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We consider the sequence .yi+l= zyi, iz0, zeR;, with

Yo = 2- n [1], the question of the hehavior of such sequence is
posed. §qbsequently, many references to solutions are given (see
[2]) , for instance [3]. In this paper we obtain a full descrip-
tion of these iterates as functions of the parameter z, for eve
ry value of y . Our technique just uses the discretedynamical sys
teminR defined by f (x) z . The properties of the curves of

fixed po:.nts and of two periodic p01nts are also given.

§1.— Fixed points.

a) If z>1, f (x) is concave; 2% = x has solution iff

/e 1f

z< b, where b must satlsfy x=b" 1=bx1nb => b=e
ze (1,b) there are two fixed points xl(z) <x2(z) . They coinci

de for z =b.

For xl(z) we have 0< f'z(xl(z))<1. Then it is stable. .Ins

tability occurs for x2(z) .

. X
b) If z<1, fz(x) is monotonically decreasing. Then X =2

has only one solution X, (z).

Stability: f (x)< 0 1mp11es Xy (z) stable if f (x )y > ~1.

The limit of stablllty is found at X 1nz——1 = 'x= 1/e and

-é
ﬁim—a =e .
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For z=1-~-¢, & small enough: zx1>1—8 = f'(xl) =0(g)..
z
Then the fixed points is stable for z¢ [a,1). The negative cha-

racter of f' implies that the iterates alternate around the fi
xed point.

c) Curve of fixed points: Consider the curve x=x(z),

d
ze (0,b] given by x=z" (two branches if z>1); x' =?§-=

x Inx '
= = . ! =00 at =b. Th
z(1l-1lnx) zlnz(l-1nx) One has x 2 €
upper branch has xé< 0, z€¢ (1,b), and lower one gives xi(z) >0
in (0,b). We get as limiting values: lim x' =-1lim =0C0;
o e zlnz
Z U zZ
lim xz' = =00 ; lim x! =1. We obtain for the second derivative
z21* z*1

w _ ¥1Inx+x/(1-1nx)

X zero values iff Inx=(1++5)/2. Then

22 (1 -1lnx) 2
there are only two turning points: one, x;, in xz(z) and the
other, x;, in xl(z) for some z< 1. With this information we

can plot x{(z). This is done in fig.1.

§ 2.~ Periodic points.

a)Being fz(x) increasiag f z> 1, there are no periodic
points. For z<1, fi(x) .S also increasing. Then there are
only fixed points under fz (studied in §1)) or 2-periodic points

- x3(z) , x4(z) .

b) We consider the function gz(x) = 2" - logzx for z< a.
We have gz(xl) =0, g' (xl) <0 and gz(l) > 0. Then there are points
z

ve (x ,1) fixed under gz. Let us now show their uniqueness.

1

It is enough to proof that there is a unique point x such
2 .

~ that gé(x) = 0. Then xzx In z=1. We define Y (x) =xzx. As

¥'(x) = (1+ 1lnx) z, we have for x> X,
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Ty
{x 1n 2| > [xllnzl =|lnxll >1=V¥'(x)<0 for xe (xl,l).

' - X1 . 2 _ X7,.2 . -
But fz(xl) z 1n z, (fz(xl)) =X,z In“z =¥ (xl) =

= (f;(xl))z/lnzz. Then gé has a zero in (xl,l) iff x, is un-

stable for fz, i.e., iff ze (0,a). So there is only one 2-pe-

riodic point in (xl,l) which is x4(z) . The image under fz‘

x3(z), is also 2-periodic and belongs to (0,x1). The stabili-

ty of 2-periodic points is guaranteed because g' (xi) >0, i=3,4.
z -
x
Furthermore, if hz(x) =2z® we have hé(xi) >0, i=3,4.

c) Curve of two-periodic points: There are two branches

iIn .
for ze¢ (0,a} which coincide if z=a. From ¥ = Tn xz we derive
zlnz(xlnxlnz-1) x'=-xInx(l+x1lnz). For xlnx1lnz=1 we get

X' =co0. This happens if x=e-1, z=a. The signs of the factors
allow us to state that xé> 0, x"l< 0. Indeed, we begin by proving
that 1+ x 1n z has only one zero: zx=e_1 = lnx/lnz and xlng=-1
. -1 -1
imply xlnx=-e =, i.e., x=e .

The same happens for xlnx lnz - 1, but the proof is more

tedious: zx = el/:Ln x
1/1ln x

=1lnx/lnz and xlnxlnz=1 give us
X 1n2x=e . The change t =1/lnx transforms the above given
condition to g(t)=¢( t_l) , where g(t) =t et, t< 0. We must veri
fy that t =-1 is the unique solution. This is equivalent to find
S (t=1/t).
Obviously 0, 1 are solutions. But ¢'(t) = (t2+ 1)cp(t)/(2t2) ;e (L) =
= (2?0t s Do) /ety 9 (1) =(£%3e2 126327621200 1) (0)181S.
Then, @' (0)<1, @'(1l) =1, ®"(1) =0, p"'(1) >0 implies that the

numberof zeros of @(t)=t in (0,1) counted with their multiplici

the positive solutiors of @(t) =t, where p(t) =exp(

ties is even. If that number is positive, ®"(t) must have at least
two zeros in (0,1), but such zeros satisfy t4+2t+1=4t. Since

2 2, .
(t+1)  1is concave, there are exactly 2 solutions and one of them

is 1. Then there are no solutions of ®(t) =t in (0,1). On the
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other side 9" >0 if t>1, implies @(t)>t, Yt> 1. This ends the

proof.

The behavior of the two branches near z=0 is found by
asymptotic expansions: Let Xy =2(14+0(z2)), a(z) =o(1). We try
to satisfy 2= 1n x/lnz. Then a(z) =z ln2 z 4 O(zzlnzz) . The ima
ge under'fz ines x4=1+ zlnz+ O(zzlnzz) . This allows us to

‘plot xi(z), i=3,4. See fig.1.

$ 3.- Behavior of the iterates.

Let be yo,yl.yz,y3,... the successive iterates.

a)If z>Db one has Y teo.

b) For z=Db and yos e, we have ynfe.
For»yo> e =>yn100.

c) If ze (1,b) and YoS xl(z) we get
yotx (2} yge (xi,xz)»yn;xl; Yo %,
=y .

d) When ze¢[a,1l), for every initial
value Y, we have Yy, xl(z) . but the
iterates alternate in (0,x1), (xl,oo) .
800 ¥ € (00%)) = ¥outXsr You, 14%-
For the critical value z=2a we have

a bifurcation: xi(z) losses the sta-

bility and a two-point stable cycle

e) If ze¢ (0,a) we have also the fixed

point xl(z), but any yo# xl(z) gives

]
i
|
i
|
I
] appears.
t
]
|
{
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i

z lterates converging to the cycle

a=exp(-e)

b=exp(1l/e) X, 4(z) (and them they do not proper-

Fig.1 ly converge).
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Yo & (geXy) == You | 1%y ¥oud %37 Y8 (0ux) =y, 1%, v f%g

Similar results are obtained for yoe (xl,x4) or yoe (x4,co).

In particular, if y0==z the iterates converge to x1 iff

ze{a,b] and to the cycle {xx } iff z<a.
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