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Introduction

In this paper we study a class of neutral functip
nal differential equations which arises from a coupled sys
tem of differential-difference and ordinary difference equa
tions that occur in various applications, as electrical cir
cuits with lossless transmision lines, [1}. In [10], [15] %s
studied the stability of such system and in [13] are given -
conditions for the existence of periodic solutions. In this
paper, we consider a nonlinear system with a small parame--~
ter and we study the existence of periodic solutions when -
the corresponding linear system can have periodic solutions
(critical case). This is done by applying the method of Ha-
le [5,6] and its extension to delay diferential equations -
(see [14]) to the neutral equations obtained from the coupled

system after taking into account the results of [10].

1, Notation and summary of known results

Let En be a complex n-dimensional linear vector -

space with norm |.| and let r be a fixed positive number., -~
n .

cC=¢C ([-r, 0], E') is the space of continuous functions -

$:[=r, 0] — E'  with norm [$:| = sup{l ¢(e)|:ee;[—-r,o]}.

Suppose D, L are bounded linear operators from

C to En, o
D(¢) =H¢(o)-f [dp ()] (o)
o r
L(¢) = f_r [d g (e))¢ (o)
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where H is an nxn matrix, det H # 0, R are nxn matrix
functions of bounded variation on[-r, 0] with p nonatomic

at zero, We assume p has no singular parte.

If x 1is a continuous function mapping [0‘- r,o)
into En, then for any t€[0,~) we define X, in C by = -
xt(e) = x(t +¢ ) ,8€[-r, 0], An autonomous linear homoge- -
neous neutral funtional differential equation (NFDE) is ~

defined to be

(1.1) -a‘-’t- Dlx,) = L (x,)

A solution x = x ($) of (l.1) through a point
$4€EC at t =20 is a continuous function taking [-r, A), -
A>0, into E” such that x, = ¢, D(xt) is continuously di--
fferentiable on [0, A) and equation (1.1) is satisfied on -
this interval. It is proved in [2,4] that there is a unique

solﬂuﬁionA x( ¢) through ¢ and x(é)»(t )» is continuous in (t,$ )

If the transformation T(t): C —C is defined by =
T(t)¢ = xt(4), then it is shown in [11] that {T(t), t>,0} -
is a strongly continuous semigroup of linear operators with
the infinitesimal generator A:J(A) — C, A¢$(8) = :}(9), -
8€l-r, 0}, 9(a) ={¢ec: §ec, D) =1 (#)}

and the spectrum T(A) of A consist of those A which satisfy

[o] o]
det AN =0, AN = An -U exe drA(e) - f e)‘gd'v](e) °

The fundamental matrix solution of (1.1) is defi-

ned to be the nxn matrix solution of the equation

f

t
D(X,) =TI+ L(X)ds, t20
t o s

(1.2)

1

0O, -rge<o0
{n", =0

X (¢)=
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(1.6)  x,-X G(t) = T(t—r)[¢-xoc(r)]+

t t
+Jp T(6=9)X F(s)ds - [ [a5 T(t-s)X Ja(s)

for t20, § € C, where it is always understood that the inte

grals in (1.6) are actually an integrals in E .
Formula (1.6) suggert the change of variables
- X G = - =
x - X G(t) =z, $ X 6(T) =¥
from C > PC, If this is done, equation (1.6) becomes
t

t
(1.7) 2,=T (t-cr)++_‘;_ T (t-5)X_F(s)ds - fq_[dsT(t-s) X(JG(s) .

Definition 1l.,1l. The operator D is said to be stable if the-

re is a 3> 0 such that all roots of the equations det D(e)" I)=0

stisfy Relg-=7V.,

If D(¢) = H$(0) - M$(~r), then D is stable if the
roots of the polynomial equation det (H-rM) = 0 satisfy -~

(prels

An important property of equation (1.1) when D is
stable is the following (see (3] ) : If D is stable, then -
there is a constant aD< 0 such that for any a> aD, there -
are only a finite nimber of roots of det A (A) = O with - -
RelD a.

Let D be stable. If j\={)«: det A(N) =0, Rekao},
thenAis a finite set and it is follows from {11] that the
space C can be descomposed as C = P & Q, where P, Q are -~
subspaces of C invariant under T(t), the space P is finite
dimensional and corresponds to the initial values of all -~
those solutions of (1.1) which are of the form p(t)ext s -
where p(t) is a polynomial in t and AEA. If é is a basis
for P, then for every ¢€ P there exists a vector a& En such

Bt
that{):éa. En this case, we can define T(t)¢= ée a, -
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If F, G :[0,9) — E are continuous, a nonhomo-:

geneous linear NFDE is defined as

(1.3) Ed-t-{n(xt)—c(t)}= L(xt)+ F(t) .

A solution through ¢ at t =¢ of (1,3) is defi--

ned as before and is known to exist on [¢-r, o),

The variation of constants formula for (1.3) (see
[9]) states that the solution of (1.3) through (¢, ¢) is gi-
ven by
. . o+
(1.4) x(t) = T(t-0)$(0) + [ X(t=s)F(s)as- [ [d_x(t-s)]6(s)-G(r),

for t3>0 , where X is the fundamental matrix solution given

by (1.2)s Equation (1l.4) can be written as
(1.5) x(£)=-X(0)G(t)=T (t-7) ¢(0) -X(t-T)G(c) *

t t
[ % (4-s)r(s)as-f [a

X (t-s)]
Jo.L s 4

D

(s)

G(s),
for tx0 .,

Now, let PC be the space of functions taking -
[- r,O] into En which are uniformly continuous on [- r,0) and
may be discontinuous at zero., With the matrix Xo as defined
before, it is clear that PC=C+ (Xo), where (Xo)is the ~ -
span of Xo; that is any$EPC is given as ¥ =¢+ Xob, $ec,

n
bEE . We make PC a normed vector space by defining the -

norm |¥|= max{!ﬂ, b}.

Let us define x _(9) =T (t)¢ , wheret€EPC and -
x(¥) is the solution of (1.1) through 4. The operator - =
T(t) : PC — (functions on [-r, 0]) is linear, but T(t) does
not take PC-— PC., It is an extension of the original semi
group T{(t) on C. If we use this notation, then the variation

of constants formula (1.5) can be written as

64



where B is an nxn matrix defined by A§=§B. The spectrum

of Bis A,

If C is decomposed by A as C = P®Q then equa--
tion (1.6) is equivalent to
t
x:— x: G(t) = T(t-G‘)I}P - X:G(U')]+ L T(t-s)XOPF(s)ds -
t

- fu.[ds T(t-s)X::]G(S)

(1.8)
t
x?‘_:-— xg Gt) = T(t-cr‘)[4Q_ xg G(o-)] + J; T(t-s) xg F(s)ds -
t

- Q

- G
o ldg T(t-s)X)6(s)
where the superscrits P and Q designate the projections of -
the corresponding functions onto the subspaces P and Q, res-
pectively, and they can be determined by means of adjoint di-

fferential equation to (1.1), see (11).

2. The linear problem

In this section, we consider the system

a) x(t) = Alx(t)+A2y(t-r)

(2.1)
b) y(t)- A3x(t)+A4y(t-r)=O

where x, y are n-vector and all matrices are constants. For
n
any a€E ,¥€C, one can define a solution of (2.1) with -
. - I3 - n
initial value x(o) = a, v, = Y . If we define, C=C([~r, O,E )
n nxn Dy Ly
D,L: E'x C — E , D= , L = ,

D,

Dl(a"* )= a
(2.2)
D,(a,¥ ) =¥(0) = A a-A,¥(r)

Ll(a,'\f)= Ala+A2~{i,(-r)
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then equation (2,1) is a special case of the NFDE

(2.3) =D (x(8), y,) = L (x(t), y,)

and one obtain the system (2.1) by requiring that
D2 (a,¥)=0

Equation (2,3) defines a semigroup T{t) on E'xC. If we de-
fine (EnxC)o ={(a,Y)€EnxC:D2(a,+)=0} then (EnxC)o can
be considered as a Banach space. Furthermose, for any - -
(a,"{’)E(EnxC)o, the solution of (2.3) through (a,7¥) will -
be in (E‘nx C)o since it corresponds to the solution of (2.1)

through(a,v¥) . Consequently,

def

T (£) &= T(¢) : (E"xC) — (E"xC)
Q o o)

n
(E xC)o

is a ‘strongly continuous semigroup. The infinitesimal gene-

rator A of T (£) is A = Al where A is the infi
[ o o l(EnxC)
o
nitesimal generator of T(t):One shows that
-Ar
I- -A
)‘ Al 2e
ca)={reC: det AGY =0}, AN - y Teae

Observe that

a I 0] ra o o a
D(a,¥ )= = -
”{'(O)—Asa-A‘i"f(—-r)‘ TA3 I Yo 4, Y(-r)
def 1 dio) -Md(-r)
a (A, 0][ a 0 A a

L(a,t)= Y(o)-Aga-A4’Y(-r) - | 0 0] |¥(0) *lo o | (-r)
def N ¢(0) + P §(-r).
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Thus, if the eigenvalues of the matrix A4 have mo~

duli less than 1, then D is stable.

Also, from (1.2), we can define the fundamental ma

trix solution X(t) of (2.3) as

I 0
~-1 .
X0(9)=H = [A I]’ 8= 0, X°(9)=0, -rgb <0,
3 .
X
X11 12 .. .
If X = 9y -where X, ., i, j =1, 2, are nxn matri
X X ij -
21 22

ces, then X must be a solution of (2,3) with the initial -

data specified above. Therefore, the matrices Xi 3 must sa--
b ]

tisfy

1l
o
-
o
v
o

a) D, (X, (&), le,t)

(2.4)

b) Dz (x12 (t), x22,t) = , tO0,

11° )(21 are solutions of (2.1).

127 X22 do not satisfy (2.1b). This implies

that the variation of X(t) satisfies the system (2.1).

Notice that (2.4a) implies X

The functions X

Using Laplace transform or the same type of argu--

ments as in Hale [7) pag. 303, one can prove the following

Lemma 2.l. If the eigenvalues of A4 have moduli less than 1
and all roots of det A (\) = 0 satisfy Rel§-§<0, then -

there are positive constants K, &« such that
Ix &), I1x. ), IX, . (e)leke ™Y, ave t%0, i,j=1,2.
11 21 ij = ’
Now we consider the nonhomogeneous system

Xx(t) =A1x(t) +A,y (t-r) + £ (t)
(2.5)
y(t) - A3x(t) - A4y(t-r) -g(t)=0

n
where f, g are continuous functions from [0,)to E . With
D, L defined as in (2.2), system (2.5) is a special case of

the NFDE
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d

(2,6) T

{n (wt)- c(t)} = L(wt)+F(t)

where w = col(x(t), y.), w =¢ = col(a,“f)EEnxC, - - -
¢ nxn © ° nxn
G = col(0,g)EE , F = col(f, O)EE and one obtains the
system (2,5) from (2.6) by requiring that Dz(a,1/)= g(0),
As in Section 1, if we extend the definition of -
T(t) to E" x (C+ (Xo)) def Y, then the general solution of -

(2.6) is given by the wariation of constants formula

t

W= X G(t) = T(t)[$- X c(0)]+ {) T(t-s)X_F(s)ds -

(2.7) €
_f (ds T(t—s)Xo)G(s).,
o -

This last formula suggests the change of variables

Wo- X G(t) =2 $- X _G(0) =% '

t,
from'Enx C to Y, If this is done, formula (2,7) becomes
t T
(2.8) z,=1(t) +J T(t-s)xop(s)ds_'f(ds T(6-5)X J6(s) £20.
o o
One can give an explicit decomposition of (2.8) by
using the adjoint equation to (2.3). For this, we write - -

(2,3) in the form

Tid? {H w(t)—Mw(t—r)}= Nw(t) +Pw(t=r), w =¢€EE"xC

which is equivalent to

(2.9) : -c—ld?{w(t)—Mw(t—r)}= Tw(t) + P wlter)

-1

. -1 - - -
since H "M=M and where H 1N=N, H P=P,

We define the adjoint equation to (2.9) as
d - - l’l‘ ®
(2.10) = {v(t) - vitHr) Mf= = v(t) F-v(t+r) B, v =%EE"xC
In the same way, we may write (2.6) in the form
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(2.11) -a%{w(t) - Mw(t-r) - H-IG(t)} = Nw(t)+P wlt-r) +H 1F(¢)

Using the same arguments as in [7, 13], it is - ~-
easily shown that if the eigenvalues of A4 have moduli less
than 1 and E"xC is decomposed by A ={\: det A(X\) =0, ReA%0]}

as P & Q then equation (2.8) is equivalent to
t
| 4 P_ -1
a) zi=T(t)§ +fo T(t-s) X H F(s)ds -

..fot[ds T(t-s) xZ] o' G(s)

(2.12) N
b) 2= T(0)52+ [ T(e-s) X F(s) s - 3
[T 1(6-5) 214" 6(s)
- 0[ s -3 o s |
where §P= 4P— X:G(O), §Q=¢Q-X§ G(0), zt=z:+z% « Also,

P Bt
if zt=§u(t), where é is a basis for P and T(t)é=&e s =

the spectrum of B is A, then u satisfies the equation
. -1 Y -1
(2.13) a(t)=Bu () +Y(0)H F(t)+BY(0)H G(t), -mctew

where 'I’ is a basis for the inifial values of those solu- -

tions of (2.10) of the form p(t)e-xt, p a polynomial,\EA.

If ?,i, is the Banach space of continuous and -
T-periodic functions with norm |[f] = sup{lf(t)|, t€,T)}, -
then one can state the theorem on the Fredholm alternative

for periodic solutions as:

Theorem 2.1,[13] If the eigenvalues of A4 have moduli less
than 1 and f, g€ %, then system (2.5) has a solution in %
if and only if

T T
(2.14) I, v(e)H ' F(s)as - J_[av ()] 6(s) = 0.
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for all T-periodic solutions v of the adjoint equation -

(2.10),
-B
Since ¥ (s) = ¢ -¥(0) and ¥ is a basis for the

T-periodic solutions of the adjoint equation, formula (2.14)

can be written as

T T
fo BP0 H F(s)ds-J [dse P5F(0)]ua(s) =
o]

= fT e‘BS['{’(o) w1 Fr(s)+8¥(0) H"lc(s)]ds = 0

(o]

or T
=N B3 F0) ilr(s) +8¥(0) 1 la(s) ds = o,

Thus, equation (2.14) defines a continuous projection opera

tor J: ?T —-*9; s given by

3(¥©) a5 tr+8Y¥(0) H-IG)(t)qg J(F, G) =
1 (T B(t-s)
T T fo € ['f(o) H lr(s) + BE(0) H—lG(s)] ds,
and system (2.5) has a solution in % if and only if
J(F, G)=0 °

Furthermore, there is a continuous linear operator

K(I-J) : 9&, — 9,’1,

such that K(I-J)(F, G) is the unique solution of (2.5)

which satisfies JK(I-J) (F, G) = 0, The unique solution -~

® . Y .
zg of (2.8) in Qf is
X Bt n
2t = $ e a + k(1-3)(F,6), a€E.
The operator K(I-J) is given by

_n Bt _ &P Bt +Q _
K(X-J)(F,J) —,zt-ée a=z —ée a+zt =
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. Bt xQ
= + —
@[u (t) e a] + z,
where u* (t) and z::Q are the unique solutions of (2.13) and

(2,12 a) in 93;

3. Critical case for the periodic system with a smamall pa-

rameter
Consider the nonlinear systems

:'c(t)=A1 x(t)+A2y(t—r) + £ (t, x(t) Vs €)

(3.1) .
y(t)—Agx(t)-A4y(t-r) - y(t, x(t) Y2 €)=0

where f, g are continuous in all their arguments and T-pe
riodic intand £ is a small real parameter., With D, L defi
ned as before, system (3.1) is a special case of the nonli

near NFDE

(3.2) Ti" {D(wt)-G(t, wt,i)}= L(wt)+F(t, wt,e)

where W= col (x(t), yt), w°=4’ = col(a,'Y)EEnxC, - -

"G = col (O,g)el:‘,nxn, F = col (fr‘,O)EEnxn and one obtains -

system (3.1) from (3.2) by requiring that Dz(a, +¥)=g(0,a,4,¢)
The solution of (3.2) is given by the variation of constants

formula

(3.3) we-X G(t,w,, e)=1(t)[$- X c(o, ¢ ,e)] +

- 3 ) -
+ T(t s X F‘S w € dS
I ( ) E s

t
__[) [ds T(t-s) XO]G(s, ws,E).

If we let
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2, = W - XOG(t, wt,t‘_), g = -xoc(g,‘é,E‘),
then we have defined the transformation h:E x C — Y, -
h($¢) =& , which is a homeomorphim (see {8, 10]). If this

is done, formula (3.3) becomes

t
(3.4) 2= T(e)g +[ T (t=a)X F (s, Wiz ), €) ds -

t -1
-fo [dg T(t-s) X_1G(s,h™" (2_),E)

Suppose D is stable. If./\.={k: det A(X) = 0, Re)‘=0},
then A is a finite set and the space E"x C can be decomposed
by A as P ® 0. As in Section 2, equation (3.4) can be split
as (2.8)s, Then(3.4) is equivalent to

Q

z = éu(t) +zt

t
[

(3.5) &) =Bue) +F0) 1 lr (6,071 (2,),8) + BHO)H 65,07 (2,),€)

z%= T(t)g> +f T(t—s)XoH—lF(s,h-l (z),€)ds -

t
_,L (ds T(t=s) )(O]H'lc;(s,h“1 (zs), €£),

where z = z:+ z%, z: = éu(t) and B is an nxn matrix -
whose spectrum is A . We assume that the eigenvalues of B
are integral multiples of 2TI.i/T and that B is diagonaliza
ble.,

We are going to give conditions under which (3.1)
has T-periodic solutions which are closed to T-periodic so-
lutions of its linear part, We will do this for equation -
(3.2) and as D2(§)=D2(¢)- g(0,$,€) = 0, since equation -
(3.1) is satisfied,; then we will have done it for system -

(301).
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We will assume that f, g in system (3.,1) fulfill

the following conditions:
i) £ (t, 0,0)=0
ii) [£(e,41 €)= £, ¢,0)l€n0e,0) |4 - 4]

for t in [0, =), |¢1| R |+2|<0' and 'vl(g, ¢) is a continuous -
non-decreasing function for T)O, 2o, 71(0,0) = 0, and the
same conditions for E£. For equation (3.4) we obtain the fo

llowing

Lemma 3.1, For any «>» 0, there is an £o> 0 such that for -

any aEEn, laje o 5 |E1 £ E’o’ there is a unique function - -
z: = zz (a, £€) which satisfies

z:= §ePbark(r-a) {'{'(0) H—IF(t,h-l(Z:;): €)+

(3.6)
+8¥o a(e,n 7 (2, ¢ )]
where K,J are defined as. the and of Section 2, Furthermo-~

re z;(a,E) is continuous in (a, &) .

Proof. Let F be a positive number such that I ieBt alé(ifor

-~

|lal ¢ ¢ For any X)O, define
Bt )
y(x)={zt6.7/1,>:.]!zt=ée s |zt|£{}

and the operator #: (YY) — 9% by

Fa, = $ %2+ k(1-3) (¥ (0) H'IF(t,h'l(zt): £) +

+BY(0) 5 a(t,n! (z,),€))

for ztey(r). If z;(a, €) is a fixed point of & in (y),

then z;(a,é) is a solution of (3.6), Since h is a homeo

morphism there is a constant k1 such that lh-l(zt”& kllztl



and since F satisfies conditions i), ii),

| Pee, 071 (2,0 €[F (e, 07 (7, ), €)= F (5,0, €]+ [F(t,0,¢€)]

<0€r,0) ke, Izt|+k2(|€|)$"l(|5', G‘)kI('+k2(lel)

where kZ(O) = 0 and the same for G, Since K(I-J) is a conti
nuous linear operator, we get

Iﬁztl\<F+ kg { I"I’(O)H“ll (MUisl,e)k Y + X, (1€) +|B"?(0)H"1|(q(lel,u-) ke Y+
+ kz(lel))} =p+ k4{~l(le|, Tk Y+ k2(|£|)}_

Now choose Eo’ q“o positive and so small that
T < Y=
k, (e, Tor iy + k, (€ e g

For this choice of €5 O, and since J(?zt) = é eBta, one
easily shows that %: & (y) — &(Y) and is a uniform con-
traction with respect to a, £ for Jlalg&, 0¢|€El ¢ &4,

The continuity property of zz(a, €) is a consequence of -

the uniform contraction principle,

Theorem 3.1. If there are a, & with |al¢x, O0<IEV€ &, and

the solution z;(a,E.) of (3.6) satisfies
(3.7) 3RO HFC, 0T (G (a,e)) 5 8)

+ Y ta( , h'l(z’: (a, £)) ,6)} = 0,

then z:;(a,&) is a T-periodic solution of (3.2). Converse-
ly, any T-periodic solution of (3.2) in _V(‘() is a solution
of (3.6) and (3.7).

Proof . The first part of the theorem is obvious, and the

second follows grom the fact that any solution of (3.2) must
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satisfy (3.6) and (3.7). The uniqueness of the solution in

& (Y) implies the result.

Equation (3.7) is equivalent to
(3.8)fT -Bt -1 ‘—1 "
b P FOT R, €))L € +

+ B’f(O)H—lG(t,h_]’(z:(a, 3 )),E)}dt = 0,

Equations (3.7) or (3.8) -are called the bifurcation equa--
tions of (3+.2) and can be determined approximately by succe
sive approximations since % is a contraction operator.

s g% (0) = T-6)§H0) =T(-6)X =X (=t), -
where X is the fundamental matrix solution of (3.2) (th%s
notation is justified in Henry[12] ), equation (3.8) is equi

valent to

foT X (—t) H ! F(t, w: (a, £),€)dt =~

T P -1 »
-fo [th (-t)]) H "a(t, wi(a, £),€)dt =0

‘which, taking into account that F = col(f, 0), G = col(0,g),

is equivalent to

T
P -
fo Xll(-t)H lf(t, w;(a,e),ﬁ)dt +

T
+J’° leﬁ—t)ﬂ_l g(t,w;(a,é), £)dt = 0O

(3.9)
T
fo le (-t) H g (t, w:(a,&) dt +

T.p -1
+f X,, (-t)H "glt, wi(a,€),€) dt =0
[e)

Equations (3.9) are the bifurcation equations of (3.1).
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If the function z:; (a, £ )in Lemma 3.1 is differentiable -

with respect to a, we can apply the implicit function theo

rem to (3.9) to have a = a(€) . In particular, if f =£F,

g =€g, where f(t,9), g(t, ¢) are continuosly differenti_a_

ble in ¢ and we define

(3.10)  F (@, €) = [TX] ()W E (e, w! (a,e) ) ab +

T‘P 1
P -1 - . _
+{ }‘12[1 g (t, wt(a,a))dt 0

Fz(a,a) =f0T XZI(—t)H—lf-’.(t, wz (aye) ) dt +

T _
P -1- »
+fo XZZH g(t,wt(a,e)dt 0

i
then, we have the following theorem for the first approxi-

mation

Theorem 3.2, Let f, g satisfy the above conditions. If -
Bt
there is an a ,I&e a ‘(-d', such that
o o
a(Fl, Fz)
da

then there is an 807 0 such that system (3.1) has a T-perio

(3.11) Fl(ao,0)=o, Fz(ao, 0)=o0, det[ (ao, 0)]7‘0

dic solution w (a , &), O<€I€l $£o, continuous in € and -~

» _ Bt
wt(ao, 0) = ie a e

Proof. The hypothesis (3.11) and the implicit function theo
rem imply there is an £°> 0, such that equations (3.10) ha
ve a solution a(€) sla(e )€, 0$l€|$£o. Theorem 3.l. -~

implies the assertions of the theorem.
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