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APPROXIMATION OF Z,-COCYCLES AND
SHIFT DYNAMICAL SYSTEMS

I. FiLirowicz, J. KWIATKOWSKI, M. LEMANCZYK

Abstract

Let G = G{ni, ne | nes1, t = 0} be a subgroup of all roots of unity
generated by exp(Zmifrn.),t = 0, and let r: (X, 8,4} & be an ergodic
transformation with pure point spectrum G. Given a cocyele ¢ X —
Zz, admitting an approximation with speed 0{1/n**¢ & > 0} there exists
a Morse cocycle ¢ such that the corresponding transformations 7, and
74 are relatively isomorphic. An effective way of a construction of the
Morze cocycle ¢ is given. There is a cocycle ¢ oddly approximated with
an arbitrarily high speed and without roots, ’

This note delivers examples of ¢’s admitting an arbitrarily high apeed
of approximaticn and such that the power multiplicity function of r, is
equal to one and the power rank function is oscillatory. Finally, we also
prove that if v is a Morse cocycle then each proper factor of 7, is rigid.
In particular continucus substitutions on two symbols cannot be factors
of Morse dynamical systems.

Introduction and statement of results

Let T:{X, B, #} & be an ergodic transformation of a Lebesgue space. We will
denote by Sp(T) the group of all the eigenvalues of the unitary operator
Up: L X,u) ©, Ur f = foT. T is said to have rational pure point spectrum
{r.p.p.s} if L?{X, u} is generated by the eigenfunctions of Ur and, besides,

Sp(T) = G{n,: t > 0}

where G{n;: t > 0}, ny |ne:, &2 0, denotes the subgroup of all roots of
unity generated by exp{2#ifn), t20.

Let D™ = (Dg*, DY*,..., D) be a partition, te. DY* N D =8, i #

T
J, Df*eB. Then D™ is called a partition of X if, besides, "'il=0 D*=X. We
call D"¢ a T-tower (with height n} if TD%* = D', i=0,...,n; — L and
a T-tower of X if, besides, D™* is a partition of X. The ergodicity of T says
that if D"¢ is 2 T—tower of X with height n, then this is the only T-tower of
X with that height {reordering elements of D™, if necessary}. It turns out (cf.

(£5]} that:
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(1) T has r.p.ps. with §,(T) = G{n,: t > 0} iff there is a sequence {D™ ;¢
of T-towers of X such that D"t 7 B.

Let X denote the class of all the Zg—cécycles o.f (X,B,u)ie peKif
w: X — Zp is measurable. We endow K with the natural topology given by
the metric

¢lo, @) = u{e™ (0) A" HO)) + n{p™ (1) A H1)).

With this metric K becomes a complete, separable metric space. Having fixed
T:{X,B,u) © we define the class K7 of ail Z,—extensions T,,, ¢ € K, of T, i.e.

Tp: (X X Z0, By 1) 0, Tplzi) = (T, p(z) +1),s

where [ is the product measure gz X v {13(0} = v2(1) = 1/2) and B is the
cotresponding product o—algebra. A cocycle @ is called ergodic whenever T, is
ergodic. Now, changing T we obtain the class of all ergodic Zg-extenswns of
automorphisms with r.p.p.s.

This class is one of more interesting classes in ergodic theory. A great deal
of the attention has been devoted to the study of it (for instance (1], 2], (6],
[10], [13), [14], [16], [18)).

Assume {D"*) is a sequence of T-towers of X ansmg from {1} and let
fi:N —— R be a real function. Following (7] we call ¢ € K oddly (evenly)
approzimated with speed o(f{n}) if for some subsequence {n;, } there exists
sets Fj consisting of an odd {even) number of members of D™+ such that

(2) ule™ (1) A Fi) = o f(ne,)).

The odd approximation with speed o{1/n} guarantees the ergodicity of ¢ ([7]).

Assume @ € K and (D™} is a sequence of T-towers given by {1). Then p is
said to be a Morse cocycle if there is a subsequence {n,,) such that p | D"'g
is constant {p I Dm“ = al} on each level of D" except for i = n,, — 1. The

main result of [14] was

Representation Theorem. If ¢ is oddly approzimated with speed 0{ %)
then there is a Morse sequence z = 6° x b1 X ... such that T, is isomorphic to
the Morse dynamical system determined by z. {We refer to [8], [10], [12] for
the definition and properties of Morse sequences).

In the present paper we stenghten the Representation Theorem proving:
Theorem 1. Ifp € K is ergodic and admits an odd {or even} approzimation

with speed O —757), € > 0, then there exists a Morse cocycle ¥ such that T, and
Ty are reiatwe!y 1somorphic.
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We recall that T, and T, are relalively isomorphic if there exists a cocycle
Fi X — Z; such that

3 vlz) + [(Tz) = f(z) + ().

Then the map I{z,7) = {z, f{} + ) establishes an isomorphism between T},
and T¢.

We have been unable to decide whether or not the Theorem holds for € = €.

Looking at the proof of the Representation Theorem we see that it does not
previde any effective way of a construction of the Morse cocycle 3 {or the Morse
sequence x}. The proof of Theorem 1 is based on a quite different idea and
allows to determine the Morse cocycle in an algorithmic way.

Let & be the group of all n,-adic integers i.e.

[++]
. T
C={gg=> @ -m_1,0<g <H -1, noy =1} & = :l,tZO,
o 4

and let T be the translation on the unit element 1. Then (G, T,m), (m is the
Haar measure) is an ergodic system having r.p.p.s., 5,(T} = G{n,,t > 0}.
Hence if p: G — Z; is a cocycle satisfying the assumptions of Theorem 1 then
it can be modyfied by a coboundary cocycle getting #, which is measurable
with respect to the algebra generated by {D"*}, t > 0. Although % cannot be.
continuous on G {except for some trivial cases), there is a metod making such
cocycles continuous. Namely, ¢ is the so called Toeplitz coeyele in the sense of
[13] i.e. it is completely determined by some Toeplitz sequence # € {0,1}7. If

we take X = 8(n] (the closure of the trajectory of 1 via the shift r} and the
cocycle ¥': 8(n) — Zo, ¥'(y} = y[0], then the automorphisms ry. and Ty are
metrically isomeorphic {[13]). In other words there is some effective way of a
construction of an ergodic vy, {with ¥’ to be continuous) which is isomorphic

fo T,JJ.
Notice that from [4] it follows that there is a topological process (5, f,ﬁ),

a metric isomorphism II: (é, i) — (G, e} IIT = TH and a continuous function
&G — Z; such that ¢ = woll a.e. Thisimplies that T, and 'j‘;; are isomorphic.
In particular, if & is 2 Toeplitz cocycle then G = -5(7;7, T = r. The task arises
how to determine (5 T ) (in an effective way) for a general ¢ € K. In particular
it would be interesting to know whether given ¢: G —+ Z4 there exists a Toeplitz
cocycle ¢ such that ry is isomorphic to T,,. If this is the case we would have

G = 8(n). Our paper delivers a construction of such a ¢ if ¢ fullfils the
assumptions of Theorem 1.

In the remainder of the paper we consider some problems concerning cocyeles
admitting a high speed of approximation. For instance, it turns out that for
any T
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(4}  there is a cocycle © oddly approzimated with an arbitrarily high speed and
without roots.

The next application i1s connected with the oscillation of the rank power
function. Let U:{Y,7,v} © be an ergodic automorphism. For the definition of
the rank {rk(U)) we refer to [3}, [9] and to [19] for the definition of the maximal
spectral multiplicity (m.s.m.{I7}). These notions allow to define two functions

s —k{UV®), s —msm(U*), s=1,2,...

called power rank function and power multiplicity funciion respectively. They
are defined for those s’s that U” is ergodic. In [9] J. King raised the question
whether the power rank function had to be monotonic (it is rather easy to see
that rk{U/} < rk{U/*},s > 1). Then in (3] there is an example for which the
power rank function is oscillatory. However, rk{U} > m.s. m.{U} and this exam-
ple is based on the following facts: for some subsequences (n; ), () rk{li™*} =
1 and m.s.m.{U™*} > 2. This note delivers examples of ¥’s addmitting an ar-
bitrarily high speed of approximatior with '

1, g.cds,n)=1,5—o0dd

2, g.cd{s,m)=1,s—even

® @)=

ms.m{{T, )} =1, gecd(sn)=1

In [14] the author raised the factors problem for the class of Morse sequences,
l.e. given a Morse cocycle ¢ we seek all T,—invariant sub-o—algebras C < B.
Of course B = {A x Z;,A € B} is an example of such a €. The action of T,
on B is isomorphic to T'. On the other hand the class of ergodic Z;-extensions
of r.p.p.s. automorphisms is closed under taking factors. Is there a C G B
such that action of T, on € {i.e. T,:{X x Z,,(, ) ©) has partly continuous
spectrum? We remark the following consequence of coding arguments used in
(14] (compare it with the analogous resuit of J. King [9] for rank 1 class}.

Theorem 2. If ¢ is a Morse cocycle then each proper factor of T, is rigid.

In particular continuous substitutions [2] on two symbols cannot be factors of
Morse dynamical systems.

The natural reverse problem is the following, Can any rigid Morse dynam-
ical system be extended to a Morse dynamical system with larger group of
eigenvalues? There is a positive answer in case of sufficiently high speed of
approximation {odd or even), but we have been unable to solve this problem
in general. Has a positive answer analogous question for rank 1 class?

Proof of Theorem 1

Assume T (X, B,u} © with 1.p.p.s., 5,{T} = G{n:: t > 0} and let p €K
admit an odd approximation with speed O(nfT), € > 0. Hence there is a
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subsequence {n;, } satisfying {2}. For a simplication of notations we assume
that this subsequence is equal to the {n} , i.e.

(6) m (e (B AR) — 6,

where F, is a union of an odd number of levels of D", Assume that ¢ € K is
another ergodic cocycle. Then it is known that any isomorphism between T,

~

and Ty is of the form Sy: (X X Z;,8,4) © , where ST =TS and
{7) YTz} + ¢'(z) = p(z) + $(Sz} in;Z,

where 6’ € K (see [17]). Let us notice that given §, {7} has measurable solution
Hf Tyos+, is not ergodic. Indeed, Tyos., is ergodic iff there is no measurable
solution £: X — S such that

(8) £(Tz) = (-1)Wes+elel . g(z),

{see [T}, [18]}. If Tyoss+, is not ergodic then we get a measurable solution
of (8). Thus, the function &{z) = ¢%(z) is T-invariant, so by the ergodicity
of T it is constant. Therefore without loss of generality we can assume that
§(z) = 1. Then the function ¢ = 14, 4 = £7*(-1) is a solution of (7).
On the other hand if ¢ is a solution of (7) then the function £(z} = {—1)¥'(*)
satisfies (8).

The following simple lernma will be useful in the proof of Theorem 1.

Lemma 1. Let U:(Y,C,v) O be an automorphsism of a Lebesque space. As-
sume that there vs a sequence {A,}, A, € C such that

(9} v{Anir D& An) < €, ZG,, < 00
1
(10} v(UAn A A,) — 0,
{11} >0 1-&§>v(4,)>46, n=12,...

Then U s not ergodic,
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Now, we turn back to the cocycle . Fix ¢ > 0 and consider the tower D":,

t
p,—1

" t
Oy, -2

Y
Ag +1 ~times

Picture 1

Then the speed of approximation (which means that (6) holds) says that
the function ¢ restricted to each level DI't, = 0,1,...,n; — 1, Is “almost”
constant, i.e.

ol pre=a

except for a part of D"t with measure < n—f‘g, ¢; — 0. Because of the odd

approximation,

B
|
—

{12) a;

i=0

.“
1l
[

To construct D™+t we divide the tower D"t into A4 columns with the same
measure 1/A;+y {Picture 1}, A;31 = ny41 /7. The ny pieces of the s-th column
(s =0,1,...,A41 — 1) are the levels of D"+ assigned to the numbers s n;, s-
g+ 1,...,8n +ny— 1.
We say that there is an error in D**}, j=i+s-n, 0<i<n ~1,0<
§< Ay —1if
al # a;-H.

In Picture 1 such levels are marked by the sign “0 . Denote by m, the
number of all columns with some errors. The measure u of such a column is
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equal to 1/A,; 1. Therefore the measure of all columns with errors is equal to

(13) cpttt = T
Arsa

Moreover, the measure y of any error is equal to 1/n44 1, so in view of (6)

ke
14 I+e Lo 0
( ) ny Nyt _‘} H
where k; is the number of all errors. But m, < k; and the combination of {13)
and {14} implies
nt -CE*! - 0

t .

and consequently

(15) Y CE™* < oo

=g

since & > 0.

Construction of a Morse cocycle. At each stage £ our cocycle ¢ will be
constant on each level Df*, © = 0,1,...,n; — 2, and will not be defined on
Dyt . We define ¥ on D" in an arbitrary way and assume that ¢ is given
on levels of D™, ¢t > 0, ie.

¥ pre=8, i=01,..,n -2

First of all we define &,,_, so that

(16) b =1
=0

We do not change the function ¢ on the levels D;-‘n,n L FJ=0,1,00 A — 1,
t=0,...,n — 2, i.e. we put

‘ﬁb ’ Dt = bf

FRLT

Next we should define the function 3 on the levels Do 1 =0,1,..,
Ary2 — 2. To do this we look at the number of errors for  in the j-th column.

If the number of errors is even {in particular if there are no errors) then we put

‘HD’.‘* =b:».—1

Fnetng-1

and 148, | otherwise.



98 I. F1LIpowIcz, J.. KWIATKOWSKI, M. LEMANCZYK

Of course this procedure leads to the definition of a Morse cocycle. Moreover

¢ admits an odd approximation with speed 0(1/n’*%}, by (16) and {14).

It remains to prove that the cocycle v + 1 is not ergodic, i.e. that T,y is

not ergodic., To this end we will define a sequence of sets {4;}, 4, C X x Z,

satisfying the assumptions of Lemma 1. For every { > 0 we take D"t x 0 and

D" .

? Dy _,xd;

/'/_\ f D;u xd‘l
J A L. g J

\_/4\;+1"tim83 M lg*.l-timﬂ
D x D D™ x1

Picture 2

Put
ct=al+bt, i=0,1,....,n,—1, £>0.

Then by {16) and {12)

-
1
—

(17} ' ¢t =0
i=0

We define the sets 4, ,t > 1, putting

mg—-1

A= U (D:‘! Xd:')a

=0
where df =0 and &f =cf +---+cl_;, i=12,...,n. It is clear that

(18) M4 =5

g —

/ \ D::—l.x‘{:‘.—l

2
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Now we show that o
Z (Aee1 O Ay

Remark that 1
ﬁ(AHI A Ac) = —
i3
{The number of all levels PPt k=g -n 448, §F=0,...,0¢1 — 1, 1 =
0,...,ny — 1 such that &i*! £ ). It follows from the deﬁnltlons of a} and &
that ¢i*? = ¢! whenever t.he J~th column contains no errors {with respect. to tp)
and ea,ch of the rema,mmg columns contains an even number of the levels Dyt
such that ¢i*! # ¢}. Because of (17} we conclude that &it! = d! whenever the
J—th column contains no errors. The above cons:dera.tlons show that

- ™
!a‘a(Atq-l AA:) < :

t+1
and then {13} and (15} imply

(lg) ﬁ(Ag.g.]_ A Ag) < 00

[18

t=1

Now, we intend to estimate Z(T, ;4 A¢ A A;). To this end, et us observe that:
Torp(ei) = (T2, (0 + ¥){a) + {0 + $)(T2) + -+ + (0 + )T 2).

In other words, if ¢ + 4 were constant on zll levels of D" (and equal to et
respectively) then we would get

Toue(D5 X0} =D X {cg+--+e ) =D xd,1=1,2,...,n ~ 1
and by {17}
To4 oDt x0) = Dg* x 0
{see picture 2}). So, the above would mean Tore (A} = A;. However, ¢ + ¢

is not constant on the levels of D"¢. By the argument we have just used it is
easy to show that

- £
(20) H(Tw+‘ﬁAg AA;) = ;’Z’ » £y — H

¢

Combining (18}, (19} and {20) we see that the assumptions of Lemma 1 are
satisfied and we conclude that T, , cannot be ergodic.
If we assume that ¢ admits an even approximation with speed 0( —L+) and

that ¢ is ergodic then we can repeat the foregoing proof with the only change
that b} _, is defined so that

ny—1

d =0
1=0

Therefore the proof of Theorem 1 is complete. B
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" Pactors of Z.—extensions given by Morse cocycles

We start with the definition of rigidity. Let U:{Y,B,v} © be an ergodic
transformation. I/ is said to be rigid if there exists a sequence of positive
integers {n;}, n; — oo such that U™ — 7d (the identity} in the weak topology,
je. (U™ (A} A A) — 0 forevery A € B.

Proof of Theorem 2: {In the proof we use notations from [14]}. Let z = % x
B x ... be a Morse sequence and let {r, W,v) be a proper factor of (r,0z, 1z ).

Let w:{r,Op, ;) — {r,W,), W C {0,1}%, establish a homomorphism. In
order to prove that r: W ¢ is rigid it is enough to show that there is a generic
point w € W such that for every € > 0 there is s € Z such that

(21) d{rw,w) < e,
where d(z,u') = lim, inf:—‘card{l <1< m,ulf] # i}, v,v’ € O,. Fix an
€ > 0. Then by the Birkhoff Theorem there is a code ©: 0, — {0,1} {i.e.

©,7 = TP, , P, is measurable, z{—k, k] = 2'[—k, k] implies (@, 2)[0} = {.2')[0],
where k =| o, | is the length of the code) such that

(22} d(z,p.2) < g for ze. z€O,.

Then take §, 0 < & < €/300{2 | w, | +1) and fix w € W. Since ¢ cannot be
one-to-one, there are z,2' € O,, z # 2’ such that

Then choosing a code ;s we can repeat the proof of Theorem 2 in [14] saying
- that there is an s such that either

(23) d{r*z, 2"} < 1004
or
{24) d{r*z, 2} < 1006.

All we have to prove that both {23} and {24} imply (21). First of all Remark
the following property of codes.

Lemma 2. If u,u’ € O, then
(25) d{per, peu') < (2| o, | +1) - d{u,u').
Proof: If u[t — k,t + k] = v'[t — k,t + k] then {p u)[t] = {p.u'}[t]. Henceif

(pcu)jt] # {weu')[t] then it delivers at most 2 | ¢, | +1 places where u and v’
are different. W
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Now

d(r*w,w) = d{r'$(2), ¥(2)) = d((r" 2}, ("))
"2}, (7" 2)) + dle{r"2), 0c(2'))

e
b a0 C E sl (o) B
2

+ 21w, | +1)-d{r*2,2') <e

I/‘\

[P

3

if {23} holds. If {24) holds then using (22} and {25) again we obtain
d(r’w, ) < e.

In both cases we can find a sequence m, such that either r™+ — id or

L0y

™+ = o, {o{u)=1). In the latter case r*™+ — id. This completes the proof
of Theorem 2. M

Now applying the construction used in the proof of Theorem 1 we are able to
indicate some factors of Z,-extensions determined by Morse cocycles. These
factors will have a continuous part of the spectrum.

Assume that T:(X,B,u) 0 has rp.ps., S,{T} = G{n,, ¢t > 0} and let
w: X — Zy be a Morse cocycle given by

o) pre=af, 1=0,1,...,n 2.

We can define a sequence of blocks {&'}, | o |= Ay — 1 in the following way:
o’ = (0'0[0]! .- ’aol‘)‘ﬂ -2]},

Uil =a"* i one e — 1), F=0,1,.. A4 — 2.

The sequence of blocks {a'} determines the Morse cocycle ¢ completely. Now,
let s > 1 be such that

(26) {s,m,}) =1, t>0.

Consider ¢,:(Z,,»,) ¢ the cyclic rotation on Z, = {0,1,...,5 — 1} with the
uniform measure. In view of {26)

T'=Tx¢:Xx2Z, — XxE,

is ergodic and has r.p.p.s., 5,{T") = G{s-n:, t > 0}. Define a function @: X x
Z, —* ZQ by
plz, ) =plz), zeX, i€Z,.

Then we have a Z;—extensions {T"); = T, x ¢, of T'. Assume that ¢ is oddly
(or evenly) approximated with speed O{ 5= ). Then ¢ is approximated with the
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same speed. If follows from Theorem 1 that 5 can be modified by a ceboundary
cocycle i.e. by ¢ + 9/ o T! to get a Morse cocycle 3. Then T, is a factor of 7.
We intend to describe this passage from T, to T:o in a combinatorial language.

It is easy to see that the condition of the approximation of ¢ with speed
O(n—‘,{g} implies

min(fr(o, at+1)’ fr[l, aH_l)) — 0(.l)

£
ny

27
(27) o

where fr{i, o't =card{s; 0 < 5 <] o!*1 |; & *[j] = i}. For every ¢t > 0 we
take the sets D*t x 0, D™ x 1,...,D" x (s — 1). Then we can construct a
T'-tower of height m, = s-n,

]
Bny—2 Gp =2 _-......_..a“* -2

D™ x0 D™ x 1 D™ x{s-1)

Picture 3.

We have
(T x g,}(D;“ x 1) = D7

i1 X (F+1),

where the additions are taken mod n; and mod s respectively. Let
DPt = (T (D} x0), k=0,1,...,m — 1.

Then (26} implies that each D coincides with a level D x ifor somed, j,
0<7<n~1,0<1¢<s—1, and this correspondence is ene-to~one. Thus

' T L3
pr Lpme I L pr

T Dm'
wig—1 J F I |
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so D™t is a T'-tower of height m,. If follows from the definition of & {see
Picture 3} that

28 bl m, =& = o
( ) ¢|Dk Oy a;

fk=l-n+fande=0,1,...,0, -2, 1=0,...,5—1.
According to {27)

(29) | pre =8 =0
ifk=1-n,4+mn —1, 1=0,...,5—1, where a},,_; = &1 appears at of*!
with frequency > 1 — £¢, &, — 0. The symbols &i*', 0 <u <myyy —1 are

the following. We write © in the form
a=1I nqt+v-n+r,

where I' =0,1,...,s~1,v=0,...,A41 —1,7=0,...,n; — 1. Then

@t =df, if r<m—1, _
{30) attl = of*1y), if v<Xy;—1 and r=mn,—1
A =a;f:l_l =&, f v=My1—1 and r=mn; - 1.

We define 3 on D™¢ in an arbitrary way and suppose that 3 have been defined
on D™ except for the level D _|. We should calculate the number of errors
in each column of D™¢. Comparing the symbols &,,0 < k¥ < m; — 1 and
atl, 0 < v < myy; — 1 {see Picture 4) from (28}, {29) and {30) we can
formulate the following algorithm of a construction of ¢ on DY ;.

A) Define me-l = b, according to (16}, i.e. if % | pre = B,0<k<m—1
k

we chose &, in such a way that

met { 1, if the approximation is odd

0, i itiseven.

B) Write the block B! of length s- ), as follows

B =a't0]... oA - 2@ 0] YA = 2]Gusz
e a—t;’r;es

...a=+1[01...a‘+1[}1"2]&t+2,

e

where XA = Xj41.
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C) Divide the block B* into Ay equal paris, i.e.
B‘ ':..BDBI...BA'_'_;_I 5 I B,' ]= 8y

j =0,1,...,Ag+1 - 1
and define ¢ on D™+ u={-m, +m, — 1,

F=0,1,..., 41 — 2 putting

b if the number of the symbol (1 + G441} in By is even-
¢| DMt = - i .
u b +1, otherwise
i attifa— 1
[» TE 51 ™ a—n;—1
c.onqo-0"‘9'0’--.»-’000.-
.
at o} .
1 ) {s— 1)y +1
t
ag k') {s-1
J in
Ll » L[] - L . 1 - » L ] [ ] - L) 4 N L) » LI |
t+1 1
&t i [ } ~ 2-m -1
.
t ‘1‘1
oy : g+ 1
t
af,
af o™
41 t41
Gesa att10] ot s N mot
O Yo )
ne —
oc\a|‘s;u P R T T T T T R >~
T et 2;
at ! — 1
G‘ = al+1 : ﬂ.‘
at ) 9 a J o
Dme

Picture 4

According to Theorem 1, T}, is metrically isomorphic to T, X ¢,.

The rank power function
Now, we intend to prove the existence of ergodic cocycles satisfying (5} In
[11), Kwiatkowski and Rojet discovered a trichotomy concerning Morse shifts.
Namely either '

C(Tp)={T,00’}, i€Z, j=01, ofz,i}=(z:+1)
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or T, is rigid. If the latter holds then either

(31) C{T,} = weak closure of {{T,)",n € Z},
(32) C{T,}/weak closure of {(T,)",n € Z} = {id,o},

where C(7T,,) is the centralizer of T, i.e. the set of all automorphisms of
(X x zz,é,,a) commuting with T,,. No one of these possibilities is vacuous.
Combining the Weak Closure Theorem [9] with the fact that the rank of Morse

dynamical system is at most 2 one can easily prove that
(33} k(T,) =2 iff o ¢ weak closure{{T,)"*, n€ Z},

as soon as @ is a Morse cocycle.

Given ¢ € K we call the cocycle ¢ + 1 {or T, 1 = T, o o) the completion
of . The idea to prove {5} consisis in the simple observation that a cocycle
and its completion can have quite different properties. Take a Morse cocycle
© such that @ is evenly approximated with a given speed (at least 0(1}) and
moreover that

tk{T,} = 2.

We recall that the paper [11] assures an abundance of such cocycles. We assume
here that 5, (T} = G{n,t > 0},n; are odd. It is an easy observation that the
completion of the ¢ admits then an odd approximation with the same speed.

Therefore
tk{Tpy1) =1
and .
tk(Tp41)? = tk(T, ) > 1k(T,) = 2.
Now, (T,)? = T}, ,.r is ergedic and @ + @ o T admits an even approximation

with the same speed as . Because this speed is at least 0{2} the rank of T,
is at most 2. Similar reasoning shows that

1, {s,n)=1,s5is0dd

2, (s,ms} =1, siseven.

(T, = {
The proof that m.s.m.{T,}* =1, {s,n,) = 1 will follow from the following.

Lemma 3. Let T be an ergodic automorphism with r.p.p.s., S,,(T) =

G{ny, t > 0}. Assume that ¢ admits an odd or even approzimation with speed
1

0(,;) and p is ergodic and nonconstant. Then T, has simple spectrum.

Proof: The proof follows from the considerations from {7]. B
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Remark. I rk{T,) = 2 and © admits an even approximation with speed
o{ —5) then, of course, T, and T, cannot be isomorphic {rk(T, 1) = 1).
Actually, they cannot be spectrally isomorphic. Indeed, {T,;1)™* — o for
a sequence {m;} [9]. If an infinity of the m.’s were even then (T,)™* =
{Te+1)™ — o and from {33} T, would have rank 1. To avoid the contra-
diction we are forced to assume that the m,’s are odd. But then

(T} —id and (T,41)™ - id.

So T, and T, +: cannot be spectrally isomorphic.

Remark. If is interesting to know whether the oscilation of the rank power
function is typical for Z-cocycles. But it is not the case, as the following shows.
First of all we notice that

{34) (T, ) =2 iff rk{T,4{) =2,

as soon as ¢ admits an odd approximation with speed o ). Indeed, if
tk(T,) =1 =1k{T,;1}, then

Bm, (qu)m' e N 12
and
dmy, (Tpe1)™t — o,

Since {33} holds, it is enough to prove that m; or m{ are even for an infinity
of t’s. If this is not the case, then m;, m, are odd. We can also assume
my —my /" oo by passing to subsequences. Then

(Tp)™ 0 (Tpsr) ™ —r 000

50
(T}t o (T‘p)"m: oo — qu'l

which implies

(@) — o

and
{T,)*"* — o, where 2s, = m; — mj.

If tk{Tp 41} = 2, then
2> 1k((T,)7) = tk({Tp1)?) 2 k(1) = 2.

Now the set
A={pe K, k{T,) =1}
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is residual because it contains all cocycles oddiy approximated with speed o{ 1)
Therefore the set £ +1 = {p + 1, ¢ € £} is residual. Whence

An{A+1)={pek,kX{T,)=1= tk{T,+1)}

is residual. This fact and {34) give that the rank power function being constant
{and equal 1} is a typical property for K.

Ezample. The next problem we intend to deal with here is the problem
of lifting roots. It is well-know how to calculate roots for T with r.p.ps.,
5.(T) = G{ny; t > 0}. It {s,n,) =1, t > 0 then T* and T are isomorphic
because they have r.p.p.s. and they have the common sequence (D™} /' B. It
would be interesting to know whether a sufficiently high speed of approximation
of p assures the existence of some roots. However the results of {11] show that
this supposition cannot be true.

We take the Morse sequence
z=58 xb x...
where

By Bt 1
r e, -
¥ =0101...01 1010...101, ¢t > 0O,

Assume that

Zl<oo.

Gﬂl

Put
Agzzut'{"l, ng:v\Q'...‘Ag, Cg:bOX"'Xbr,tZO

and define blocks ¢;, | é |= n, — 1 putting
€¢[£]=Cg[t+1]+0g[£! in Zg, 1‘:0,1,-..,)\:—2.

Let A be the group of all n,-adic numbers i.e.

o0

A={gig=) g n1,056<k-1, =1},
¢

and let u be the Haar measure of A and T be the rotation on I = (1,0,0,...).
For every t > 0 we have a T—power D™ in A such that

¢
D?’={Q;ZQU'nu—l:1}1 1:20,1,...,?’13—1.

u=0

The sequence = determines a Morse cocycle ¢ on A by

ﬁOlDl’n:C)}[?:], i=0,1,...,n,—2.
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In [11] the centralizer of T, has been described. Each § € C{T,,} has a form

S{(g,i} = (g + g0, ¢+ flg})

where go € A and f: A —+ Z, satisfy the condition

{35) olg +g0) + flg) = flg + 1) + ©lg).

We will show that for every & > 1 there exists no § € C{T,,) such that $* = T,,.
Remark that

S*(g, i) ={g+k-go,i+ flg)+ -+ flg+(k—1go}}
Then S* =T, if k-go = 1 and
(38) flgy+ -+ flg + (k- 1j90) = »lg},

where go and f satisfy {35).

Notice that there exists go € A with k-go = iiff (k,m) = 1. We will denote
such go by 1/k. Now we prove that for k > 2, {k,n,} = 1, 1/k does not satisfy
(35} and 1/2 satisfies (35) but the corresponding function f does not satisfy
(36). '

Now, let k > 2, (k,n) = 1, t = G,1,.... I 1/ = (L)@, 0 <l < m —
1, 31 =& {mod n.) then I, is one of the numbers

n,+1 2n, +1 {k—1in, +1
Eook T k '

For such a number I, we have

1
>—-,1——2>—and
2k

1
k Ny

:35,:-

for ¢ large enough.
Ifi /k is represented as a series 3 Ge - ey, then the inequalities

R PRI
At ng_z)\g
imply
gt 1 G 1 g 1 1
37 g L=t — 2=
(87) A T4k’ ¢ 4k Ay 27 4k

for t large enough. On the other hand it is easy to remark that the inequalities

g g g 1
il L s> 6,0< ¢ < X —
A,->6’I )\,->6 andl)\i 2|> ' g 1
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imply

(38) d(btbt[gg,gt + A] - 1}&‘) Z é

Moreover, (38] is valid if we replace 5°6* by bt bbt and 6¢bf. In view of
Theorem 1 in [11], {37} and (38} go = 1/k does not satisfy {35).

Now take 1/k. Then & = (2flyee — (4o + 1) + T gy - ney. It is clear
that

A(B8 [ + L+ M), 8) =) — < o0,

Applying again [11] we obtain that (35) is satisfied with go = 1/2 and the
function f = lim f;, where

T . . . .
f=(§)=csc=[ ; +3=1+c¢[3e] e=(i), 0 Sr—1.

Next we have

.fz(.g) + filg + i/2] =&n + 1]+ e [n, ! +J':] +ct [n;TH +J's} +eln] =
wig}

=i + 1]+ cefie] + 1, forg ={) and 5 <

n;—-3
5

We conclude that {36} does not hold and T, has no roots of any degree. At
the same time the function ¢ admits an odd approximation with the speed
1 1
0('\¢+1 ’ "'c)
Taking suitable A.’s we can get Morse cocycles ’s admitting an approx;ma—
tion with an arbitrarily high speed.
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