Pub. Mat. UAB
Vol. 28 Ne 1 Maig 1984

EQUIVARIANT MAPS UP TO HOMOTOPY
AND BOREL SPACES

Martin Fuchs

Equivariant maps between G-spaces induce fiber
presexrving maps bet@een the associated Borel spaces.
We will show that not all fiber preserving maps between
Borel spaces are induced that way, not even all fiber
homotopy classes of such maps. However there is a
one-to-one correspondence between homotopy classes of
G_-maps (i.e. maps equivariant up to homotopy in-a way,
see section 1 for definitions) between G-spaces and fiber
homotopy classes of maps between Boreél spaces. This
one-to-one correspondence is obtained by a functor
equivalence between the respective categories (Theorem
1 and 2 in section 4). As a result equivariant homotopy
theory (in a modified sense) is equivalent to the theory

of homotopy fibrations.

To prove these theorems we have to include H-spaces
into our discussion: In fact, the functor equivalence
ment;oned above is an extension of the equivalence between
the categories of H-spaces and classifying spaces presented
in [2]. Therefore we need the notion of a Borel space

for H-spaces.

The Borel space we use, is associated with the

modified Dold-Lashof construction in [3];
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In section seven we present a number of examples
of G-spaces with differing fix point sets, such that
these differences cannot be detacted by studying the
cohomology of their Borel spaces, nor by studying the
Borel space itself. The groups in most examples are %
or Sl, but the G-spaces are not all of finite dimension.
Thus we illustrate the limits of theorems like the local-
ization theorem by Hsiang ([5], p. 47). All the examples
arise from the fact that if h = {hn} n=o0,1,... is a
G,-map between the G-spaces Xl and X, and h is an

ordinary homotopy equivalence, then the fiber map induced

between the Borel spaces is a fiber homotopy equivalence.

1. Definitions

1.1. The H-spaces H we are using are supposed to be
strictly associative and to have a strict unit element
e. Furthermore we assume H has a homotopy inverse v
A L xv o) : :
(such that H—=3» H x H-——> HxH —> H 1is homotopic

to id.,).

H
1.2. We say that a topological space X 1is a G-space,
if an H-space H acts on X from the left continuously
and in a strictly associative manner. We assume that

ex = x for all x € X.

1.3. As usual, an H_-map h from H;, to H, (of

length r) is a sequence of continuous maps

n —_—
hn .(H1 X Ir) le - H2 (n =0,1,2,...) such that
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hn(go,tl,...,tn,gn)

hn—l(go'tl""’giflgi""'tn'gn) g, =r

hi_l(go,tl,...,gi_l)hn_i(gi,...,g ) t; =0

for n > O, go,...,g € Hl’ and t B eI =

n 1°°°"'"n r
[0,x] c R. If r =0, the map ho is a homomorphism

in the usual sense.

l1.4. If H acts on X and H acts on X from

1 1 2 2
the left, and if h is an H_-map from Hl to H2 of
length r, then we define a G_-map £f from Xl to

X2 of length r associated with h to be a segquence of

maps

n -
fn .(H1 xIr) xXl - X2 {n= 0,1,2,...)

such that for n > O

fn(goltl: LR ,gn_l'tn:x)

£ ,X) t. =r
i

n-1'90: 10 0951957 In_1ry

hi__l(go,...,gi_l)fn_i(gi,..-.gn_l:tnrx) tl =0

Composition of H -maps and G -maps is defined as in [3].
@ =21

1 2

the H_-map h from Hl to H2, then f 1is called a

G_-homotopy equivalence if there exists an H -map k

1.5. If £ is a G -map from X to X associated to
M ©

from H2 to Hl and a G_-map g from X2 to xl
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associated with %k such that geof and feog are

G -homotopi¢ to idx and idX respectively (associated
© 1 2

to the H_~homotopies between koh respectively hok

and id respectively id. ).
Hl H2

We are going to use the theorem from [4]:

Theorem. If- H acts on X and H acts on X

1 1 2 2
and if h :Hl - H2 is an H_-map such that ho is an
ordinary homotopy equivalence, and if £ :X1 - X2 is

a G_-map associated with h such that fo is an
ordinary homotopy equivalence, then h 1is an Hm—homotopy
eguivalence and £ is a Gm—homotopy equivalence associated

to h,.

1.6. H-spaces and H_-maps form the category & and
G-spaces and G_-maps form the category 4. The associated

homotopy categories are denoted by ¥ and 4.

2. Co:nstruction of the Borel Space

In this section we rely heavily on [3], where many

additional .details can be found.

2.1. Let (p,r) be an H-principal fibration

E xH —__E___>

X E
prll ' p

E —— > B
P



as described in {3] and let X be a G-space with respect

to H with action s :H xX = X. Assume that :EX + B

Px
is a fibration with fiber X associated to p:E 4+ B in
the following sense: 1) The two fibrations are fiber
homotopy trivial with respect to the same numerable
covering U of B and every U € 9% is contractible

in B. 2) There is'a map Iy :ExX 2+ EX such that for
each U € 9 the diagram

1xs
UxHxX ——2>_ S U x X

(1) a| |8 aX‘T lﬁx
1

-1

P (U) xX ——— py (V)
Tx
is commutative ((G,B,GX,BX) are the obvious coordinate
maps). In addition we want
E xH xX -—-lli———> E xX
(2) rxl r

X

to be commutative.

2.2. For the general step of the Borel space construction
we look at the H-principal fibration (p,r] as described

in [3], p. 329-331.

The base space B of the new fibration is the
mapping cone of p:E 4 B with the coordinate topology.

We consider the covering of B consisting of
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! . 2
Bl={y;t|t/—3—] and B, = {y;tlt<§].

Let P :El - Bl respectively Pix :ElX -+ Bl be

the fibrations induced by f£(y.t) = pfy), the map

collapsing Bl to the range space B of the mapping

cone B. pyy is associated to Py if we define

iy :ElxX - ElX by

rl(yxt.YlIX) = (yxt,rxfyl,X)) .

Furthermore let E2 = B2 xH and E2X = B2 x X.

Define (y Lt,h,x) = (y1t,hx). Obviously these

Tox

fibrations are associated.

We recall from [3], p. 330, that the map

-1

-1 .
F:p, (Blﬂ B2) f Py (Bl n B2) defined by

F(Y EY trh) = (Y 4 t,yh)

is a strictly equivariant fiber homotopy equivalence. We
. . -1 -1
define the associated map FX .sz(Bl N B2) - plX(Bl n B2)

by

( =
Fyly L t,x) {y Lt,rX(pr))

Fx is a map over Bl n 52 and a homotopy equivalence on
each fiber (this follows from diagram (1) and the fact
that H has a homotopy inverse) and hence is a fiber

homotopy equivalence according to Theorem 6.3 in [1].

2.3. As in [3], p. 330 we now form the mapping cylinder

of F and of Fy and construct the H-principal fibration

~ ~

p:E +» B and similarly the associated fibration



Py : EX =+ BX. With the help of Yy1 and Iy, Wwe
cons truct ;X :ExX » EX in the obvious manner. No
problem arises since the diagram
r
(yot,h,x) —2 3 (v £,hx)
. 1 2
FxldJ/ \l/FX 3 < t <« 3
(y + t,vh,x} ——— (y 1 t,r_ (vh,x))
r X
1X
commutes as a consequence of diagram (2). So it is easy

to see that E and EX are associated.

2.4. To construct the Borel space of X we start out

= = % = i
o+ Where E, = H and B, {*3 point,
and with Pox :EOX - BO' where EOX = X. From P and

we construct Poi1 and p

with Py i Ey~ B

Px by letting

Emlzl%’ %ﬁl=Bn and E

Pne1 = Pn @4 Py x = Ppx
p. 333 in [3] we use telescopes to finally get the

n+1,X

n+lx = EnX' Obviously

are associated. As on

universal H-principal fibration Py : EH » BH and the
associated fibration P, 1 EX + BH. We call EX the
Borel space of X and py the Borel fibration.of X.
Notice that Py is a numerable, locally fibef homotopy
trivial fibration with fiber X associated with Py

through the map r_, : EH xX + EX. r is essentially

X X
the direct limit of the maps r x+ and it is continuous
because we used the telescope construction. (Compare the

continuity of Ty in [3], p. 333).
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3. 1Induced Maps Between Borel-Spaces

3.1. Before we can discuss G-spaces, we have to know

more about H-spaces. So let h :Hl -+ H2 be an H_-map
between the H-spaces Hl and Hz. We define a G -map
th :EoHl - EOH2 as th = h. (Note that all the spaces

EnH have a right action, so the notion of G_-map has to
be modified accordingly). Also we let Boh :BOHl - BOH2
be the trivial map.

Assume that th has been extended to a G_-map

Eh:EH, 4+ EH associated with h and B_h has been
n n'l n 2 e}

extended to Bnh such that
P °Enhk(y,tl,gl,...,tk.gk) = B b °op 1Y) .

(We will call a G_-map with this property fiber preserving).

by defining

First we extend B h from B_H to B._H
n n'l nl

B = {

Bnh(y L t) .Enho(y) L t)
On Eanl we define

E ybol(Y Lt,yy) = (Enho(y) L t, Enho(yo))
and
Enlhk(y.Lt,yo,tllgl'---:tk:gk)
= (Enho(y) Lt, Enhk(yoltl,gl,...,tk.gk)

for k=1,2,...
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LA,
Recall (from [3], p. 330) that EnZHl = (BnZHl le) U
(Bnl N B o x I le) and define
!
Eohy (Yo t,mig0it .oty )
-
(Enho(y) Lt, hk(go'tl""’tk'gk))
1
T =90, (0] <t < '3
_ (Enho(y) -Ltl 2Tlhk(.goutl,...:tk:gk)
1 1 2
when O < 7 < 5 and 3 < t < 3
(Enho(y) L t, Enhk'*'l(y'ZT _llgoatll---ltkvgk))
L 1 ) 2
when S {11 and 3< 1< 3 -
(When + = 1 we use that Enhk+1(y,l,go,tl,...) =
! .
Enhk(ygo,tl,...). Hence En2hk and Enlh together induce
a G -map E_h from E_H to E H, which satisfies all
@ n nl n 2

the conditions mentioned before and hence we get

E h:E -

atl n+lH1 together with Bn+ h. 1In the

Enif2 1

cbvious manner we obtiain the G_-map Eh : EH, -+ EH

1 2

associated with h.

Because of our definition of Eézhk on the mapping
cylinder part of EnH'- we only get E(heh’) is
Gm—ﬁomotopic to EheoEh’ and similarly B(hoh’) =
Bh o Bh'. 1In fact the G_-homotopy mentioned is fiber

preserving. We get the
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Theorem. The construction of universal fibrations
described in [3] induces a functor (E,B) from the
category ¥ as described in 1.6 to the category U of
universal fibrations and fiber homotopy classes of

G,-maps {(with distinguished fiber).

3.2. Now let X be a topological space on which the
H-space H acts from the left; The map Iy :EH xX = EX
discussed in section 2 is part of the structure of EX.
A map between two Borel spaces has to preserve this

structure at least up to homotopy. This leads to the

following.

Definition. Let Y and Y be topological spaces

1 2
on which Hl and H2 respectively act from the right,
let Xl and X2 be topological spaces on which Hl
and H respectively act from the left, and let

2

ry :Y1 xX1 - Zl and r, 1Y, xX2 - 22 be maps (Z1 and

22 are topological spaces) such that

YioxH XX iﬁ—% Y, XX
ulixl Ti
YiAXXi r. 7 Zl
i
are commutative (i = 1,2). Assume h :Hl - H2 is a
G _-map and k :Yl -+ Y2 and f':Xl -+ X2 are G_-maps

associated with h, then a G_-map associated with
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h,k, and £ 1is a sequence of maps FO'Fl"" such that
FO'Zl - 22

and
F_:Y. xIx (H xI)k"lxx 4 Z k=1,2,...
k 1 1 1 2 ’

with

Fo (Yot .9y s esgy_q0tyax)

r(ky q(¥etyreangy ()0 E (g0 nt X)) £, =0
Fk—l(y'tl"'"gi—lgi""’tk’x) ti = 1

and appropriate modifications in special cases (like

k=1 or i =0 and ‘i = k).

3.3. Now we are ready to disucss Borel fibrations. Let

Xl and X2 be topological spaces on which Hl and
H2 respectively act from the left. Assume f :Xl 4 X

is a G_-map associated with the H_-map h :Hl -3 H2'

OXl -+ EOXZ by Eof = f.

2

Again we define the G -map Eof : E

Assume we defined a G_-map Enf :EnHi xXl - EnX2
in the sense of 3.2, associated with Enh' £, and h.
Furthermore we assume that all maps in Enf are "fiber-
maps" over Bnh in the obvious manner. Let us extend
Enf to Enf :EnHlx Xl -+ EnXZ' We define

Enfo :EnXl - EnX2 first on
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EXp = Uy atx ) | (yst € BH, x € EX, ply) =p,(y))

as

Enlfo(YLt,xn) (Enho(y) L t, Enfo(xn))

Then we define for k = 1,2,...

Enlfk(y ES tlyoltll .. :gk_lltk:x)

= (Enho(y) L t, Enfk(yo,tl,...,gk_l,tk,x))

where (y Lt,yo) € Eanl' X € Xl, 95 € Hl and ti € I.

On E__X! we define for k= 0
n2"'1

’
En2fo(y 1 tTT:x)

r

1
(EnhO{y)‘Lt’fO(x)) Ogtg'i, T =20
= <(E h . (y) +t,27,f (x)) i < tKL 2, o 7L =
) n o 0] 3 3 2
(E h (y) 1t,E £ (y,27-1,x) =2<t<2, Lcqrcn
 no’Y Fnty Y ' 3 3 2 <
_ . 7 . ‘. 1
and for kx = 1,2,... we define En2fk just like Enzhk
with the following changes: replace hk and hk+l by
. 7
fk and fk+1 respectively and = by x. En2fk and
Enlfk can be pieced together to obtain Enfk for
k =0,1,2,... . Ultimately we get the Gm—map
{Ef] : EH; xX, = EX, over Bh : BH, = BH, associated

with Eh, £ and h.

3.3. We point out that if h,k :Hl - H2 are H_-maps

which are Hm—homotopic, then Bh is homotopic to Bk
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leaving the base point fixed, and Eh is G, -fiber

homotopic to Ek over the homotopy between Bh and Bk.

Furthermore if f,g :Xl - X2 are G_-maps associated !
toc h and %k, and if £, g are G_~homotopic associated
to the H_-homotopy between h and Xk, then Ef and Eg
are fiber homotopic associated with the G _-fiber homotopy

between Eh and  Ek etc. and over the homotopy between

Bh and Bk.

Definition. Let ¥ be the category whose objects
are fibrations p:E » B which are locally fiber homotopy
trivial with respect to a numerable covering of sets
contractible in B, and whose morphisms are fiber
homotopy classes of fiber preserving maps. Let %,
be the associated category of fibrations with a distin-

guished fiber over a basepoint *, and let F and ZF,

be the associated homotopy categories.

Theorem. The constructions EH, BH, and EX define

a functor B &+ 7F the Borel functor.

Lk’

4. The Inverse Functor of B

For every topological space X and subsets A, Bc X

we recall that

L(X;A,B) = {(0,x) |w:R » X, w(0) ¢ A,

w(t) = w(r) ¢ B for t > r}

Often we omit r in our notation for the sake of simplicity.
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Definition. For every fibration p:E =+ B with

distinguished fiber F, = p_l(*) we define
_E— = (‘w,Y) ‘Y € E, w € L(B;BIB)I U.)(r) = P(Y)}
and p:E =+ B as ply,y) = w(0).

If the fibration p :E -+ B 1is an object in &,

then the fiber map r :E -+ E defined by r+(y) = (wy,y)
is a fiber homotopy equivalence, see [l], Theorem 6.3
(. : IR =+ E is defined as wy(t) =y for all
ter", r=o0).

Let WE = 5—1(*) be the distinguished fiber of

P, then TlF* is a homotopy equivalence between F_

and WE. We observe that the loopspace of B, Q(B,*),

acts on WE from the left (G{B,*) = L(B;*,*) is an

/

H~space). Furthermore if p, p are two fibrations

in ¥, and if (F,f) is a based fiber map from p to

p’, then Wf :WE + WE’ defined by Wfl(w,y) =
(Lf(w),F(y)) 1is an equivariant map associated with
the induced homomorphism Qf : Q(B,*) = Q(B',*). We

summarize this observation in the

Definition. W induces a functor

the inverse functor to B, as we shall see in the

following

Theorem 1. WB is equivalent to {g
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and

Theorem 2. BW is equivalent to 13, ‘

5. Proof of Theorem 1

To prove Theorem 1 we have to review the natural

transformation S :H - QBH.
5.1. We need from [3], p. 333 the

Theorem. EH is contractible,

Let k :EHxI » EH be a contraction with
k(y,0) = y and k(y,l) = * = k(*,t). (For this it is
necessary that * ¢ H is a nondegenerate base point.

If necessary one can switch to HvV I, see [2], p. 215).

Associated with the contraction k 1is the map

K: EH + L(EH;EH,*) defined by Kf(y)} = (k(y,t),1).
5.2. Define SO :H 4 Q(BH,*) as
So(y) = Lpy oK\EOH

with LpH : L(EH;EH,*) - L(BH;BH,*) induced by 'pH.

Lemma 1. SO is a homotopy equivalence.

Proof: L(BH:BH,*) is the total space of a
numerable fibration over BH, and so is EH. Both

total spaces are contractible. SO "is the restriction

of LpH ° K, which is a fiber map over idBH and which

is also a homotopy equivalence. Theorem 6.1 in [1]
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implies that LpH oK is a fiber homotopy equivalence

and hence SO is a homotopy equivalence.

Lemma 2. SO can be extended to an H_-map.

Proof: Let K |EOH =K|H= K,. Then we have to
find maps Sl'SZ"" which make SO = LpH ° Ky :H + OBH
into an H_-map. Assume we already constructed
Si = LpH o K (i =0,1,...,n). Then Sn+l and hence
Kn+1 is defined on 3H{n+ 1) through the maps Si and
Ki respectively (i = 0,...,n).

Associated with Ki are the maps

. +
ki:H(l)xJR + EH
and
r, s H{i) » Y
i

.. = %
with ki (go,tl,...,ti,gi,o) and
k, (go,tl,...,ti,gi,T) =g, -+ 9y for
T > ri(go’tl""'ti'gi)‘ These maps define kn+l - and

. . + .
Yo+l respectively on 3H(n+ 1l). Since R 1s

contractible we can extend r

1 to all of H(n+1).

Then we can extend kn+1 to all of H{(n+1l) such that

= %
kn+l(go,t1,...,tn+l,gn+1,0) and

1091 Tne1 (o)) = 90 -0 Inere

since EH is contractible.

kn+1(go't1"'

Define

K = (k

n+1 and sn+1 = Lpy ° K

n+l

n+1’rn+1)
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For further details compare [2], p. 214-215. (Note the

addition of paths on p. 213 should be reversed.)

5.2. Proposition. § is a natural transformation

between

%y and (OB

Proof: In the diagram

B — .y w

K | K
v
s L(EH;EH,*) —ZE0_y [(EH’;EH’,*)
J .

Q(BH,*) —9BN 4 q(pa’,x)

the lower portion commutes for all the maps of LEh.

To see that the upper portion commutes up to an H_-
homotopy, one has to look again at the associated maps
into EH’. Since EH’ is contractible, all extensions
necessary to construct the Hm—homotopy between LEh o K
and Keh can be carried out. Further details in [2].
{In [2] the G_-map Eh was not discussed. Instead

the notion of a "regular" H—homomprphism had to be used.
Now EH provides the homotopy between formula 2 and

2a on p. 217 in 2 , translated from right to left

actions.)

[6)]

.3. With S out of the way we define for any G-space X:
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Ty :X + WE as Ty =1 | X

We already know that To(y) = (*,y) 1is a homotopy

equivalence. We define Tn :(HxI)" xX » WE as

Tn(go;tl,...,tn,x)
(PK _1{9gr---0ty 1.9, 1) (t +0),
(K g (ggeeennt 1rg ) (E).X))
with ot <r 4(gq,....t 4.9, ;) and
0o Lr,1-%,- Recall ry :EH xX + EX. We have
Tn(go,tl,...,gn_l,tn.X)
{(sn_l(go,tl,'...,gn_,l),x) t =0
i L(*,gogl N gn_l,x) t o=r

The "G_~homotopy" between LEh K and Koh implies

that T 1is a natural transformation between 1 and

i

WB.

6. Proof of Theorem 2

6.1. Let J, be the category of based-topological
spaces X, which have a numerable covering Y such
that every U € ¥4 is contractible in X, and based
continuous maps. Let J, " be the associated homotopy

category.
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Remark. It is easy to see that for every H an

¥ the classifying space BH 1is in J_.

In preparation for the proof of Theorem 2 we list
three universal fibrations with fiber Q(X,*) for

X €J7,.

a) Application of the modified Dold-Lashof
construction to the trivial fibration Q(X,*) = *

leads to

PQX : EOX =+ B0X

b) It is well-known that

. X *
PL s L{X;X,*) =+ X

also classifies numerable Q(X,*)-fibrations.

c) If we apply the modified Dold-Lashof
construction to p;, of b), we get again a universal

fibration

Pgr, : ELX - BLX

All three constructions induce functors from J, to JF

6.2. The inclusion of Q(X,*) as distinguished fiber
of 12 L(X;X,*) 4 X can be interpreted as a principal
map of principal fibrations and hence it induces the

fiber map (f,f):
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E(X) — L 3 E(IX)

Pox \LPLX

B(OX) —— B(IX)
which is a principal fiber homotopy equivalence; (£,£)
is an inclusion, hence - PQX is principal fiber homotopy

equivalent to the pullpack of Prx- For universal
fibrations this implies f is a homotopy equivalence.

Let g be a homotopy inverse of F.

As a result, (f,F) represents a functor eguivalence
between the functors from J, to F, induced by a) and

c).

6.3. The inclusion

L(X;X,*) ——k——) ELX
P, Prx
v T v
X ———> BIX
is a fiber homotopy equivalence by the same reasoning as
described in 6.2. So (k,k) represents a functor

equivalence between the functors arising from b) and c).

6.4. Now consider a fibration p:E + X from the
category %,. The associated Hurewicz-fibration p:E=+X

admits a map
Tyt L(X:;X,*) xWE =+ E
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defined through the addition of paths, which makes E

a look alike of a Borel space associated to WE.

Assigning to p the Hurewicz fibration p induces

a functor Hr on %, which is obviously equivalent to

id? . We are now going to show BW =~ Hr. Consider the
*

diagram of Borel spaces:

L(X:X,*) xwe —2XL 3 prx ywe —9XL 3 Eox xwE
R \’
—-HK EL(WE) ——_)G E(WE)

_ v _
_k__.% BLX _g_) BOX

ol
" wl &

K 1is induced by applying the Borel space construction
to p (an obvious modification) and G is induced by

g, the homotopy inverse of f from 6.2,

(K,k) and (G,g) represent functor equivalences
associated to the equivalences (k,k) and (g,q)
discussed in 6.2 and 6.3. Since the right side of the
diagram represents BW and the left side represents

Hr' the proof is complete.

7. Two Applications

7.1. Let G = IR1 and X = ]R2 . Consider the two

IR]' -spaces X and X

1 5 defined by the two actions

1 2 2

Byt RT xR 4 RY, ul(t,relcp) = rel(®rt)

.

1 2 2 l@)

:IR™ x R 4+ IR, pz(t,re rel(@+t(l—r))

Mo
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s s 2
The fix point set of My is just the origin of IR
and the fix point set of Moy is the origin and the
unit circle. Obviously we could define actions with

more complicated fix point sets.

The constant map from one of these spaces to the
origin of the other is an equivariant wmap which is also
an ordinary homotopy equivalence. It induces (accoxrding
to section four) a homotopy equivalence between the

Borel spaces of the two spaces.

7.2. a) Let P be an acyclic finite polyhedron with
nontrivial fundamental group. Then the suspension Zp
is a contractible Zz -space with fix point set P, and

the join P*Sl is a constractible Sl

or Z__-space
r Z,-Sp
(p # 2) with f£ix point set P in the obvious manner

{(notice P * sl = Z)zp) .

b) Let P be any finite polyhedron. The obvious
Z, ~action on ZP can be extended to $2%P ete. so

that 1lim 7P is a contractible Z, -space with fix
n== . .
point set P.

For G = Zp (p# 2) and G = s' we can do the

same by reiterating the join with S

7.3. Let G be either Zp or Sl and let X be a

G-space with fix points. Let Y be a contractible
G-space with nonempty fix point set F, e.g. let Y
be one of the spaces mentioned above. The one point

union W of X and 'Y formed by identiszing two
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fix points is a new G-space in the obvious manner and
the inclusion of X into W 1is an equivariant map

and also an ordinary homotopy eguivalence.

By the theorem in [4] the inclusion represents
an isomorphism in .% and induces a fiber homotopy
equivalence between BX and BW by section 4.
Hence the cohomology of these Borel spaces carries

no information about F.

7.4. Assume G 1is either ZZE or (Sl)k and Xl,x2
are G-spaces which satisfy the assumptions for Borel's
theorem as described in Proposition 1 of Chapter IV in
[5], i.e., let Xl'XZ be paracompactAG—spaces with
finite cohomology dimension. Let £ ;Xl - X2 be an
equivariant map which is also an ordinary homotopy
equivalence. Again Ef :EX1 -+ EX2 is a fiber homotopy
equivalence between Borel spaces. Ef induces isomor-

* * * N
phisms between HG(XZ) and HG(Xl) as H (BG) modules.

Hence Proposition 1 on p.45 in [5] tells us, that

lel :F1 =+ F2 induces an isomorphism of the cohomology
. * * .

rings H (Fz) ®k RO and H (Fl) ®k RO of the fix

point sets Fl and F2.

T. Petrie in [7} and elsewhere, Ch. N. Lee and
A, Wasserman in [6] have constructed examples of such
maps which do not have equivariant homotopy inverses.
Hence the fiber homotopy inverse of Ef is not
induced by an equivariant map from X, to X,. This
answers the opening statement of the introduction of
this paper.
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