a 2/.

BIBLIOGRAFIA

- (1) ATIYAH-MACDONALD: Introduction to Commutative Algebra.
 Addison-Wesley, P.C. 1969.
- (2) G. BIRKHOFF: Lattice Theory. edición revisada, A.M.S. Colloquium Publ. XXV. Nueva York, 1948.
- (3) G. CHOQUET: Topology. Academic-Press, 1966.
- (4) L. GILLMAN AND M. JERISON: Rings of continous functions.

 Van Nostrand, Princeton N.J. 1960.
- (5) R. GODEMENT: Topologie algébrique et théorie des faisceaux. Hermann, Parín, 1964.
- (6) A. GROTHENDIECK: E.G.A. I/ Le Langage des Schémas. Publications Mathématiques n24. París, 1960.
- (7) M. HOCHSTER: Prime ideal structure in commutative rings.

 Trans. Amer. Math. Soc. 142 (1969).
- (8) J.L. KELLEY: General topology. Van Nostrand, Princeton, N.J., 1955.
- (9) S. LUBKIN: On a conjecture of André Weil. Amer. J. Math.89 (1967).
- (10)L. NACHBIN: Topology and order. Van Nostrand Mathematical Studies. 1965.
- (11) K. NAGAMI: Dimensión theory. Academic-Press, 1970.
- (12) F. SAMUEL: Ultrafilters and compactification of uniform spaces. Trans. Amer. Math. Soc.64, (1948).
- (13) R.G. SWAN: Theory of Sheaves. Chicago Lectures in Mathematics, 1964.
- (14) V.G. VINOKUROV: A lattice method of defining dimension. Doklady Tom. 168 n $_{23}$ (1966).
- . (15)H. WALLMAN: Lattices and topological spaces. Ann. of Math. nQ 42, (1941).