APPROXIMATION OF Z₂-COCYCLES AND SHIFT DYNAMICAL SYSTEMS

I. FILIPOWICZ, J. KWIATKOWSKI, M. LEMANCZYK

Abstract

Let $\overline{G} = G\{n_t, n_t \mid n_{t+1}, t \ge 0\}$ be a subgroup of all roots of unity generated by $\exp(2\pi i/n_t), t \ge 0$, and let $\tau: (X, \beta, \mu) \oslash$ be an ergodic transformation with pure point spectrum \overline{G} . Given a cocycle $\varphi, \varphi: X \longrightarrow$ \mathbb{Z}_2 , admitting an approximation with speed $O(1/n^{1+\epsilon}, \epsilon > 0)$ there exists a Morse cocycle ψ such that the corresponding transformations τ_{φ} and τ_{φ} are relatively isomorphic. An effective way of a construction of the Morse cocycle ψ is given. There is a cocycle φ oddly approximated with an arbitrarily high speed and without roots.

This note delivers examples of φ 's admitting an arbitrarily high speed of approximation and such that the power multiplicity function of τ_{φ} is equal to one and the power rank function is oscillatory. Finally, we also prove that if φ is a Morse cocycle then each proper factor of τ_{φ} is rigid. In particular continuous substitutions on two symbols cannot be factors of Morse dynamical systems.

Introduction and statement of results

Let $T: (X, \mathcal{B}, \mu) \odot$ be an ergodic transformation of a Lebesgue space. We will denote by Sp(T) the group of all the eigenvalues of the unitary operator $U_T: L^2(X, \mu) \odot, U_T f = f \circ T$. T is said to have rational pure point spectrum (r.p.p.s) if $L^2(X, \mu)$ is generated by the eigenfunctions of U_T and, besides,

$$Sp(T) = G\{n_t: t \ge 0\}$$

where $G\{n_t: t \ge 0\}$, $n_t | n_{t+1}, t \ge 0$, denotes the subgroup of all roots of unity generated by $\exp(2\pi i/n_t), t \ge 0$.

Let $D^{n_i} = (D_0^{n_i}, D_1^{n_i}, \ldots, D_{n_t}^{n_t})$ be a partition, i.e. $D_i^{n_t} \cap D_j^{n_t} = \emptyset$, $i \neq j$, $D_i^{n_t} \epsilon \beta$. Then D^{n_t} is called a partition of X if, besides, $\prod_{i=0}^{n_t} D_i^{n_t} = X$. We call D^{n_t} a T-tower (with height n_t) if $T^i D_0^{n_t} = D_i^{n_t}$, $i = 0, \ldots, n_t - 1$ and a T-tower of X if, besides, D^{n_t} is a partition of X. The ergodicity of T says that if D^{n_t} is a T-tower of X with height n_t then this is the only T-tower of X with that height (reordering elements of D^{n_t} , if necessary). It turns out (cf. [15]) that:

(1) T has r.p.p.s. with $S_p(T) = G\{n_t: t \ge 0\}$ iff there is a sequence $(D^{n_t})_{t\ge 0}$ of T-towers of X such that $D^{n_t} \nearrow B$.

Let \mathcal{K} denote the class of all the \mathbb{Z}_2 -cocycles of (X, \mathcal{B}, μ) i.e. $\varphi \in \mathcal{K}$ if $\varphi: X \longrightarrow \mathbb{Z}_2$ is measurable. We endow \mathcal{K} with the natural topology given by the metric

$$\zeta(\varphi,\varphi') = \mu(\varphi^{-1}(0) \bigtriangleup \varphi'^{-1}(0)) + \mu(\varphi^{-1}(1) \bigtriangleup \varphi'^{-1}(1)).$$

With this metric \mathcal{K} becomes a complete, separable metric space. Having fixed $T: (X, \mathcal{B}, \mu) \bigcirc$ we define the class \mathcal{K}_T of all \mathbb{Z}_2 -extensions $T_{\varphi}, \varphi \in \mathcal{K}$, of T, i.e.

$$T_{arphi}\colon (X imes {f Z}_2,\widetilde{eta},\widetilde{\mu}) \odot, \quad T_{arphi}(x,i)=(Tx,arphi(x)+i),$$

where $\tilde{\mu}$ is the product measure $\mu \times \nu_2$ ($\nu_2(0) = \nu_2(1) = 1/2$) and $\tilde{\beta}$ is the corresponding product σ -algebra. A cocycle φ is called *ergodic* whenever T_{φ} is ergodic. Now, changing T we obtain the class of all ergodic \mathbb{Z}_2 -extensions of automorphisms with r.p.p.s.

This class is one of more interesting classes in ergodic theory. A great deal of the attention has been devoted to the study of it (for instance [1], [2], [6], [10], [13], [14], [16], [18]).

Assume (D^{n_t}) is a sequence of *T*-towers of *X* arising from (1) and let $f: N \longrightarrow R$ be a real function. Following [7] we call $\varphi \in \mathcal{K}$ oddly (evenly) approximated with speed o(f(n)) if for some subsequence $\{n_{t_k}\}$ there exists sets F_k consisting of an odd (even) number of members of $D^{n_{t_k}}$ such that

(2)
$$\mu(\varphi^{-1}(1) \bigtriangleup F_k) = o(f(n_{t_k})).$$

The odd approximation with speed o(1/n) guarantees the ergodicity of $\varphi(|\mathbf{7}|)$.

Assume $\varphi \in \mathcal{K}$ and (D^{n_t}) is a sequence of *T*-towers given by (1). Then φ is said to be a *Morse cocycle* if there is a subsequence (n_{t_k}) such that $\varphi \mid_{D_i^{n_{t_k}}}$ is constant $(\varphi \mid_{D_i^{n_{t_k}}} = a_i^t)$ on each level of $D^{n_{t_k}}$ except for $i = n_{t_k} - 1$. The main result of [14] was

Representation Theorem. If φ is oddly approximated with speed $0(\frac{1}{n^2})$ then there is a Morse sequence $x = b^0 \times b^1 \times \ldots$ such that T_{φ} is isomorphic to the Morse dynamical system determined by x. (We refer to [8], [10], [12] for the definition and properties of Morse sequences).

In the present paper we stenghten the Representation Theorem proving:

Theorem 1. If $\varphi \in K$ is ergodic and admits an odd (or even) approximation with speed $O(\frac{1}{n^{1+\epsilon}})$, $\epsilon > 0$, then there exists a Morse cocycle ψ such that T_{φ} and T_{ψ} are relatively isomorphic. We recall that T_{φ} and T_{ψ} are relatively isomorphic if there exists a cocycle $f: X \to \mathbb{Z}_2$ such that

(3)
$$\varphi(x) + f(Tx) = f(x) + \psi(x).$$

Then the map I(x, i) = (x, f(x) + i) establishes an isomorphism between T_{φ} and T_{ψ} .

We have been unable to decide whether or not the Theorem holds for $\epsilon = 0$.

Looking at the proof of the Representation Theorem we see that it does not provide any effective way of a construction of the Morse cocycle ψ (or the Morse sequence x). The proof of Theorem 1 is based on a quite different idea and allows to determine the Morse cocycle in an algorithmic way.

Let G be the group of all n_i -adic integers i.e.

$$G = \{g; \ g = \sum_{0}^{\infty} g_{t} \cdot n_{t-1}, \ 0 \leq g_{t} \leq \lambda_{t} - 1, \ n_{-1} = 1\}, \ \lambda_{t} = \frac{n_{t+1}}{n_{t}}, \ t \geq 0,$$

and let T be the translation on the unit element 1. Then (G, T, m), (m is the Haar measure) is an ergodic system having r.p.p.s., $S_p(T) = G\{n_t, t \ge 0\}$. Hence if $\varphi: G \to \mathbb{Z}_2$ is a cocycle satisfying the assumptions of Theorem 1 then it can be modyfied by a coboundary cocycle getting ψ , which is measurable with respect to the algebra generated by $\{D^{n_t}\}, t \ge 0$. Although ψ cannot be continuous on G (except for some trivial cases), there is a metod making such cocycles continuous. Namely, ψ is the so called *Toeplitz cocycle* in the sense of [13] i.e. it is completely determined by some Toeplitz sequence $\eta \in \{0,1\}^Z$. If we take $X = \overline{\theta(\eta)}$ (the closure of the trajectory of η via the shift r) and the cocycle $\psi': \overline{\theta(\eta)} \longrightarrow \mathbb{Z}_2$, $\psi'(y) = y[0]$, then the automorphisms $\tau_{\psi'}$ and T_{ψ} are metrically isomorphic ([13]). In other words there is some effective way of a construction of an ergodic $r_{\psi'}$ (with ψ' to be continuous) which is isomorphic to T_{ψ} .

Notice that from [4] it follows that there is a topological process $(\tilde{G}, \tilde{T}, \tilde{\mu})$, a metric isomorphism $\Pi: (\tilde{G}, \tilde{\mu}) \to (G, \mu) \Pi \tilde{T} = T\Pi$ and a continuous function $\tilde{\varphi}: \tilde{G} \to \mathbb{Z}_2$ such that $\tilde{\varphi} = \varphi \circ \Pi$ a.e. This implies that T_{φ} and $\tilde{T}_{\bar{\varphi}}$ are isomorphic. In particular, if φ is a Toeplitz cocycle then $\tilde{G} = \overline{\theta}(\eta)$, $\tilde{T} = \tau$. The task arises how to determine (\tilde{G}, \tilde{T}) (in an effective way) for a general $\varphi \in K$. In particular it would be interesting to know whether given $\varphi: G \to \mathbb{Z}_2$ there exists a *Toeplitz* cocycle ψ such that r_{ψ} is isomorphic to T_{φ} . If this is the case we would have $G = \overline{\theta}(\eta)$. Our paper delivers a construction of such a ψ if φ fullfils the assumptions of Theorem 1.

In the remainder of the paper we consider some problems concerning cocycles admitting a high speed of approximation. For instance, it turns out that for any T

(4) there is a cocycle φ oddly approximated with an arbitrarily high speed and without roots.

The next application is connected with the oscillation of the rank power function. Let $U:(Y,\tau,\nu) \odot$ be an ergodic automorphism. For the definition of the rank $(\operatorname{rk}(U))$ we refer to [3], [9] and to [19] for the definition of the maximal spectral multiplicity (m.s.m.(U)). These notions allow to define two functions

$$s \longrightarrow \operatorname{rk}(U^*), \quad s \longrightarrow \mathrm{m.s.m.}(U^*), \quad s = 1, 2, \ldots$$

called power rank function and power multiplicity function respectively. They are defined for those s's that U^s is ergodic. In [9] J. King raised the question whether the power rank function had to be monotonic (it is rather easy to see that $rk(U) \leq rk(U^s), s \geq 1$). Then in [3] there is an example for which the power rank function is oscillatory. However, $rk(U) \geq m.s.m.(U)$ and this example is based on the following facts: for some subsequences $(n_k), (m_k) rk(U^{n_k}) =$ 1 and m.s.m. $(U^{m_k}) \geq 2$. This note delivers examples of ψ 's addmitting an arbitrarily high speed of approximation with

(5)
$$\operatorname{rk}((T_{\varphi})^{s}) = \begin{cases} 1, & \text{g. c. } d.(s, n_{t}) = 1, s - \operatorname{odd} \\ 2, & \text{g. c. } d.(s, n_{t}) = 1, s - \operatorname{even} \\ & \text{m. s. } m.((T_{\varphi})^{s}) = 1, & \text{g. c. } d.(s, n_{t}) = 1. \end{cases}$$

In [14] the author raised the *factors problem* for the class of Morse sequences, i.e. given a Morse cocycle φ we seek all T_{φ} -invariant sub- σ -algebras $C \subset B$. Of course $B = \{A \times \mathbb{Z}_2, A \in B\}$ is an example of such a C. The action of T_{φ} on B is isomorphic to T. On the other hand the class of ergodic \mathbb{Z}_2 -extensions of r.p.p.s. automorphisms is closed under taking factors. Is there a $C \subseteq \tilde{B}$ such that action of T_{φ} on C (i.e. $T_{\varphi}: (X \times \mathbb{Z}_2, C, \tilde{\mu}) \odot$) has partly continuous spectrum? We remark the following consequence of coding arguments used in [14] (compare it with the analogous result of J. King [9] for rank 1 class).

Theorem 2. If φ is a Morse cocycle then each proper factor of T_{φ} is rigid. In particular continuous substitutions |2| on two symbols cannot be factors of Morse dynamical systems.

The natural reverse problem is the following. Can any rigid Morse dynamical system be extended to a Morse dynamical system with larger group of eigenvalues? There is a positive answer in case of sufficiently high speed of approximation (odd or even), but we have been unable to solve this problem in general. Has a positive answer analogous question for rank 1 class?

Proof of Theorem 1

Assume $T: (X, \mathcal{B}, \mu) \oslash$ with r.p.p.s., $S_p(T) = G\{n_t: t \ge 0\}$ and let $\varphi \in \mathcal{K}$ admit an odd approximation with speed $O(\frac{1}{n^{1+\epsilon}}), \epsilon > 0$. Hence there is a

subsequence $\{n_{t_k}\}$ satisfying (2). For a simplication of notations we assume that this subsequence is equal to the $\{n_i\}$, i.e.

(6)
$$n_t^{1+\epsilon}\mu(\varphi^{-1}(1)\bigtriangleup F_t) \xrightarrow[t\to\infty]{} 0,$$

where F_t is a union of an odd number of levels of D^{n_t} . Assume that $\psi \in \mathcal{K}$ is another ergodic cocycle. Then it is known that any isomorphism between T_{φ} and T_{ψ} is of the form $S_{\psi'}: (X \times \mathbb{Z}_2, \widetilde{\beta}, \widetilde{\mu}) \odot$, where ST = TS and

(7)
$$\psi'(Tx) + \psi'(x) = \varphi(x) + \psi(Sx) \quad \text{in } ; \mathbf{Z}_2$$

where $\psi' \in \mathcal{K}$ (see [17]). Let us notice that given S, (7) has measurable solution iff $T_{\psi \circ S + \varphi}$ is not ergodic. Indeed, $T_{\psi \circ S + \varphi}$ is ergodic iff there is no measurable solution $\xi: X \longrightarrow S^1$ such that

(8)
$$\xi(Tx) = (-1)^{(\psi \circ S + \varphi)(x)} \cdot \xi(x),$$

(see [7], [18]). If $T_{\psi \circ S + \varphi}$ is not ergodic then we get a measurable solution of (8). Thus, the function $\xi(x) = \xi^2(x)$ is *T*-invariant, so by the ergodicity of *T* it is constant. Therefore without loss of generality we can assume that $\xi(x) = \pm 1$. Then the function $\psi' = 1_A$, $A = \xi^{-1}(-1)$ is a solution of (7). On the other hand if ψ' is a solution of (7) then the function $\xi(x) = (-1)^{\psi'(x)}$ satisfies (8).

The following simple lemma will be useful in the proof of Theorem 1.

Lemma 1. Let $U: (Y, C, \nu) \oplus$ be an automorphism of a Lebesgue space. Assume that there is a sequence $\{A_n\}, A_n \in C$ such that

(9)
$$\nu(A_{n+1} \bigtriangleup A_n) < \epsilon_n, \quad \sum_{1}^{\infty} \epsilon_n < \infty$$

(10)
$$\nu(UA_n \bigtriangleup A_n) \longrightarrow 0,$$

(11)
$$\exists \delta > 0 \quad 1-\delta > \nu(A_n) > \delta, \quad n = 1, 2, \dots$$

Then U is not ergodic.

Now, we turn back to the cocycle φ . Fix $t \ge 0$ and consider the tower D^{n_t} .

Picture 1

Then the speed of approximation (which means that (6) holds) says that the function φ restricted to each level $D_i^{n_i}$, $i = 0, 1, \ldots, n_t - 1$, is "almost" constant, i.e.

$$\varphi \mid_{D_i^{n_i}} = a_i^t$$

except for a part of D^{n_t} with measure $\leq \frac{\epsilon_t}{n_t^{1+\epsilon}}, \quad \epsilon_t \longrightarrow 0$. Because of the odd approximation,

(12)
$$\sum_{i=0}^{n_i-1} a_i^i = 1.$$

To construct $D^{n_{t+1}}$ we divide the tower D^{n_t} into λ_{t+1} columns with the same measure $1/\lambda_{t+1}$ (Picture 1), $\lambda_{t+1} = n_{t+1}/n_t$. The n_t pieces of the s-th column $(s = 0, 1, \ldots, \lambda_{t+1} - 1)$ are the levels of $D^{n_{t+1}}$ assigned to the numbers $s \cdot n_t$, $s \cdot n_t + 1, \ldots, s \cdot n_t + n_t - 1$.

We say that there is an error in $D_j^{n_{t+1}}$, $j = i + s \cdot n_t$, $0 \le i \le n_t - 1$, $0 \le s \le \lambda_{t+1} - 1$ if

$$a_i^t \neq a_j^{t+1}.$$

In Picture 1 such levels are marked by the sign "0". Denote by m_i the number of all columns with some errors. The measure μ of such a column is

equal to $1/\lambda_{t+1}$. Therefore the measure of all columns with errors is equal to

$$(13) CE^{t+1} = \frac{m_t}{\lambda_{t+1}}.$$

Moreover, the measure μ of any error is equal to $1/n_{t+1}$, so in view of (6)

(14)
$$n_t^{1+\varepsilon} \cdot \frac{k_t}{n_{t+1}} \longrightarrow 0,$$

where k_t is the number of all errors. But $m_t \leq k_t$ and the combination of (13) and (14) implies

$$n_t^{\epsilon} \cdot CE^{t+1} \xrightarrow{t} 0$$

and consequently

(15)
$$\sum_{t=0}^{\infty} CE^{t+1} < \infty$$

since $\varepsilon > 0$.

Construction of a Morse cocycle. At each stage t our cocycle ψ will be constant on each level $D_i^{n_t}$, $i = 0, 1, \ldots, n_t - 2$, and will not be defined on $D_{n_t-1}^{n_t}$. We define ψ on D^{n_0} in an arbitrary way and assume that ψ is given on levels of D^{n_t} , $t \ge 0$, i.e.

$$\psi \mid \underset{D_i^{n_t}}{\overset{n_t}{=}} b_i^t, \quad i=0,1,\ldots,n_t-2.$$

First of all we define $b_{n,-1}^t$ so that

(16)
$$\sum_{i=0}^{n_t-1} b_i^t = 1$$

We do not change the function ψ on the levels $D_{j\cdot n_t+i}^{n_t}$, $j = 0, 1, \ldots, \lambda_{t+1} - 1$, $i = 0, \ldots, n_t - 2$, i.e. we put

$$\psi \mid D_{j \cdot n_i + i}^{n_{i+1}} = b_i^t.$$

Next we should define the function ψ on the levels $D_{j,n_t+n_t-1}^{n_{t+1}}$, $j = 0, 1, \ldots, \lambda_{t+2} - 2$. To do this we look at the number of errors for φ in the *j*-th column. If the number of errors is even (in particular if there are no errors) then we put

$$\psi \mid D_{j \cdot n_t + n_t - 1}^{n_t} = b_{n_t - 1}^t$$

and $1 + b_{n_t-1}^t$ otherwise.

Of course this procedure leads to the definition of a Morse cocycle. Moreover ψ admits an odd approximation with speed $O(1/n^{1+\varepsilon})$, by (16) and (14).

It remains to prove that the cocycle $\varphi + \psi$ is not ergodic, i.e. that $T_{\varphi+\psi}$ is not ergodic. To this end we will define a sequence of sets $\{A_t\}, A_t \subset X \times \mathbb{Z}_2$ satisfying the assumptions of Lemma 1. For every $t \geq 0$ we take $D^{n_t} \times 0$ and $D^{n_t} \times 1$.

Picture 2

 \mathbf{Put}

$$c_i^t = a_i^t + b_i^t$$
, $i = 0, 1, \dots, n_t - 1$, $t \ge 0$.

Then by (16) and (12)

(17)
$$\sum_{i=0}^{n_t-1} c_i^t = 0.$$

We define the sets A_t , $t \ge 1$, putting

$$A_t = \bigcup_{i=0}^{n_t-1} (D_i^{n_t} \times d_i^t),$$

where $d_0^t = 0$ and $d_i^t = c_0^t + \cdots + c_{i-1}^t$, $i = 1, 2, \dots, n_t$. It is clear that

(18)
$$\tilde{\mu}(A_t) = \frac{1}{2}.$$

Now we show that

$$\sum_{t=1}^{\infty} \tilde{\mu}(A_{t+1} \triangle A_t) < \infty.$$

Remark that

$$\tilde{\mu}(A_{t+1} \bigtriangleup A_t) = \frac{1}{n_t}.$$

(The number of all levels $D_k^{n_{i+1}}$, $k = j \cdot n_i + i$, $j = 0, \ldots, \lambda_{i+1} - 1$, $i = 0, \ldots, n_i - 1$ such that $d_k^{t+1} \neq d_i^t$). It follows from the definitions of a_i^t and b_i^t that $c_k^{t+1} = c_i^t$ whenever the *j*-th column contains no errors (with respect to φ) and each of the remaining columns contains an even number of the levels $D_k^{n_{i+1}}$ such that $c_k^{t+1} \neq c_i^t$. Because of (17) we conclude that $d_k^{t+1} = d_i^t$ whenever the *j*-th column considerations show that

$$\tilde{\mu}(A_{t+1} \bigtriangleup A_t) \leq \frac{m_t}{\lambda_{t+1}}$$

and then (13) and (15) imply

(19)
$$\sum_{t=1}^{\infty} \tilde{\mu}(A_{t+1} \bigtriangleup A_t) < \infty.$$

Now, we intend to estimate $\tilde{\mu}(T_{\varphi+\psi}A_t \triangle A_t)$. To this end, let us observe that:

$$T^*_{\varphi+\psi}(x,i)=(T^*x,(\varphi+\psi)(x)+(\varphi+\psi)(Tx)+\cdots+(\varphi+\psi)(T^{*-1}x).$$

In other words, if $\varphi + \psi$ were constant on all levels of D^{n_t} (and equal to c_i^t respectively) then we would get

$$T_{\varphi+\psi}^{i}(D_{0}^{n_{t}}\times 0) = D_{i}^{n_{t}}\times (c_{0}^{i}+\cdots+c_{i-1}^{i}) = D_{i}^{n_{t}}\times d_{i}^{i}, i = 1, 2, \ldots, n_{t}-1$$

and by (17)

$$T^{n_t}_{\varphi+\psi}(D^{n_t}_0\times 0)=D^{n_t}_0\times 0$$

(see picture 2). So, the above would mean $T_{\varphi+\psi}(A_t) = A_t$. However, $\varphi + \psi$ is not constant on the levels of D^{n_t} . By the argument we have just used it is easy to show that

(20)
$$\tilde{\mu}(T_{\varphi+\psi}A_t \bigtriangleup A_t) = \frac{\varepsilon_t}{n_t^{\varepsilon}}, \quad \varepsilon_t \longrightarrow 0.$$

Combining (18), (19) and (20) we see that the assumptions of Lemma 1 are satisfied and we conclude that $T_{\varphi+\psi}$ cannot be ergodic.

If we assume that φ admits an even approximation with speed $0(\frac{1}{n^{1+\epsilon}})$ and that φ is ergodic then we can repeat the foregoing proof with the only change that $b_{n_{t}-1}^{t}$ is defined so that

$$\sum_{i=0}^{n_t-1} b_i^t = 0.$$

Therefore the proof of Theorem 1 is complete.

Factors of Z₂-extensions given by Morse cocycles

We start with the definition of rigidity. Let $U:(Y, \mathcal{B}, \nu)$ \circlearrowright be an ergodic transformation. U is said to be rigid if there exists a sequence of positive integers $\{n_i\}, n_i \to \infty$ such that $U^{n_i} \to id$ (the identity) in the weak topology, i.e. $\nu(U^{n_i}(A) \bigtriangleup A) \to 0$ for every $A \in \mathcal{B}$.

Proof of Theorem 2: (In the proof we use notations from [14]). Let $x = b^0 \times b^1 \times \ldots$ be a Morse sequence and let (r, \mathcal{W}, ν) be a proper factor of (r, O_x, μ_x) .

Let $\psi: (r, O_x, \mu_x) \longrightarrow (r, \mathcal{W}, \nu), \mathcal{W} \subset \{0, 1\}^{\mathbb{Z}}$, establish a homomorphism. In order to prove that $r: \mathcal{W} \oslash$ is rigid it is enough to show that there is a generic point $w \in \mathcal{W}$ such that for every $\varepsilon > 0$ there is $s \in \mathbb{Z}$ such that

(21)
$$\bar{d}(r^*w,w) < \varepsilon$$
,

where $\tilde{d}(u, u') = \lim_{m} \inf \frac{1}{m} \operatorname{card} \{1 \leq i \leq m, u[i] \neq u'[i]\}, u, u' \in O_{x}$. Fix an $\varepsilon > 0$. Then by the Birkhoff Theorem there is a code $\varphi_{\varepsilon}: O_{x} \longrightarrow \{0, 1\}^{z}$ (i.e. $\varphi_{\varepsilon}r = r\varphi_{\varepsilon}, \varphi_{\varepsilon}$ is measurable, z[-k, k] = z'[-k, k] implies $(\varphi_{\varepsilon}z)[0] = (\varphi_{\varepsilon}z')[0]$, where $k = |\varphi_{\varepsilon}|$ is the length of the code) such that

(22)
$$\overline{d}(\psi z, \varphi_{\varepsilon} z) < \frac{\varepsilon}{3}$$
 for a.e. $z \in O_z$.

Then take δ , $0 < \delta < \varepsilon/300(2 | \varphi_{\varepsilon} | +1)$ and fix $w \in W$. Since ψ cannot be one-to-one, there are $z, z' \in O_z$, $z \neq z'$ such that

$$\psi(z) = \psi(z') = w.$$

Then choosing a code φ_{δ} we can repeat the proof of Theorem 2 in [14] saying that there is an s such that either

$$(23) \qquad \qquad \bar{d}(r^s z, z') < 100 \,\delta$$

OT

(24)
$$\bar{d}(r^s z, \bar{z}^t) < 100 \,\delta.$$

All we have to prove that both (23) and (24) imply (21). First of all Remark the following property of codes.

Lemma 2. If $u, u' \in O_x$ then

(25)
$$d(\varphi_{\epsilon} u, \varphi_{\epsilon} u') \leq (2 | \varphi_{\epsilon} | +1) \cdot \bar{d}(u, u')$$

Proof: If u[t-k,t+k] = u'[t-k,t+k] then $(\varphi_{\varepsilon} u)[t] = (\varphi_{\varepsilon} u')[t]$. Hence if $(\varphi_{\varepsilon} u)[t] \neq (\varphi_{\varepsilon} u')[t]$ then it delivers at most $2 | \varphi_{\varepsilon} | +1$ places where u and u' are different.

Now

$$\begin{split} \bar{d}(r^s w,w) &= \bar{d}(r^s \psi(z),\psi(z')) = \bar{d}(\psi(r^s z),\psi(z')) \\ &\leq \bar{d}(\psi(r^s z),\psi_{\varepsilon}(r^s z)) + \bar{d}(\varphi_{\varepsilon}(r^s z),\varphi_{\varepsilon}(z')) \\ &+ \bar{d}(\varphi_{\varepsilon}(z'),\psi(z')) \stackrel{(22)}{\leq} \frac{2\varepsilon}{3} + \bar{d}(\varphi_{\varepsilon}(r^s z),\varphi_{\varepsilon}(z')) \stackrel{(25)}{\leq} \frac{2\varepsilon}{3} \\ &+ (2 \mid \varphi_{\varepsilon} \mid +1) \cdot \bar{d}(r^s z,z') < \varepsilon \end{split}$$

if (23) holds. If (24) holds then using (22) and (25) again we obtain

$$\bar{d}(r^*w,\tilde{w})<\varepsilon.$$

In both cases we can find a sequence m_s such that either $r^{m_s} \to id$ or $r^{m_s} \to \sigma$, $(\sigma(u) = \tilde{u})$. In the latter case $r^{2m_s} \to id$. This completes the proof of Theorem 2.

Now applying the construction used in the proof of Theorem 1 we are able to indicate some factors of \mathbb{Z}_2 -extensions determined by Morse cocycles. These factors will have a continuous part of the spectrum.

Assume that $T:(X, \mathcal{B}, \mu)$ \bigcirc has r.p.p.s., $S_p(T) = G\{n_t, t \ge 0\}$ and let $\varphi: X \longrightarrow \mathbb{Z}_2$ be a Morse cocycle given by

$$\varphi \mid \underset{i}{D_i^{n_t}} = a_i^t$$
, $i = 0, 1, \ldots, n_t - 2$.

We can define a sequence of blocks $\{\alpha^t\}, |\alpha^t| = \lambda_t - 1$ in the following way:

$$lpha^0 = (a^0[0], \dots, a^0[\lambda_0 - 2]),$$

 $lpha^{t+1}[j] = a^{t+1}[j \cdot n_t + n_t - 1], \quad j = 0, 1, \dots, \lambda_{t+1} - 2.$

The sequence of blocks $\{\alpha^t\}$ determines the Morse cocycle φ completely. Now, let $s \ge 1$ be such that

(26)
$$(s, n_t) = 1, t \ge 0.$$

Consider $\zeta_s: (\mathbf{Z}_s, \nu_s) \oplus$ the cyclic rotation on $\mathbf{Z}_s = \{0, 1, \dots, s-1\}$ with the uniform measure. In view of (26)

$$T' = T \times \zeta_s \colon X \times \mathbf{Z}_s \longrightarrow X \times \mathbf{Z}_s$$

is ergodic and has r.p.p.s., $S_p(T') = G\{s \cdot n_t, t \ge 0\}$. Define a function $\tilde{\varphi}: X \times \mathbb{Z}_t \longrightarrow \mathbb{Z}_2$ by

$$ilde{arphi}(x,i)=arphi(x),\quad x\in X,\quad i\in {f Z}_s.$$

Then we have a \mathbb{Z}_2 -extensions $(T')_{\tilde{\varphi}} = T_{\varphi} \times \zeta_s$ of T'. Assume that φ is oddly (or evenly) approximated with speed $0(\frac{1}{n^{1+\epsilon}})$. Then $\tilde{\varphi}$ is approximated with the

same speed. If follows from Theorem 1 that $\tilde{\varphi}$ can be modified by a coboundary cocycle i.e. by $\psi' + \psi' \circ T'$ to get a Morse cocycle ψ . Then T_{φ} is a factor of T'_{ψ} . We intend to describe this passage from T_{φ} to T'_{ψ} in a combinatorial language.

It is easy to see that the condition of the approximation of φ with speed $O(\frac{1}{n!+\epsilon})$ implies

(27)
$$\frac{1}{\lambda_{t+1}}\min(fr(0,\alpha^{t+1}),fr(1,\alpha^{t+1})) = 0(\frac{1}{n_t^c})$$

where $fr(i, \alpha^{t+1} = \operatorname{card}\{j; 0 \le j \le | \alpha^{t+1} |; \alpha^{t+1}[j] = i\}$. For every $t \ge 0$ we take the sets $D^{n_t} \times 0, D^{n_t} \times 1, \ldots, D^{n_t} \times (s-1)$. Then we can construct a T'-tower of height $m_t = s \cdot n_t$

Picture 3.

We have

$$(T \times \varsigma_s)(D_j^{n_t} \times i) = D_{j+1}^{n_t} \times (i+1),$$

where the additions are taken $\mod n_t$ and $\mod s$ respectively. Let

$$D_k^{m_t} = (T')^k (D_0^{n_t} \times 0), \quad k = 0, 1, \dots, m_t - 1.$$

Then (26) implies that each $D_k^{m_i}$ coincides with a level $D_j^{n_i} \times i$ for some $i, j, 0 \le j \le n_i - 1, 0 \le i \le s - 1$, and this correspondence is one-to-one. Thus

$$D_0^{m_t} \xrightarrow{T'} D_1^{m_t} \xrightarrow{T'} \dots \xrightarrow{T'} D_{m_t-1}^{m_t} \xrightarrow{T'} D_0^{m_t},$$

102

so D^{m_i} is a T'-tower of height m_i . If follows from the definition of $\tilde{\varphi}$ (see Picture 3) that

(28)
$$\tilde{\psi} \mid D_k^{m_i} = \tilde{a}_k^t = a_i^t$$

if $k = l \cdot n_t + i$ and $i = 0, 1, \dots, n_t - 2$, $l = 0, \dots, s - 1$. According to (27)

(29)
$$\tilde{\psi} \mid D_k^{m_t} = \tilde{a}_k^t = a_{n_t-1}^t$$

if $k = l \cdot n_t + n_t - 1$, $l = 0, \ldots, s - 1$, where $a_{n_t-1}^i = \tilde{\alpha}_{t+1}$ appears at α^{t+1} with frequency $> 1 - \frac{e_t}{n_t^c}$, $\varepsilon_t \to 0$. The symbols \tilde{a}_u^{t+1} , $0 \le u \le m_{t+1} - 1$ are the following. We write u in the form

$$u = l' \cdot n_{t+1} + v \cdot n_t + r,$$

where $l' = 0, 1, \ldots, s - 1, v = 0, \ldots, \lambda_{t+1} - 1, \tau = 0, \ldots, n_t - 1$. Then

(30)
$$\begin{cases} \tilde{a}_{u}^{t+1} = a_{i}^{t}, & \text{if } r < n_{t} - 1, \\ \tilde{a}_{u}^{t+1} = \alpha^{t+1} [v], & \text{if } v < \lambda_{t+1} - 1 & \text{and } r = n_{t} - 1 \\ \tilde{a}_{u}^{t+1} = a_{n_{t+1}-1}^{t+1} = \tilde{\alpha}^{t+2}, & \text{if } v = \lambda_{t+1} - 1 & \text{and } r = n_{t} - 1. \end{cases}$$

We define ψ on D^{m_0} in an arbitrary way and suppose that ψ have been defined on D^{m_t} except for the level $D_{m_t-1}^{m_t}$. We should calculate the number of errors in each column of D^{m_t} . Comparing the symbols \tilde{a}_k^t , $0 \le k \le m_t - 1$ and \tilde{a}_u^{t+1} , $0 \le u \le m_{t+1} - 1$ (see Picture 4) from (28), (29) and (30) we can formulate the following algorithm of a construction of ψ on $D_{m_t-1}^{m_t}$.

A) Define $\tilde{b}_{m_t-1}^t = \tilde{b}_t$ according to (16), i.e. if $\psi \mid D_k^{m_t} = \tilde{b}_k^t$, $0 \le k \le m_t - 1$ we chose \tilde{b}_t in such a way that

$$\sum_{k=0}^{m_k-1} \tilde{b}_k^t = \begin{cases} 1, & \text{if the approximation is odd} \\ 0, & \text{if it is even.} \end{cases}$$

B) Write the block B^t of length $s \cdot \lambda_{t+1}$ as follows

$$B^{t} = \underbrace{\alpha^{t+1}[0] \dots \alpha^{t+1}[\lambda-2]\tilde{\alpha}_{t+2}}_{\dots \alpha^{t+1}[0] \dots \alpha^{t+1}[\lambda-2]\tilde{\alpha}_{t+2}} \underbrace{\alpha^{t+1}[0] \dots \alpha^{t+1}[\lambda-2]\tilde{\alpha}_{t+2}}_{s-\text{times}} \dots$$

where $\lambda = \lambda_{t+1}$.

C) Divide the block B^t into λ_{t+1} equal parts, i.e.

 $B^{t} = B_{0}B_{1} \dots B_{\lambda_{t+1}-1}, \quad |B_{j}| = s, \quad j = 0, 1, \dots, \lambda_{t+1} - 1$ and define ψ on $D_{u}^{m_{t+1}}, u = l' \cdot m_{t} + m_{t} - 1, \quad l' = 0, 1, \dots, \lambda_{t+1} - 2$ putting $\psi \mid_{D_{u}^{m_{t+1}}} = \begin{cases} \tilde{b}_{t} & \text{if the number of the symbol} (1 + \tilde{\alpha}_{t+1}) \text{ in } B_{1} \text{ is even} \\ \tilde{b}_{t} + 1, & \text{otherwise} \end{cases}$

Picture 4

According to Theorem 1, T'_{φ} is metrically isomorphic to $T_{\varphi} \times \zeta_s$.

The rank power function

Now, we intend to prove the existence of ergodic cocycles satisfying (5). In [11], Kwiatkowski and Rojet discovered a trichotomy concerning Morse shifts. Namely either

$$C(Tarphi)=\{T^i_arphi\circ\sigma^j\}, \hspace{1em} i\in {f Z}, \hspace{1em} j=0,1, \hspace{1em} \sigma(x,i)=(x,i+1)\}$$

104

or T_{ω} is rigid. If the latter holds then either

(31)
$$C(T_{\varphi}) = \text{weak closure of } \{(T_{\varphi})^n , n \in \mathbb{Z}\},\$$

or

(32)
$$C(T_{\varphi})$$
/weak closure of $\{(T_{\varphi})^n , n \in \mathbb{Z}\} = \{id, \sigma\},\$

where $C(T_{\varphi})$ is the centralizer of T, i.e. the set of all automorphisms of $(X \times \mathbb{Z}_2, \tilde{B}, \tilde{\mu})$ commuting with T_{φ} . No one of these possibilities is vacuous. Combining the Weak Closure Theorem [9] with the fact that the rank of Morse dynamical system is at most 2 one can easily prove that

(33)
$$\operatorname{rk}(T_{\varphi}) = 2 \quad \text{iff} \quad \sigma \notin \operatorname{weak} \operatorname{closure} \{(T_{\varphi})^n, n \in \mathbb{Z}\},$$

as soon as φ is a Morse cocycle.

Given $\varphi \in \mathcal{K}$ we call the cocycle $\varphi + 1$ (or $T_{\varphi+1} = T_{\varphi} \circ \sigma$) the completion of φ . The idea to prove (5) consists in the simple observation that a cocycle and its completion can have quite different properties. Take a Morse cocycle φ such that φ is evenly approximated with a given speed (at least $0(\frac{1}{n})$) and moreover that

$$\operatorname{rk}(T_{\omega}) = 2.$$

We recall that the paper [11] assures an abundance of such cocycles. We assume here that $S_p(T) = G\{n_t, t \ge 0\}, n_t$ are odd. It is an easy observation that the completion of the φ admits then an odd approximation with the same speed.

Therefore

$$\operatorname{rk}(T_{\varphi+1}) = 1$$

and

$$\operatorname{rk}(T_{\varphi+1})^2 = \operatorname{rk}(T_{\varphi})^2 \ge \operatorname{rk}(T_{\varphi}) = 2.$$

Now, $(T_{\varphi})^2 = T_{\varphi+\varphi\circ T}^2$ is ergodic and $\varphi+\varphi\circ T$ admits an even approximation with the same speed as φ . Because this speed is at least $0(\frac{1}{n})$ the rank of T_{φ} is at most 2. Similar reasoning shows that

$$\operatorname{rk}(T_{\varphi})^s = \left\{egin{array}{ll} 1, & (s,n_t)=1, \ s \ ext{is odd} \\ 2, & (s,n_t)=1, \ s \ ext{is even}. \end{array}
ight.$$

The proof that $m.s.m.(T_{\varphi})^s = 1$, $(s, n_t) = 1$ will follow from the following.

Lemma 3. Let T be an ergodic automorphism with r.p.p.s., $S_p(T) = G\{n_l, t \ge 0\}$. Assume that φ admits an odd or even approximation with speed $O(\frac{1}{n})$ and φ is ergodic and nonconstant. Then T_{φ} has simple spectrum.

Proof: The proof follows from the considerations from [7].

Remark. If $\operatorname{rk}(T_{\varphi}) = 2$ and φ admits an even approximation with speed $o(\frac{1}{n^{1+\varepsilon}})$ then, of course, T_{φ} and $T_{\varphi+1}$ cannot be isomorphic $(\operatorname{rk}(T_{\varphi+1}) = 1)$. Actually, they cannot be spectrally isomorphic. Indeed, $(T_{\varphi+1})^{m_t} \longrightarrow \sigma$ for a sequence $\{m_t\}$ [9]. If an infinity of the m_t 's were even then $(T_{\varphi})^{m_t} = (T_{\varphi+1})^{m_t} \to \sigma$ and from (33) T_{φ} would have rank 1. To avoid the contradiction we are forced to assume that the m_t 's are odd. But then

$$(T_{\varphi})^{m_t} \to \mathrm{id} \quad \mathrm{and} \quad (T_{\varphi+1})^{m_t} \nrightarrow \mathrm{id} \,.$$

So T_{φ} and $T_{\varphi+1}$ cannot be spectrally isomorphic.

Remark. It is interesting to know whether the oscilation of the rank power function is typical for Z-cocycles. But it is not the case, as the following shows. First of all we notice that

(34)
$$rk(T_{\varphi})^2 = 2$$
 iff $rk(T_{\varphi+1}) = 2$,

as soon as φ admits an odd approximation with speed $o(\frac{1}{n^{1+\epsilon}})$. Indeed, if $\operatorname{rk}(T_{\varphi}) = 1 = \operatorname{rk}(T_{\varphi+1})$, then

$$\exists m_t \quad (T_{\varphi})^{m_t} \longrightarrow \sigma$$

and

$$\exists m'_t \quad (T_{\varphi+1})^{m'_t} \longrightarrow \sigma.$$

Since (33) holds, it is enough to prove that m_t or m'_t are even for an infinity of t's. If this is not the case, then m_t , m'_t are odd. We can also assume $m_t - m'_t \nearrow \infty$ by passing to subsequences. Then

$$(T_{\varphi})^{m_t} \circ (T_{\varphi+1})^{-m'_t} \longrightarrow \sigma \circ \sigma^{-1}$$

s0

$$(T_{\varphi})^{m_{t}} \circ (T_{\varphi})^{-m_{t}'} \circ \sigma \longrightarrow \sigma \circ \sigma^{-1}$$

which implies

$$(T_{\varphi})^{m_i - m'_i} \longrightarrow \sigma$$

and

$$(T_{\varphi})^{2s_t} \longrightarrow \sigma$$
, where $2s_t = m_t - m'_t$.

If $rk(T_{\varphi+1}) = 2$, then

$$2 \geq \operatorname{rk}((T_{\varphi})^2) = \operatorname{rk}((T_{\varphi+1})^2) \geq \operatorname{rk}(T_{\varphi+1}) = 2.$$

Now the set

$$\mathcal{A} = \{ \varphi \in \mathcal{K}, \operatorname{rk}(T_{\varphi}) = 1 \}$$

is residual because it contains all cocycles oddly approximated with speed $o(\frac{1}{n})$. Therefore the set $\mathcal{A} + 1 = \{\varphi + 1, \varphi \in \mathcal{A}\}$ is residual. Whence

$$\mathcal{A} \cap (\mathcal{A}+1) = \{ arphi \in \mathcal{K}, \operatorname{rk}(T_{arphi}) = 1 = \operatorname{rk}(T_{arphi+1}) \}$$

is residual. This fact and (34) give that the rank power function being constant (and equal 1) is a typical property for K.

Example. The next problem we intend to deal with here is the problem of lifting roots. It is well-know how to calculate roots for T with r.p.p.s., $S_p(T) = G\{n_t; t \ge 0\}$. It $(s, n_t) = 1, t \ge 0$ then T^s and T are isomorphic because they have r.p.p.s. and they have the common sequence $(D^{n_t}) \nearrow B$. It would be interesting to know whether a sufficiently high speed of approximation of φ assures the existence of some roots. However the results of [11] show that this supposition cannot be true.

We take the Morse sequence

$$x = b^0 \times b^1 \times \dots$$

where

$$b^t = \overbrace{0101\ldots01}^{\mu_t} \overbrace{1010\ldots101}^{\mu_t+1}, t \ge 0.$$

Assume that

$$\sum_{0}^{\infty}\frac{1}{\mu_{t}}<\infty.$$

Put

 $\lambda_t = 2\mu_t + 1, \quad n_t = \lambda_0 \cdot \ldots \cdot \lambda_t, \quad c_t = b^0 \times \cdots \times b^t, t \ge 0$ and define blocks $\hat{c_t}, \mid \hat{c_t} \mid = n_t - 1$ putting

$$\hat{c}_t[i] = c_t[i+1] + c_t[i]$$
 in $\mathbf{Z}_2, \ i = 0, 1, \dots, \lambda_t - 2$.

Let Δ be the group of all n_t -adic numbers i.e.

$$\Delta = \{g; \ g = \sum_{0}^{\infty} g_t \cdot n_{t-1}, \ 0 \le g_t \le \lambda_t - 1, \ n_{-1} = 1\},\$$

and let μ be the Haar measure of \triangle and T be the rotation on $\hat{1} = (1, 0, 0, ...)$. For every $t \ge 0$ we have a T-power D^{n_t} in \triangle such that

$$D_i^{n_t} = \{g; \sum_{u=0}^t g_u \cdot n_{u-1} = 1\}, \quad i = 0, 1, \dots, n_t - 1.$$

The sequence x determines a Morse cocycle φ on \triangle by

$$\varphi \mid D_i^{n_t} = \hat{c_t}[i], \quad i = 0, 1, \dots, n_t - 2.$$

In [11] the centralizer of T_{φ} has been described. Each $S \in C(T_{\varphi})$ has a form

$$S(g,i)=(g+g_0\,,\,i+f(g)),$$

where $g_0 \in \triangle$ and $f: \triangle \longrightarrow \mathbb{Z}_2$ satisfy the condition

(35)
$$\varphi(g+g_0) + f(g) = f(g+\hat{1}) + \varphi(g).$$

We will show that for every k > 1 there exists no $S \in C(T_{\varphi})$ such that $S^k = T_{\varphi}$. Remark that

$$S^k(g,i) = (g + k \cdot g_0, i + f(g) + \dots + f(g + (k-1)g_0)).$$

Then $S^{k} = T_{\varphi}$ iff $k \cdot g_{0} = \hat{1}$ and

(36)
$$f(g) + \cdots + f(g + (k-1)g_0) = \varphi(g),$$

where g_0 and f satisfy (35).

Notice that there exists $g_0 \in \Delta$ with $k \cdot g_0 = \hat{1}$ iff $(k, n_t) = 1$. We will denote such g_0 by $\hat{1}/k$. Now we prove that for k > 2, $(k, n_t) = 1$, $\hat{1}/k$ does not satisfy (35) and $\hat{1}/2$ satisfies (35) but the corresponding function f does not satisfy (36).

Now, let k > 2, $(k, n_t) = 1$, t = 0, 1, ... If $\hat{1}/k = (l_t)_0^{\infty}$, $0 \le l_t \le n_t - 1$, $l_{t+1} \equiv l_t \pmod{n_t}$ then l_t is one of the numbers

$$\frac{n_t+1}{k}, \frac{2n_t+1}{k}, \ldots, \frac{(k-1)n_t+1}{k}.$$

For such a number l_t we have

$$\frac{l_t}{n_t} \geq \frac{1}{k}, 1 - \frac{l_t}{n_t} \geq \frac{1}{2k} \text{ and } \left| \frac{l_t}{n_t} - \frac{1}{2} \right| \geq \frac{1}{3k}$$

for t large enough.

If $\hat{1}/k$ is represented as a series $\sum_{0}^{\infty} \bar{g}_{t} \cdot n_{t-1}$, then the inequalities

$$\left|\frac{l_t}{n_t} - \frac{\bar{g}_t}{\lambda_t}\right| \leq \frac{1}{\lambda_t} - \frac{1}{n_t} \leq \frac{1}{2\lambda_t}$$

imply

(37)
$$\frac{\vec{g}_t}{\lambda_t} \ge \frac{1}{4k}, \quad 1 - \frac{\vec{g}_t}{\lambda_t} \ge \frac{1}{4k}, \quad \left| \frac{g_t}{\lambda_t} - \frac{1}{2} \right| \ge \frac{1}{4k}$$

for t large enough. On the other hand it is easy to remark that the inequalities

$$rac{g_i}{\lambda_i} > \delta \ , \ 1 - rac{g_i}{\lambda_i} > \delta \ \ ext{ and } \ \left| \ rac{g_i}{\lambda_i} - rac{1}{2} \
ight| > \delta \ , \ 0 \leq g_i \leq \lambda_i - 1$$

108

imply

(38)
$$d(b^t b^t [g_t, g_t + \lambda_t - 1] b^t) \geq \delta.$$

Moreover, (38) is valid if we replace $b^t b^t$ by $b^t \bar{b}^t, \bar{b}^t b^t$ and $\bar{b}^t \bar{b}^t$. In view of Theorem 1 in [11], (37) and (38) $g_0 = \hat{1}/k$ does not satisfy (35).

Now take $\hat{1}/k$. Then $\frac{\hat{1}}{k} = (\frac{n_t+1}{2})_0^{\infty} = (\mu_0 + 1) + \sum_{t=1}^{\infty} \mu_t \cdot n_{t-1}$. It is clear that

$$d(b^t \tilde{b^t}[\mu_t + 1, \mu_t + \lambda_t], b^t) = \sum_0^\infty \frac{1}{\lambda_t} < \infty.$$

Applying again [11] we obtain that (35) is satisfied with $g_0 = \hat{1}/2$ and the function $f = \lim f_t$, where

$$f_t(g) = c_t \tilde{c}_t \left[\frac{n_t + 1}{2} + j_t \right] + c_t [j_t] , \ g = (j_t), \ 0 \le j_t \le n_t - 1$$

Next we have

$$f_t(g) + f_t(g + \hat{1}/2) = \hat{c}_t[j_t + 1] + c_t \left[\frac{n_t + 1}{2} + j_t\right] + c_t \left[\frac{n_t + 1}{2} + j_t\right] + c_t[j_t] = \underbrace{\frac{\varphi(g)}{e_t[j_t + 1] + c_t[j_t] + 1}}_{= c_t[j_t + 1] + c_t[j_t] + 1}, \quad \text{for } g = (j_t) \text{ and } j_t \le \frac{n_t - 3}{2}.$$

We conclude that (36) does not hold and T_{φ} has no roots of any degree. At the same time the function φ admits an odd approximation with the speed $o(\frac{1}{\lambda_{t+1}} \cdot \frac{1}{n_t})$.

Taking suitable λ_t 's we can get Morse cocycles φ 's admitting an approximation with an arbitrarily high speed.

References

- G. CHRISTOL, T. KAMAE, M. MENDES-FRANCE, G. RAUZY, Suites algébraiques, automates et substitutions, Bull. Soc. Math. France 108 (1980), 401-420 (in French).
- E. COVEN, M. KEANE, The structure of substitution minimal sets, Trans. Amer. Math. Soc. 62 (1971), 89-102.
- 3. N. FRIEDMAN, P. GABRIEL, J. KING, An invariant on rigid rank-1 transformations, preprint.
- 4. S. GLASNER, D. RUDOLPH, Uncountable many topological models for ergodic transformations, Erg. Th. Dyn. Syst. 4 (1984), 233-236.

- H. HELSON, Analyticity on compact abelian groups, Algebra in Analysis, ed. J. H. Williamson, Academic Press (1975), 1-62.
- H. HELSON, W. PARRY, Cocycles and spectra, Arkiv för Mat. 16 (1978), 195-206.
- A.B. KATCK, A.M. STEPIN, Approximation in ergodic theory, Uspekhi Mat. Nauk 22 no. 5 (1967), 81-106 (in Russian).
- R. KEANE, Generalized Morse sequences, Z. Wahr. Verw. Geb. 10 (1968), 335-353.
- 9. J. KING, The commutant is the weak closure of the powers, for rank-1 transformations, Erg. Th. Dyn. Syst. 6 (1986), 363-385.
- J. KWIATKOWSKI, Isomorphism of regular Morse dynamical systems, Studia Math. 62 (1982), 59-89.
- 11. J. KWIATKOWSKI, T. ROJEK, the centralizer of Morse shifts induced by arbitrary blocks, *Studia Math.* (to appear).
- 12. M. LEMANCZYK, The centralizer of Morse shifts, Ann. Univ. Clermont-Ferrand 87 (1985), 43-56.
- 13. M. LEMANCZYK, Toeplitz Z₂-extensions, Ann. H. Poincaré Inst. (to appear).
- 14. M. LEMANCZYK, Ergodic Z_2 -extensions over rational pure point spectrum, category and homomorphisms, *Comp. Math.* (to appear).
- M. LEMAŃCZYK, M. K. MENTZEN, Generalized Morse sequences on n-symbols and m-symbols are not isomorphic, Bull. Pol. Ac. Sc. 33 no. 5-6 (1985), 239-245.
- J. MATHEW, M. G. NADKORNI, A measure -preserving transformation whose spectrum has Lebesgue component of multyplicity two, Bull. Lon. Math. Soc. 16 (1984), 402-406.
- D. NEWTON, On canonical factors of ergodic dynamical systems, J. Lon. Math. Soc. 19 (1978), 129-136.
- 18. W. PARRY, Compact abelian group extensions of discrete dynamical systems, Z. Wahr. Verw. Geb. 13 (1969), 95-113.
- 19. W. PARRY, Topics in Ergodic Theory, C.U.P. (1981).

I. Filipowicz: Institute of Mathematics Pedagogical College Chodkiewicza 30, 85-064 Bydgoszcz, POLAND.

- J. Kwiatkowski: Institute of Mathematics Nicholas Copernicus University ul. Chopina 12/18, 87-100 Torun, POLAND.
- M. Lemańczyk: Institute of Mathematics Nicholas Copernicus University ul. Chopina 12/18, 87-100 Torun, POLAND.

Rebut el 26 de Maig de 1987