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Realizability of localized groups and spaces

J. Aguadé

The theory of Tocalization of nilpotent groups and spaces (see [4]
for a reference) associates to each nilpotent group (space) G, a family
{Gp} of nilpotent groubs (spaces), Gp p-Tocal. In this paper we study the
problem of deciding if given a family {G(p)} of groups (spaces) there is a
group (space) G such that {G{p)} coincides with the family of localizations
of G. We obtain necessary and sufficient conditions for an affirmative ans-
wer (see § 3 for a precise definition).

In the {ast section of this paper we apply the preceding results to
the problem of fibering a space by a subspace. We show that under certain
conditions it is a "local' problem in the sense that a space E can be fibered

by a subspace F if and only if the localizations E_ can be fibered by Fn

p
for all p.

A1l spacesare assumed to be of the homotopy type of CW complexes.

1. Realizability of localized groups

In this gection we consider the following problem: Let {G(p)} be a
.family of nilpotent groups of class <c, G(p) p-local, and let G(p) — G(o)
be o-localization (i.e. all groups G(p) have isomorphic rationalizations).
lle want to obtain necessary and sufficient conditions in order to insure the
existence of a group G with p-localizations isomorphic to G(p).. More preci-

sely, we say that a nilpotent group 6 of class <c solves the problem if:

a) There are isomorphisms Gp =, G(p) and G, = G(o);
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b) the following diagram is commutative:

Notice that the homomorphisms G(P) — G(o) are data of the problem.
This is important because it is known that there are non-isomorphic groups
with isomorphic localizations (see [4], p.33), whereas, at least if the
group G is finitely generated, G is completely determined by the homomor-
phism Gp —_— Go‘ Note also that the problem does not always have a solu-
" tion. A counterexample can be constructed by taking G(p) = Z(p), G(o) = @
and G(p) — G(o) multiplication by p. We will see later that there is no
group G solving the problem in this case. Clearly, if we omit the condi-

tion b), we can take G=Z2.

Theorem 1.1 With the above notations let us consider the following condi-

tions:

i) the problem has a solution;

ii)there exists p: G(o) — ( IIG(p))0 sﬁch that if hp is the rationaliza-
tion of the canonical projection nG(p) —— G(p), then the following

diagram is commutative:

iii)let us denote Hp = Im{(G(p) —— G{o)), H =F1Hp. Given x € G(o) there

exists nisuch -that x"-€ H.
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Then we have: i < ii = iii and if the groups G(p) are torsion free abelian
groups then all three conditions are equivalent.

Proof: i = ii. Let G be a group solving the problem . We can define p as
the composition G(o) +5§—-Go — (R G(p))0 where the second map is the ra-

tionalization of the composition G — NG —— TG(p).

i = iii. It suffices to prove iii for Gp and G0 instead of G(p) and G(o).
Given x € Go’ there exist n such that x" =ry, YEG, r:6 — G0 the ratio-
nalization. Let us consider the p-]oca]izations»of Y xp € Gp. Then xp ra-
tionalizes to x and x" € H.

ii = j. If there exists p, we define'G as the pullback

G —— uG(p)

Lol
G(o)—*—(nG(p)),
G is a nilpotent group of class < c. Composing the top homomorphism with
the canonical projections TG(p) —— G(p) we obtain homomorphisms
9p: G — G(p). We will show that gp is a p-localization i.e. g_ is a

p
p-isomorphism. From the hypothesis on p we obtain the commutativity of the '

diagram:
G—gP—»G(p)
\ / (1)
G(o)
We have
G={((xq),y)| XQEG(q),yEG(O) and r((xq))=py}-
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Let us assume gp((xq),y)= 1, i.e. Xg = 1. Then the above diagram

yields y=1 and so r((xq)) = py=1. Since r is a O-isomorphism, there

exists n such that (xg) =1. But x_ belongs to the g-local group G(g), hen-

q
ce we can assume (n,p) =1 and so we have proved that gp is a p-monomor-

phism.
Let xp € G(p). We have to see that there exists m such that (m,p)=1

and xg =gpa for some a € G. Let y=rx, € G(o), z=p y € (HG(p))o. Then,

hpz =y. Since r: nG(p) — (HG(p))0 is a O-isomorphism, there exists n

such that Z"=r((>'<q))- Since iq € G(q) and this aroup is g-local, if q#p

- k -
we can take Xq =xap with h =pkm and (p,m) =1. On the -other hand X_ goes to

. _nt k+t,
yn= rx;. Since G(p) — G(o) is a g-isomorphism, we have xg =xP M and

we take xﬁ =xg. Let us consider (xa) € 11G(p). We have:

k+ + +
D t pk t ' k+t

MMP € (n6(p))

0

Since (HG(p))0 is o-local, we obtain r((xa)) =2" and gp((xé),ym) =

xp= XE with (m,p) =1. This proves that gp % a p-epimorphism.
Let us see now that the group G solves the problem. Since we have
proven that 9p: G — G(p) is a p-localization, we have an isomorphism

P
phism G — G(b) is a 0-isomorphism and we have an isomorphism

6 —— G(p). Moreover, since the diagram (1) is commutative, the homomor-

G0 —EiA-G(o). We only have to see that the diagram

1R

Ip — l(p)
GO_E__, (0)

is commutative, but this follows from the fact that it is obtained from
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by localization. This ends the proof of ii = i. Let us assume now that the
groups G(p) are torsion free abelian groups and let us show that iii = ii.
Given x € G(o), let n be such that nx € H. Then for each p there is a uni-

quely determined x_ € G(p) such that nx=rx_. We take z =(x_) € n6(p) and

P p p
we define opx=z'€ (HG(p))0 where .z' is such that nz' =rz. It is then
clear that z' does not depend on the n we have chesen. In this way we ob-
tain an homomorphism p : G(o) — (nG(p))o.

This ends the proof of the theorem. o

Now we can see that if we take G(p)= Z( X 6{o) =0 and G(p) — G(o)

p
multiplication by p, then there is no group G solving the problem because
condition iii in the above theorem is not satisfied.

Theorem 3.1 1in [3] proves that for a given p the solution is uni-
quely determined.

We will study now under what conditions a family {6 — Hp}p of
homomorphisms, where G and H are nilpotent groups, comes from a homomorphism

G — H. A necessary condition is that the family {G — Hp}should be ra-

tionaly coherent i.e. for all primes p,q the diagram

G
l
Hq — H,

—

p

I «—— I

should be commutative. If H is finitely generated this condition is also

sufficient ([4], p.26). In general we have:
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Proposition 1.2 A rationaly coherent family of homomorphism {G — Hp}p

comes from a homomorphim G — H if and only if the induced diagram

p
H0 —_ (HHp)o

is commutative.

Proof: The "only if" part is trivial. If The above diagram commutes we have:

and we gety because the square is a pullback ([3])®

2. Realizability of localized spaces

Let {B(p)} be a family of nilpotent connected spaces, B(p) p-local,
and let B(p) — B(o) be rationalizations (i.e. all spaces B(p) have ho-
motopy equivalent rationalizations). We ask for the existence of a nilpo--

P
that the following diagram is homotopy commutative:

tent space B and homotopy equivalences B ——:LA»B(p), B0 = B(o) such
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If such a space B exists we say that B solves the problem. First of all,
a necessary candition for the existence of a solution is. that nB(p) must
be a nilpotent space. It is not difficult to see that this is equivalent

‘to say that there exist dintegers c_, n>1 such that "1B(p) is a nilpotent

n’
group of class =<c1 and niB(p) is a nilpotent nlB(p)-module of class <cp»
for all p..From now on we assume MB(p) nf]potent.

We have seen in the last section that the realizability problem for
groups does not a]ways’have a solution, The same holds for spaces because
if G(p) — G(o) is a counterexample for groups, we can consider

K(6(p),1) — K(6(0),1).

Theorem 2.1 There exists a nilpotent 'space B solving the problem if and
only if there is a map p: B(o) — (IIB(p))0 such that if hp is the ratio-
nalization of the map nB(p) — B{(p), then the following diagram commutes

up to homotopy:

B(o) —— B(p)

e N/

B(p)y

Proof: If B is given we take p to be the rationalization of the composition
B — an-4:—+ nB(p). Conversely, let us assume that there exists a map p
sahsf1y1ng the hypothesis of the theorem. For each 1>1 we define the group
G as the puliback .

6" ———— 1 n;8(p)

p

l 1?'*

Px
'n_iB(O) —_— (g "1B(p))°
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Then G' is a nilpotent group (abelian if i >1) whose localized groups
coincide with the niB(p). By [ 3], the diagram is bicartesian and we have
exact sequences:

i <D*,‘r*>
6 >— 7;8(0) ® m;8(p) ———— (1;8(p)),

(2)

61 > 718(0) x TmyB(p) == (1 yB(p)),
We define the space B as the (weak) pullback

B ———— nB(p)

e

B(o) —&— (mB(p)),

If we apply ([3], 3.4) to the diagram (1) we see that every
zZ € (HnlB(p))0 can be expressedas z =r_,x.p,y and this implies, by [4], II.
7.11, that B is connected. Since NB(p) is nilpotent, [4], I1.7.6 implies
that B is also nilpotent.
The homotopy Mayer-Vietoris exact sequence of the (weak) pullback

(3) yields ([2]):

<p*,-r‘*>
— 1B — niB(O) ® 1 B(p) ———— (nniB(p))0 — ... (4)

Since (1) is a pullback we have a canonical homomorphism “iB —
and it follows from (2) and (4) that it is an isomorphism. Then B — B{p)
is a p-localization because "iB — niB(p) is also a p-localiza-

-tion. The rest of the proof is formally analogous to that of 1.1. o

Theorem 3.3 in [3] proves that for a given map p the solution is uni-

quely determined up to homotopy.
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There is also an analogous of proposition 1.2.:

Proposition 2.2 A ratjonaly coherent family of maps {X — Yp}p

comes from a map X — Y if and only if the induced diagram

- Yo —_P (]’[Yp)o
Xy S . (nxp)o

commutes up to homotopy. o

3. The problem of fibering a space by a subspace

Let (E,F) be a couple of nilpotent spaces, i.e. F is a subspace of
E. We say that (E,F) is a fiber couple 1if there exists a nilpotent space
B and a map E — B such that F —— E —— B is homotopically equivalent

to a fibration. In other words, there isahomotopy commutative diagram

F—s E— 8

Lo
— E

P

where F —— E — B is a ffbratkn-and the vertical arrows are homotopy
equivalences. By [1] p.60, the fibration F ——E—B turns out to be
nf]potent.

To characterize fiber couplesis one of the problems listed in [5].

It is not difficult to prove the following result:

Lemma 3.1 (E,F) is a fiber couple if and only if there exists a nilpotent
" space B and a map p: E— B such that i) PIF ~x 3 1) py: ni(E,F) — ;B
is an isomorphism for all j. o

Our goal is to relate the fact that (E,F) is a fiber couple to the

fact that (E ,Fp) are fiber coupies for ail primes p. The equivalence of

P
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bouth assertions will be obtained only under certain hypothesis.

We say that (E,F) is a nice couple if F0= * or F—— E is a ratio-
nal homotopy equivalence. Recall that a space X is called quasifinite if
the homotopy groups "nx are finitely generated for all n=>1 and HnX =0

for n sufficiently large.

Theorem 3.2 Let F be a quasifinite space and let (E,F) be a nice couple.
(E,F) is a fiber couple if and only if (Ep,Fp) is a fiber couple for all
primes p. '

Proof: Since localization preserves fibrations, only the part "if"
of the theorem needs a proof. Let us assume we have niTpotent fibrations
Fp ——~4=Ep —— B(p) for all p. The exact homotopy sequence of these fibra-
tions yfe]ds,that B(p) is a p-local space. Since (E,F) is a nice couple we

have homotopy equivalences B(p)0 ~ B(q).. In order to construct a space B

o
whose localizations coincide with the B(p), we have to see that nB(p) is

nilpotent but since we have fibrations Fp —_— Ep — B(p), the nilpotency
class of the homotopy groups of B(p) is bounded because the same holds for

Ep and Fp. Let us consider the diagram:

and the-existence of the dotted map p follows from the fa;t that the couple
(E,F) is a nice oné. Moreover the hypothesis of theorem 2.1 are fullfilled
and we obtain a space B such that Bp ~ B(p).
We have to construct a map E —— B. Since we have compatible maps
.Ep —_— Bp we can apply proposition 2.2 and we get a map E —— B. It re-

mainsconly to show that F E B is homotopy equivalent to a fibration.
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Since F is quasifinite, the composition F —E —-B is homotopically trivial

({ 41,p.89) and since wi( ) -—*ni(BD) is an" isgmorphism for allp,all i,

F
o EP P
then "i(EsF)~*niB is also an isomorphism. Hence (E,F) is a fiber couple. o
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