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RINGS WITH ZERO INTERSECTION PROPERTY
ON ANNIHILATORS : ZIP RINGS

A bstract

CARL FAITH

Zelmanowitz [12] introduced the concept of ring, which we call right zip
rings, with the defining properties below, whidt are equivalent :

(ZIP 1) If the right annihilator X 1 of a subset X of R is zero,then
Xi = 0 for a finite subset XI C X.

(ZIP 2) If L is a left ideal and if L1 = 0, then Li = 0 for a finitely
generated left ideal L1 C L .

In [121, Zelmanowitz noted that any ring R satisfying the d .c .c . on
annihilator right ideals (= dcc 1) is a right zip ring, and hence, so is any
subring of R . He also showed by example that there exist zip rings which
do not have dcc 1.

In §1 of this paper, we characterize a right zip by the property that
every injective right module E is divisible by every left ideal L such that
L1 = 0 . Thus, E = EL . (It suffices for this to hold for the injective hull
of R.)

In §2 we show that a left and right self-injective ring R is zip iff R
is pseudo-Frobenius (= PF) . We then apply this result to show that a
serniprime commutative ring R is zip iff R is Goldie .

In §3 we continue the study of commutative zip rings .

Zip rings appear in various guises :

Introduction

1 . Beachy and Blair [4] study rings that satisfy the condition that every
farthful right ideal I is co-faithful in the sense that Ii = 0 for a finite subset
I l C_ I, equivalently, R ---, In for n < oo . Right zip rings have this property,
and conversely for commutative R.

Moreover,
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Matemática in the Institut d'Estudis Catalans of Barcelona . He thanks this institution for
its hospitality and support .
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A. Theorem . (Beachy-Blair) If faithful ideals of R are cofaithful then the
same is true of R[x], for any commutative ring R, and any set x of variables .

B. Corollary . If R is a commutative zip ring then any polynomial ring oven
R is a zip ring.

Proof- Obvious from the Beachy-Blair Theorem .

2. Vámos [13] characterized a ringR with the property that for any collection
{Ii}iEA of right ideals, there exists a finite subset Al C A such that

nI;=O=> n Ii=O
¡EA ¡EA1

This happens iff R is right semi-Artinian (Le . has finite essential right socle) .
Trivially, such rings are right zip . Moreover :

C. Proposition . Any right essential subring of a right semi-Artinian ring
is right zip.

Proof. This is an application of the following .

D. Lemma. If R is a right essential subring of a right zip ring S, then R
is right zip.

Proof. Let X C_ R have zero right annihilator in R. Then X has zero right
annihilator in S since R C S as a right R-module . Then Xi = 0 in S for a

ese
finite subset Xl of X, which is what was to be proved .
A ring R is left Kasch if every maximal left ideal has a non zero right an-

nihilator ; equivalently, every simple left module embeds in R. Every left Kasch
ring is right zip, and conversely if finitely generated left ideals are annihilators
(Proposition 1 .G) . A right k~o-injective ring is thereby right zip iff left Kasch
(Corollary 1.7) .
A right PF ring (see Theorem 1 .3) is right semi-Artinian (and right Kasch)

hence right zip, and by Lemma C, so is any right essential subring, we charac-
terize these rings via Propositions 1 .10 and its Corollary . Furthermore, by a
theorem of Kato [6], right PF -+ left Kasch .
We also study Utumi zip rings in §2, and prove inter alia that they are Goldie

rings .
A commutative ring R is zip iff its classical quotient ring Q = Q,(R) is zip

(Corollary 3.2) . When Q is Bezout then R is zip iff Q is Kasch (Corollary 3 .6) .
This holds in particular for any ring R, with Q a chain ring . A similar theorem
holds for an FPF zip ring local Q . (Theorem 3.7) .



1 . PF, Kasch, and Zip Rings

A holomorphism f : I --> E of a right ideal I into a module E is a Baer
homomorphism if there exists m E E such that f(x) = mxtl

	

x E I.
Baer's criterion for injectivity of E states that every homomorphism of any

right ideal of R into E is a Baer homomorphism .
A module E is l~ o -injective provided every homomorphism of a finitely gene-

rated right ideal into E is Baer . The ring R is right RO -injective if the canonical
right module R is .

1 .1 Theorem . (Ikeda-Nakayama [5]) . Consider the conditions :
(a) Every homomorphism f : I --> E of a right ideal into E is Baer.
(b) annE(I fl J) = annEI + annEJ, where I and J are right ideal& .
(c) annEK1 = EK, where K is a left ideal.

Moreover, let (a*) denote ¡he restriction of (a) to finitely generated I, and
(a** ) the restriction to principal I. Similarly for (b * ), (b** ), (c * ), and (c** ) .
(Thus, in (c*), K is a finitely generated left ideal) . Then:

i . (a**) => (c**) .
ii . (a*) 4* (b*), (c**) .

iii . (a) => (b), (c*) .
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Thus : E is k~o-injective iff (b*) and (c**) both hold .

Proof.. This is proved in [5] for the case E= R, and it is easy to prove that
this holds for a general module E. (This is made explicit in [3c, p . 189, 23.21]).
A module E is FP-injective iff for all short exact sequences

0-->A---> B-->C->0

of finitely generated modules A, B and C, it is true that the canonical sequence

(2)

	

0 --> HOMR(C, E) -> HomR(B, E) --> HOMR(A, E) ---> 0

is exact . blo-injectivity is that statement that (1) exact implies (2) exact for
B = R and A finitely, generated .
Any injective module is FP-injective . A coherent k~ o -injective is FP-injective

(Stenstrom [8b]-Jain [14]) but in general l~o-injective does not imply FP-
injective .By Jain [14] R is right FP-injective iff every finitely presented left
R-module is torsionless .

1 .2 Proposition . R is a right zip ring iff the injective hull E = E(R) of R
in mod-R is divisible by any left ideal I having I1 = 0 . In Mis case I divides
any injective right R-module .

Proof. If R is right zip, and I a left ideal with I1 = 0, then I, = 0 for
a finitely generated left ideal Ii C_ I, then E = EI, by the Ikeda-Nakayama
theorem, so EI = E.
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Conversely, if E = E(R), then El = E, implies that there exists finitely
many yi E E, ri E I, i = 1, . . . , n such that 1 = Z:á 1 yári . But this implies
fl 1r, = 0, so R is right zip .

Let mod-R be the category of all right R-modules, and let R-mod denote
the left-right symmetry.

In general, a module E is a cogenerator of mod-R iff the injective hull E(V)
of every simple right R-module V embeds in E (see, e.g . [3], [9)] . A ring R is
right Kasch if every simple right module y R, or equivalently, 1I 7É 0 for any
right ideal I :~ R . Thus, a ring R is an injective cogenerator of mod-R iff R is
right self-injective and right Kasch . Other characterizations :

1 .3 Theorem. (Azumaya [11, Osofsky [7], Utumi [9]) . A ring R is right
PF (pseudo-Frobenius) provided the following equivalent conditions hold:

(PF1) R is right self-injective and semiperfect with essential right socle .
(The socle is the .largest semisimple submodule) .

(PF2) R is right self-injective with finite essential right socle .
(PF3 ) R is a finite direct sum . R = j

:1 ®eiR, where e; = el E R and
eIR is a projective injective right ideal with simple socle,

	

n.
(PF4 ) R is an injective cogenerator in mod-R.
(PFS ) R is right self-injective and right Kasch .

1 .4 Theorem. (Kato [6J) . Any right PF ring R is left Kasch .

A ring R is left (finitely) annular if every (finitely generated) left ideal L is
an annihilator, that is, L =1 (L1 ) .

1 .5 Theorem . (1) . A right 11o-injective ring is left finitely annular.
(2) A right cogenerator ring R is right annular .
(3) A right PF ring is right annular and left finitely annular .

Proof. (1) . In (iii) of Theorem 1.1, take E = R, and then EK = K =
armRK1 =l (K 1) is an annihilator, for any finitely generated K .

(2) A cogenerator E of mod-R has the property

I = annRarmEI

for any right ideal I (see, for instance [4, p.184, 23.13). Then (2) follows when
E = R.

(3) R is right annular by 2, and since injective, left finitely annular by 1 .

1 .6 Proposition . Any left Kasch ring R is right zip . If R is finitely left
annular, then conversely .

Proof.. R left Kasch implies L1 :~ 0 for all left ideals :~ R, hence R is right
zip .
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Conversely, if R is left finitely annular, then right zip implies for any left
ideal L with L 1 = 0 the existence of a finitely genrated left ideal L 1 C_ L
with Li = 0 . But then Li =L (LÍ) = R, so L = R, and R is therefore left
Kasch .

1 .7 Corollary . A right leo -injective ring R is right zip iff left Kasch .

1 .8 Corollary . A right PF ring R is right and left zip .

Proof:: R is right annular and left finitely annular by Theorem 1 .5, and right
and left Kasch by Theorem 1.3 and 1 .4, hence right and left zip by Proposition
1 .6 . 9

1 .9 Corollary . A left and right self-injective ring R is right zip iff right
and left PF. (In this case R is left zip) .

Proof.. R is left Kasch by Corollary 1.7, hence left PF by Theorem 1.3 .
However, then R is right Kasch by Theorem 1.4, so R is right PF. (Left zip
follows by Corollary 1 .8) .

Conversely, if R is right and left PF, Corollary 1 .8 yields R is zip .

1 .10 Proposition . If R is right zip, and if Q = Qmax(R) is also a left quo-
tient ring of R (equivalently, Q C_ QM,.(R)), then Q is right zip . Conversely,
if Q is right zip, then so is R .

Proof. Let L be a left ideal of Q such that L1 = 0 in Q . We shall show that
(L n R) 1 = 0 in R . Suppose not and let a E R be such that (L fl R)a = 0 and
a :~ 0 . By the assumption Q C Qmax(R), R is dense in Q as a left R-module,
and this implies a contradiction, namely that La :~ 0 . To prove this, suppose
that x E L, and xa :~ 0 then there corresponds r E R with rx É R and rxa :~ 0
([3b, p.79 Theorem 19.23]) . But rx E L fl R, contradicting (L fl R)a = 0 .
Therefore by right zip in R, there is a finitely generated left ideal L1 of R with
L 1 C L fl R and Li = 0 . Then QL1 is the desired finitely generated left ideal
of Q contained in L with (QL1) 1 = 0 .
The converse derives from Lemma D .

1.11 Corollary. Let R be right zip . If Q = Q;,aX(R) = Qmax(R) is injective
(both sides), then Q is PF (both sides) . Conversely .

Proof.. By Proposition 1 .10, Q is right zip hence right and left PF by Co-
rollary 1 .9 . Conversely, if Q is (right) PF, or zip, then R is (right) zip by 1 .8
and 1 .10 .
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2. Utumi zip rings are Goldie

A ring R is a right Utumi ring provided that R is right nonsingular and the
following three equivalent conditions hold:

U, : Every complement (= essentially closed) right ideal is an annihilator .
U2 : Every nonzero left ideal L of Q= Qmax(R) meets R, that is, Lf1R 7É 0 .
U3 : 1I = 0 . In R for a right ideal I implies that I is essential in R.
U3 is called cononsingular, and implies that R is left nonsingular (proof

omitted) .

2 .12 Theorem . (Utumi [10]). A nonsingular ring R is right and left Utumi
(equivalently right and left cononsingular) a�$ Qmax(R) = Qñ,ax(R) .

Utumi rings were named by Stenstrom [8] .
A ring R is right Goldie if R has acc 1 and finite right Goldie dimension in

the sense that any direct sum Eal2A®Xa of right modules embeddable in R
has only finitely many Xa q£ 0 . The latter condition is denoted by acc®, and
is equivalent to the acc on complement right ideals .

If R is right nonsingular then Q = QMax(R) is right self-injective and von
Neumann regular . Moreover any annihilator right ideal is a right complement,
and the right comlements have the form eQ n R, where e = e2 E Q. Moreover,
the contraction map I -> I fl R induces bijection between complement right
ideals of Q and those of R. Since Q is regular, then the f .a .e .c .'s :

(13 .1) R has (acc)® .
(13.2) Q has (acc)® .
(13.3) Q is semisimple Artin .

Inasmuch contraction induces a surjection between the annihilator right ideals
of any ring Q and those of a subring R, then any subring of an Artin (Noether)
ring has dcc 1 (resp . acc1), hence for right nonsingular R, we see that (13.3)
implies that

(13.4) R has acc 1 and dcc 1 (equivalently 1 acc and 1 dcc) and
(13.5) R is right Goldie .

2 .14 A Theorem . An Utumi right zip ring R is right Goldie, hence satisfies
both 1 dcc and dcc 1, so is both right and left zip.

Proof.. Any right nonsingular ring R has injective (and regular) Qmax(R),
so by the Utumi assumption, Q = Qma.(R) _ Qñ,aX(R) is injective on both
sides, and the theorem follows from Corollary (1.11), since any PF ring Q is
semiperfect . Thus, regularity of Q implies that Q is semisimple Artin, so apply
(13.4-5) .

If left zip is assumed, we can get the same conclusion assuming Utumi .
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2.14 B Theorem . Any Utumi left zip ring is right Goldie, hence has 1 dcc
and dcc 1 .

Proof. Let I =

	

® Xa be a maximal direct sum of right ideals contained
aEA

in R. Then I is an essential right ideal, so 1 I = 0, and left zip implies a finitely
generated right ideal II C_ I with 1I1 = 0 . But then cononsingularity means
that I1 is an essential right ideal . But a direct sum ®aC.AXa, has a finitely
generated essential submodule iff Xa :~ 0 for just finitely many a E A. Thus R
has (acc)®, so Q has (acc)®, i .e . (13.1)-(13 .5) hold, proving the theorem .

3.Commutative Zip Rings

We now apply earlier results to commutative rings .

3.1 Proposition . If R ---> S is an embedding of rings such that

ideals R -> ideals S
I --> IS

is surjective, then R zip implies that S tis zip.

Proof.. Let R be zip, and let I be a faithful ideal of S . Let Io be ideal of
R such that IO S = I . Then Io is faithful in R, so Ii = 0 in R for a finitely
generated ideal Il of R. Thus,

anns(I1 S) = 0

and Il S is a finitely generated ideal of S .
This proves that S is zip .

3 .2 Corollary . A commutative ring R is zip if its classical quotient ring
Q = Q,(R) is zip.

Proof.. R zip implies Q zip by the proposition . Conversely, R right essential
in Q, Lemma D applies : if Q is right zip so is R.

3 .2 also follows from Lemma D and Proposition 1.10 .

3 .3 Corollary . If R is zip, so is RS-1 , for any multiplicative semigroup
S C R*, and conversely .

ProoP Same as Corollary 3.2
By Proposition 1 .6, any commutative Kasch ring is zip this yields :
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3.4 Corollary . If Q,(R) is Kasch, than R is zip .

Definition. A commutative ring R is Bezout provided that all finitely gene-
rated ideals are principal .

Trivially principal ideal rings and chain rings (= rings with linearly ordered
ideal lattices) are Bezout, and so is any finite product of Bezout rings . Also
any factor ring of a Bezout ring .
R is a (*)-Bezout ring if every finitely generated faithful (or dense) ideal is

principal . If R is reduced (= semiprime = non-singular) then an ideal I is
dense iff I is essential . Since every ideal is a direct summand of an essential
ideal (in any ring), then R is (*)-Bezout iff Bezout when R is reduced .

3 .5 Proposition . Let R be a (*)-Bezout ring.
(1) R is zip iff every faithful ideal contains a regular element.
(2) In this case, the classical quotient ring Q = Q,(R) is (*)-Bezout Kasch

ring.

Proof.. (1) If I is a faithful ideal of a zip ring, and if I, is finitely generated
faithful ideal contained in I, then I, is principal, hence generated by a regular
element .

(2) Q is also (*)-Bezout, and by (1) every faithful ideal contains a unit, that
is, Q is the only faithful ideal . This implies that Q is Kasch.

3 .6 Corollary . For a (*)-Bezout ring R the f.a .e .
(1) Q = Q,(R) is zip .
(2) Q is Kasch.

Proof.: Apply Corollary 3.4 and Proposition 3.5 .
A ring R is FPF iff every finitely generated faithful module generates mod-

R. By [20], a commutative ring R is FPF iff there holds .
(FPF1) Every finitely generated faithful ideal is projective, and (FPF 2)

Q = Q,(R) is self-injective .
In this case Q is FPF .

3.7 Theorem . If R has a local quotient ring Q = Q,(R), and if R is an
FPF zip ring, then Q is PF.

Proof.. If Q is PF, then Q is Kasch by Theorem 3.1, hence Q and R are zip
by Corollary 3.4 (without assuming Q local) .

Conversely, if R is zip, then so is Q by Proposition 3.2 . Also R FPF implies
Q FPF, hence if an ideal I, is finitely generated and faithful in Q, then I is
projective by FPF, and free by Kaplansky's theorem on projective modules
over local rings . But in a commutative ring, every free ideal is principal, so Q
is (*)-Bezout . By Theorem 3 .6, Q is Kasch, hence PF by Theorem 1 .3 .



RINGS WITH ZERO INTERSECTION PROPERTY

	

337

Added in Proof. See [3c] for ínter alia a study of zip rings, and of an example
of a zip ring E with Q,(R) not Kasch .
The question of when a noncommutative right zip ring R has right zip poly-

nomial ring R[X] is presently open .
In [3c], it is shown that a right zip ring R has the property right

l; min, i .e ., every annihilator right ideal qÉ 0 contains a minimal annihilator
right ideal :~ 0 .
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