A NOTE ON THE ITERATION OF EXPONENTIALS

Carles Simó

Secció de Matemàtiques

Universitat Autònoma de Barcelona

We consider the sequence $y_{i+1} = z^{y_i}$, $i \ge 0$, $z \in R_+$, with $y_0 = z$. In [1], the question of the behavior of such sequence is posed. Subsequently, many references to solutions are given (see [2]), for instance [3]. In this paper we obtain a full description of these iterates as functions of the parameter z, for every value of y. Our technique just uses the discrete dynamical system in R_+ defined by $f_Z(x) = z^X$. The properties of the curves of fixed points and of two-periodic points are also given.

§1.- Fixed points.

a) If z > 1, $f_z(x)$ is concave; $z^x = x$ has solution iff $z \le b$, where b must satisfy $x = b^x$, $1 = b^x \ln b \implies b = e^{1/e}$. If $z \in (1,b)$ there are two fixed points $x_1(z) < x_2(z)$. They coincide for z = b.

For $x_1(z)$ we have $0 < f_z'(x_1(z)) < 1$. Then it is stable. Instability occurs for $x_2(z)$.

b) If z < 1, $f_z(x)$ is monotonically decreasing. Then $x = z^x$ has only one solution $x_1(z)$.

Stability: $f_z'(x) < 0$ implies $x_1(z)$ stable if $f_z'(x_1) > -1$. The limit of stability is found at $x \ln z = -1 \implies x = 1/e$ and $z_{\lim} = a = e^{-e}$.

For $z=1-\epsilon$, ϵ small enough: $z^{X}1>1-\epsilon$ \Longrightarrow $f_{z}'(x_{1})=0(\epsilon)$. Then the fixed points is stable for $z\in [a,1)$. The negative character of f' implies that the iterates alternate around the $f\underline{i}$ xed point.

c) Curve of fixed points: Consider the curve $\mathbf{x} = \mathbf{x}(z)$, $\mathbf{z} \in (0,b]$ given by $\mathbf{x} = \mathbf{z}^{\mathbf{x}}$ (two branches if $\mathbf{z} > 1$); $\mathbf{x}' = \frac{d\mathbf{x}}{dz} = \frac{\mathbf{x}}{\mathbf{z}(1-\ln\mathbf{x})} = \frac{\ln\mathbf{x}}{\mathbf{z}\ln\mathbf{z}(1-\ln\mathbf{x})}$. One has $\mathbf{x}' = \infty$ at $\mathbf{z} = \mathbf{b}$. The upper branch has $\mathbf{x}'_2 < 0$, $\mathbf{z} \in (1,b)$, and lower one gives $\mathbf{x}'_1(z) > 0$ in (0,b). We get as limiting values: $\lim_{z \to 0^+} \mathbf{x}'_1 = -\lim_{z \to 0^+} \frac{1}{z \ln z} = \infty$;

 $\lim_{z \to 1^+} x_2' = -\infty$; $\lim_{z \to 1} x_1' = 1$. We obtain for the second derivative

 $x'' = \frac{x \ln x + x/(1 - \ln x)}{z^2 (1 - \ln x)^2}$ zero values iff $\ln x = (1 \pm \sqrt{5})/2$. Then

there are only two turning points: one, x_2^i , in $x_2(z)$ and the other, x_1^i , in $x_1(z)$ for some z < 1. With this information we can plot x(z). This is done in fig.1.

§ 2.- Periodic points.

a) Being $f_z(x)$ increasing if z>1, there are no periodic points. For z<1, $f_z^2(x)$ is also increasing. Then there are only fixed points under f_z (studied in $\S 1$)) or 2-periodic points $x_3(z)$, $x_A(z)$.

b) We consider the function $g_z(x) = z^x - \log_z x$ for z < a. We have $g_z(x_1) = 0$, $g_z'(x_1) < 0$ and $g_z(1) > 0$. Then there are points $y \in (x_1, 1)$ fixed under g_z . Let us now show their uniqueness.

It is enough to proof that there is a unique point x such that $g'_z(x) = 0$. Then $xz^x \ln^2 z = 1$. We define $\Psi(x) = xz^x$. As $\Psi'(x) = (1 + \ln x) z^x$, we have for $x > x_1$:

 $|\mathbf{x} \ln z| > |\mathbf{x}_1 \ln z| = |\ln \mathbf{x}_1| > 1 \Longrightarrow \forall '(\mathbf{x}) < 0 \quad \text{for } \mathbf{x} \in (\mathbf{x}_1, 1) \,.$ But $\mathbf{f}_z'(\mathbf{x}_1) = \mathbf{z}^{\mathbf{x}_1} \ln z$, $(\mathbf{f}_z'(\mathbf{x}_1))^2 = \mathbf{x}_1 \mathbf{z}^{\mathbf{x}_1} \ln^2 z \Longrightarrow \forall '(\mathbf{x}_1) = (\mathbf{f}_z'(\mathbf{x}_1))^2 / \ln^2 z$. Then \mathbf{g}_z' has a zero in $(\mathbf{x}_1, 1)$ iff \mathbf{x}_1 is unstable for \mathbf{f}_z , i.e., iff $\mathbf{z} \in (0, \mathbf{a})$. So there is only one 2-periodic point in $(\mathbf{x}_1, 1)$ which is $\mathbf{x}_4(\mathbf{z})$. The image under \mathbf{f}_z , $\mathbf{x}_3(\mathbf{z})$, is also 2-periodic and belongs to $(0, \mathbf{x}_1)$. The stability of 2-periodic points is guaranteed because $\mathbf{g}_z'(\mathbf{x}_1) > 0$, $\mathbf{i} = 3, 4$. Furthermore, if $\mathbf{h}_z(\mathbf{x}) = \mathbf{z}^z$ we have $\mathbf{h}_z'(\mathbf{x}_1) > 0$, $\mathbf{i} = 3, 4$.

c) Curve of two-periodic points: There are two branches for $z \in (0,a]$ which coincide if z=a. From $z^{X}=\frac{\ln x}{\ln z}$ we derive $z \ln z (x \ln x \ln z - 1) x' = -x \ln x (1+x \ln z)$. For $x \ln x \ln z = 1$ we get $x' = \infty$. This happens if $x=e^{-1}$, z=a. The signs of the factors allow us to state that $x_3' > 0$, $x_4' < 0$. Indeed, we begin by proving that $1+x \ln z$ has only one zero: $z^{X}=e^{-1}=\ln x/\ln z$ and $x \ln z=-1$ imply $x \ln x=-e^{-1}$, i.e., $x=e^{-1}$.

The same happens for $x \ln x \ln z - 1$, but the proof is more tedious: $z^x = e^{1/\ln x} = \ln x/\ln z$ and $x \ln x \ln z = 1$ give us $x \ln^2 x = e^{1/\ln x}$. The change $t = 1/\ln x$ transforms the above given condition to $\xi(t) = \xi(t^{-1})$, where $\xi(t) = t^{-1}$, where $\xi(t) = t^{-1}$, where $\xi(t) = t^{-1}$ is the unique solution. This is equivalent to find the positive solutions of $\varphi(t) = t$, where $\varphi(t) = \exp(\frac{1}{2}(t-1/t))$. Obviously 0, 1 are solutions. But $\varphi'(t) = (t^2 + 1)\varphi(t)/(2t^2)$; $\varphi''(t) = (t^4 + 2t^2 - 4t + 1)\varphi(t)/(4t^4)$; $\varphi''(t) = (t^6 + 3t^4 - 12t^3 + 27t^2 - 12t + 1)\varphi(t)/(8t^6)$. Then, $\varphi'(0) < 1$, $\varphi'(1) = 1$, $\varphi''(1) = 0$, $\varphi'''(1) > 0$ implies that the number of zeros of $\varphi(t) = t$ in (0,1) counted with their multiplicities is even. If that number is positive, $\varphi'''(t)$ must have at least two zeros in (0,1), but such zeros satisfy $t^4 + 2t + 1 = 4t$. Since $(t^2 + 1)^2$ is concave, there are exactly 2 solutions and one of them is 1. Then there are no solutions of $\varphi(t) = t$ in (0,1). On the

other side $\phi'''>0$ if t>1, implies $\phi(t)>t, \ \forall \, t>1.$ This ends the proof.

The behavior of the two branches near z=0 is found by asymptotic expansions: Let $x_3=z(1+\alpha(z))$, $\alpha(z)=o(1)$. We try to satisfy $z^x=\ln x/\ln z$. Then $\alpha(z)=z\ln^2z+o(z^2\ln^2z)$. The image under f_z gives $x_4=1+z\ln z+o(z^2\ln^2z)$. This allows us to plot $x_i(z)$, i=3,4. See fig.1.

§ 3.- Behavior of the iterates.

Let be $y_0, y_1, y_2, y_3, \dots$ the successive iterates.

a) If z > b one has $y_n \uparrow \infty$.

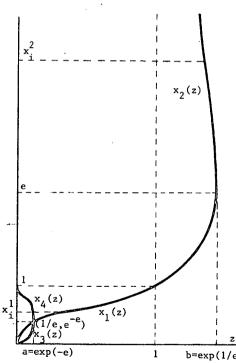


Fig.1

- b) For z = b and $y_0 \le e$, we have $y_n \nmid e$. For $y_0 > e \implies y_n \nmid \infty$.
- c) If $z \in (1,b)$ and $y_0 \le x_1(z)$ we get $y_n \nmid x_1(z)$; $y_0 \in (x_1,x_2) \Rightarrow y_n \nmid x_1$; $y_0 > x_2$ $\Rightarrow y_n \nmid \infty$.
- d) When $z \in [a,1)$, for every initial value y_0 we have $y_n \rightarrow x_1(z)$, but the
- iterates alternate in $(0, x_1), (x_1, \infty)$. So, $y_0 \in (0, x_1) \Longrightarrow y_{2k} | x_1, y_{2k+1} | x_1$.

For the critical value z=a we have a bifurcation: $x_1(z)$ losses the stability and a two-point stable cycle

appears.

ly converge).

- e) If $z \in (0,a)$ we have also the fixed point $x_1(z)$, but any $y_0 \neq x_1(z)$ gives
- $\frac{1}{z}$ iterates converging to the cycle b=exp(1/e) $x_{3.4}(z)$ (and them they do not proper-

'n

$$\mathbf{y_0} \in (\mathbf{x_3, x_1}) \Longrightarrow \mathbf{y_{2k+1}} + \mathbf{x_4}, \ \mathbf{y_{2k}} + \mathbf{x_3}; \ \mathbf{y_0} \in (\mathbf{0, x_3}) \Longrightarrow \mathbf{y_{2k+1}} + \mathbf{x_4}, \ \mathbf{y_{2k}} + \mathbf{x_3}.$$

Similar results are obtained for $y_0 \in (x_1, x_4)$ or $y_0 \in (x_4, \infty)$.

In particular, if $y_0 = z$ the iterates converge to x_1 iff $z \in [a,b]$ and to the cycle $\{x_a x_a\}$ iff z < a.

References

- [1] Notices Amer. Math. Soc. <u>25</u>(1978), 197.
- [2] Notices Amer. Math. Soc. 25(1978), 253, 335.
- [3] Bromwich, T.J.I'A.: "An Introduction to the Theory of Infinite Series", MacMillan, 1965, p. 23.