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CONDITIONS OF ANGELIC TYPE IN FUNCTION SPACES
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Miguel Barceld and Miguel A. Canela

ABSTRACT: This paper deals with a class of topological spaces in which
a-compactness and compactness coincide and the tightness c¢f a compact
subset is less or equal than o, a being an infinite cardinal number.
This class is a natural extension of the class of strictly angelic spa-
ces, introduced by W. Govaerts. Sufficient conditions are given for a
space of continuous functions to belong to this class, and some results

on locally convex spaces are cbtained as an application.

1. Introduction  _

The aim of this paper is to give a description of a class of topolo-
gical spaces in which a-compactness and compactness coincide, a being an

infinite cardinal number, which will remain fixed throughout this paper.
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This ;:lass is a-productive (closed by products of families of cardinali-
ty <a).

'The class described will be denoted by A, , where the "A" stands for
angelic. Indeed, for u=NO, our class coincides with the class of

strictly angelic spaces introduced by W. Govaerts [2].

These spaces are a subclass of the angelic spaces studied by Pryce

in [5]. The properties of the class of angelic spaces can be found in
(2].

In. Section 2 we recall some topological notions which will be used
throughout this work. In Section 3 we introduce the class-Au, proving
some ‘properties. The main result is the stability for products of cardi-
nality < a, ‘and the key for this result is a theorem cf V.I. Malyhin
[41 In Section 4 we give sufficient conditions for a space of conti- -
nuous functions to belong to Au’ endowed with the topology c¢f pointwise
convergence. In Section 5 we restrict ourselves to locally convex spa-
ces, obtaining with the tools given in the previous Sections some re-

sults appeared in a former paper by M. Valdivia [6].

2. Some topological notions.-,

a will denote a fixed infinite cardinal number. A subset S of a
topological space X (all the 'spaces involved are Hausdorff) is a-compact

if every net (xi)ie contained in 5, with [I| <a has a cluster point

I

X€S. S is relétively a-compact if every net (x.)

ilier with [I] < a has a

cluster point x€X. Every (relatively) compact subset is (relatively)
a—-compact, but not conversely. A counterexample can be obtained modi-
fying the usual example of a sequentially compact space which is not

compact [1, 1.2(7)].
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If X is a topological space, the tightness of X, t(X), is the mini-
mal cardinal number v with the following property: if S is a subset of X
and x€cl(S) is a closure point of S, there is a subset MCS with

[M}] <v and x€cl(M). The density character of X, d(X), is the minimal

cardinality of a dense subset of X. The weight of X, w(X), is the mini-
mal cardinality of a basis of open subsets for the topology of X. The

weight of X at the point x€X, wx(X), is the minimal cardinality of a

>

basis of neighbourhoods of x. Clearly wx(X) < w(X), but not conversely.
For these and cther cardinal functions of the General Topology, [3] can

be used as a standard reference.

3. The class A, .-
The class A, will be the class of all topological spaces X satis-
fying the following conditions:
(i) Every relatively a-compact of X is relatively compact.
(ii) Every compact subset cf X has tightness <a-
(iii) If a subset SCX is ccmpact and d(S8)< a, tt‘1en wx(S)f_u for every
x€ES.

We give next the properties of this class.

3.1. Proposition: The condition (ii) of the preceding definition can be

replaced by:

(ii)' If SCX is relatively compact and x€ cl(S), there is anet (xi)iEI

!
contained in S, with |I]| <a and lim X, = x

obtaining an equivalent definition.
Proof: (ii)' implies (ii). Conversély, if t(S)_<_a for a compact subset
SCX, we take MCS with x€cl(M) and |M|<a. Then cl(M) is compact and

has density character < a, and, by (iii) the weight at x is < a. Therefo-
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We have (i).

Suppose that SC H X]. is compact, and we are going to show that
i€l
t(S) < a. We can suppose, without loss of generality, S = H ni(s),
i€l
According to a result of V.I. Malyhin [4, Theorem 4], the finite

product of compact spaces with tightness <a has tightness La-. If x is a
closure point of a subset DCS, we can find, for each JCI finite, a

subset MJ’C nJ(D) with IM\}|_<_0. and 7 (x)€ cl(M\}). We can choose now M_CD

J

with nJ(MJ) = MJ

and |MJ.l§a. Actually, M= MJ has cardinality < a
J

and x€cl(M). We have (ii).

Finally, if SC J] X, is compact and d(S)<a, then d(r (8)) <a, and

i€l
thus "i(S) has weight <o in every point. Keeping in mind the construc-
tion of a basis of neighbourhoods for the product topology, and re-
calling Izl < @, it is easy to see that H ﬂi(S) has weight < o at eve-
i€l

ry point. Q.E.D.

4. Spaces of continuous functions.-

We are going to see that certain essumptions on a topological space
X imply that the space C(X) = C(X,IR) of continuous real functions be-
longs to the class Ay, endowed with the topology of pointwise convergen-
ce NX. Indeed, we obtain results analogous to those obtained by W. Go-

vaerts [2] for the case a=R, -

4.1. Proposition: Let X be a compact space. Then (C(X),wx) belongs to A,.

Proof: It is well-known that every subset SC C(X), ¥ _-relatively counta-

X

" bly compact, is wx—relatively compact and countable tightness (e.g.[1]).
To check (iii), we can, replacing if necessary X by a suitable quotient,

suppose that S separates the points of X. If S it w_-compact and DCS is

X

dense, with IDliu, X admits a basis of uniformity of cardinality < a,

53




and hence d(X)< o. Reversing the argument, we have a set of continuous
real functions, of cardinality < «, on S, which separates the points

of S, and therefore w(S) £ a. Q.E.D.

4.2. Proposition: Let X be a topological space with a dense subset DCX

which is relatively a-compact. Then (C(X),mx) belongs to A,.

Proof: Conditions (i) and (ii) can be obtained as in 4.1 from known re-
sults (see [1]). To check (iii), we remark that, if SCC(X) is w,-com-
p.act, we can consider. the mapping ¢l: X — C(S) defined by ¢1(x)(f) =

= f(x), which is continuous with respect to the topology w Then ¢1(l))

s
is relatively a-compact in (C(S),ws), and its closure H is a compact
subset of (C'(S),ws). Now ¢2: S * C(H), defined in an analogous way, is

injective and continuous, and therefore a homeomorphism, and, using 4.1,

we are done. Q.E.D.

4.3. Proposition: Let X,Y be topological spaces.

a) If X admits a dense subset DCX such that (C(D),mD) is in A,, then
(C(X),w,) is in A,.

) is in Ay and |I| <@, then (C(X),w

)

b) If X = .U X;» where (C(X;),0,
i€l : i
is in Au.

“¢) If ¥: Y+X is continuous and surjective, and (C(Y),wY) is in Aa’ then

(C(X),,mx) is-in Ay

Proof: For a) Take the restriction map C(X) - C(D) and epply 3.3. For
b), construct an injection C(X) + HC(Xi) in a natural way and apply
3.4, followed by 3.3. For c), takeletlhe mapping V*: C(X) + C(Y) defined

by v*(f) = foy and use 2.3. Q.E.D.

4.4. Corollary: Let X be a topological space with a family (Xi)iEI of

relatively a-compact subsets such that its union is dense and |I|<a.
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Then (C(X),wx) is in Ag.
Finally, we have the following result, which is a natural extension
of a theorem of D.H. Fremlin ([1,3.5], [2, Proposition 9]):

4.5. Proposition: Let X be a topological space, and Z a metric space,

and suppose that (C(X),mx) is in A - Then (C(X,Z),mx) is in A~
Proof: The argument given in [2] for the countable case can be used.

Q.E.D.

5. Applications to locally convex spaces.-

The results which have been stated here have a purely topological
nature. Nevertheless, some particular cases have been proved by other
methods, for instance for the case of a weak topology on a locaily con-
vex case.

If X,Y are real locally convex spaces, the space L(X,Y) of conti-
nuous linear operators is a subspace of the space C(X,Y) of continuous

. The topology induced by w on

functions, closed with respect to w X

X
L(X,Y) is usually called simple topology. From 4.5 and 2.2, we obtain

directly:

5.1. Proposition: Let X,Y be locally convex spaces, X being the union

of a family (D.)

iier of relatively a-compact subsets, with {I{<a, and Y

metrizable. Then L(X,Y), endowed with the simple topology, is in A,.

We can consider, in particular, the case in which Y =R and X is
the dual E', endowed with the weak topology o(E',E). We cbtain thus the
following result:

5.2. Corollary (M. Valdivia [6]): Let E be a locally convex space, E!

being the union of a family (Di)iEI of o(E',E)-relatively a-compact subsets,

with [IIf.a . Then every weakly (relatively) a—compact subset of E is weak-

ly (relatively) compact.
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NOTE: In [6], this result is stated under an extra assumption, the con-
vexity of the Di's, but this assumption is superfluous.
Using 5.1 and 3.3, we have:

5.3. Coroliary (M. valdivia [6]): Let E be a vector space and t and '

two locally convex topologies on E, +t finer than t'. Suppose that 1’
admits a zero-neighbourhood basis of cardinality < a, and denote by E' =
= (E,T)'.If ACE is o(E,E')-(relatively) a—-compact, A is o(E,E')-(relati-

vely) compact.

FINAL NOTE: We have described a class of spaces in which compactness and
u—compactne;s are the same, with good stability properties, which allows
us to obtain the results of this Section. It can be remarked that almost
all is the same if we replace condition (iii) of the definition by the
following sfrongef condition: If SCX is compact and d(§)<a, then
W(sS)<a, Nevertheless, the class obtained in this way will .be more
restricted, because there are separable, first countable compact spaces

which are not metrizable (e.g. the Helly compact).
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