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SOLVING A CLASS OF GENERALIZED LYAPUNOV

OPERATOR DIFFERENTIAL EQUATIONS WITHOUT

THE EXPONENTIAL OPERATOR FUNCTION

A bstract

LUCAS JÓDAR

In this paper a method for solving operator differential equations of the
type X ' = A -}- BX + XD; X(O) = Co, avoiding the operator exponen-
tial function is given . Results are applied to solve initial value problems
related to Riccati type operator differential equations whose associated
algebraic equation is solvable .

1 . Introduction

It is well-known that the solution of the matrix differential equation

(1 .1)

	

X0)(t) = A + BX(t) + X(t)D;

	

X(o) = Co

where A, B, Co, D and X (t) are non complex matrices, and D* denotes the
adjoint matrix of D, is given by the expression

(1 .2)

	

X(t) = exp(tB)Co exp(tD*) +
lo t

exp(B(t - s))A exp(D*(t - s»ds

see [1, p . 28] for details . It is easy to show that the expression (1.2) defines the
solution of problem (1 .1) when A, B, Co and D are bounded linear operators
defined on a Hilbert space H. Although the exponential matrix function has
been widely studied ([13], [17], [18]), its computation presents some inconve-
nients ([13]) so, thinking of applications, an expression of the solution of (1 .1)
avoiding the use of the exponential matrix function is interesting .
The aim of this paper is to present an alternative method for solving (1 .1)

avoiding the exponential matrix function and the computation of integrals in-
volving exponentials of matrices . Let us denote by L(H) the algebra of all
bounded linear operators defined on the Hilbert space H, and for T in L(H)
let us denote its spectrum by o(T) . We recall that an operator T in L(H) is
said to be algebraic if there exists a polynomial p(z) such that p(T) = 0 . It is
cleax that a finite-dimensional operator is algebraic and from [4, p . 569], an
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algebraic operator in L(H) has a finite spectrum, but there are operators with
a finite spectrum that are not algebraic operators in L(H), [14] . In [5], P.R .
Halmos observed that an operator in L(H) that is annihilated by an entire ana-
lytic function, is algebraic. An account of the properties of algebraic operators
may be found in [7], [14] .

Let T be an operator in L(H) and let zoea(T) an isolated point of u(T),
then zo is said to be a pole of T if the resolvent function R(z,T) = (zI -T)-1
has a pole at zo . By the order w(zo) of a pole zo is meant the order of zo as a
pole of R(z,T) .

In this paper we consider the problem (1 .1) where A and Co are arbitraxy
operators in L(H), u(B) (1 a(-D) = 0 and

(i) D is an algebraic operator in L(H) and its minimal monic polynomial
p(z) only has linear factors, p(z) = (z - zl)(z - z2) . . . (z - zn), zi :~ zj, for
1<i,j<n,i :~ j .

(ii) B -E L(H) has a finite spectrum and each z,O(B) is a pole of B.

For the finite-dimensional case the condition (ii) is always satisfied, and the
condition (i) means that D is similar to a normal operator, [7, p. 14] . Section
2 concerns with the resolution problem (1 .1) and section 3 provides an explicit
solution for a class of generalized Riccati operator differential equations in
terms of a solution of certain generalized Lyapunov equation associated to the
problem .

2 . Solving generalized Lypunov differential operator differential
equations without the exponential operator function

We begin this section with an algebraic result that provides a finite algebraic
expression of the solution of generalized algebraic Lyapunov operator equa-
tion, under certain uniqueness hypothesis . For the finite-dimensional case, an
analogous result is given in [9] .

Lemma 1. Let A1 , B1 and Dl be operators in L(H) such that Dl is algebraic
and satisfies the condition

(2.1)

	

a(B1 ) (1 a(D1 ) = 0

and let p(z) = rk=o akzk, such that p(D1) = 0.

	

Then the only solution of the
equation

(2.2)

	

A1 +B1X-XD1 = 0

is given by the expression,

n

	

n j
(2.3) X akBajBl-1A,D1-k)

k=0

	

j=1 k=1



Proof. Under the hypothesis (2.1), the equation (2.2) has only one solution,
[16], [3], and from [3], corollary 2, if X is the only solution of such equation
one gets

(2.4)
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From (2.4), it follows that

(2.5)

	

p(V) = wp(
1

01

	

D1 ]
)w-1 =w

	

p(B1)
1)

	

p(D1)

	

w-1
= [p(B1)

	

-p(B1)X j
0 0

Also, considering the powers Vi, for j = 0, 1, . . . , n, it follows that the (i, 2)
block entry of the operator Vi, denoted by Vgj2, for j = 1, 2, . . . . n and i = 1, 2,
satisfy

(2.6)

	

Vil = B1 Vi,2 1 +A1 V221 ;

	

V22 = Di ;

and V° 2 = 0, V20,2 = I.
Considering the polynomial calculus and computing it follows that for certain

operator M one has

(2.7)

	

p(V)=p([ 01

	

DI~)- [p(ó1)

	

p(D1)J
= [p(B01)

	

0
1

From (2.5) and (2.7), one gets M = -p(B1 )X, and from the spectral mapping
theorem, [4, p . 569], and (2.1), the operator p(B 1 ) is invertible in L(H). Thus,
we have

(2.8)

	

X =-(p(B1))-1M

By multiplying the operator V1j,2 by the coefficient aj, for j = 0, 1, . . . , n, and
by addition it follows that the block entry (1,2) of the operator matrix p(V),
is given by the expression

(2.9)
j-1 k=1

From (2.8) and (2 .9) one gets (2.3) .
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For the sake of clarity in the presentation of the next results we recall some
concepts and properties concerned with the Riesz-Dunford functional calculus,
[4], and the Laplace transform of operátor valued functions, [8] .

Let zo be an isolated point in the spectrum u(T) of an operator TeL(H),
then the Laurent expansion of R(z,T) = (zI - T) -1 in a neighborhood 0 <
Iz - zo 1 < 5, of zo , is given by

00

(2.10)

	

R(z,T) =

	

E A.(zo - z)n
n=-oo

A-(n,+1) = (z o I -T)'E(zo ;T)

where E(zo ;T) denotes the spectral projection corresponding to the spectral
set {zo} see [4, p . 573], for details . If z o an isolated point in o(T), it follows
that zo is a pole of order p, if and only if,

(2.11)

	

(zoI -T)PE(zo;T) = 0 and (zoI -T)P-1 E(zo;T) qÉ 0

We recall that a L(H) valued operator function t -> V(t), is said to be an
original function if, V(t) = 0, for t < 0, V is locally integrable and there exist
a real number so and a positive number M, such that 11V(t)jj _< Mexp(sot),
for t > 0 . Under these hypotheses the Laplace transform of V, represented
by V, is defined in the usual way, see [8] for details and related properties . In
particular, if V(1) is an original function, it follows that V(') (s) = sV(s)-V(0) .
Finally, if z -> f(z), is a L(H) valued meromorphic function and zo is a pole
of f, we represent by Res(f ; z o ) the residue of f in the pole z o .

Let us consider the problem (1 .1) where A and Co are arbitrary operators
in L(H) and B, D are operators in L(H) satisfying the properties (i) and (ii)
given in page 1 . Let X be the function defined by the expression (1.2) for
t >_ 0, and X(t) = 0, for t < 0 . From (1 .2) it follows that X(t) and X(1)(t)
are original functions, where X1)(0) means the right lateral derivative of X at
t = 0 . Let X(s) be Laplace transform of X. Taking into account the properties
of the Laplace transform, as X satisfies the problem (1.1), by application of the
Laplace transform to the differential equation arising in (1 .1), it follows that
there exists a positive number a such that if Re(s) > a one gets

(2.12)

	

sÑ(s) - Co = A/s + BX(s) + X(s)D
(sI - B)X(s) - X(s)D = Co + A/s .

Let p(z) =J:"=0 akz k = (z-z1)(z-z2) . . . (z -xn), z; 7É zi, if

	

1 < i, j <
n, the minimal monic polynomial of D, where a(D) = {z 1 , . . . , xn} . It is clear
that for values of s enough advanced in module, one has u(si-B) fl o(D) = 0 .
So, from lemma 1, it follows that for values of s enough advanced in module,



X(s) is given by the expression

(2.13)
n k

Ñ(s) = -(p(sI - B)) -1(L~E aj(sI - B)'-1(Co + Als)Dk-j)
k=1 j=1
n k

= - (p(sI - B)-1(E 1: aj(sI - B)'-1CoDk-j)
k1 j=1
n k

- (sp(sI - B))-1(EE aj(sI - B)'-1ADk-')
k=1 j=1

From the spectral mapping theorem, [4], it follows that p(sI - B) is invertible
in L(H) for values of s enough advanced in module, and

(2.14)

	

(p(sI - B))-1 = IIi 1(sI - B - zj)-1 = II

	

1 (sI - Rj)-1

where Rj =B +zj, for j = 1,2, . . .,n, zjcQ(D).

Let q 1 (s) and q2 (s) be the holomorphic L(H) valued operator functions de-
fined by the expressions

(2.15)

	

q1 (s)

From (2.13), (2.14) and (2 .15), it follows that

(2.16)

	

X(s) = X1 (8) + X2(8)

where

(2.17)

Let us suppose that v(B) = {b,, . . . , b.}, then taking into account (2 .17), the
set of poles of (sI - Ri ) -1 is the set of points sij = bi + zj, where 1 _< j < m,
and as q1(s) and q2(s) are holomorphic functions, by aplication of the Laplace
inversion formula, for t > 0 we have

(2.18)
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q2(S)

n k1: 1: aj(sI - B)j-1
CoD

k-' ;
k=1 j=1
n k

E aj(sI - B)j-'ADk-j
k=1 j=1

X1 (s) = -(IT

	

1(sI - R4) -1 )g1 (s) ;
X2(S) = - (II

	

1(sI - Ri)-1)g2(s)/s .

n m
X(t) = EE(Res(Xj (s) exp(st) ; sij) + Res(X2(s) exp(st) ; sij)

i=1 j=1

+ Res(X2(s) exp(st) ; 0)

	

if sij :~ 0, 1 < i < n, 1 < j < m
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and if there exist some sjj = 0, then

n m
(2.19)

	

X(t) = EE(Res(Xj (s) exp(st) ; sij) -1- Res(XZ (s) exp(st) ; sij)
%-1 j-1

In order to compute the residues of Xj(s) exp(st), for i = 1, 2, we need the
order of each singularity si j and 0 for such functions . Note that the spectral
projection E(sij ; Rj) = E(bi + zj ; B -{- zj) = E(b% ; B), and the order of sjj as a
singular point of (zI - Rj)-1 coincides with the order of b% as a singular point
of (zI - B)-' . Also, considering the decomposition
(2.20)
Xj (s)exp(st) = (sI- Rj) -1 (R

	

1 (sI-R%) 1 )gl(s)exp(st) _ (sI-Rj)-1Qj(s) .
¡#.i

The Taylor expansion of Qj(s) at the point s jj takes the form

(2.21) Qj(s) =

	

Qjn)(si7)(S - S%j)n/n!
n>0

and the Laurent expansion of (sI - Rj)-i at the point sjj is given by the
expression

(2.22)

	

R(s, Rj) = (sI - Rj)-1 =

	

>~

	

An(S%j - S)n ;
n=-wi

A-(m+1) = -(sijI - Rj)'E(sij ; Rj)

or A- ( ,n+1 ) = -(bi - B)nE(b% ; B), where w% is the order of b% as a pole of B.

From (2.20)-(2 .22) it follows that

(2.23)
Res(Xj(s)exp(st) ; sij) = (sijI- Rj)w'E(b%; B)Q(w'-1)(sij)1(w% - 1)! + . . .

+ (sijI - Rj)E(b% ; Rj)Qj(sij) = E(b% ; B)((b%I
- B)w'Q;w'-1)(S%j)I (w% - 1)(+ . . .

+ (biI - B)Qj (s,,

Let us denote by Q%j(t) the expression

(2.24)

	

(biI -
B)w'Q~w;-1)(sij)f(w% - 1)( + . . . + (b%I - B)Qj(s%j) = Q%j(t),

then from (2.20) and (2.24), if t > 0 one gets

(2.25)

	

1: Res(Xj(s) exp(st) ; sij) _

	

1: E(bi ; B)Q%j(t) .
%=1 j=1

	

%-1 j=1



GENERALIZED LYAPUNOV DIFFERENTIAL EQUATIONS

	

31

Let Tj(s) = (II

	

1 (sI - Ri)-ls-lg2(s) exp(st), for j = 1, 2, . . . . n .

	

Then it

follows that Ñ2(S) exp(st) = (sI - Rj)`Tj(s) .

	

Under the hypothesis sij =
bi + zj :~ 0, 1 < i <_ n ; 1 <_ j _< m, or equivalently a(B) fl a(-D) = 0, the
set of singularities of the meromorphic opetator function (sI - Rj)-1Tj(s) is
{0} U {sij;1 _< i _< n,1 _< j _< m} . Considering the Laurent expansion of
(sI - Rj)-1Tj(s) at the point sij, and taking into account (2 .22), it follows
that

ReSX2(s) exp(st) ; sij) = E(bi ; B)((biI - B)-'T
;w`-1)(sij)f(wi - 1)1 + . . .

(2 .26)

	

+ - - - + (biI - B)Tj(sij)) .

Let us denote by Sij(t) the expression

(2 .27)

	

(biI- B)w'T~w' -1) (sij)I(wi - 1)i + . . . + ( b iI - B)Tj(sij) = Sij(t)

then from (2.26) and (2.27) it follows that
n m

(2 .28)

	

1: 1: Res(X2(s) exp(st) ; sij) = 1: >~ E(bi ; B)Sij(t) .
i=1 j=1

	

i-1 j=1

In order to compute the residue of X(s) exp(st) at s = 0, note that
Res(Xi (s) exp(st) ; 0) is the operator 0 because Xl(s) exp(st) is holomorphic at
s=0and

(2.29)

	

X2(s) exp(st) = -s-1(p(sI - B)) -l g2(s) exp(st) .

Under the hypothesis u(B) n a(-D) = 0, the operator p(-B) is invertible,
thus the factor (p(sI - B)) -1 q2 (s) is holomorphic at s = 0, and from (2.29) it
follows that

(2.30)

	

Res(X(s)exp(st) ; 0) = -(p(-B))-lg2(0)
n k

-(p(- B)) -1~1: aj (-B)' -I ADk-'
k=1 j=1

and from lemma 1, it follows that ResÑ(s) exp(st) ; 0) = X* , X, being the only
solution of the algebraic equation A + BX + XD = 0 .
Summarizing we have that under the hypothesis u(B) fl a(-D) _ 0, the

solution X(t) of problem (1.1), for t > 0 is given by the expression
n m

(2 .31)

	

X(t) = X* + E1: E(bi ; B)(Qij(t) + Sij(t))
i=1 j=1

where X* is the only solution of the algebraic equation A + BX + XD = 0,
given by (2.30), and Qij(t) and S=j (t) are given by (2.24) and (2.27) respectively .
Thus the following result has been proved :
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Theorem 1 . Let us consider the problem (1.1) where A and Co are operators
in L(H) and the operators B and D satisfy the following properties

(i) u(B) = {bi ; 1 < i < n}, o,(D) = {z1 ; 1 < j < m}, and u(B)nu(-D) _
0 .

(ii) Each bico,(B) is a pole of B .
(iii) D is algebraic and its minimal monic polynomial p(z) _ Ek-o akz~`,

only has linear factors, p(z) = H!', (z - zi) ; zi =~ z1, if i :~ j .
Then the only solution of problem (1 .1) is given by the expression (2.31),

where X* is given by (2.30), E(bi ; B) are the, spectral projections of B, and
Qi1(t) and Sij(t) are given by (2.2 .x) and (2.27) respectively .

Proof. The result is a consequence of the above comments. In fact for t > 0,
the expression of the solution coincides with (2.31) . On the other hand, the
solution of problem (1 .1), given by (1.2) is an analytic function of the variable
t, and coincides with the expression appearing in the right hand side of (2.31),
that is also analytic, in consequence they coincide on all the real fine .
Under the hypothesis of theorem 1, note that with the exception of Si;(t)

and Qjj(t), all coefficients E(bi ; B) and X, given by (2 .30) do not involve the
variable t, thus, in order to study the behaviour of the solution when t ---> oo,
we have to consider the functions Qjj (t) and Sij(t) . Note that Sij (t) and Qjj (t)
are defined by (2.27) and (2.24) in terms of the derivatives (with respect to s)
of the functions

Qj(s) = (II

	

1(sI - Ri)-1 )g i (s) exp(st)
a9Éj

Tj(s) = (n81(sI - Ri)-1 )s-1g2(s)exp(st),
i9É7

where q1 (s) and q2 (s) are given by (2.15) .

Corollary 1 . Let us consider the problem (1.1) under Me hypotheses of
theorem 1 . If sis = bi -{- zj, 1 <_ i <_ n, 1 <_ j < m, and all sis are contained in
the half plane Re(z) < 0, then all solution of the differential equation arising
in (1 .1) converges ío X* when t -> +oo .

Proof.. The result is a consequence of the expression (2.31), (2 .27) and (2.24)
and theorem 1 .

3 . An Application to Riccati Operator Differential Equations

The resolution of a Caúchy problem for Riccati operator differenctial equa-
tions of the type

(3.1)

	

d/dtX(t) = A+ FX(t) +X(t)G +X(t)EX(t) ; X(0) = Co
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where A, F, G, E and Co are operators in L(H), is important in control theory,
[12], transport theory, [15], and filtering problems, [2] . In a recent paper [10],
an explicit expression of the solution of problem (3.1) is given in terms of the
block entries of the operator function

(3.2)

	

S(t) exp(

	

G

	

-E
A

	

F

	

t)

but an explicit expression of such entries in terms of data is not known. The
aim of this section is to obtain an explicit expression of a class of problems
of the type (3.1) in terms of a solution of the corresponding algebraic Riccati
operator equation
(3.3)

	

A+FX +XG+XEX = 0

and the solution of certain associated generalized Lyapunov operator differential
equation .
A resolution method for solving non-symmetric algebraic Riccati operator

equation is given in [6] .
Let us consider the problem (3.1) and let us suppose that there exists a

solution X, of the algebraic equation (3.3) such that Co - X, is invertible
in L(H) . From [111, the problem (3.1) is locally solvable, so, there exists a
solution X(t) defined in a neighborhood J of the origin t = 0 . As X(0) = Co
satisfies Co - X, invertible in L(H), from continuity, it follows that X(t) - X*
is invertible in L(H) when t belongs to some neighborhood of t = 0, let us
denote this neighborhood by J .

Let F* and G, be the operators in L(H) defined by the expressions

(3.4)

	

F, = F+ X*E,

	

G* = G + EX*

and let Y(t) = (X(t) - X*)-1 , tEJ . Then (Y(t))-1 = X(t) - X* , and by
differentiationit follows that dldt((Y(t))-1) = dldt(X(t)-X* ) = X(t)EX(t)+
FX(t) + X(t)G + A - (X*EX* + FX* + X* G + A) and from (3.4) one gets

(3.5)
d/dt((Y(t))-1) = (X(t) - X*)E(X(t) - X* ) + (F + X*E)(X(t) - X*)

+ (X(t) - X* )(G + EX* ) = (Y(t))-1E(Y(t))` + F*(Y(t))-1) + (Y(t))1G* .

Thus, U(t) = (Y(t)) -1 satisfies
(3.6)

	

d/dt U(t) = U(t)EU(t) + F* U(t) + U(t)G. .

Premultiplying and postmultiplying by Y(t) both members of equation (3.6),
and taking into account that

-d/dt Y(t) = Y(t)(d/dt(Y(t))-1))Y(t)
it follows that
(3.7)

	

d/dt Y(t) = -E - Y(t)F, - G*Y(t) ; Y(0) = Co - X.)-1-
So, the solution X(t) of problem (3.1) is given by X(t) = X* + (Y(t»-1 , where
Y(t) is the solution of (3.7) . From the above comments and theorem 1, the
following theorem has been established .
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Theorem 2. Le¡ us suppose that there exists a solution X* of equation (3.3)
such thaí the operators F* and G� given by (9.4) satisfy the properties

(i) o-(-F.) n (G*) = ÍD ; o'(-G* ) = {bi;1 < i < n} ;o-(-F,) = {zj ;1 < j <

(ii) Each biev(-G* ) is a pole of -G*
(iii) -F* is algebraic and its minimal monic polynomial p(z) only has

linear factors with p(z) _ Ek-o akzk = IIQ1 (z - zi), with zi

	

zj, if 191 j .

Let sij = bi +zj, for 1 < i < n, 1 < j < m, and let wi be the orden of bi as a
pole of -G*, and le¿ E(bij -G* ) be the spectral projection associated to bi as a
pole of -G*, then if Co -X* is invertible in L(H), in a neighborhood of t = 0,
the solution of problem (J.1) is given by the expression

n m
X(t) = X* + (Y* +1: 1: E(bi ; -G*)(Qij(t) + Sij(t)))-1

i=1 j-1

where Y* = -(p(G*))-1(I:k-1 Ej=1 aj(G*)j-1E(-F*)k-j), and Qij(t), Sij(t)
are given by the expressions analogous to (2 .21,) and (2.,27) respectively, by
replacing the operators B, D and A, by -G*, -F* and -E, respectively .
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