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Abstract

APPROXIMATION OF Z 2-COCYCLES AND
SHIFT DYNAMICAL SYSTEMS

I . FILIPOWICZ, J . KWIATKOWSKI, M. LEMANCZYK

Let G = G{n,, n, 1 n,+,, t >- 0} be a subgroup of all roots of unity
generated by exp(21ri/n, ), t >- 0, and le_t r: (X, B, ji) C) be an ergodic
transformation with pure point spectrum G. Given a cocycle P , SO:X-
Za , admitting an approximation with speed 0(l/nl+`, e > 0) there exista
a Morse cocycle 0 such that the corresponding transformations r� and
-ro are relatively isomorphic . An effective way of a construction of the
Morse cocycle 0 is given. There is a cocycle p oddly approximated with
an arbitrarily high speed and without roots .

This note delivers examples of <p's admitting an arbitrarily high speed
of approximation and such that the power multiplicity function of rn is
equal to one and the power rank function is oscillatory. Finally, we also
prove that if (p is a Morse cocycle then each proper factor of r,p is rigid.
In particular continuous substitutions on two symbols cannot be factors
of Morse dynamical systems.

Introduction and statement of resulta

Let T: (X, B, Ec) C) be an ergodic transformation of a Lebesgue space. We will
denote by Sp(T) the group of all the eigenvalues of the unitary operator
UT : L2 (X,F¿) C), UT f = f o T. T is said to have rational pure point spectrum
(r.p .p .s) if L2 (X,p) is generated by the eigenfunctions of UT and, besides,

Sp(T) = G{nt : t > 0}

where G{nt : t >_ 0},

	

nt 1 nt+ 1 ,

	

t >_ 0, denotes the subgroup of all roots of
unity generated by exp(27ri/nt),

	

t > 0.
Let D" , = (Dó' , Di' , . . . , Dñ: 1 ) be a partition, Le .

	

Din , ÍÍ D? ' = 0,

	

i
j, Ds ' eB . Then D"' is called a partition of X if, besides,

	

o

	

D"' = X. We
call D"' a T-tower (with height nt ) if T'Dó' = D; ' ,

	

i = 0, . . . , nt - 1 and
a T-tower of X if, besides, D"' is a partition of X. The ergodicity of T says
that if D"' is a T-tower of X with height nt then this is the only T-tower of
X with that height (reordering elements of D"', if necessary) . It tums out (cf.
[15]) that :



92

	

I . FILIPOWICZ, J . KWIATKOWSKI, M. LEMAIVCZYK

(1) T has r.p.p .s . with S. (T) = G{nt : t > 0} iff there is a sequence (Dn, )t>o
of T-towers of X such that Dn, J' B_

Let K denote the class of all tl e'Z2-cocycles of (X, B, p) Le . cp E K if
(p : X -) Z2 is, measurable. We endów K with the natural topology given by
the metric

With this metric K becomes a complete, separable metric space . Having fixed
T: (X, B, p) (-) we define the class KT of all Z2-extensions T,p , r E K, of T, Le .

Tp : (X x Z2 ; B;

	

T,. (x, i) = (Tx, p(x) + i),

where A is the product measure tt x v2

	

(v2 (0) - v2 (1) =' 1/2) and B is the
corresponding product a-algébra . A cocycle cp is called ergodic whenever Tp is
ergodic . Now, changing T we obtain the class of all ergodic Z2 -extensions of
automorphisms with r.p .p .s .

This class is one of more interesting classes in ergodic theory . A great deal
of the attention has been devoted to the study. of it, (for instante [1], [2], [6],
[101, [13], [14], [161, [18]) .
Assume (D") is a sequence of T-towers of X arising from (1) and let

f: N --> R be a real function .

	

Following [7] we call cP E K oddly (evenly)
approximated with speed o(f (n)) if for some subsequence {ntk } there exists
sets Fk consisting of an odd (even) number of members of Dn°k such that

p(cp-1 (1) ~, Fk) = o(f.(nJ) .

The odd approximation with speed o(l/n) guarantees the ergodicity of so ([7]) .

Assume cp E K and (Dng is a, sequennce of T-towers given by (1) . Then cp is
said to be a Morse cocycle if there is -a subsequence (nj such that cp I Ds ~k

is constant «P I Dn`k = ,al) on each level of Dn °k except for i = ntk - 1 . The
s

main result of [14] was

Representation Theorem . If tp is oddly approximated with speed 0(2 )

then there is a Morse sequence x = b° x bl x . . . such that T,P is tsomorphic to
the Morse dynamical system determined by x. (We refer to [81, [101, [121 for
the definition and properties of Morse sequences) .

In the present paper we stenghten the Representation Theorem proving :

Theorem 1. If cp E K is ergodic and admits an odd (or even) approximation
with speed 0( n+E ), e > 0, then there exists a Morse cocycle 0 such that Tp and
T,O are relatively isomorphie .
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We recall that T,p and T,O are relatively isomorphic if there exists a cocycle
f: X -> Z2 such that

p(x) + f(Tx) = f(x) + ip(x) .

Then the map I(x, i) = (x, f(x) + i) establishes an isomorphism between T,p
and T,p .
We have been unable to decide whether or not the Theorem holds for e = 0 .
Looking at the proof of the Representation Theorem we see that it does not

provide any effective way of a construction of the Morse cocycle zP (or the Morse
sequence x) . The proof of Theorem 1 is based on a quite different idea and
allows to determine the Morse cocycle in an algorithmic way.
Let G be the group of all n t-adic integers Le .

00

G = {9;9 = 5: 9t'nt-1,0<9tCAt - 1,n-i=1},At= nñ l ,t>0,

and let T be the translation on the unit element 1 . Then (G, T, rn), (m is the
Haar measure) is an ergodic system having r.p.p .s ., Sp (T) = G{nt , t >_ 0} .
Hence if ep : G -> Z2 is a cocycle satisfying the assumptions of Theorem 1 then
it can be modyfied by a coboundary cocycle getting ip, which is measurable
with respect to the algebra generated by {D"° }, t >_ 0 . Although iO cannot be .
continuous on G (except for some trivial cases), there is a metod making such
cocycles continuous . Namely, -t/b is the so called Toeplitz cocycle in the sense of
[13] Le . i t is completely determined by some Toeplitz sequence_ y E {0,1}Z . If
we take X = 0(r7) (the closure of the trajectory of rl via the shift r) and the
cocycle 0' : 0(17) ) Z2, 10'(y) = y[0], then the automorphisms ro, and T,p are
metrically isomorphic ([13]) . In other words there is some effective way of a
construction of an ergodic rp, (with 0' to be continuous) which is isomorphic
to T,P .

Notice that from [4] it f_ollows that there_is a topological process
a m_etric isomorphism fi : (G, ~) -> (G, p) IIT = TI-1 and a continuous function
0 : G -> Z2 such that ep = cpoll a.e . This implies that_ T,p and_ T,0 are isomorphic .
In particular, if ;p i_s a_Toeplitz cocycle then G = V(il), T = r . The task arises
how to determine (G,T) (in an effective way) for a general cp E K . In particular
it would be interesting to know whether given ;p : G --> Z2 there exists a Toeplitz
cocycle 0 such that r,p is isomorphic to T,p . If this is the case we would have
G = B(q) . Our paper delivers a construction of such a 0 if ;p fullfils the
assumptions of Theorem 1.

In the remainder of the paper we consider some problems concerning cocycles
admitting a high speed of approximation . For instante, it turns out that for
any T
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(4)

	

there is a cocycle cp oddly approximated with an arbitrarily high speed and
without roots.
The next application is connected with the oscillation of the rank power

function . Let U : (Y, r, v) U be an ergodic automorphism . For the definition of
the rank (rk(U» we refer to [3], [9] and to [19] for the definition of the maximal
spectral multiplicity (m . s . m . (U» . There notions allow to define .two functions

s -) rk(U'),

	

s ->m.s.m.(U8),

	

s = 1,2, ., . .

called power rank function and power multiplicity function respectively. They
are defined for those s's that Ue is ergodic . In [9] J . King raised the question
whether the power rank function had to be monotonic (it is rather easy to see
that rk(U) <_ rk(U8), s >_ 1) . Then in [3] there is an example for which the
power rank function is oscillatory. However, rk(U) >_ m. s . m . (U) and this exam-
ple is based on the following facts : for some subsequences (nk ), (mk) rk(Unk ) =
1 and m. s . m . (U'n k) >_ 2 . This note delivers examples of ifi's addmitting an ar-
bitrarily high speed of approximation with

1

	

g. c. d.(s, n t ) = 1, s - odd

{

	

2,

	

g. c . d.(s, nt) = 1, s - even

m.s.m.((T.)s) = 1 ,

	

g.c.d.(s,nj = 1.

In [14] the author raised the factors problem for the class of Morse sequences,
Le . given'a 'Morse cocycle cp we seek all T,-invariant sub-a-algebras C C B .
Of course B = {A x Z2, A E B} is an example of such a C. The action of Tp
on B is isomorphic to T. On the other hand the class of ergodic Z 2 -extensions
of r.p.p .s . automorphisms is closed under taking factors . Is there a C 9 B
such that action of T,, on C (Le . T, : (X x Z2 , C, A) CU) has partly continuous
spectrum? We remark the following consequence of coding arguments used in
[14] (compare it with the analogous result of J . King [9] for rank 1 class) .

Theorem 2 . If (p is a Morse cocycle then each proper factor of T, is rigid.
In particular continuous substitutions [21 on two symbols cannot be factors of
Morse dynamical systems.

The natural reverse problem is the following . Can any rigid Morse dynam-
ical system be extended to a Morse dynamical system with larger group of
eigenvalues? There is a positive answer in case of sufficiently high speed of
approximation (odd or even), but we have been unable to solve this problem
in general . Has a positive answer analogous question for rank 1 class?

Proof of Theorem 1

Assume T: (X, B, w) U with r.p .p .s ., Sp (T) = G{nt : t > 0} and let so E K
admit an odd approximation with speed 0(+F), e > 0 . Hence there is a
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subsequence {ntk } satisfying (2) . For a simplication of notations we assume
that this subsequence is equal to the {n,} , Le .

ni+Eh('P-1(l) ~i Ft) t~
0,

where Ft is a union of an odd number of levels of Dn' . Assume that 0 E K is
another ergodic cocycle . Then it is known that any isomorphism between_ T,,
and T,p is of the form S,P' : (X x Zi , B, A) U , where ST = TS and

(7)

	

zp'(Tx) +,O' (x) ='p(x) +?P(Sx)

	

in ; ZZ

where iP' E K (see [17]) . Let us notice that given S, (7) has measurable solution
iff Tilos+, is not ergodic . Indeed, Tilos+ w is ergodic iff there is no measurable
solution £ : X --> S1 such that

j(Tx) = (-1)('105+'a)(Z) . e (x ) ,

(see [7], [18]) . If T1os+,, is not ergodic then we get a measurable solution
of (8) . Thus, the function e(x) = ez (x) is T-invariant, so by the ergodicity
of T it is constant . Therefore without loss of generality we can assume that
e(x) = f1. Then the function ik' = lA, A = e-1 (-1) is a solution of (7) .
On the other hand if z/)' is a solution of (7) then the function «x)
satisfies (8) .

The following simple lemma will be useful in the proof of Theorem 1 .

Lemma 1. Let U: (Y, C, v) U be an automorphism of a Lebesgue space. As-
sume that there is a sequence {An}, An E C such that

00

v(An+1 Li An) < En,

	

r En < Oo
1

(10)

	

v(UAn 0 An ) -) 0,

(11)

	

36 > 0

	

1 - 6 > v(An ) > 6 ,

	

n = 1,2 . . . .

Then U is not ergodic.
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Now, we turn back to the cocycle cp . Fix t > 0 and consider the tower D"1 .

at+1-times

Picture 1

Then the speed of approximation (which means that (6) holds) says that
the function p restricted to each level D; `, i = 0, 1, . . . , n t - 1, is ".almost"
constant, Le .

'PID"° =a,

except for a part of D" , with measure < "

	

,

	

Et --> 0 . Because of the odd
approximation,

n t -1
(12)

	

E a; =1.
=o

To construct D"t+, we divide the tower Dn, into At+1 columns with the same
measure 1/At+1 (Picture 1), At+1 = nt+1/nt . The nt pieces of the s-th column
(s = 01 11 . . . , At+1 - 1) are the levels of Dn ,+ 1 assigned to the numbers s-nt , s
nt+1, . . .,s*nt+nt-1 .
We say that there is an error in Dí `+' , j = i + s - nt , 0 <_ i < nt - 1, 0 <_

s<At+1 -1if

-11,1

atnt-Z

at9

a t
9

at1

at0

In Picture 1 such levels are marked by the sign "0 " . Denote by mt the
number of all columns with some errors . The measure ¡~ of such a column is



(13)

Moreover, the measure

(14)

and consequently

(15)

since e > 0 .

constant on each level D,`,

	

i = 0,1, . . . , nt
D,n - 1 . We define zp on Dn° in an arbitrary
on levels of Dn, , t > 0, Le .

First of all we define bn _ 1 so that

n,-1
(16)

	

Eb;=1.
=o

We do
i = 0, . . ., n t - 2, Le . we put

and 1 + b ;,,_ 1 otherwise .

SHIFT DYNAMICAL SYSTEMS

	

97

equal to 1/At+l . Therefore the measure of all columns with errors is equal to

CEt+1 = mt

At+1

of any error is equal to 1/nt+1, so in view of (6)

l+`
kt

n

	

-> 0t .
nt+1 t

where k t is the number of all errors . But mt < kt and the combination of (13)
and (14) implies

Construction of a Morse cocyc1e. At each stage t our cocycle io will be
- 2, and will not be defined on
way and assume that z/) is given

nt , CE` 1

	

t ) 0

00ECEt+1 < oo
t=o

i=0,1, . . .,nt-2 .

not change the function 0 on the levels Dn. `

	

j = 0 1

Next we should define the function zk on the levels D~ t+n,- 1 , j = 0,1, . . . ,
I\t+2 - 2 . To do this we look at the number of errors for cp in the j-th column .
If the number of errors is even (in particular if there are no errors) then we put

tnt	= bne_1
Dj'nt+n,-1
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Of course this procedure leads to the definition of a Morse cocycle . Moreover
tp admits an odd approximation with speed 0(1/n 1 +E), by (16) and (14) .

It remains to prove that the cocycle (p + 0 is not ergodic, Le . that T,p+ ,y is
not ergodic . To this end we will define a sequence of sets {At }, At C X x Z Z
satisfying the assumptions of Lemma 1 . For every t > 0 we take Dn , x 0 and
Dn, X 1 .

Put

Then by (16) and (12)

Picture 2

c! =al +6;,

	

i=0,1, . . .,nt-1,

	

t>0.

n,-1
(17)

	

E c! = 0 .
=o

We define the sets At , t > 1, putting

n t-1
A t =

	

U (Di° x dit ),

=o

where dot = 0 and d; = có +

	

+ c;

	

1, 2, . . . , nt. . It is clear that

(18)

	

A(Aro)=12 2 .



Now we show that

Remark that

and then (13) and (15) imply

and by (17)
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00

~ A(At+1 ~, At) < oo .
t=1

(The number of all levels D"'+', k = j nt + i,

	

j = 0 . . . . . .\t+1 - 1,

	

i -
0, . . . , nt - 1 such that dt+ 1 : d,). It follows from the definitions of al and b;
that ck+ 1 = c; whenever the j-th column contains no errors (with respect to cp)
and each of the remaining columns contains an even number of the levels Dk`+'
such that ct+1 qÉ ci . Because of (17) we conclude that dk+1 = di whenever the
j-th column contains no errors . The above considerations show that

A(At+1 Li At) <

00

k(At+1 Li At) =
1

.
nt

mt
At+ 1

(19)

	

1: ~~(At+1 AAt) < oo .
t=1

Now, we intend to estimate ~(Tp+ ,p At Li Aj . . To this end, let us observe that :

T»+,, (x, i) = (T' x, (So + 0) (x) + ( ;P + 10) (Tx) + . . . + (;o + 0) (T` -1 x) .

In other words, if cp + 0 were constant on all levels of Dn , (and equal to c4
respectively) then we would get

T,++ (Doy x 0) = Di ° x (ct + --- + ci_ 1)
= Dn' x d� t = 1, 2, . . . , n t - 1

T,p+ . (Dó , x 0) = Dá` x 0
(see picture 2) . So, the above would mean T,,+ ,p (At) = At . However, (p + 0
is not constant on the levels of Dn, . By the argument we have just used it is
easy to show that

(20 )

	

Ft(T,+ ,p At n, Ae) =

	

,

	

Et -> 0.ntt
Combining (18), (19) and (20) we see that the assumptions of Lemma 1 are
satisfied and we conclude that T, + ,p cannot be ergodic .

If we assume that (p admits an even approximation with speed 0( n ;+~ ) and
that cp is ergodic then we can repeat the foregoing proof with the only change
that 6;, _ 1 is defined so that

n,-1

Eb;=0.
¡=o

Therefore the proof of Theorem 1 is complete.
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Factors of Z2-extensions given by Morse cocycles

We start with the definition of rigidity .

	

Let U: (Y, B, v) C) be an ergodic
transformation . U is said to be rigid if there exists a sequence of positive
integers {n i}, ni --> oo such that U"¡ -+ id (the identity) in the weak topology,
Le . v(Un¡(A) AA) --> 0 for everyA E B .

Proof of Theorem 2: (In the proof we use notations from [14]) . Let x = b° x
bl x . . . be a Morse sequence and let (r, W, v) be a proper factor of (r,Ox ,Mj .

Let iP : (r, Ox , t¿a)

	

% (r, W, v), W C {0,1}z , establish a homomorphism . In
order to prove that r: W O is rigid it is enough to show that there is a generic
point w E W such that for every E > 0 there is s E Z such that

(21)

	

d(rs w,w) < E,

where d(u,u') = lim�, infmcard{1 <_ i <_ m, u[i] ~ u'[i]}, u, u' E 0.,, . Fix an
E > 0. Then by the Birkhoff Theorem there is a code <p, : 0,, ---> {0,1}z (Le .
yo, r = rcp. , ep, is measurable, z[-k, k] = z'[-k, k] implies (v, z) [0] = (;p, z') [0],
where k =l <p, 1 is the length of the codé) such that

(22)

	

d(iPz, (p, z) < 3 for a.e .

	

z E Ox .

Then take 5,

	

0 < 6 < E/300(2 1 ep, 1 +1) and fix w E W . Since 0 cannot be
one-to-one, there are z, z' E Ox , z qÉ z' such that

?P(z) = V)(Z,) = w.

Then choosing a code epó we can repeat the proof of Theorem 2 in [14] saying
that there is an s such that either

(23)

	

d(rs z, z') < 1006

or

(24)

	

d(r8 z, z') < 1006 .

All we have to prove that both (23) and (24) imply (21) . First of all Remark
the following property of codes .

Lemma 2. If u, u' E Oz then

(25)

	

d(,p,u, ;P,u') < (2 1 pE 1 +1) -d(u,u') .

Proof..

	

If u [t - k, t + k] = u' [t - k, t + k] then (cp, u) [t] = (upe u') [t] . Hence if
(ep, u) [t] 7~ (spe u') [t] then it delivers at most 2 1 cp, 1 +1 places where u and u'
are different .
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d(rs w,w) = d(re0(z),0(z')) = j(V)(rsz),Y)(z'))
< d(0(rsz),ipe(rez)) +d«p,(rs z),Sp,(z'))

22 2E

	

25
+d(P,(z'),?p(z')) (<) 3 +j(p,(rsz),~p,(z')) (<) 3E
+ (2 (cPE I +1) - d(r8 z, z') < E

if (23) holds . If (24) holds then using (22) and (25) again we obtain

d(rsw,w) < E.

In both cases we can find a sequence m, such that either rms --> id or
r- ' -> v,

	

(u(u) = ú) . In the latter case r e ma -> id . This completes the proof
of Theorem 2 .
Now applying the construction used in the proof of Theorem 1 we are able to

indicate some factors of Z2-extensions determined by Morse cocycles . These
factors will have a continuous part of the spectrum .
Assume that T : (X, B, t¿) O has r.p.p .s ., S, (T)

	

= G{nt ,t >_ 0} and let
~O :X -> Z2 be a Morse cocycle given by

t`P

	

I Dn`

	

- at

	

,

	

i = 0, 1, . . . , nt _._ 2 .

We can define a sequence of blocks {at },

	

1 at 1= At - 1 in the following way :

á = (a'[01, . . . , a° [A o - 21),

t+1a

	

[j]=at+1 [.7'nt+nt-1],

	

j=O,l, . . .,At+i-2 .

The sequence of blocks {a t } determines the Morse cocycle p completely. Now,
let s > 1 be such that

(26)

	

(s, nt ) = 1,

	

t > 0.

Consider S, : (Z, , v,) U the cyclic rotation on Z, = {0,1, . . . , s - 1} with the
uniform measure . In view of (26)

T'=TxS,:XxZ,-->XxZ,

is ergodic and has r.p.p .s ., Sp (T) = G{s - n t , t > 0} . Define a function e0 : X x
Z, -Z2 by

cp(x, i) = ;o(X),

	

x E X,

	

i E Z9 .

Then we have a Z2-extensions (T'),p = T,, x S, of T' . Assume that (p is oddly
(or evenly) approximated with speed 0(,11,). Then 0 is approximated with the
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same speed. If follows from Theorem 1 that ep can be modified by a coboundary
cocycle Le . by ip' + iÚ' o T' to get a Morse cocycle 0. Then T,. is a factor of T,' .
We intend to describe this passage from T,, to P in a combinatorial language .

It is easy to see that the condition of the approximation of ;p with speed
0(",1

e) implies

(27)

	

at+lmin(fr(0,at+1), fr(1,at+1))
=0(nt )

where fr(i,at+1 = card{j ; 0 <_ j <I at+1 1 ; at+1[j] = i} . For every t >_ 0 we
take the sets D" , x 0, Dn , x 1, . . . , Dn * x (s - 1) . Then we can construct a
T'-tower of height mt = s - nt

a

We have

t
dnt-1

Picture 3 .

at"t-Z

at
e

0 Dmt1

	

Mm :-, 0

(T x Ss

	

7
) (D". , X i) = D"+. , 1 X (i + 1)

J

where the additions are taken

	

mod nt and

	

mod s respectively . Let

Dk ` _ (T')k (Dó , X 0) ,

	

k = 0, 1, . . . , mt - 1 .

Then (26) implies that each Dm*̀ coincides with a level Dn` x i for some i, j,
0 < j < nt - 1, 0 < i < s - 1, and this correspondence is one-to-one . Thus



so D' , is a T'-tower of height mt . If follows from the definition of cp (see
Picture 3) that

(28)

(29)
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Dme - ak - ant-1
k

ifk=1-n t +iandi=0,1, . . .,nt -2, 1=0, . . .,s-1 .
According to (27)

if k = l - n t + nt - 1,

	

I = 0, . . . , s - 1, where an t-1 = dt+ 1 aPpears at at+ 1

with frequency > 1 - ñ, e t -> 0 . The symbols d;,+ 1 ,

	

0 <_ u <_ mt+1 - 1 are
the following . We write~u in the form

we chose b t in such a way that

where A = At+1 .

We define iP on D'"° in an arbitrary way and suppose that ip have been defined
on D't except for the level Dme-1 . We should calculate the number of errors
in each column of D't . Comparing the symbols dk, 0 _< k <_ mt - 1 and
áú+ 1 , o <_ u <_ mt+1 - 1 (see Picture 4) from (28), (29) and (30) we can
formulate the following algorithm of a construction of tp on Dmt_ 1 .

A) Define b;,t,-1 = bt according to (16), Le . if

	

Dm, = b'k , 0 < k < mt - 1

m,`-1

	

1,

	

if the approximation is odd
~6

t =k

k=o

	

0,

	

if it is even .

B) Write the block Bt of length s - At+1 as follows

Bt = at+1 [0[ . . . at+1 [A - 2]dt+2 at+1
[01 . . . at+1 [ A - 2[&t+2 . . .

1
1-

. . . at+1 [0[ . . . at+1 [A - 2[dt+2,
9-times

where 1' = 0, 1, -. . . , s 1, v = 0, . . .

u=1f 'nt+l+v*nt+r,

, At+1 - 1, r = 0, . . ., nt - 1 . Then

áú+1 = al, if r < nt - 1,
(30) at+1 = at+1[v[, if v < At+1 - 1 and r = nt -

dú+1 =ant+ ,-1 = dt+a9 if v = At+1 - 1 and r = nt -
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C) Divide the block Bt into At+1 equal parts, Le.
Bt

= BaBl . . . Ba,+1 -1,

	

[ Bi l= s,

	

j = 0,1, . . . , At+ 1 - 1
and -define to on Dút+1 , u = lt. -. mt ,+ mt - 1,

	

1t = 0,1, . . . , At+ 1 - 2 putting
-

	

6t	if the number of the symbol (1 + dt+1) in Bl is even
bt + - 1,

	

otherwise

at+1

at1

at
0

át+1

at1

t
an, -2

a',

at0

Dmt

Picture 4

The rank power function

s_nt -1

(s - 1)n; + 1

(3- 1)%

2 - nt-1

n; + 1

nt

nt-1

nt - 2

According to Theorem 1, T, is metrically isomorphic to T. x S,, .

Now, we intend to prove the existente of ergodic cocycles .satisfying (5) . In
[11], Kwiatkowski and Rojet discovered a trichotomy concerning Morse shifts .
Namely either

C(TSp) = {T, a o' },

	

i E Z,

	

j =0, 1,

	

a(x, i) = (x, i + 1)

~t+l~ e

at
1

t
0

. . . . .
t 1 1~

. . . . . . . . . . . . .

at1

aÓ

at+1[01 a
t+1131

ant-2 a..,-2

'al ,at

a0 - a0 a0



or Tp is rigid . If the latter holds then either

(31)

	

C(T,) = weak closure of

	

«T, )n
, n E Z},

or

(33)

	

rk(T,) = 2

	

iff

	

a j weak closure{(T,)", n E Z},

and
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(32)

	

C(T,)/weak closure of

	

«T, )n , n E Z} = {id., u},

where C(T,,) is .the centralizer of T, Le . the set of all automorphisms of
(X x Z2,B,Fc) commuting with Tp . No one of these possibilities is vacuous .
Combining the Weak Closure Theorem [9] with the fact that the rank of Morse
dynamical system is at most 2 one can easily prove that

as soon as cp is a Morse cocycle .
Given cp E K we call the cocycle cp + 1 (orT,+1 = T,p o a) the completion

of (p . The idea to prove (5) consists in the simple observation that a cocycle
and its completion can have quite different properties . Take a Morse cocycle
cp such that p is evenly approximated with a givén speed (at least 0(ñ)) and
moreober that

rk(T,) = 2 .

We recall that the paper [11] assures an abundance of such cocycles . We assume
here that Sp (T) = G{nt , t >_ 0}, n t are odd . It is an easy observation that the
completion of the cp admits then an odd approximation with the same speed .

Therefore
rk(T,o+i) = 1

rk(T,p+i) 2 = rk(T,,) 2 > rk(T,) = 2 .

Now, (T,p ) 2 = T,p+w-T is ergodic and ~p +(p o T admits an even approximation
with the same speed as (p . Because this speed is at least 0(ri) the rank of T,
is at most 2 . Similar reasoning shows that

s = { 1,

	

(s,nt ) = 1, s is odd
rk(T,~ )

	

2,

	

(s,nt ) = 1, s is even .

The proof that m.s .m.(T,,) 9 = 1, (s, nt) = 1 will follow from the following.

Lemrna 3. Let T be an ergodic automorphism with r.p.p .s ., Sp (T) =
G{nt , t >_ 0} . Assume that cp admits an odd or even approximation with speed
0(ñ) and cp is ergodic and nonconstant . Then T,p has simple spectrum .

Proof. The proof follows from the considerations from [71 .
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Remark . If rk(T,) = 2 and yo admits an even approximation with speed
o( .1'+,') then, of course, T,p and T,p+1 cannot be isomorphic (rk(T, +1 ) = 1) .
Actually, they cannot be spectrally isomorphic . Indeed, (T,+1)'° -> v for
a sequence {mt } [91 . If an infinity of the mt 's were even then (T,)" =
(T,I+1)- ' -> v and from (33) Tp would have rank 1 . To avoid the contra-
diction we are forced to assume that the mt 's are odd . But then

(T,)" --> id and (T,+1)` -,- id .

So Tp and T,+1 cannot be spectrally isomorphic .
Remark. It is interesting to know whether the oscilation of the rank power

function is typical for Z-cocycles . But it is not the case, as the following shows.
First of all we notice that

(34)

	

rk(T.) 2 = 2

	

iff

	

rk(T,+1) = 2,

as soon as cp admits an odd approximation with speed o("+j. Indeed, if
rk(T,) = 1 = rk(Tp+1), then

and

So

which implies

and

Now the set

3mt (TP)`

3m', (Tw+1)°°° -a.

Since (33) hold§, it is enough to prove that mt or mt are even for an infinity
of t's . If this is not the case, then mt , má are odd. We can also assume
mt - mó J' oo by passing to subsequences . Then

(Tw) M, o (Tv+1)-~` -> u o U- 1

(T,)M, o (T,) -m, o u --> u o U-1

M)m-M` -> O

(Tw)Zs, --> Q, where

	

2st = mt - mt .

If rk(T,p+1) = 2, then

2 > rk((Tw) 2 ) = rk((T,p+1)2) ~ rk(T,+1) = 2 .

A = {ip E K, rk(T,j = 1}



where

Assume that

Put
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is residual because it contains all cocycle§ odd1y approximated with speed o(ñ)
Therefore the set A + 1 = {p -{- 1, cp E A} is residual . Whence

A n (A + 1) = {cp E K, rk(TP) = 1 = rk(T,p+1)}

is residual . This fact and (34) give that the rank power function being constant
(and equal 1) is a typical property for K.
Example . The next problem we intend to deal with here is the problem

of lifting roots . It is well-know how to calculate roots for T with r.p .p .s .,
S, (T) = G{nt ; t >_ 0} . It (s,n t ) = 1, t >_ 0 then T' and T are isomorphic
because they have r.p.p.s. and they have the common sequence (Dnl) J' B . It
would be interesting to know whether a sufficiently high speed of approximation
of (p assures the existente of some roots . However the results of [11] show that
this supposition cannot be true .
We take the Morse sequence

x=bo xbl x . . .

F+t

	

lit+1

bt =0101 . . .01 1010 . . .101, t>0 .

00

°° 1
E - < oo .
0 Pt

At=2pt+1, nt =Ao . . . A t , e t =bo x . . .xbt ,t>0
and define blocks ct, 1 ¿t 1= n t - 1 putting

¿t[i] = ct [i + 1] + ct [i]

	

in ZZ , i = 0, 1, . . . , .1t - 2 .

Let 0 be the group of all n t-adic numbers Le .

= {9 ; 9 = E gt - nt- 1, 0 < 9t < At - 1, n- 1 = 1},

o

and let p be the Haar measure of ¿~i and T be the rotation on 1 = (1, 0, 0 . . . . ) .
For every t > 0 we have a T-power Dn, in ¿ni such that

t
Dne

= {9; E9u'nu-1 =1}, i=0,1~ . . .,nt-1.s

u=0

The sequence x determines a Morse cocycle cp on A by

cp

	

I Dn,

	

= ct [i] ,

	

i = 0, 1, . . . , nt - 2 .
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In 111] the centralizer of T,, has been described . Each S E C(T,) has a form

where go E ¿~i and f: ¿~i ---> Z2 satisfy the condition

(35)

	

V(g + go) + f (g) = f(g + i) + P(g) .

We will show that for every k > 1 there exists no S E C(TI ) such that Sk = T;, .
Remark that

S'(g,i)=(g+k-go,i+f(g)+
. . .+ f(g+(k .-1)go)) .

Then Sk = T,, iff k - go = 1 and

(36)

where go and f satisfy (35) .
Nótice that there exists go E ¿L~, with k - go = 1 iff (k,ni ) = 1 . We will denote

such go by i/k. Now we prove that for k > 2, (k, ni ) = 1, ¡Ik does not satisfy
(35) and i/2 satisfies (35) but the corresponding function f does not satisfy
(36) .
Now, let k > 2, (k, ni ) = 1, t = 0, 1, . . . . If i/k = (l)-, 0 <_

1, lt+1 - lt (mod ni ) then l t is one of the numbers

For such a number l t we have

for t large enough .
If ¡Ik is represented as a series jó gt - n i - 1, then the inequalities

imply

S(g, i) = (g + go , 2 + f(g)),

f(g) + . . .+ f(g + (k - 1)go) = ;P(g),

ni + 1 2nt + 1

	

(k - 1)n t + 1
k 3 k '***' k

ni >k,l ni
>2kand Int - 2 ~3t

lt gt 1 1 1-<-
nt

	

xt I- At

	

ni

	

2ñt

9t

	

1

	

_ _gt

	

_1

	

gt _ _1

	

1
(37)

	

~t - 4k'

	

1

	

At - 4k'

	

I a t

	

2 I

	

4k

Á`Á'. >6 and1gi _2I>6, 0<g; .5\i-1

l t < ni -

for t large enough . On the other hand it is easy to Rmark that the inequalities



imply

function f = lim ft , where

Next we have
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(38)

	

d(bt bt [gt,gt + At - 1]b') > 6.

Moreover, (38) is valid if we replace btbt by bt bt, bt bt and bt bt .

	

In view of
Theorem 1 in [11], (37) and (38) go = 1/k does not satisfy (35) .
Now take 1/k. Then k = ( "`z 11 )0 = (/¿o + 1) + ~e-1 pt - nt-1 . It is clear

that
°° 1

d(bt bt [pt + 1, mt + ñt ], bt ) =

	

< oo.
0

Applying again [111 we obtain that (35) is satisfied with go = i/2 and the

ft (g) + ft (g + i/2) = ct [,7t + .1] + ct I nt 2 1 +jt I + c t I nt 2 1 + ,9t I

	

+ ct [,9t ]

w(9)

= ct [jt + 1] + ct [jt ] + 1,
nt - 3

for g = (jt) and jt <

	

2

We conclude that (36) does not hold and T~ has no roots of any degree . At
the same time the function ep admits an odd approximation with the speed
t7(ae+1 n,) ,

Taking suitable At 's we can get Morse cocycles cp's admitting an approxima-
tion with an arbitrarily high speed .
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