APPROXIMATION OF Z_{2}-COCYCLES AND SHIFT DYNAMICAL SYSTEMS

I. Filipowicz, J. Kwiatkowski, M. Lemañczyk

Abstract

Abstract

Let $\bar{G}=G\left\{n_{t}, n_{t} \mid n_{t+1}, t \geq 0\right\}$ be a subgroup of all roots of unity generated by $\exp \left(2 \pi i / n_{t}\right), t \geq 0$, and let $\tau:(X, B, \mu) \cup$ be an ergodic transformation with pure point spectrum \bar{G}. Given a cocycle $\varphi, \varphi: X \longrightarrow$ \mathbf{Z}_{2}, admitting an approximation with speed $0\left(1 / n^{1+c}, \epsilon>0\right)$ there exists a Morse cocycle ψ such that the corresponding transformations τ_{φ} and τ_{ϕ} are relatively isomorphic. An effective way of a construction of the Morse cocycle ψ is given. There is a cocycle φ oddly approximated with an arbitrarily high speed and without roots.

This note delivers examples of φ 's admitting an arbitrarily high speed of approximation and such that the power multiplicity function of t_{∞} is equal to one and the power rank function is oscillatory. Finally, we also prove that if φ is a Morse cocycle then each proper factor of τ_{φ} is rigid. In particular continuous substitutions on two symbols cannot be factors of Morse dynamical systems.

Introduction and statement of results

Let $T:(X, B, \mu) \circlearrowleft$ be an ergodic transformation of a Lebesgue space. We will denote by $S p(T)$ the group of all the eigenvalues of the unitary operator $U_{T}: L^{2}(X, \mu) \circlearrowright, U_{T} f=f \circ T . T$ is said to have rational pure point spectrum (r.p.p.s) if $L^{2}(X, \mu)$ is generated by the eigenfunctions of U_{T} and, besides,

$$
S p(T)=G\left\{n_{t}: t \geq 0\right\}
$$

where $G\left\{n_{t}: t \geq 0\right\}, \quad n_{t} \mid n_{t+1}, \quad t \geq 0$, denotes the subgroup of all roots of unity generated by $\exp \left(2 \pi i / n_{t}\right), \quad t \geq 0$.

Let $D^{n_{t}}=\left(D_{0}^{n_{t}}, D_{1}^{n_{t}}, \ldots, D_{n_{t}}^{n_{t}}\right)$ be a partition, i.e. $D_{i}^{n_{t}} \cap D_{j}^{n_{t}}=\emptyset, i \neq$ $j, D_{i}^{n_{t}} \in B$. Then $D^{n_{t}}$ is called a partition of X if, besides, ${ }_{i=0}^{n_{t}} D_{i}^{n_{t}}=X$. We call $D^{n_{t}}$ a T-tower (with height n_{t}) if $T^{i} D_{o}^{n_{t}}=D_{i}^{n_{t}}, \quad i=0, \ldots, n_{t}-1$ and a T-tower of X if, besides, $D^{n_{t}}$ is a partition of X. The ergodicity of T says that if $D^{n_{t}}$ is a T-tower of X with height n_{t} then this is the only T-tower of X with that height (reordering elements of $D^{n_{t}}$, if necessary). It turns out (cf. [15]) that:
(1) T has r.p.p.s. with $S_{p}(T)=G\left\{n_{t}: t \geq 0\right\}$ iff there is a sequence $\left(D^{n_{t}}\right)_{t \geq 0}$ of T-towers of X such that $D^{n}, \nearrow B$.

Let \mathcal{K} denote the class of all the \mathbf{Z}_{2}-cocycles of (X, B, μ) i.e. $\varphi \in \mathcal{K}$ if $\varphi: X \longrightarrow \mathbf{Z}_{2}$ is measurable. We endow K with the natural topology given by the metric

$$
S\left(\varphi, \varphi^{\prime}\right)=\mu\left(\varphi^{-1}(0) \Delta \varphi^{\prime-1}(0)\right)+\mu\left(\varphi^{-1}(1) \Delta \varphi^{\prime-1}(1)\right)
$$

With this metric K becomes a complete, separable metric space. Having fixed $T:(X, \mathcal{B}, \mu) \circ$ we define the class K_{T} of all \mathbf{Z}_{2}-extensions $T_{\varphi}, \varphi \in \mathcal{K}$, of T, i.e.

$$
T_{\varphi}:\left(X \times \mathbf{Z}_{2}, \tilde{B}, \tilde{\mu}\right) \bigcirc, \quad T_{\varphi}(x, i)=(T x, \varphi(x)+i),
$$

where $\tilde{\mu}$ is the product measure $\mu \times \nu_{2} \quad\left(\nu_{2}(0)=\nu_{2}(1)=1 / 2\right)$ and \tilde{B} is the corresponding product σ-algebra. A cocycle φ is called ergodic whenever T_{φ} is ergodic. Now, changing T we obtain the class of all ergodic \mathbf{Z}_{2}-extensions of automorphisms with r.p.p.s.

This class is one of more interesting classes in ergodic theory. A great deal of the attention has been devoted to the study of it (for instance [1], [2], [6], [10], [13], (14], [16], [18]).
Assume (D^{n+}) is a sequence of T-towers of X arising from (1) and let $f: N \longrightarrow R$ be a real function. Following [7] we call $\varphi \in \mathcal{K}$ oddly (evenly) approximated with speed $o(f(n))$ if for some subsequence $\left\{n_{t_{k}}\right\}$ there exists sets F_{k} consisting of an odd (even) number of mernbers of $D^{n_{k}}$ such that

$$
\begin{equation*}
\mu\left(\varphi^{-1}(1) \Delta F_{k}\right)=o\left(f\left(n_{t_{k}}\right)\right) . \tag{2}
\end{equation*}
$$

The odd approximation with speed $o(1 / n)$ guarantees the ergodicity of $\varphi([\boldsymbol{\gamma}])$.
Assume $\varphi \in \mathcal{K}$ and ($D^{n_{i}}$) is a sequence of T-towers given by (1). Then φ is said to be a Morse cocycle if there is a subsequence ($n_{t_{k}}$) such that $\left.\varphi\right|_{D_{i}^{n_{k}}}$ is constant ($\left.\varphi\right|_{D_{i}^{c_{k}}}=a_{i}^{t}$) on each level of $D^{n_{k}}$ except for $i=n_{t_{k}}-1$. The main result of [14] was

Representation Theorem. If φ is oddly approximated with speed $0\left(\frac{1}{n^{2}}\right)$ then there is a Morse sequence $x=b^{0} \times b^{1} \times \ldots$ such that T_{φ} is isomorphic to the Morse dynamical system determined by x. (We refer to $[8]$, [10], [12] for the definition and properties of Morse sequences).

In the present paper we stenghten the Representation Theorem proving:
Theorem 1. If $\varphi \in \mathcal{X}$ is ergodic and admits an odd (or even) approximation with speed $0\left(\frac{1}{n^{1+c}}\right), \epsilon>0$, then there exists a Morse cocycle ψ such that T_{φ} and T_{ψ} are relatively isomorphic.

We recall that T_{φ} and T_{ψ} are relatively isomorphic if there exists a cocycle $f: X \rightarrow Z_{2}$ such that

$$
\begin{equation*}
\varphi(x)+f(T x)=f(x)+\psi(x) . \tag{3}
\end{equation*}
$$

Then the map $I(x, i)=(x, f(x)+i)$ establishes an isomorphism between T_{φ} and T_{ψ}.

We have been unable to decide whether or not the Theorem holds for $\epsilon=0$.
Looking at the proof of the Representation Theorem we see that it does not provide any effective way of a construction of the Morse cocycle ψ (or the Morse sequence x). The proof of Theorem 1 is based on a quite different idea and allows to determine the Morse cocycle in an algorithmic way.

Let G be the group of all n_{4}-adic integers i.e.

$$
G=\left\{g ; g=\sum_{0}^{\infty} g_{t} \cdot n_{t-1}, 0 \leq g_{t} \leq \lambda_{t}-1, n_{-1}=1\right\}, \lambda_{t}=\frac{n_{t+1}}{n_{t}}, t \geq 0,
$$

and let T be the translation on the unit element $\hat{1}$. Then (G, T, m), (m is the Haar measure) is an ergodic system having r.p.p.s., $S_{p}(T)=G\left\{n_{t}, t \geq 0\right\}$. Hence if $\varphi: G \rightarrow Z_{2}$ is a cocycle satisfying the assumptions of Theorem 1 then it can be modyfied by a coboundary cocycle getting ψ, which is measurable with respect to the algebra generated by $\left\{D^{n}\right\}, t \geq 0$. Although ψ cannot be continuous on G (except for some trivial cases), there is a metod making such cocycles continuous. Namely, ψ is the so called Toeplitz cocycle in the sense of [13] i.e. it is completely determined by some Toeplitz sequence $\eta \in\{0,1\}^{z}$. If we take $X=\overline{\theta(\eta)}$ (the closure of the trajectory of η via the shift r) and the cocycle $\psi^{\prime}: \overline{\theta(\eta)} \longrightarrow \mathbf{Z}_{2}, \psi^{\prime}(y)=y[0]$, then the automorphisms τ_{ψ}, and T_{ψ} are metrically isomorphic ([13]). In other words there is some effective way of a construction of an ergodic r_{ψ}, (with ψ^{\prime} to be continuous) which is isomorphic to T_{ψ}.

Notice that from [4] it follows that there is a topological process $(\tilde{G}, \widetilde{T}, \tilde{\mu})$, a metric isomorphism $\Pi:(\tilde{G}, \tilde{\mu}) \rightarrow(G, \mu) \Pi \widetilde{T}=T \Pi$ and a continuous function $\tilde{\varphi}: \tilde{G} \rightarrow \mathbf{Z}_{2}$ such that $\tilde{\varphi}=\varphi \circ \Pi$ a.e. This implies that T_{φ} and $\tilde{T}_{\bar{\varphi}}$ are isomorphic. In particular, if φ is a Toeplitz cocycle then $\tilde{G}=\overline{\theta(\eta)}, \tilde{T}=\tau$. The task arises how to determine (\tilde{G}, \tilde{T}) (in an effective way) for a general $\varphi \in K$. In particular it would be interesting to know whether given $\varphi: G \rightarrow \mathbf{Z}_{2}$ there exists a Toeplitz cocycle ψ such that r_{ψ} is isomorphic to T_{φ}. If this is the case we would have $G=\overline{\theta(\eta)}$. Our paper delivers a construction of such a ψ if φ fullfils the assumptions of Theorem 1.

In the remainder of the paper we consider some problerns concerning cocycles admitting a high speed of approximation. For instance, it turns out that for any T
(4) there is a cocycle φ oddly approximated with an arbitrarily high speed and without roots.

The next application is connected with the osciliation of the rank power function. Let $U:(Y, \tau, \nu) O$ be an ergodic automorphism. For the definition of the rank ($\mathrm{rk}(U)$) we refer to $[3],[9]$ and to $[19]$ for the definition of the maximal spectral multiplicity (m.s.m. (U)). These notions allow to define two functions

$$
s \longrightarrow \operatorname{rk}\left(U^{s}\right), \quad s \longrightarrow \text { m.s.m. }\left(U^{s}\right), \quad s=1,2, \ldots
$$

called power rank function and power multiplicity function respectively. They are defined for those s's that U^{a} is ergodic. In [9] J. King raised the question whether the power rank function had to be monotonic (it is rather easy to see that $\left.\operatorname{rk}(U) \leq \operatorname{rk}\left(U^{s}\right), s \geq 1\right)$. Then in [3] there is an example for which the power rank function is oscillatory. However, $\mathrm{rk}(U) \geq \mathrm{m} . \mathrm{s} . \mathrm{m} .(U)$ and this example is based on the following facts: for some subsequences $\left(n_{k}\right),\left(m_{k}\right) \operatorname{rk}\left(U^{n_{k}}\right)=$ 1 and m.s.m. $\left(U^{m_{k}}\right) \geq 2$. This note delivers examples of ψ 's addmitting an arbitrarily high speed of approximation with

$$
\begin{gather*}
\operatorname{rk}\left(\left(T_{\varphi}\right)^{s}\right)= \begin{cases}1, & \text { g.c.d. }\left(s, n_{t}\right)=1, s-\text { odd } \\
2, & \text { g.c.d. }\left(s, n_{t}\right)=1, s-\text { even }\end{cases} \tag{5}\\
\text { m.s.m. }\left(\left(T_{\varphi}\right)^{s}\right)=1, \quad \text { g.c.d. }\left(s, n_{t}\right)=1
\end{gather*}
$$

In [14] the author raised the factors problem for the class of Morse sequences, i.e. given a Morse cocycle φ we seek all T_{φ}-invariant sub- σ-algebras $C \subset B$. Of course $B=\left\{A \times \mathbf{Z}_{2}, A \in B\right\}$ is an example of such a C. The action of T_{φ} on B is isomorphic to T. On the other hand the class of ergodic \mathbf{Z}_{2}-extensions of r.p.p.s. automorphisms is closed under taking factors. Is there a $C \subseteq \tilde{B}$ such that action of T_{φ} on C (i.e. $T_{\varphi}:\left(X \times \mathbf{Z}_{2}, C, \tilde{\mu}\right) 0$) has partly continuous spectrum? We remark the following consequence of coding arguments used in [14] (compare it with the analogous result of J. King [9] for rank 1 class).

Theorem 2. If φ is a Morse cocycle then each proper factor of T_{φ} is rigid. In particular continuous substitutions /2/ on two symbols cannot be factors of Morse dynamical systems.

The natural reverse problem is the following. Can any rigid Morse dynamical system be extended to a Morse dynamical system with larger group of eigenvalues? There is a positive answer in case of sufficiently high speed of approximation (odd or even), but we have been unable to solve this problem in general. Has a positive answer analogous question for rank 1 class?

Proof of Theorem 1

Assume $T:(X, B, \mu) \cup$ with r.p.p.s., $S_{p}(T)=G\left\{n_{t}: t \geq 0\right\}$ and let $\varphi \in \mathcal{K}$ admit an odd approximation with speed $0\left(\frac{1}{n^{1+c}}\right), \epsilon>0$. Hence there is a
subsequence $\left\{n_{t_{k}}\right\}$ satisfying (2). For a simplication of notations we assume that this subsequence is equal to the $\left\{n_{i}\right\}$, i.e.

$$
\begin{equation*}
n_{t}^{1+\varepsilon} \mu\left(\varphi^{-1}(1) \Delta F_{t}\right) \underset{t \rightarrow \infty}{\longrightarrow} 0 \tag{6}
\end{equation*}
$$

where F_{t} is a union of an odd number of levels of $D^{n_{t}}$. Assume that $\psi \in K$ is another ergodic cocycle. Then it is known that any isomorphism between T_{φ} and T_{ψ} is of the form $S_{\psi}:\left(X \times \mathbf{Z}_{2}, \widetilde{B}, \tilde{\mu}\right) 0$, where $S T=T S$ and

$$
\begin{equation*}
\psi^{\prime}(T x)+\psi^{\prime}(x)=\varphi(x)+\psi(S x) \quad \text { in } ; \mathbf{Z}_{2} \tag{7}
\end{equation*}
$$

where $\psi^{\prime} \in \mathcal{K}$ (see $[\mathbf{1 7}]$). Let us notice that given $S,(7)$ has measurable solution iff $T_{\psi \circ S+\varphi}$ is not ergodic. Indeed, $T_{\psi \circ S+\varphi}$ is ergodic iff there is no measurable solution $\xi: X \longrightarrow S^{1}$ such that

$$
\begin{equation*}
\xi(T x)=(-1)^{(\psi \circ S+\varphi)(x)} \cdot \xi(x) \tag{8}
\end{equation*}
$$

(see [7], [18]). If $T_{\psi \circ S+\varphi}$ is not ergodic then we get a measurable solution of (8). Thus, the function $\xi(x)=\xi^{2}(x)$ is T-invariant, so by the ergodicity of T it is constant. Therefore without loss of generality we can assume that $\xi(x)= \pm 1$. Then the function $\psi^{t}=1_{A}, A=\xi^{-1}(-1)$ is a solution of (7). On the other hand if ψ^{\prime} is a solution of (7) then the function $\xi(x)=(-1)^{\psi^{\prime}(x)}$ satisfies (8).

The following simple lemma will be useful in the proof of Theorem 1.

Lemma 1. Let $U:(Y, C, \nu) O$ be an automorphism of a Lebesgue space. Assume that there is a sequence $\left\{A_{n}\right\}, A_{n} \in \mathcal{C}$ such that

$$
\begin{equation*}
\nu\left(A_{n+1} \triangle A_{n}\right)<\epsilon_{n}, \quad \sum_{1}^{\infty} \epsilon_{n}<\infty \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\nu\left(U A_{n} \triangle A_{n}\right) \underset{n}{\longrightarrow} 0 \tag{10}
\end{equation*}
$$

Then U is not ergodic.

Now, we turn back to the cocycle φ. Fix $t \geq 0$ and consider the tower D^{n}.

Picture 1

Then the speed of approximation (which means that (6) holds) says that the function φ restricted to each level $D_{i}^{n^{\prime}}, i=0,1, \ldots, n_{t}-1$, is "almost" constant, i.e.

$$
\left.\varphi\right|_{D_{i}^{n_{i}}}=a_{i}^{t}
$$

except for a part of $D^{n_{i}}$ with measure $\leq \frac{\epsilon_{i}}{n_{i}^{+c}}, \quad \epsilon_{t} \longrightarrow 0$. Because of the odd approximation,

$$
\begin{equation*}
\sum_{i=0}^{n_{1}-1} a_{i}^{t}=1 \tag{12}
\end{equation*}
$$

To construct $D^{n_{t+1}}$ we divide the tower $D^{n_{t}}$ into λ_{t+1} columns with the same measure $1 / \lambda_{t+1}$ (Picture 1), $\lambda_{t+1}=n_{t+1} / n_{t}$. The n_{t} pieces of the s-th column $\left(s=0,1, \ldots, \lambda_{t+1}-1\right)$ are the levels of $D^{n_{t+1}}$ assigned to the numbers $s \cdot n_{i}, s$. $n_{t}+1, \ldots, s \cdot n_{t}+n_{t}-1$.

We say that there is an error in $D_{j}^{n_{t+1}}, j=i+s \cdot n_{t}, 0 \leq i \leq n_{t}-1,0 \leq$ $s \leq \lambda_{t+1}-1$ if

$$
a_{i}^{t} \neq a_{j}^{t+1}
$$

In Picture 1 such levels are marked by the sign "0". Denote by m_{i} the number of all columns with some errors. The measure μ of such a column is
equal to $1 / \lambda_{t+1}$. Therefore the measure of all columns with errors is equal to

$$
\begin{equation*}
C E^{t+1}=\frac{m_{t}}{\lambda_{t+1}} \tag{13}
\end{equation*}
$$

Moreover, the measure μ of any error is equal to $1 / n_{t+1}$, so in view of (6)

$$
\begin{equation*}
n_{t}^{1+\varepsilon} \cdot \frac{k_{t}}{n_{t+1}} \underset{t}{\longrightarrow} 0 \tag{14}
\end{equation*}
$$

where k_{t} is the number of all errors. But $m_{t} \leq k_{t}$ and the combination of (13) and (14) implies

$$
n_{t}^{\varepsilon} \cdot C E^{t+1} \longrightarrow \longrightarrow 0
$$

and consequently

$$
\begin{equation*}
\sum_{t=0}^{\infty} C E^{t+1}<\infty \tag{15}
\end{equation*}
$$

since $\varepsilon>0$.

Construction of a Morse cocycle. At each stage t our cocycle ψ will be constant on each level $D_{i}^{n_{t}}, i=0,1, \ldots, n_{t}-2$, and will not be defined on $D_{n_{t}-1}^{n_{t}}$. We define ψ on $D^{n_{0}}$ in an arbitrary way and assume that ψ is given on levels of $D^{n_{4}}, t \geq 0$, i.e.

$$
\left.\psi\right|_{D_{i}^{n_{t}}}=b_{i}^{t}, \quad i=0,1, \ldots, n_{t}-2
$$

First of all we define $b_{n_{t}-1}^{t}$ so that

$$
\begin{equation*}
\sum_{i=0}^{n_{t}-1} b_{i}^{t}=1 \tag{16}
\end{equation*}
$$

We do not change the function ψ on the levels $D_{j \cdot n+i}^{n_{i}}, j=0,1, \ldots, \lambda_{t+1}-1$, $i=0, \ldots, n_{t}-2$, i.e. we put

$$
\left.\psi\right|_{D_{j \cdot n_{i}+i}^{n_{t+1}}}=b_{i}^{t}
$$

Next we should define the function ψ on the levels $D_{j, n_{t}+n_{t}-1}^{n_{t+1}}, j=0,1, \ldots$, $\lambda_{t+2}-2$. To do this we look at the number of errors for φ in the j-th column. If the number of errors is even (in particular if there are no errors) then we put

$$
\left.\psi\right|_{D_{j: n_{t}+n_{t}-1}^{n_{t}}}=b_{n_{t}-1}^{t}
$$

and $1+b_{n,-1}^{t}$ otherwise.

Of course this procedure leads to the definition of a Morse cocycle. Moreover ψ admits an odd approximation with speed $0\left(1 / n^{1+e}\right)$, by (16) and (14).

It remains to prove that the cocycle $\varphi+\psi$ is not ergodic, i.e. that $T_{\varphi+\psi}$ is not ergodic. To this end we will define a sequence of sets $\left\{A_{t}\right\}, A_{t} \subset X \times \mathbf{Z}_{2}$ satisfying the assumptions of Lemma 1. For every $t \geq 0$ we take $D^{n t} \times 0$ and $D^{n_{t}} \times 1$.

Picture 2

Put

$$
c_{i}^{t}=a_{i}^{t}+b_{i}^{t}, \quad i=0,1, \ldots, n_{t}-1, \quad t \geq 0
$$

Then by (16) and (12)

$$
\begin{equation*}
\sum_{i=0}^{n_{i}-1} c_{i}^{t}=0 \tag{17}
\end{equation*}
$$

We define the sets $A_{t}, t \geq 1$, putting

$$
A_{t}=\bigcup_{i=0}^{n_{i}-1}\left(D_{i}^{n_{i}} \times d_{i}^{t}\right)
$$

where $d_{0}^{t}=0$ and $d_{i}^{t}=c_{0}^{t}+\cdots+c_{i-1}^{t}, \quad i=1,2, \ldots, n_{i}$. It is clear that

$$
\begin{equation*}
\tilde{\mu}\left(A_{t}\right)=\frac{1}{2} \tag{18}
\end{equation*}
$$

Now we show that

$$
\sum_{t=1}^{\infty} \tilde{\mu}\left(A_{t+1} \triangle A_{t}\right)<\infty
$$

Remark that

$$
\tilde{\mu}\left(A_{t+1} \Delta A_{t}\right)=\frac{1}{n_{t}}
$$

(The number of all levels $D_{k}^{n_{t+1}}, k=j \cdot n_{t}+i, \quad j=0, \ldots, \lambda_{t+1}-1, \quad i=$ $0, \ldots, n_{t}-1$ such that $d_{k}^{t+1} \neq d_{i}^{t}$). It follows from the definitions of a_{i}^{t} and b_{i}^{t} that $c_{k}^{t+1}=c_{i}^{t}$ whenever the j-th column contains no errors (with respect to φ) and each of the remaining columns contains an even number of the levels $D_{k}^{n_{t+1}}$ such that $c_{k}^{t+1} \neq c_{i}^{t}$. Because of (17) we conclude that $d_{k}^{t+1}=d_{i}^{t}$ whenever the j-th column contains no errors. The above considerations show that

$$
\tilde{\mu}\left(A_{t+1} \triangle A_{t}\right) \leq \frac{m_{t}}{\lambda_{t+1}}
$$

and then (13) and (15) imply

$$
\begin{equation*}
\sum_{t=1}^{\infty} \tilde{\mu}\left(A_{t+1} \triangle A_{t}\right)<\infty \tag{19}
\end{equation*}
$$

Now, we intend to estimate $\tilde{\mu}\left(T_{\varphi+\psi} A_{t} \triangle A_{t}\right)$. To this end, \}et us observe that:

$$
T_{\varphi+\psi}^{t}(x, i)=\left(T^{t} x,(\varphi+\psi)(x)+(\varphi+\psi)(T x)+\cdots+(\varphi+\psi)\left(T^{t-1} x\right)\right.
$$

In other words, if $\varphi+\psi$ were constant on all levels of $D^{n_{z}}$ (and equal to c_{i}^{t} respectively) then we would get

$$
T_{\varphi+\psi}^{t}\left(D_{0}^{n_{t}} \times 0\right)=D_{t}^{n_{t}} \times\left(c_{0}^{t}+\cdots+c_{i-1}^{t}\right)=D_{i}^{n_{t}} \times d_{i}^{t}, t=1,2, \ldots, n_{t}-1
$$

and by (17)

$$
T_{\varphi+\psi}^{n_{t}}\left(D_{0}^{n_{t}} \times 0\right)=D_{0}^{n_{t}} \times 0
$$

(see picture 2). So, the above would mean $T_{\varphi+\psi}\left(A_{t}\right)=A_{t}$. However, $\varphi+\psi$ is not constant on the levels of $D^{n_{e}}$. By the argument we have just used it is easy to show that

$$
\begin{equation*}
\tilde{\mu}\left(T_{\varphi+\psi} A_{t} \triangle A_{t}\right)=\frac{\varepsilon_{t}}{n_{t}^{e}}, \quad \varepsilon_{t} \longrightarrow 0 \tag{20}
\end{equation*}
$$

Combining (18), (19) and (20) we see that the assumptions of Lemma 1 are satisfied and we conclude that $T_{\varphi+\psi}$ cannot be ergodic.

If we assume that φ admits an even approximation with speed $0\left(\frac{1}{n^{1+e}}\right)$ and that φ is ergodic then we can repeat the foregoing proof with the only change that $b_{n,-1}^{t}$ is defined so that

$$
\sum_{i=0}^{n_{i}-1} b_{i}^{t}=0
$$

Therefore the proof of Theorem 1 is complete.

Factors of \mathbf{Z}_{2}-extensions given by Morse cocycles

We start with the definition of rigidity. Let $U:(Y, B, \nu) O$ be an ergodic transformation. U is said to be rigid if there exists a sequence of positive integers $\left\{n_{i}\right\}, n_{i} \rightarrow \infty$ such that $U^{n_{i}} \rightarrow i d$ (the identity) in the weak topology, i.e. $\nu\left(U^{n i}(A) \triangle A\right) \underset{i}{\rightarrow} 0$ for every $A \in B$.

Proof of Theorem 2: (In the proof we use notations from [14]). Let $x=b^{0} \times$ $b^{1} \times \ldots$ be a Morse sequence and let (r, \mathcal{W}, ν) be a proper factor of $\left(r, O_{x}, \mu_{x}\right)$.

Let $\psi:\left(r, O_{z}, \mu_{x}\right) \longrightarrow(r, W, \nu), \not \mathcal{W} \subset\{0,1\}^{z}$, establish a homomorphism. In order to prove that $r: W O$ is rigid it is enough to show that there is a generic point $w \in \mathcal{W}$ such that for every $\varepsilon>0$ there is $s \in \mathbf{Z}$ such that

$$
\begin{equation*}
\bar{d}\left(r^{s} w, w\right)<\varepsilon \tag{21}
\end{equation*}
$$

where $\bar{d}\left(u, u^{\prime}\right)=\lim _{m} \inf \frac{1}{m} \operatorname{card}\left\{1 \leq i \leq m, u[i] \neq u^{\prime}[i]\right\}, u, u^{\prime} \in O_{x}$. Fix an $\varepsilon>0$. Then by the Birkhoff Theorem there is a code $\varphi_{\varepsilon}: O_{x} \longrightarrow\{0,1\}^{2}$ (i.e. $\varphi_{\varepsilon} r=r \varphi_{e}, \varphi_{\varepsilon}$ is measurable, $z\{-k, k]=z^{t}[-k, k]$ implies $\left(\varphi_{\varepsilon} z\right)[0\}=\left(\varphi_{\varepsilon} z^{\prime}\right)[0]$, where $k=\left|\varphi_{c}\right|$ is the length of the code) such that

$$
\begin{equation*}
\bar{d}\left(\psi z, \varphi_{\varepsilon} z\right)<\frac{\varepsilon}{3} \text { for a.e. } z \in O_{x} \tag{22}
\end{equation*}
$$

Then take $\delta, \quad 0<\delta<\varepsilon / 300\left(2\left|\varphi_{c}\right|+1\right)$ and fix $w \in W$. Since ψ cannot be one-to-one, there are $z, z^{\prime} \in O_{x}, z \neq z^{\prime}$ such that

$$
\psi(z)=\psi\left(z^{\prime}\right)=w
$$

Then choosing a code φ_{δ} we can repeat the proof of Theorem 2 in [14] saying that there is an s such that either

$$
\begin{equation*}
\bar{d}\left(r^{s} z, z^{\prime}\right)<100 \delta \tag{23}
\end{equation*}
$$

or

$$
\begin{equation*}
\bar{d}\left(r^{s} z, \overline{z^{t}}\right)<100 \delta \tag{24}
\end{equation*}
$$

All we have to prove that both (23) and (24) imply (21). First of all Remark the following property of codes.

Lemma 2. If $u, u^{\prime} \in O_{x}$ then

$$
\begin{equation*}
d\left(\varphi_{e} u, \varphi_{\varepsilon} u^{\prime}\right) \leq\left(2\left|\varphi_{\varepsilon}\right|+1\right) \cdot \bar{d}\left(u, u^{\prime}\right) \tag{25}
\end{equation*}
$$

Proof: If $u[t-k, t+k]=u^{\prime}[t-k, t+k]$ then $\left(\varphi_{\varepsilon} u\right)[t]=\left(\varphi_{\varepsilon} u^{\prime}\right)[t]$. Hence if $\left(\varphi_{e} u\right)[t] \neq\left(\varphi_{e} u^{t}\right)[t]$ then it delivers at most $2\left|\varphi_{e}\right|+1$ places where u and u^{i} are different.

Now

$$
\begin{aligned}
\bar{d}\left(r^{s} w, w\right)= & \bar{d}\left(r^{s} \psi(z), \psi\left(z^{\prime}\right)\right)=\bar{d}\left(\psi\left(r^{s} z\right), \psi\left(z^{\prime}\right)\right) \\
& \leq \bar{d}\left(\psi\left(r^{s} z\right), \psi_{e}\left(r^{s} z\right)\right)+\bar{d}\left(\varphi_{\epsilon}\left(r^{s} z\right), \varphi_{\epsilon}\left(z^{\prime}\right)\right) \\
& +\bar{d}\left(\varphi_{\varepsilon}\left(z^{\prime}\right), \psi\left(z^{\prime}\right)\right) \stackrel{(22)}{\leq} \frac{2 \varepsilon}{3}+\bar{d}\left(\varphi_{\varepsilon}\left(r^{s} z\right), \varphi_{\varepsilon}\left(z^{t}\right)\right) \stackrel{(25)}{\leq} \frac{2 \varepsilon}{3} \\
& +\left(2\left|\varphi_{\varepsilon}\right|+1\right) \cdot \bar{d}\left(r^{s} z, z^{\prime}\right)<\varepsilon
\end{aligned}
$$

if (23) holds. If (24) holds then using (22) and (25) again we obtain

$$
\bar{d}\left(r^{s} w, \tilde{w}\right)<\varepsilon
$$

In both cases we can find a sequence m_{3} such that either $r^{m} \rightarrow i d$ or $r^{2 m} \cdot \rightarrow \sigma, \quad(\sigma(u)=\tilde{u})$. In the latter case $r^{2 m}, \rightarrow i d$. This completes the proof of Theorem 2.

Now applying the construction used in the proof of Theorem 1 we are able to indicate some factors of \mathbf{Z}_{2}-extensions determined by Morse cocycles. These factors will have a continuous part of the spectrum.

Assume that $T:(X, B, \mu) 0$ has r.p.p.s., $S_{p}(T)=G\left\{n_{t}, t \geq 0\right\}$ and let $\varphi: X \longrightarrow \mathbf{Z}_{2}$ be a Morse cocycle given by

$$
\left.\varphi\right|_{D_{i}^{n_{t}}}=a_{i}^{t}, \quad i=0,1, \ldots, n_{t}-2
$$

We can define a sequence of blocks $\left\{\alpha^{t}\right\}, \quad\left|\alpha^{t}\right|=\lambda_{t}-1$ in the following way:

$$
\begin{gathered}
\alpha^{0}=\left(a^{0}[0], \ldots, a^{0}\left[\lambda_{0}-2\right]\right) \\
\alpha^{t+1}[j]=a^{t+1}\left[j \cdot n_{t}+n_{t}-1\right], \quad j=0,1, \ldots, \lambda_{t+1}-2
\end{gathered}
$$

The sequence of blocks $\left\{\alpha^{t}\right\}$ determines the Morse cocycle φ completely. Now, let $s \geq 1$ be such that

$$
\begin{equation*}
\left(s, n_{t}\right)=1, \quad i \geq 0 \tag{26}
\end{equation*}
$$

Consider $\zeta_{s}:\left(Z_{s}, \nu_{s}\right) \bigcirc$ the cyclic rotation on $Z_{s}=\{0,1, \ldots, s-1\}$ with the uniform measure. In view of (26)

$$
T^{t}=T \times \varsigma_{s}: X \times \mathbf{Z}_{s} \longrightarrow X \times \mathbf{Z}_{s}
$$

is ergodic and has r.p.p.s., $S_{p}\left(T^{\prime}\right)=G\left\{s \cdot n_{t}, t \geq 0\right\}$. Define a function $\tilde{\varphi}: X \times$ $\mathbf{Z}_{s} \longrightarrow \mathbf{Z}_{2}$ by

$$
\tilde{\varphi}(x, i)=\varphi(x), \quad x \in X, \quad i \in \mathbf{Z}_{s}
$$

Then we have a Z_{2}-extensions $\left(T^{\prime}\right)_{\mathscr{\varphi}}=T_{\varphi} \times \zeta_{s}$ of T^{t}. Assume that φ is oddly (or evenly) approximated with speed $0\left(\frac{1}{n_{1}^{1+\ell}}\right)$. Then $\tilde{\varphi}$ is approximated with the
same speed. If follows from Theorem 1 that $\tilde{\varphi}$ can be modified by a coboundary cocycle i.e. by $\psi^{\prime}+\psi^{\prime} \circ T^{\prime}$ to get a Morse cocycle ψ. Then T_{φ} is a factor of T_{ψ}^{\prime}. We intend to describe this passage from T_{φ} to T_{ψ}^{\prime} in a combinatorial language.

It is easy to see that the condition of the approximation of φ with speed $0\left(\frac{1}{n_{i}^{1+e}}\right)$ implies

$$
\begin{equation*}
\frac{1}{\lambda_{t+1}} \min \left(f r\left(0, \alpha^{t+1}\right), f r\left(1, \alpha^{t+1}\right)\right)=0\left(\frac{1}{n_{i}^{c}}\right) \tag{27}
\end{equation*}
$$

where $f r\left(i, \alpha^{t+1}=\operatorname{card}\left\{j ; 0 \leq j \leq\left|\alpha^{t+1}\right| ; \alpha^{t+1}[j]=i\right\}\right.$. For every $t \geq 0$ we take the sets $D^{n_{t}} \times 0, D^{n_{t}} \times 1, \ldots, D^{n_{t}} \times(s-1)$. Then we can construct a T^{\prime}-tower of height $m_{i}=s \cdot n_{t}$

Picture 3.

We have

$$
\left(T \times \zeta_{s}\right)\left(D_{j}^{n_{t}} \times i\right)=D_{j+1}^{n_{i}} \times(i+1)
$$

where the additions are taken $\bmod n_{t}$ and $\bmod s$ respectively. Let

$$
D_{k}^{m_{t}}=\left(T^{\prime}\right)^{k}\left(D_{0}^{n_{t}} \times 0\right), \quad k=0,1, \ldots, m_{t}-1
$$

Then (26) implies that each $D_{k}^{m,}$ coincides with a level $D_{j}^{n_{i}} \times i$ for some i, j, $0 \leq j \leq n_{t}-1,0 \leq i \leq s-1$, and this correspondence is one-to-one. Thus

$$
D_{0}^{m_{t}} \xrightarrow{T^{\prime}} D_{1}^{m_{t}} \xrightarrow{T^{\prime}} \ldots \xrightarrow{T^{\prime}} D_{m_{t}-1}^{m_{t}} \xrightarrow{T^{\prime}} D_{0}^{m_{t}}
$$

so $D^{m_{t}}$ is a T^{\prime}-tower of height m_{t}. If follows from the definition of $\tilde{\varphi}$ (see Picture 3) that

$$
\begin{equation*}
\left.\tilde{\psi}\right|_{D_{k}^{m}} ^{m_{4}}=\tilde{a}_{k}^{t}=a_{i}^{t} \tag{28}
\end{equation*}
$$

if $k=l \cdot n_{t}+i$ and $i=0,1, \ldots, n_{\mathrm{t}}-2, \quad l=0, \ldots, s-1$.
According to (27)

$$
\begin{equation*}
\left.\tilde{\psi}\right|_{D_{k}^{m_{t}}}=\tilde{a}_{k}^{t}=a_{n_{t}-1}^{t} \tag{29}
\end{equation*}
$$

if $k=l \cdot n_{t}+n_{t}-1, \quad l=0, \ldots, s-1$, where $a_{n_{t}-1}^{t}=\tilde{\alpha}_{t+1}$ appears at α^{t+1} with frequency $>1-\frac{e_{t}}{n_{i}}, \varepsilon_{t} \rightarrow 0$. The symbols $\tilde{a}_{3}^{t+1}, 0 \leq u \leq m_{t+1}-1$ are the following. We write u in the form

$$
u=l^{t} \cdot n_{t+1}+v \cdot n_{t}+r
$$

where $l^{t}=0,1, \ldots, s-1, v=0, \ldots, \lambda_{t+1}-1, r=0, \ldots, n_{t}-1$. Then
(30) $\quad \begin{cases}\tilde{a}_{u}^{t+1}=a_{i}^{t}, & \text { if } r<n_{t}-1, \\ \tilde{a}_{u}^{t+1}=\alpha^{t+1}[v], & \text { if } v<\lambda_{t+1}-1 \text { and } r=n_{t}-1 \\ \tilde{a}_{u}^{t+1}=a_{n_{t+1}-1}^{t+1}=\tilde{\alpha}^{t+2}, & \text { if } v=\lambda_{t+1}-1 \text { and } r=n_{t}-1 .\end{cases}$

We define ψ on $D^{m_{0}}$ in an arbitrary way and suppose that ψ have been defined on $D^{m_{t}}$ except for the level $D_{m_{i}-1}^{m_{1}}$. We should calculate the number of errors in each column of $D^{m^{\prime}}$. Comparing the symbols $\tilde{a}_{k}^{t}, 0 \leq k \leq m_{s}-1$ and $\tilde{a}_{t}^{t+1}, 0 \leq u \leq m_{t+1}-1$ (see Picture 4) from (28), (29) and (30) we can formulate the following algorithm of a construction of ψ on $D_{m_{t}-1}^{m_{t}}$.
A) Define $\tilde{b}_{m_{t}-1}^{t}=\tilde{b}_{t}$ according to (16), i.e. if $\left.\psi\right|_{D_{k}^{m}}=\tilde{b}_{k}^{t}, 0 \leq k \leq m_{t}-1$ we chose \tilde{b}_{f} in such a way that

$$
\sum_{k=0}^{m_{t}-1} \tilde{b}_{k}^{t}= \begin{cases}1, & \text { if the approximation is odd } \\ 0, & \text { if it is even. }\end{cases}
$$

B) Write the block B^{t} of length $s \cdot \lambda_{t+1}$ as follows

$$
\begin{gathered}
B^{t}=\underbrace{\alpha^{t+1}[0] \ldots \alpha^{t+1}[\lambda-2] \tilde{\alpha}_{t+2}}_{\ldots \underbrace{\alpha^{t+1}}[0] \ldots \alpha^{t+1}[\lambda-2] \bar{\alpha}_{t+2}} \underbrace{\alpha^{t+1}[0] \ldots \alpha^{t+1}[\lambda-2] \bar{\alpha}_{t+2}}_{s-t i m e s} \cdots
\end{gathered}
$$

where $\lambda=\lambda_{t+1}$.
C) Divide the block B^{t} into λ_{t+1} equal parts, i.e.

$$
B^{t}=B_{0} B_{1} \ldots B_{\lambda_{t+5}-1}, \quad\left|B_{j}\right|=s, \quad j=0,1, \ldots, \lambda_{t+1}-1
$$

and define ψ on $D_{u}^{m_{t+1}}, u=l^{\prime} \cdot m_{t}+m_{t}-1, \quad l=0,1, \ldots, \lambda_{t+1}-2$ putting $\left.\psi\right|_{D_{u}^{m+1}}= \begin{cases}\tilde{b}_{t} & \text { if the number of the symbol }\left(1+\tilde{\alpha}_{t+1}\right) \text { in } B_{1} \text { is even } \\ \tilde{b}_{t}+1, & \text { otherwise }\end{cases}$

Picture 4

According to Theorem $1, T_{\varphi}^{\prime}$ is metrically isomorphic to $T_{\varphi} \times 5_{0}$.

The rank power function

Now, we intend to prove the existence of ergodic cocycles satisfying (5). In [11], Kwiatkowski and Rojet discovered a trichotomy concerning Morse shifts. Namely either

$$
C(T \varphi)=\left\{T_{\varphi}^{\mathbf{i}} \circ \sigma^{j}\right\}, \quad i \in \mathbb{Z}, \quad j=0,1, \quad \sigma(x, i)=(x, i+1)
$$

or T_{φ} is rigid. If the latter holds then either

$$
\begin{equation*}
C\left(T_{\varphi}\right)=\text { weak closure of }\left\{\left(T_{\varphi}\right)^{n}, n \in \mathbf{Z}\right\} \tag{31}
\end{equation*}
$$

or

$$
\begin{equation*}
C\left(T_{\varphi}\right) / \text { weak closure of }\left\{\left(T_{\varphi}\right)^{n}, n \in \mathbf{Z}\right\}=\{\mathrm{id}, \sigma\} \tag{32}
\end{equation*}
$$

where $C\left(T_{\varphi}\right)$ is the centralizer of T, i.e. the set of all automorphisms of ($X \times \mathbf{Z}_{2}, \tilde{B}, \tilde{\mu}$) commuting with T_{φ}. No one of these possibilities is vacuous. Combining the Weak Closure Theorem [9] with the fact that the rank of Morse dynamical system is at most 2 one can easily prove that

$$
\begin{equation*}
\operatorname{rk}\left(T_{\varphi}\right)=2 \quad \text { iff } \quad \sigma \notin \text { weak closure }\left\{\left(T_{\varphi}\right)^{n}, n \in \mathbf{Z}\right\} \tag{33}
\end{equation*}
$$

as soon as φ is a Morse cocycle.
Given $\varphi \in K$ we call the cocycle $\varphi+1$ (or $T_{\varphi+1}=T_{\varphi} \circ \sigma$) the completion of φ. The idea to prove (5) consists in the simple observation that a cocycle and its completion can have quite different properties. Take a Morse cocycle φ such that φ is evenly approximated with a given speed (at least $0\left(\frac{1}{n}\right)$) and moreover that

$$
\operatorname{rk}\left(T_{\varphi}\right)=2
$$

We recall that the paper [11] assures an abundance of such cocycles. We assume here that $S_{p}(T)=G\left\{n_{t}, t \geq 0\right\}, n_{t}$ are odd. It is an easy observation that the completion of the φ admits then an odd approximation with the same speed.

Therefore

$$
\operatorname{rk}\left(T_{\varphi+1}\right)=1
$$

and

$$
\operatorname{rk}\left(T_{\varphi+1}\right)^{2}=\operatorname{rk}\left(T_{\varphi}\right)^{2} \geq \operatorname{rk}\left(T_{\varphi}\right)=2
$$

Now, $\left(T_{\varphi}\right)^{2}=T_{\varphi+\varphi \circ}^{2} r$ is ergodic and $\varphi+\varphi \circ T$ admits an even approximation with the same speed as φ. Because this speed is at least $0\left(\frac{1}{n}\right)$ the rank of T_{φ} is at most 2. Similar reasoning shows that

$$
\operatorname{rk}\left(T_{\varphi}\right)^{s}= \begin{cases}1, & \left(s, n_{t}\right)=1, s \text { is odd } \\ 2, & \left(s, n_{t}\right)=1, s \text { is even. }\end{cases}
$$

The proof that m.s.m. $\left(T_{\varphi}\right)^{*}=1,\left(s, n_{t}\right)=1$ will follow from the following.
Lemma 3. Let T be an ergodic automorphism with r.p.p.s., $S_{p}(T)=$ $G\left\{n_{t}, t \geq 0\right\}$. Assume that φ admits an odd or even approximation with speed $0\left(\frac{1}{n}\right)$ and φ is ergodic and nonconstant. Then T_{φ} has simple spectrum.

Proof: The proof follows from the considerations from [7].

Remark. If $\mathrm{rk}\left(T_{\varphi}\right)=2$ and φ admits an even approximation with speed $o\left(\frac{1}{n^{2+*}}\right)$ then, of course, T_{φ} and $T_{\varphi+1}$ cannot be isomorphic ($\mathrm{rk}\left(T_{\varphi+1}\right)=1$). Actually, they cannot be spectrally isomorphic. Indeed, $\left(T_{\varphi+1}\right)^{m_{t}} \longrightarrow \sigma$ for a sequence $\left\{m_{t}\right\}[9]$. If an infinity of the m_{t} 's were even then $\left(T_{\varphi}\right)^{m_{*}}=$ $\left(T_{\varphi+1}\right)^{m_{i}} \rightarrow \sigma$ and from (33) T_{φ} would have rank 1 . To avoid the contradiction we are forced to assume that the m_{t} 's are odd. But then

$$
\left(T_{\varphi}\right)^{m_{t}} \rightarrow \text { id } \quad \text { and } \quad\left(T_{\varphi+1}\right)^{m_{t}} \rightarrow \mathrm{id}
$$

So T_{φ} and $T_{\varphi+1}$ cannot be spectrally isomorphic.
Remark. It is interesting to know whether the oscilation of the rank power function is typical for \mathbf{Z}-cocycles. But it is not the case, as the following shows. First of all we notice that

$$
\begin{equation*}
\operatorname{rk}\left(T_{\varphi}\right)^{2}=2 \quad \text { iff } \quad \operatorname{rk}\left(T_{\varphi+1}\right)=2 \tag{34}
\end{equation*}
$$

as soon as φ admits an odd approximation with speed $o\left(\frac{1}{n^{1+\sigma}}\right)$. Indeed, if $\operatorname{rk}\left(T_{\varphi}\right)=1=\mathrm{rk}\left(T_{\varphi+1}\right)$, then

$$
\exists m_{t} \quad\left(T_{\varphi}\right)^{m_{t}} \longrightarrow \sigma
$$

and

$$
\exists m_{t}^{\prime} \quad\left(T_{\varphi+1}\right)^{m_{t}^{\prime}} \longrightarrow \sigma
$$

Since (33) holds, it is enough to prove that m_{t} or m_{t}^{t} are even for an infinity of t's. If this is not the case, then m_{t}, m_{t}^{\prime} are odd. We can also assume $m_{t}-m_{t}^{\prime} \nearrow \infty$ by passing to subsequences. Then

$$
\left(T_{\varphi}\right)^{m_{t}} \circ\left(T_{\varphi+1}\right)^{-m^{2}} \longrightarrow \sigma \circ \sigma^{-1}
$$

so

$$
\left(T_{\varphi}\right)^{m_{t}} \circ\left(T_{\varphi}\right)^{-m^{\prime}} \circ \sigma \longrightarrow \sigma \circ \sigma^{-1}
$$

which implies

$$
\left(T_{\varphi}\right)^{m_{t}-m^{i}} \longrightarrow \sigma
$$

and

$$
\left(T_{\varphi}\right)^{2 s_{t}} \longrightarrow \sigma, \text { where } 2 s_{t}=m_{t}-m_{t}^{\prime}
$$

If $\operatorname{rk}\left(T_{\varphi+1}\right)=2$, then

$$
2 \geq x \mathrm{k}\left(\left(T_{\varphi}\right)^{2}\right)=\operatorname{rk}\left(\left(T_{\varphi+1}\right)^{2}\right) \geq \operatorname{rk}\left(T_{\varphi+1}\right)=2
$$

Now the set

$$
A=\left\{\varphi \in K, \operatorname{ri}\left(T_{\varphi}\right)=I\right\}
$$

is residual because it contains all cocycles oddly approximated with speed o($\left.\frac{1}{n}\right)$. Therefore the set $A+1=\{\varphi+1, \varphi \in A\}$ is residual. Whence

$$
A \cap(A+1)=\left\{\varphi \in K, \operatorname{rk}\left(T_{\varphi}\right)=1=\operatorname{rk}\left(T_{\varphi+1}\right)\right\}
$$

is residual. This fact and (34) give that the rank power function being constant (and equal 1) is a typical property for K.

Example. The next problem we intend to deal with here is the problem of lifting roots. It is well-know how to calculate roots for T with r.p.p.s., $S_{p}(T)=G\left\{n_{t} ; t \geq 0\right\}$. It $\left(s, n_{t}\right)=1, t \geq 0$ then T^{s} and T are isomorphic because they have r.p.p.s. and they have the common sequence ($\left.D^{n_{i}}\right) / \mathrm{B}$. It would be interesting to know whether a sufficiently high speed of approximation of φ assures the existence of some roots. However the results of [11] show that this supposition cannot be true.

We take the Morse sequence

$$
x=b^{0} \times b^{1} \times \ldots
$$

where

$$
b^{t}=\overbrace{0101 \ldots 01}^{\mu_{t}} \overbrace{1010 \ldots 101}^{\mu_{t}+1}, t \geq 0 .
$$

Assume that

$$
\sum_{0}^{\infty} \frac{1}{\mu_{t}}<\infty .
$$

Put

$$
\lambda_{t}=2 \mu_{t}+1, \quad n_{t}=\lambda_{0} \cdot \ldots \cdot \lambda_{t}, \quad c_{t}=b^{0} \times \cdots \times b^{t}, t \geq 0
$$

and define blocks $\hat{c_{t}},\left|\hat{c_{t}}\right|=n_{t}-1$ putting

$$
\hat{c_{t}}[i]=c_{i}[i+1]+c_{t}[i] \quad \text { in } Z_{2}, i=0,1, \ldots, \lambda_{t}-2 .
$$

Let Δ be the group of all n_{t}-adic numbers i.e.

$$
\triangle=\left\{g ; g=\sum_{0}^{\infty} g_{t} \cdot n_{t-1}, 0 \leq g_{t} \leq \lambda_{t}-1, n_{-1}=1\right\}
$$

and let μ be the Haar measure of Δ and T be the rotation on $\hat{1}=(1,0,0, \ldots)$. For every $t \geq 0$ we have a T-power $D^{n,}$ in \triangle such that

$$
D_{i}^{n_{t}}=\left\{g ; \sum_{u=0}^{t} g_{u} \cdot n_{u-1}=1\right\}, \quad i=0,1, \ldots, n_{t}-1
$$

The sequence x determines a Morse cocycle φ on \triangle by

$$
\left.\varphi\right|_{D_{i}^{n_{t}}=\hat{c_{t}}[i], \quad i=0,1, \ldots, n_{t}-2 . . .2 .}
$$

In [11] the centralizer of T_{φ} has been described. Each $S \in C\left(T_{\varphi}\right)$ has a form

$$
S(g, i)=\left(g+g_{0}, i+f(g)\right)
$$

where $g_{0} \in \triangle$ and $f: \triangle \longrightarrow \mathbf{Z}_{2}$ satisfy the condition

$$
\begin{equation*}
\varphi\left(g+g_{0}\right)+f(g)=f(g+\hat{1})+\varphi(g) \tag{35}
\end{equation*}
$$

We will show that for every $k>1$ there exists no $S \in C\left(T_{\varphi}\right)$ such that $S^{k}=T_{\varphi}$. Remark that

$$
S^{k}(g, i)=\left(g+k \cdot g_{0}, i+f(g)+\cdots+f\left(g+(k-1) g_{0}\right)\right)
$$

Then $S^{k}=T_{\varphi}$ iff $k \cdot g_{0}=\hat{1}$ and

$$
\begin{equation*}
f(g)+\cdots+f\left(g+(k-1) g_{0}\right)=\varphi(g) \tag{36}
\end{equation*}
$$

where g_{0} and f satisfy (35).
Notice that there exists $g_{0} \in \triangle$ with $k \cdot g_{0}=\hat{1}$ iff $\left(k, n_{t}\right)=1$. We will denote such g_{0} by $\hat{1} / k$. Now we prove that for $k>2,\left(k, n_{t}\right)=1, \hat{1} / k$ does not satisfy (35) and $\hat{1} / 2$ satisfies (35) but the corresponding function f does not satisfy (36).

Now, let $k>2,\left(k, n_{t}\right)=1, t=0,1, \ldots$ If $\hat{1} / k=\left(l_{t}\right)_{0}^{\infty}, 0 \leq l_{t} \leq n_{t}-$ $1, l_{t+1} \equiv l_{t}\left(\bmod n_{t}\right)$ then l_{t} is one of the numbers

$$
\frac{n_{t}+1}{k}, \frac{2 n_{t}+1}{k}, \ldots, \frac{(k-1) n_{t}+1}{k}
$$

For such a number l_{t} we have

$$
\frac{l_{t}}{n_{t}} \geq \frac{1}{k}, 1-\frac{l_{t}}{n_{t}} \geq \frac{1}{2 k} \text { and }\left|\frac{l_{t}}{n_{t}}-\frac{1}{2}\right| \geq \frac{1}{3 k}
$$

for t large enough.
If $\hat{1} / k$ is represented as a series $\sum_{0}^{\infty} \overline{g_{t}} \cdot n_{t-1}$, then the inequalities

$$
\left|\frac{l_{t}}{n_{t}}-\frac{\overline{g_{t}}}{\lambda_{t}}\right| \leq \frac{1}{\lambda_{t}}-\frac{1}{n_{t}} \leq \frac{1}{2 \lambda_{t}}
$$

imply

$$
\begin{equation*}
\frac{\bar{g}_{t}}{\lambda_{t}} \geq \frac{1}{4 k}, \quad 1-\frac{\bar{g}_{t}}{\lambda_{t}} \geq \frac{1}{4 k}, \quad\left|\frac{g_{t}}{\lambda_{t}}-\frac{1}{2}\right| \geq \frac{1}{4 k} \tag{37}
\end{equation*}
$$

for t large enough. On the other hand it is easy to remark that the inequalities

$$
\frac{g_{i}}{\lambda_{i}}>\delta, 1-\frac{g_{i}}{\lambda_{i}}>\delta \quad \text { and }\left|\frac{g_{i}}{\lambda_{i}}-\frac{1}{2}\right|>\delta, 0 \leq g_{i} \leq \lambda_{i}-1
$$

imply

$$
\begin{equation*}
d\left(b^{t} b^{t}\left[g_{t}, g_{t}+\lambda_{t}-1\right] b^{t}\right) \geq \delta \tag{38}
\end{equation*}
$$

Moreover, (38) is valid if we replace $b^{t} b^{t}$ by $b^{t} \overline{b^{t}}, \overline{b^{t}} b^{t}$ and $\overline{b^{t}} \overline{b^{t}}$. In view of Theorem 1 in $\{11\},(37)$ and (38) $9_{0}=\hat{1} / k$ does not satisfy (35).

Now take $\hat{1} / k$. Then $\frac{\hat{i}}{\hat{k}}=\left(\frac{n_{t}+1}{2}\right)_{0}^{\infty}=\left(\mu_{0}+1\right)+\sum_{t=1}^{\infty} \mu_{t} \cdot n_{t-1}$. It is clear that

$$
d\left(b^{t} \tilde{b^{t}}\left[\mu_{t}+1, \mu_{t}+\lambda_{t}\right], b^{t}\right)=\sum_{0}^{\infty} \frac{1}{\lambda_{t}}<\infty
$$

Applying again [11] we obtain that (35) is satisfied with $g_{0}=\hat{1} / 2$ and the function $f=\lim f_{t}$, where

$$
f_{t}(g)=c_{t} \tilde{c}_{t}\left[\frac{n_{t}+1}{2}+\dot{j}_{t}\right]+c_{t}\left[j_{t}\right], g=\left(j_{t}\right), 0 \leq \dot{j}_{t} \leq n_{t}-1
$$

Next we have

$$
\begin{aligned}
f_{t}(g)+f_{t}(g+\hat{1} / 2) & =\hat{c}_{t}\left[j_{t}+1\right]+c_{t}\left[\frac{n_{t}+1}{2}+j_{t}\right]+c_{t}\left[\frac{n_{t}+1}{2}+j_{t}\right]+c_{t}\left[j_{t}\right]= \\
& =\overbrace{c_{t}\left[j_{t}+1\right]+c_{t}\left[j_{t}\right]+1}^{\varphi(\vartheta)}, \quad \text { for } g=\left(j_{t}\right) \text { and } j_{t} \leq \frac{n_{t}-3}{2}
\end{aligned}
$$

We conclude that (36) does not hold and T_{φ} has no roots of any degree. At the same time the function φ admits an odd approximation with the speed $o\left(\frac{1}{\lambda_{q+1}} \cdot \frac{1}{n_{t}}\right)$.

Taking suitable λ_{t} 's we can get Morse cocycles φ 's admitting an approximation with an arbitrarily high speed.

References

1. G. Christol, T. Kamae, M. Mendes-France, G. Radzy, Suites algébraiques, automates et substitutions, Bull. Soc. Math. France 108 (1980), 401-420 (in French).
2. E. Coven, M. Keane, The structure of substitution minimal sets, Trans. Amer. Math. Soc. 62 (1971), 89-102.
3. N. Friedman, P. Gabriel, J. King, An invariant on rigid rank-1 transformations, preprint.
4. S. GLASNER, D. RUDOLPH, Uncountable many topological models for ergodic transformations, Erg. Th. Dyn. Syst. 4 (1984), 233-236.
5. H. HELSON, Analyticity on compact abelian groups, Algebra in Analysis, ed. J. H. Williamson, Academic Press (1975), 1-62.
6. H. Helson, W. Parry, Cocycles and spectra, Arkiv för Mat. 16 (1978), 195-206.
7. A.B. KATCK, A.M. STEPIN, Approximation in ergodic theory, Uspekhi Mat. Nauk 22 no. 5 (1967), 81-106 (in Russian).
8. R. Keane, Generalized Morse sequences, Z. Wahr. Verw. Geb. 10 (1968), 335-353.
9. J. King, The commutant is the weak closure of the powers, for rank-1 transformations, Erg. Th. Dyn. Syst. 6 (1986), 363-385.
10. J. KWIATKOWSKI, Isomorphism of regular Morse dynamical systems, Studia Math. 62 (1982), 59-89.
11. J. KWIATKOWSKI, T. ROJEK, the centralizer of Morse shifts induced by arbitrary blocks, Studia Math. (to appear).
12. M. LEMAṄCZYK, The centralizer of Morse shifts, Ann. Univ. ClermontFerrand 87 (1985), 43-56.
13. M. Lemañczyk, Toeplitz \mathbf{Z}_{2}-extensions, Ann. H. Poincaré Inst. (to appear).
14. M. LEMAṄCZYK, Ergodic \mathbf{Z}_{2}-extensions over rational pure point spectrum, category and homomorphisms, Comp. Math. (to appear).
15. M. LEMAŃCZYK, M. K. MENTZEN, Generalized Morse sequences on n-symbols and m-symbols are not isomorphic, Bull. Pol. Ac. Sc. 33 no. 5-6 (1985), 239-245.
16. J. MATHEW, M. G. NADKORNI, A measure -preserving transformation whose spectrum has Lebesgue component of multyplicity two, Bull. Lon. Math. Soc. 16 (1984), 402-406.
17. D. NEWTON, On canonical factors of ergodic dynamical systems, J. Lon. Math. Soc. 19 (1978), 129-136.
18. W. PARRY, Compact abelian group extensions of discrete dynamical systems, Z. Wahr. Verw. Geb. 13 (1969), 95-113.
19. W. Parry, Topics in Ergodic Theory, C.U.P. (1981).

I. Filipowicz:	Institute of Mathematics Pedagogical College Chodkiewicza 30, 85-064 Bydgoszcz, POLAND.
J. Kwiatkowaki:	Institute of Mathematics Nicholas Copernicus University ul. Chopina $12 / 18,87.100$ Torun, POLAND.
M. Lemaniczyk:	Institute of Mathematics Nicholas Copernicus University ul. Chopina $12 / 18,87-100$ Torun, POLAND.

