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THE WORK OF
JOSE LUIS RUBIO DE FRANCIA 1

The aim of these pages is to give the reader an idea about the first part of
the mathematical life of José Luis Rubic de Francia.

José Luis was an undergraduate student at the University of Zaragoza from
1966 to 1871, and a graduate student from 1971 to 1974, His advisor was pro-
fessor Luis Vigil, who introduced José Luis to Harmonic Analysis. He began
studying Fourier Analysis on groups. In fact, the goal of his thesis was to study
in the Abstract Harmonic Analysis context Vigil's unpublished monograph “Se-
rics de Fourier en medida”, Beca March 1957, see [V].

José Luis took two starting points:
The first one, due to Kolmoegorov, staies that given a function f in L]0, 1)),
the functions

1 n—1 .
fn(z) = ;1' Z f(I + i)s = 1)2:»33'"
j=0

converge in L, to [ = f; f(z)dz, see [Z).
More precisely, if w, denotes the modulus of continuity in L*, one finds (see
(v

o = Tler < wy(figo) 1595

The second starting point was due to Vigil.
Given a function f in L{[0, 1]}, we consider the functions

ax(z) = f(e)e e

and
n—1

cenfz) = % Eck(:c + %)

i=0
The following identity holds
fley=3" eransr(2)e?™,
k=—-n

and we have convergence, in the L'-norm, of €x,n to the k-th Fourier coeficient
of f, namely

ﬁi Flz)e miEr gy
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Thus one could have, at least formally, some estimates for the convergence
of Fourier Series.

José Luis made already the observation that with these techniques in abstract
groups, he could only obtain criteria of Dini-Lipschitz type for the convergence
of Fourier Series, although he became an expert in Abstract Harmonic Analysis
with the development of his doctoral dissertation, see [R de F1].

Now I shall comment on one of the results he proved in this subjet, see [R
de F1], [R de F2].

G will dencte a locally compact group with identity e and left Haar measure
m. A normal closed subgroup of & will be written H, my will be a left Haar
measure for H and given a function f defined on G

fH(z):Lf(mt}de{t)

will be defined whenever the right-hand side exists (a.e.). The function Fin{z))
= fi{z) is then well defined on G/p, and there is a left Haar measure  on
G/ u such that Weil's identity holds:

[ rdm = /G Jan (s € (@)

Theorem 1. Let V be o relatively compdci open neighbourhood of the iden-
tity, such that VH = G. Let f ¢ L' N LP(G), with integral I = f fdm. Then

(1.1) ¥ 1 <p< oo, (fg, [ —IPdm)/e <w,(£V),
(1.2} if 1 < p < oo and G 1s compact

( ]G \fir = IPdm)? < wy(£; V)

and
(1.8) if p= oo and supp(f) = K compact

sup [£u(=) — 1| < m(V K ywao(f, V).
&G

As I said before, while he was doing his thesis, José Luis became an expert
in Abstract Harmonic Analysis. Buf not only on that. In his thesis one of
the modes of convergence studied was the convergence in measure and again
the treatement of the subject was very deep, in fact he made some significant
contributions to the theory.

He studied the convergence in measure in a general measure space (X, m) as
follows, see [M, R de F], [R de F3]:

Define S(m) as the set of measurable functions which are zero outside a set
of finite measure, and L%(m) = L®(m)+ S(m). Let || - ||o be the functional in
L8{m} given by _

|flle = inf{s >0: m{{z € X: |[f(x)] > s}} < s}

then we have the following.
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Theorem 2. L“(m) is the space of measureble funciions f such that ||f|lo <
400, ||-llo s & (F)-nerm in L°(m) end witk this (F)-norm L°(m) is ¢ complete
metric space. The convergence in (L(m), || (|0} coincides with the convergence
N TRERIUTE,

He analysed the dual of L%(m). It is well known that if m is finite and
non-atomic then the dual of L%(m) is {0}. But when this is not the case he
proved the existence of a functional L € (L%(m))* such that L(f) # 0 for some
f e Lm). '

In order to prove the last assertion he introduced the following quasinorm in

L%¥m), see [R de F3):

g{f) = inf{sup |f(2)] : m(E}) < +oo}
el

and he observed the following facts:
{1) ¢(f) < 400 if and only if f belongs to L%(m),

(i) o(f) < Il

(ii) The induced (F)-norms in L(m)/,~10) by || - |lo 2nd ¢{-) are the same.

(iv) S(m) = ¢7(0).

His deep knowledge of the space L°(m) was complemented later on when he
had contact with Nikishin's Theorem. [ would Lke to suggest to the reader
to have a look to the interesting and elegant proof of the Nikishin's Theorem
given in section VI.2 of [GC, R de FJ.

From 1974 to 1976 he was a Visiting Fellow in the Institute for Advanced
Study of Princeton (USA). In 1978 he got = position as full professor at the
Universidad Complutense de Madrid.

In the auntumn of 1877 he went back to Universidad de Zaragoza, remaining
there until the autumn of 1981,

That was the “gold mathematical period” at Universidad de Zaragoza. He
had 7 students, he was the leader of the mathematical community and moreover
he was the usual reference to be consulied in any mathematical or human
problem.

His mathematical production around 1979 was related with the problem of
the vector-valued extension of operators. The problem can be stated as follows:

Let (X, p} and (V,#) be o-finite measure spaces. Given a bounded linear
operator T from LP(u) to L°(v), and a Banach space B, the operator

T8 =T®lz: Z bifi(z) — Z bTfi{y) (b € B; fi € IP(u))
is defined a priori on LP(u}® B. ¥ T is of weak or strong type (p,q), or simply

continuouss in measure, one can ask if the corresponding continuity condition
holds for 79 in which case, it can be uniquely extended to Lip{u).
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In fact José Luis proposed the following question. See [R de F4j:

(@) Let T be an operator of (weak or strong) type (p,¢), where 0 < p, ¢ < o0,
with norm ||T|. It is true that T8 is also of (weak or strong) type (p,¢) with
ITZN < M, 1T

He gave the following partial answer, see [R de F4].

Theorem 3. Question (Q) has effirmative answer in the following cases:

(1) When T is a positive operator of weak or sirong type (r,q), 0<p, ¢ = o0

(i) When T is an operaior of weak o7 strong type (p,¢); 0 < p < 00, 0 <
¢ < oo and B is o Hilbert space.

(3i1) When T is an operator of strong ype (1,1).

(iv) When T is an operator of weak type (p,g), 1 < p < ¢ < o0, and B 13 a
p-space. _

(v} When T is a singular integral operator (bounded from LP(R") o itself,
l<p<oojand B=¢",1<r < co.

In order to build the proof of this Theorem, José Luis handled the tools listed
below:

{A) The well known Theorem of Marcinkiewicz and Zygmmund, see [M,Z],
which states that if T is a2 bounded operator from L?{u) into Li(»}, 0 < p, ¢ <
co, and H is a Hilbert space then TH is of strong type (p,q)-

{B) Cotlar’s inequality, see {Co], relating the weak L%-norm with the strong
L™-norm (0 < r < g) of the restriction to sets of finite measure, namely

lfr
oo < Mo < (72} Wil

where Ny (fy= sup v(E)”""”"||fXE||,.
W E)<4oo

(C} Interpolation theory.

(D) When T is positive (i.e. f > 0 = Tf > 0), then for any Banach space
B, we have '

172 £l < TUADw) (f € B LP(w)).

(E) The notion of p-space, see [H]. That means the Banach spaces B such
that for any T which maps LP{y) into LP(v) then T2 maps L%{y) into L(v)
and || 72| = ||T).

(F} Theorem of Nikishin-Stein see [GC, R de F).

Let T: LP{(u) — L°{v) be a continuous sublinear operator, with 0 < p < co.
Then, there exists w(z} > 0 v ae. such that

e\
w(zdu(z LRI P )
/{z: |TH{z)|> A} ( ) (=) ( A ) (fel (#)a >8)
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where ¢ = inf(p,2}. Moreover, if T is positive than we can take ¢ = p.
Now, I shall mention two applications of Theorem 3, see [R de F4].

Application 1. Consider linear operators T, T, : LP{p) — L°(v), 0 < p <
oo, and a Banach space B; assume that one of the following conditions holds:

(a) the operators T, T, are positive.

(b) B is a Hilbert space.

Then

(i) f T : EP(u) — L%}, 0 < p < oo, is continuous in measure, so is the
operator T : Lh{u} — Ly(»).

(1) if T, Ty LP(u) — LO(v}, 0 < p < oo, are continuous in measure (n € N)
and Tg(y) = li:in Tugly), v a.e. y, for every ¢ € LF{p), then

EmTZf(y) = T#f(v), v aey (f€Lh(n)

Application 2. Let G be a compact connected abelian group, with dual
group G = I'. Let (I;};en be intervals in [, and let (f;)jen be functions in
L*(G}. Then, there is a constant C, depending only on the group G, such that

o C [ =]
uiae G (LIS KR > < T [ (L IhE
i=1 =1
where p is the Haar measure on G and S5 : LYG) — L¥G) is defined for =

trigonometric polynomial g by (Srg) = §&7, and extended by continuity.
One of the main goals in the work of José Luis, was to understand the
problem of the almost everywhere convergence of the Fourier Series. Using the

thecniques that I have discussed above, he obteined the following result for
double Fourier Series, see [R de F5}.

Theorem 4. Let G =T =[0,1) be the torus, and le!
f(r,y) ~ z Cj_kc?rri(jx+ky)
I

be the Fourier Series of a function § € IP(T?), 1 < p < co.

Then
lzrn | Z Z cjpe™UTHRY _ pi y)Pdz = 0
T lgn |kl€m
(a.e. yeT)
This ean be consider as an infermediate resull befween the convergence in
ROTI

l:m | Z Z c; keh'(”“y) flz,y)fdedy = 0

T2 1il<n [kl<m
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and the negative resull for almost every convergence, that is, the assertion that

. 2wzt ky) =
Lirm > ciae flz,y) ae.

m
F1<n Jk|<m
can be false even for a continuous funciion, see [F|.

The human and mathematical contact that is usually established between a
student and his advisor was, in the case of the students of professor Rubic de
Francia, very close. He used to have weekly personal meetings with them and
the contact was continued after the student had finished his Ph.D.

In May 1982, F. Ruiz Blasco and I, both from Universidad de Zaragoza,
made one of those periodical visits to Jose Luis who was then already at the
Universidad Auténoma de Madrid. In that visit, we were at the blackboard of
the Seminar-Room of the Mathematics Department We were discussing how
the Calderén-Zygmund decomposition could be applied to operators bounded a
priori in L°(R), namely i T is an operator bounded from L™(R} into L*(R)
and g is the “good” part of the Calderén-Zygmund decomposition of a function
fin L' Lo°(R), then s ||Tg|leo £ C||9]lce and [[flo < 24, we have

e : [Tg(z)} > 2CA} =0

and therefore in order to obtain that T maps L'(R) into L'(R)-weak it is
enough to estimate the measure of the set

{z: |Tb{z)| > A}

where b is the “bad” part of the Calderén-Zygmund decomposition of the func-
tion.

We said that this remark was a nice but useless observation.

At some point José Luis wrote on the balckboard the following equality
sup |f # ka(2)| = I{f * Eal@)}nlles = If * {Ea}()llsm-

He said that with this point of view the Hardy-Littlewood maximal operator
was essencially a convolution operator, bounded a priori from L*{R") into
%2 (R") and with kernel

K(a) = (k) = { %020}

where Q, is the cube centered the origin and radius . Therefore the remark
above could be applied to the Hardy-Littlewood maximal operator if the kernel
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were smooth. He said that even though the kernel was not smooth the operator
could be majorized by one eperator with smooth kernel

o= (e 2).

where ¢ : R —».R smooth.

We had a break, and we went to have lunch. The lunch was delightful not
for the food but because of the conversation with José Luis.

After lunch we went back to the Seminar Room and we realized that we
could develop & generzl technique of vector-valued operators that cover the
Hardy-Littlewood maximal aperator. The theory was influenced by [B,C,P]
and I would like to present here the main ideas, see [R de F,R,T].

Given a Banach space, we denote by L% = LL(R"), 1 € p <€ oo, the usual
Bochner-Lebesgue space. We shall write L% for the space of all compactly
supported members of LF.

Definition 1. For a locally integrable B-valued function f, we define the
maximal functions

1 . 1fr
M i) =mp o [@iha} <<

and

22 = sup — _
(@) = sep o L 1F(w) — Follady

where @ stands for an arbitrary cube in R™ and fg is the average of f over Q.

In terms of (-)#, we define the space
BMOp ={f € Li,.p: flzsos = 15#)leo < +o0}.

Definition 2. A B-atom is a function @ € L supported in 2 cube ¢ and

such that
la(e )}z < Té? f@ afz)dz = 0.

The space HL(R"™) is, as usual, the subspace of LL{R™) formed for all func-
tions f(z) = Z Ajai(z); Aj € £, a; B-atoms, with Nfllzy = infz [Aj].
i i
The kernels are strongly measurable functions K(z} defined in R® and with
values in the space £{A, B} of all bounded lincar operators from the Banach
space A into the Banach space B, provided with the operator norm. We suppose
that K (z}| is locally integrable away from the origine.
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Definition 3. Given 1 < r < oo, we say that K satisfies the condition (I, ),
-

and write K € (D,), if therc exists a sequence {cx}; such that ch =

k=1
D.{K) < +oo and for all k > 1 and y € R",

ifr
{/ HK(E—y)-"K(T)"'dm} < e[Sk~
Se(lyl}

where Si{|y]) denotes the spherical shell 2*|y| < {z| < 28+ [yl

When » = oo, this must be understood in the usual way, and it is easy to
check that K € (Do) if | K(z —y)— K(z)|| < Clyllz|™"~}, whenever |z| > 2|y|.
On the other hand, X € (D) is the familiar Hérmander condition

/I K@) = K@)lds £ Da(E) <400 (7 €R7)

Definition 4. A linear operator T mapping A-valued functions into B-
valued functions is called a singular integral operator (of convolution type) if
the following two conditions are fulfilled:

(1) T is & bounded operator from LL(R™) to LE(R") for same g, 1 < ¢ < 0.
(ii) There exists a kernel K € {D1) such that

Ti(e) = [ Kz - nfta)dy
for every f € LY, with compact support and for a.e. z & supp(f).

Theorem 5. Let T be a singular integrel operalor mapping A-velued func-
tions inte B-valued ones. Then T can be extended 1o an operator defined in ol
LE, 1 <p < oo, and satisfying

(a} WISy < Gollflles, (L <p <o)

(5) IT N5 —weas < il

) NTAly < Clflle -

() I1Tflzmos < Cllfllee  {f € L)

: Moareover, if the kernel of T satisflies (D)), 1 £r < 0, then
(e) (TH¥{(z) S C: M. f(z) (f € LE, and as a consequence

N7 f N2z ey < ColwllF lles, (0

hold if w € Apyy (Muckenhoupt’s class, see iMj}, r' <p < oo,
If the kernel satisfies {Do) then
(£) (TH¥{z) < CcMiy f(z) for arbitrery ¢ > 0, and therefore

1T 12y, (wi-weas S CNN gy, (w0 € Ar)-
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Given a singular integral operator T, a new operator T mapping £*( A)-valued
functions into #°(B)-valued functions {where s is fixed, 1 < s < co) can be
defined as

f‘(flsf?v"'s fj)) = (TfIva?v“'rTfj!'")‘

Then T is bounded from L;,( 4) into L;,( B) and the kernel associated to it
is K(z) = K(z) ® Id, so that [[K(z)|| = |K(z)|] and D,(K) = D,(K). In

particular, T is a new singular integral operator, and we have.

Corollary 1. Let T ke a singular integral operator mapping A-valued fune-
tions into B-velued ones. Then conclusions (e} to (f) of the Theorem 5 are
valid if we replace A and B by £°(A) and €4(R), 1 < s < co.

The proofs of these results are adaptations of the corresponding results for
scalar functions, see Part IV of [R de F,R,T).

Now I shall mention some applications. {see (R de F,R,T] for a detailed
list of applications}.

Giver a function ¢ € L(R"), we consider the approximation of the identity
{pi)isp where o {2) = t7"p{z /1), and the associated maximal operator

M, f(z) = sup|pe * f(z)]
>0

M, can be viewed as a linear operator mapping the complex-valued function
f{z) into the £%-valued function (p, * f(z)}i>e. Such an operator certainly
satisfies part (i) of Definition 4 with ¢ = oo, while for its kernel K(z) =
(pe{z) im0 to sabisly {D), it is necessary and suficient that

(Z) sup |pi(z — v} — pofz)ldz < C.
[z]>2y] t>0
This is the condition of F. Zo, see [Z0o], and we can state,

Theorem 6. If ¢ € L'(R") safisfies (Z), then M, satisfies the following
vector-valued inequalities.

(@ NS )l < Cosl Q1) Ml (1< prs < 00)
(b) Uz :) Mufi(z) > MHSCAT O I, (1< s <o)
i i

(€} MO MLy llsmo S CAQ 151 ooy (1 <5 < 0)
; j
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Maoreover if ¢ verifies
le(z — ) — p(2)) < Clyliz| ™" when |z} > 2y}

then the measure dz in {a} can be replaced by w(z)dz, with w € A,: and in (b)
the measure dx can be replaced by w(z)dr with w € A;.

Remark 1. It is clear that ¢ can be choosen in such a way that M f(z) <
M, f(z) and therefore inequalities {a}, (b} and their corresponding weighted
versions hold for the Hardy-Littlewood maximal operator.

Theorem 6 and Remark 1 unify and generalize various known results, see
[F,S], [A,d], [Zo].

Once we saw that the vector-valued Calderdén-Zygmund theory was good to
deal with maximal operators, José Luis said: "Let us see what happens with
"The Operator” . For him " The Operator” was the Carleson maximal operator
of the convergence of Fourier Series

5°f() = sup oo |

e-'ﬂ'l

;f(y)dyl’

T —

The operator S*, as before M, can be viewed as a linear operator mapping
complex-valued functions f(z) into /°°-valued functions

=)

This was not a convolution operator but an operator with variable kernel,
then we developed a theory based on [C,M] and [J1].

We consider, kernels k(z,y} with values in £(A, B) such that for every z €
R*", the function [|%(z,-)|| is locally integrable away from x, and therefore, the
function

(1) Tf(z) = / ¥z, ) f(v)dy

is well defined for every compactly supported f € L4 (R") and a.e.z ¢ supp(f).
Definition 5. Given 1 < r < oo, and a kernel K(z,y), we say that K
satisfies (Dr) if there exits a sequence {cx}$2, € ' such that

{ f 1K (2,y) — K(=, 2)7dz}'/" < exlSey, 2)| /7
rESe{y,2} ’
. forall £ > 1 and y,z € R, where
Sely,z2)={z: 2¥ly—zl < |z — 2} £ 2%+, — 2|}
We say that K satisfies (Dr') if K'(z,y} = K(y,z) satisfies {Dr).

In the next two theorems we assume that we are given a bounded linear
operator T: L% (R") — LL(R"), for some fixed ¢, 1 < g < oo, with a kernel
K{z,y) satisfying (1}.
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Theorem 7. If K satisfies (D), then T can be eztended to an operator
defined in L%, 1 < p < g, and satisfying

(a) Tz, < Collflle, (I<p<q)
(b) "Tfnlala ~wezk S C"f“l.;
{¢) IT Ay < CllANley,

Moreover, if K satisfies (Dr) with 1 < r < oo, there the weak type inequelity
{d) w({z: ITf{=z)lls > A}) < C{w)/\_lfllffr)lleﬁw(f)dl’

holds for w(a?)“’ € Ay, o = min(g,r).

Theorem 8. If K satisfies (D'l}, then T can be extended o an operator
defined in L%, ¢ < p < oo and satisfying

{2) WTfliey, < Collflles, {9<p <o)
(b} ITfllemos < Clifiieg (f € LE 4)-

Moreover, if K € {D}} with 1 <t < o0, and 8 = max{q,r’) then
(e) (THH () SCMpf(zy (f € LE L)
and as ¢ consequence, T' verifies the weighted inequality
[z < Gy [ IfEIu()ds
w€ Ayyp, B<p<oo,

It is clear that one can consider some £*-extensions 7' of the operator T and
we can obtain for example the following.

Corollary 2. If K satisfies (D}), then the following inequalities hold:.

I UTANB) "l < Copll G ILRY 11
¥ i

forg<s<p< oo,

Now I shall show how we applied the last results to the Carleson operator.

Consider a homogeneous function of degree O in R*, Q{z) = 0 (ﬁ) As-
x

sume that Q is of class U outside the origin and satisfies the cancellation
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property f Q(z')do(z') = 0. For each £ € R", we define the kernel
I2'|=1

ke(y) = 2™ E¥9Q(y' )y| ™", and the corresponding operator

Tej(z) = po. [ kels — 1) f(u)ey

- e“'f"p.u./ﬁ((x —y))lz —yl e f(y)dy.

It 1s known, see [53], that

IT*Fllp < Collfll, {1 <p < co)

where

T"f(z) = StgpITef(f)IA

When n = 1 and {}{y) = %sign(y),T‘ is Carleson’s maximal opcz‘ator, see
(Cl, [Ht]). Then the following Theorem is a consequence of Theorem 8.

Theorem 8. T* is a bounded Lnear operator from L t0 BMO, and more
precisely, for every ¢ > 0, there exists C, > O such thot

(2) (T*fY*(z) < Cc My flz) (f€LZ)

Moreaver, for allp with 1< p< oo end allw e 4,
{b) / T fzw(e)ds < Cp'wf]f(x)lpw(z)da:.
Rﬂ

For the proof it suffices to consider £ = (&,&a,.. . ,£,) with rational coordi-
nates. Then, the operator

U:IP(R") = L (R")

defined by the kernel

.y = [ e tmity Az —yY) oo
K{ sy) ( |5-"—y1“ )€EQ“€£

satisfies ||U f{z){le=e = T f(2), so that it is bounded in all L?,1 < p < 00. On
the other hand if [¢ — 2| > 2|y — 2] then

Kot = - SRS

< Cly - 2lls — 2™
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Thus K satisfies {D[ ) and Theorem 8 applies for arbitrary § > 1. Since
(T* £Y* < 2(U f)#, the estimate (a) follows. If 1 < p < 00, inequality (b) also
follows for every w € Ugs1 Ay = A,. .

Remark 2. Inequality (2) in Theorem § was new, and it would be very
interesting to have a different proof of it without using the Carleson-Hunt-
Sjolin result.

As I said before the theory that we developed of vector-valued singuiar in-
tegrals was an updated review of [B,C,P|. As in [B,C,P] our theory could be
applied to the operators that usually appear in Littlewood-Paley theory.

Given an interval [ in R, define in L?(R) the operator §;f by

(S1£Y(€) = x1(6)f(€) (€€ R).

Given a sequence {I;} of disjoint intervals, we form the quadratic expression

(2) Af(z) = > 1S1 f(=)P) 2
k

Simple examples show that inequality

(3) A, < GlIfll

for p < 2 is false. However for 2 < p < oo it was an open problem to determine
whether or not (3} held. In 1983, José Luis proved the following see [R de F
6]

Theorem 10. For every p with 2 < p < oo, there ezsts € > 0 such thet,
for every sequence {IL} of disjoinl intervals, the operator A defined by (2)
satisfies

iaflly < Gllfll,  (f € LP(R))-

I shall give now an idea of his proof.

Definition 6. A sequence of intervals {I;} is call weil distributed if the
doubles of the intervals have bounded overlapping ie. 3, x25,{2) € C.

Define the Whitney decomposition W (I} of an interval [ as follows. First of
all, the definition is invariant under translations and dilations, and if [ = [0, 1],
then W{TI} consists of the intervals:

lorsail}oi [5.5] 0 (1= 01 - aralliz

where a; = 27%/3.

Then the following lemma can be proved
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Lemma 1. Given disjoint intervels {Ii}, let Af(z) be defined as in (2), and
let
Bef(zy=( ) ISuf@E))/?
HeW{le}

Then for all 1 < p < oo, we have the equivelence

NAFlp ~ N 126 Y.
k

Therefore as the sequence {H : H € W(I) for some k} is well distributed,
we have the following

Lemma 2. In proving Theorem 10 for every sequence of disjoint intervals,
it is no restriction to assume thal the given sequence of intervals {Ii} i3 well
distributed.

He made a second reduction as follows:

We start with a well distributed sequence, and we divide each interval [ into
seven conseculive intervals of equal length

I=Mur®o.0r® 197

so that 870Y ¢ 2I. Tt suffices to prove the theorem for each one of the families
{IGNI € initial sequence}. Therefore, we can assume from the beginning that
we are given a sequence I of disjoint intervals such that

Y xsr{z}<C  (z€R).

fer

He labelled the intervals of the sequence according to their length. Thus, for
each integer £, let ]
{I{}; =l e 12" < |I] < 2%}

Forevery k, 7 let ni be the first integer such that ni2’*’ € I}:, and fix a Schwartz
function ¢{z) whose Fourier transform satisfies

X[-2,2] < ¥ S X[-3,3]

then we define . .
iz = 2% (2 ) exp(2mini2*x)

so that the Fourier transform of ‘Pi is adapted to I ;:, ie.

1 i xeli

IViy) = @(2 % x —nl) = .
(1) (x) = $(27 x — n}) {0 i xgsh
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Now define the smooth operator G by

Gf(z)= (> > Il » f(z))/?

keZ j
=3 / O p(2* (2% (z — y)) exp( —2mini 2°9) f(x)dy [ } /2.
k.3

Since 3, ; |(<pi Y(x}|* < C, by Plancherel’s Theorem we have that G f is well
defined in L*(R) and satisfies

IG£llz < Clifll2-
After this, he proved the following peintwise estimate
(GFY#(z) < OMyf(z), (fe€ L zeR).
This completed the proof of Theorem 10, sinceforall f € L¥ and 2 < p < oo

we have
N 1S5 £ 21, < GlIGH I, < GG,

k.

< CelIMeflip < Cyliflly
(the first Inequality follows by the usual truncation argument which can be seen
in [Z],(S])-
The proof of estimate {4) is based n the following generalization of Definition
5 and Theorem 8.

Lemma 3. We consider a kernel K{x,y) with values in o separable Hilbert
space H 2 C(C, H}, such that K satisfies, for some L > 0, > 1, the condition

((Dz)-weak))

274 A

f | < K(z,y) — K{z,y),A > |*dy < L?
Seir,z) I.’I.‘ - Zi

Joreveryz,z € R, A € H and k > 1. Then for the operator Gf{z) = |Tf{z)||#
we have the esfimate

(GfY*(z) < O(L,e)Ma f(z) (f€ L)

The proéf is a repetition of the proof of the part (¢) in the Theorem 8.

It is clear now thdt in order to show estimate {4), it is enough to show that
the £2-valued kernel

Kz, y)= {2kzp(2kx — 2ky)exp(—21rini2ky)}k‘_,-
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satisfies the condition Dj-weak. José Luis showed this with a = §/3, see [R
de F 6] and then Theorem 10 is proved.

Remark 3. I should mention that was not the first contribution of José Luis
to the Littlewood-Paley theory. He proved, see [R de F 7], that is the case
of the family I = [k, & + 1), k € Z, the operator G satisfies the rather sharp
inequality

Gf(z) < CMaf(z) (Fe€L'+L%® z€R).

This inequality holds even in R", with the obvious modifications, see [R de
F 7].

For an R"-version of Theorem 10, see [J2].
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THE WORK OF
JOSE LUIS RUBIO DE FRANCIA II

I am going to discurs the work José Luis Rubio did on weighied norm in-
equalities. Most of 1t 1s in the book we wrote together on the subject [12).

His main contributicns are:

1} The equivalence between vector-valued inequalities and weithted norm
inequalities.

2) The precise formulation of the general principle thet the boundedness
properlies of a linear operator depend only on the weighted L? inegquali-
ties that it sofisfies.

3} A very simple construction, sometimes called the Rubio de Francia (R.
de F.} elgorithm, which allows one to pass from weighted inequalities
with different weights to inequalities with only one weight.

4} As a consequence of 2} and 3) he formulated the beautiful eztrapeolation
theorem, which we may choose as the most representative result in this
circle of ideas.

I shall try to present these results as they were discovered in order to give a
feeling of the way José Luis worked.

1. The equivalence between vector-valued inequalities and
weighted norm inequalities

This result came from a deep understanding of the theory of B. Maurey of
factorization of operators {see [23], [24] and [25]). José Luis became familiar
with this theory at the Williamstown Conference in 1978, where John Gilbert
[13] gave a talk on some applications of Maurey’s theory to Fourier Analy-
sis, mainly Nikishin’s theorern. We attended that Conference together, and ]
remember how this subject aroused a tremendous interest in José Luis. He
reformulated Maurey's theory, so as to adapt it o Fourier Analysis. The result
is chapter VI of our book. I shall make a short presentation of these results so
that it becomes clear how they lead to the equivalence between vector-valued
inequalities and weighted norm inequalities. Suppose we have a Banach (or -
Banach) space B and also a o-finite measure space (X, dm). L%(m) will be the
space of measurable functions finite a.e. with the topology of local convergence
10 INneasure.

Definition 1.1. We say that the operator T : B — L% m) sublinear and
continuous in measure factors through some space L C L% m) if there exists a
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function g(z) > 0 ae. and a continuous operator Ty : B — L such that the
following diagram is commutative:

B I L%m)
To \ /M,
L

where M, f = ¢ - f, the multiplication operator.

To understand the connection with weighted inequalities, suppose L= LP{m).
Then we must have:

f (T ()P dmiz) < CIFIG

but, since Ty f(z) = %fé-zr) we get the weighted inequality

/ITf(r)I”w(x)dm(l") = Clfllp with w(z) = g(z)77.

Now Maurey's theory gives conditions for factorization (through Lf, L7, ete.)
in terms of the vector extension T of the operator 7. T is the operator sending a
sequence { f;) of vectors in B to the sequence of functions (T f;). It is now clear
how this theory can cast some light on the equivalence between vector-valued
inequalities and weighted norm inequalities.

We shall give two theorems. One for factorization through Li{m)=weak L7 =
the Lorentz space L{P*)m). The other for factorization through LP(m).

Theorem 1.2. {Factorization through Li{m}).

Let T : B — L%(m) be a continucus sublinear operator end let 0 < p < oo.
The following conditions are eguivalent:

a) T faciors through Li(m).
b) There exists w(z) > 0 a.e such that:

w(z) dm(z) S (@)

c) (for m{X) < oo). For every ¢ > 0, there ezist B, C X and U > 0 such
that m{X\E.) < ¢ and

];TEX:IT!(IBD-\}

)
m{{z € E.: |Tf{z}| > A 2 C, ("_J;IIE)

d)
T: B —Li.{m) is conlinuous

(£ —(TF);
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When m( X} < oa, d) means thai there exists C(A) — 0 for X\ — oo such that
f 25 150 =1

m ({x e X: sip|Tfj(z)| > /\}) =0

Nikishin's theorem is a consequence of this result. Let us comment briefly
how one derives it.

Definition 1.3. Recall that the space B is of Rademacher type p where
0 < p £ 2if and only if there is a constant C such that

3
[ I nwnpas ey s
i i

where 7;(t}) are the Rademacher functions (see [12, Appendix A]).

It turns out that when B is of type p, Maurey's condition d) on theorem
1.2. can be easily established, so that every operator T : B — L®%(m) factors
through L%. Since LP(u) is of type ¢ = min(2, p), we get, as a corollary

Theorem 1.4. (Nikishin}) Let (Y, ) be an arbitrary measure space and let
T LP{p) — L%m) be e continuous sublinear operator with 0 < p < co. Then,
there exists wlz) > 0 a.e. such that:

/{:.—|T,r(z)|>.\} w(z)dm(z) & GU%HEY

for every f € LP{u) and every A > 0, where ¢ = min{p,2). If T i3 positive, we
can take g = p.

The observation about positive operators is trivial since for J || f5][5 £ 1 we
have |Tf;(x)| £ T#(z) where f(z) = (T [fi(=)P)' has {I£]2 = IS 12 S 1.
Thus condition d) is immediately checked.

When the operator commutes with translations we get

Theorem 1.5. (E.M. Stein [32]) Let G be a locally compact group with left
Hear measure m, and let T : LP(G) — L%G),0 < p < oo be continuous
in measure, sublinear and vnvariant under left translations {T(f,} = (T(f)),
where f(z) = f(yz)). Then for every compact sei K C G, there exisis a
constant Cye > 0 such that

m({z € K :[T(z)| > }) £ Cx (Mynﬁ}
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with ¢ = min(p,2), or ¢ = p if T is positive. In particular if (7 is & compact
group, T is of weak-type (p,q).

Proof: Nikishin's theorem gives
¢
w{r)dm{z) = (—"'{\"p)

Sincefor every y € G || fyll, = || f|| end T is invariant, by applying the previous
inequality to f, in place of f, we get

f{IEG#Tf(I)l)o\}

1 < (1A
w(y ey dm(z) < (Ul
{2€G:TH)> A} A

We can obviously assume w € L, Then take & € L) (G) with |jh||; = 1 and
integrate the last inequality against A{y). We get

g
f w* h{z)dm{z) & (%) .
{zeGTf(z){>2}

Since w * h is continuous, it will have a minimum § > U over the compact K.
Then

m{{z e K: |Tflz) > E67! (%) -

Corollary 1.6. Let 0 < p £ 2. Every sublinear operator
T . LP(R") — LY(R") which is continuous in measure end invariant under
translations and dilations 1s of weak-type (p,p}. I T is positive, the resulf ¢s
valid for 0 < p < co.

Proof: As before we obtain
P
w(z}dz £ (——--—-"{\"p)

with w continuous and everywhere > 0. The invariance under dilations yields

w6y s (1)

\/{xEW‘ AT FEx)> A}

./{.IEW“:le(xH)'\}

Letting § — oo, we obtain:

m({l‘ cR": |Tf($)| b ,\}) é w(o)—z (_Ii_};”_p_) =
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Example. As an application of these principles, let us record briefly, how
the weak-type 1,1 of the maximal conjugate function (Kolmogorov's inequality)
is a mere consequence of its existence: For f € LY{T), where T is the torus,
let u(Te*) = P, + f{1), the Poisson integral of f and let v be the harmonic
conjugate of u such that »(0) = 0.

Define T'f(t} = supp<. <) [o{7et)).

That T f{t) < oo a.e. is a simple consequence of Faton’s theorem (take f 2 0
and consider the bounded holomorphic function e~{¥+/%)). By Banach principle
T : LY{II) — L°(TI) is continuous {Banach principle is simply an application of
the closed graph thecrem to the operator

LI} — Li(IT)
f— {ol{re Yoerr

Since T commutes with translations and II is compact, Stein's theorem gives
T : LY(I1) — L}{I}, which is Kolmogorov’s result.

Theorem 1.7. {Factorization through LP{m))}.

Let T : B — L%m) be a continuous sublinear operaior and {1 0 < p < o0.
The following conditions are equivaleni:

a) T factors through LP{m).
b) There exists w{z) > 0 a.e., suck thai:

]X ITF()Pro(z) dm(z) € £

¢) {for m{X) < oo} For every ¢ > 0, there ezist E, C X end C, > 0 such
that m(X\E,) < ¢ and

/E ITF ()P dm(z) < CellfI

d)
T B —I%(m) is continuous
(5)i—(T 55
When m{X) < 0o, d} means that there exisis C{A} — 0 for A — oo such that
35006 S0

¥

1/p
m|{z€X: (Z [THP ] >xy | OO

Now, let us concentrate our attention on operators mapping into some space
smaller than L%(m), for example, in L9(m) for some 0 « ¢ < 00. For such
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an operator T' : B — L9(m) sublinear and continuous, factorization through
LF(m) means, as before, the existence of Ty : B — LP(m) continucus and
g{z} > 0 a.e. such that we have the commutative diagram:

B 5 Lim)

with M, being continuous.
Two comments are relevant here:

1) When 0 < p £ g, factorization always occurs, since we have L¥(m) C
I?(wdm) simply by Holder’s inequality if we take w € L' N L. Thus,
only factorization through LP{m) with p > ¢ is interesting now.

2) In order for M, to be continucus, we must have g € L7(m) where i +1i=

-{I.;. Now factorization is equivalent to the weighted inequality

A, (T f(2)Pu(z) dmiz) S |11

where w(z) = g{z) . Thus, we must have w™! € L"/?(m).

In this case, the condition for factorization is the most natural counterpart
of condition d} in theorem 1.7., namely that

T: 15 —L%(m) be continuous
(f53—(T 1)
This condition takes now the form of a vector-valued inequality
1/p 1/p

Y ITHEF SC{Y Al
i
q .

3

We shall state the theorem for a slightly more general situation, dealing
with a family of operators, instead of just one operator. The simultaneous
factorization of the operators in the family, or what is the same, their uniform
boundedness from B to LP(w) with the same w, is equivalent to a vector-valued
inequality. '

Theorem 1.8. Let T be a family of continuous sublinear operators
T:B - L¥m), 0 < g < o0, and let g < p < 0. Ca!!%:%—i > 0. Then
the inequality '

1/p 1/p

S AT il SCUS AN ]  ifieB T eT
f f
] _
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holds if and only if there exisis w(z) > § a.e. such that ||[w™¥||,/p £ 1 and
1Tfllzrqwy  Clifile: S € B, TET.

We shall also consider the dual problem of factoring a sublinear operator
T : Li(m) — B. Now factorization means the existence of Ty : L?(m) — B
continuous and g{z) > 0 a.e. such that we have a commutative diagram:

Lim) = B
My ™\ 7Ty
LP{m)

Since To(f) = T{f/g¢)}, the boundedness of T means

1T < C“fxlh(x)l"g(w)pdm(x)

or |[T{h}jlz £ C||hllLr(w) Where w = gP. Two comments must be made, as
before:
1) Now, if p > g, Holder’s inequality tmplies that LP{w} — L%{m) for some
w. Thus, only the case § < p < g is interesting.
2) On the other hand, for the continuity of M, we must have g € L™(m)
1_1_ 1

where ; = £ — ¢ or, what is the same, w € L7/?(m).

Here also factorization is equivalent to the boundedness of

T:Li(m)— 8

(£3)i —(Tf;
or, in other words, the vector-valued inequality:
Yy 1/p
S ITHIB ] SOl 24P
i b
7
We also formulate a gencral result valid for a family of operators.

Theorem 1.9, Let T be a fomily of operators sublinear and bounded T -
Lifm) — B,0 < ¢ < o0. We assume 0 < p < g and lel T be defined by
1_.1_ 1

et Then the inequality

1/p ifp
(Z IITJ-fjiJ’E;) £C (Z Ifjlf’) T €7, f; € L(m)
¥ i
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holds if and only if there exists w(z} > O such that ||lwll.;, S 1 and
1Tflls < Clifiierquy, FELLTET

After the brief presentation we have made of B. Maurey's theory of factoriza-
tion of operators, we are in a position to apply it to derive the first important
theorem of José Luis Rubio we are going to discurs: the eguivalence belween
vector-valued inequalities and weighied-nerm inegualities [27).

Suppose we have a family 7 of sublinear operators T : L9m) — L*(u) which
are uniformly bounded.

We are interested in knowing when the following vector-valued inequality
holds:

i/p 1/p
(1.10) (E |T,-f,-|") <cC (Z If;l")
¥ b
3 g

We shall deal with the cases p > ¢, s and p < ¢, 5. Let us start with the second
case:

i/e||? sfp Pl

Siwhe) | = [ Emswr) am] -

&

f,, S 1T fi(@)Puly) dysty) for some w € LEP (1) with |[uff = 1
H

If given u € LE:'IP)‘(;;) we could find v € L({f'!p)'(m) such taht |loflg/py =
ll2ll¢s /5y and

[ b wpu) duts) € [ if@)Pu(e) dmia)
with a uniform constant C, we could continue writing

¢ [ Sl dniz) <

rfe

sc| [ (;Iﬁ(x)l”)m aniz) | ([ v(r)‘”*’"dm{z))wg

1p|l?
sC (thx)r’)

g
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It turns out, as we shall see, that this condition is also necessary. Note that
i _ — 2

ey =1 fend gy =1-14.
The case p > g, s is also easy. We start at the other end

1/p||? a/p rle

(Zlf;(r)l" = L (Zlf;(x)l” dm(z)| =
J ]

Hy
A)Po{z) L dm(z) - vrv() m{x rle
[ S htaree) e (f, o am)
(2)Pu(z) " dmiz) for some v suc a Ul'%(%,ml‘:-
J Z ) ine) > 0such that | o()H8) dm(a)=1

Note —Ar (2) (1 — 9-) L 1= % say. Now if for every v € Lg(m) there
exists u E L%(y), where 1 = & — 1 such that ||ujls £ [{v|is ard

[ mswpue ot s 0 f |f(@)Pe(z)™* dm{z)
Y X

we can continue like this:

i/p
207 [ S mimPuw) du) 2 ¢ (Z IT;f;'I”)

3

It turns out that this condition is also necessary. We treat both cases together
in the following theorem.

Theorem 1.11. Lei G < p, ¢, s < 00, and define @ and § by £+ = |1 - 2],
p=fi-4
1} If p < q,s, then (1.10) holds if and only if for every u € L5 (u), there
ezists v € Lf(m) such that ||vlg £ |julle 2nd

/ITf(y)I”u(y)dp(y)éc”/ |f(z)Po(z}ydm(z) TeT.
Y X

2y If p>q,s, then (1.10) holds if and only if for every v € Li(m), there
ezisis u € L F(p} such that ||lu|o £ |lv)lg end

/ ITF(y)Pu(y)™ duly) € C* / |f(@)Po(e) " dm(z) TeT,
'd X
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Proof:

1) I u € L§{u) with |lu|]le = 1, then L*(u} C LP{udy) = B with norm 1,
by Hélder’s inequality. Consequently (1.10) implies

1/p 1/p

) ifp
YA = Do IThAP s ¢ (ZIJ’:‘I”)
j ] {udy) 7

Le
q

Now theorem 1.9. applies, giving us w > 0 with [lw|,;, = 1 and
ITflz £ Cllfllze (-

i_.1_1 i —1-_2-1
Butr__p q|,sot'.ha,t;h;—1 =3

Thus w € L2 (m) with ||w|ls £ 1 and

j (T £ ()P ely) dey) € C° j | (@)Pw(z) dm(s)
Y X

We take v = w and 1) is proved.
2} Given v € Lg(m) with ||o[|g = 1 we have B = LP(v~1dm) C L(m)
with norm 1. Thus 1.10. implies

1/p ifp 1/p
(ZIijjl”) <C (zifjip) :(Zﬂf,*”%) .

Lr{y—1 dm)

Theorem 1.8 gives us w > 0 such that ||w™lfj,;, <

< C||f)ls, where now 2 —%—%, so that r—}; =2_1=

T =

1 and ||Tfl|lLoqwduy S
1,

If we take u = w1 € LY{p) we have
f ITF (@) Puly) ™ du(y) S € f (@) Pu(z) " dm(z) ™
Y X

When we are dealing with a family of operators bounded on the same space,
say LP{m), theorem 1.11. can be improved. We shall obtain an equivalence
between the vector-valued inequality and weighted inequalites with the same
weight on both sides. This unification of the weight, as José Luis Rubio liked
to call it, is achieved by means of a sinple iterative process, which is nowadays
called the Rubie de Francia algerithm.

Let us start by reformulating theorem 1.11. for a family of operators bounded
in L?(m}.

We shall change notation just for psichclogical reasons.
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Theorem 1.12. Let T be a family of sublinear operators uniformly bounded
wn LP(m) where 0 < p < 00. Suppose 0 < 7 < co.

We wani to find conditions under which the following veclor-valued inequalily
holds:

1fr 1fr
(113) (Z tTJ-fjr) 42 (Zw)
i » 7 I

We let & be given by—l—:|1_£

1Y If 7 < p, then (1.13) holds of and only if for every u € Li(m) there
ezists v € LY (m) such that ||v)la € ||u)le and

f [Tf(z)| u(z)dm(z) & C'f |f(z) viz)dm{z}, T € T.
X b's

2) If > p, then {1.138) holds if and only if for every v € LG(m) there
erisis u € LY (m) such that ||uf|a £ ||9)|o end

] ITf(2)["u(z) ™" dm(z) < C7 f f(@)"v(z)™" dm(z), T € T.
X X

In case 7 < p, the weight can be unified. Let us see how.

Theorem 1.14. Let 0 < 7 < p and suppose that (1.13) holds. Let % =
1= 2{a = {p/7)). Then, for every u € LE(m), there exists w € LY (m) such
that:

i ufz) S wiz) ee
) el < 2ulla and
ii) [ ITF (@) w(z) dm(z) < 4C" fy |f(2) () dm(z)

Moreover if (} is o sublinear contraction in L¥(m) then w can be chosen so

that |Qu(z)| £ 4w(z).

Preoof: From theorem 1.12., to each u € L§(m) we can associate V € LE{m)
such that ||V« £ {#]l« and

[ i) @) dm(z) S € [ IS V(e)dm(a)
X X

Now, given u € Lg{m}, we define a sequence u; inductively by:

_ _ V+|Qu
Ug = U, Uy = 3 v

_ Vi4]Qul

T B4 = T
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Then we have:

1Qul & 2uj41, Nujaalla S lijlle

f \Tf(z)|7;(z) dm(z) < C” ] @) Vi) dmiz) S
X X
<2c* ] F@)7 w42 (z) dm(z)
X

If we take w(z} = Z; o 2, , we have:
wlz) Z uo(z) = u(z) a.e.

o0
lolla £ 3027 Nl < 2l

j_

|Qu(z)) £ Zz | Qui{z)| & 222-31{3“(2) < 4w{z)

j= =0

Finally
[ @)z < 207 [ (s Z“’“(“")d OF

<40” [ @) ue) dm(z)
X
as we wanted to prove. l

2. The boundedness principle

Now the general result we have established can be combined with a theorem
of Marcinkiewicz and Zygmund which says that every linear operator bounded
between Lebesgue spaces admits a bounded {%-valued extension. It is in this way
that we obtain the first precise formulation of the fact that all the infermation
that one may wish concerning the boundedness properties of e linear operator,
is contained in the weighled-L? inequalities that this operator satisfies,

Theorem 2,1. {Marcinkiewicz and Zygmund). Let T : LP{m) — L¥{y) be
a bounded linear eperator, U < p,g < oo with "norm” ||T)|. Then T hes en
12 .valued extension, and more precisely:

1/2 1/2
(z |Tfj|2) £ CogliTl (Z |75l )
J
¢ P
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Proof: Consider first the case ¢ £ p. Take a Gaussian sequence (Z;) in
some probability space {{1, P} and recall the following basic fact: For every
C<r<oo

?

1/2
Y (Zu)
j T

with some constant b, < oo {see [12, chapter V]). Then

1/2(|9 g
(;rrm) 5 ﬁ du(y) L ;Tf,-(m)zj(w) dP(w) =

¢
b [ < s [
o <&ITI |

T (Z Zi(w)fi)

P e/
b T (j;; sz(w)f:' dP(w)) = (& /8)° 11T

P

a q

dP(w) &

F

Z Zi(w}f;

g

(Z |fjf2}1;2

P

and the theorem is proved with &, , = b, /b,. In particular €, , = 1.

Now we consider the case p < ¢. Let s = ¢/p. For every u(y) 2 0 with
llells € 1, the operator Ty f(y) = uly)!/? T f(y} satisfies

iZuflls = 1TAN;  ITHUAN,

and by the case already proved, we have:

/e

172 /2
(Zi'ffjlz) =P /(ZITJ’:‘IQ) udpy =
5 i RASA
F
1/2

1/2
= sup (z ITuf;IQ) < W7 (Z Ifjlg) L]
; ;

r P

Theorem 2.2, Let1 <p < oo and 2 = |1 - %l
A hinear operator T is bounded tn LP(m} if and only if, for every u € LG{m)
there exists w € LY (m) such that
u{z) £ wix) a.e.
lwlle £ 2(|ufle and
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T is bounded in L*(w®) (where 0 = 1 when 2 S p and ¢ = —1 when p < 2)
with noerm tndependent of u. .

Proof: The if part is in both cases & trivial consequence of Holder's inequality.

When p > 2
1Al = 1T f P2 = ﬁITf(x)Igu(w)dm(x}

where u € Lff”)‘(m) with norm 1, note that (p/2)’ = a. Given u we have w,
so that:

||Tf[|§ _S_f (T F(2)Pw(z) dm(z) & Cf Hf(x)Pw(z)dm(z} £
X X
< CIA 2Nl < 2C1A112
When p < 2 -

1712 = /X () Pu(z)~ dm(z)

for some u € L%(ﬁ)’(m) with norm 1. Note that —~— =2(1-2)=2-1=
+ | ol

%. Thus we have w and we can continue

2 [ If@Pu(a) dn(@) 2 € [ ITHE)Pu(e)™ dn(z) 2 (205 T
X X

To prove the enly if part of the statement consider first the case 2 < p.
Since T is bounded in LP{m), the Marcinkiewicz and Zygmund theorem

implies
1/2 1/2
(2 |Tf,-|2) < ITY (Z |f;—|2)

P P

Then theorem 1.14. gives us what we want. Now if p < 2, we consider the
adjoint operator I™ : LF (m} — L?’,(m) and apply the previous case taking

into account that % = ‘1 - %l = |1 - %' and that the inequalities

f [T f(z)*w(z) dmiz) £ C/ |f(m)|2w(.1:)dm(x)
X X

| ri@Pu@) @) < © [ 11@Pu() dnta)
X X

are equivalent. B
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In 3 we shall present some versions of theorem 2.2. valid for a larger class of
spaces. But first we shall indicate briefly how José Luis Rubio used theorem
1.14. to give a very simple proof of the factorization theorem for weights in the
classes A, of Muckenhoupt. This theorem had been discovered previously by
Peter Jones [20] with a much more complicated proof,

Given a ¢-finite measure space (X, dz) and a family {Ei}icr of positive linear
operators, we form the maximal operator

Mf(z} = sup \E:f (=)l

We assume that A is bounded in I?(dz) 1 < p < oo and denote by W, =
W,{ M} the class of all measurable functions w(z) Z U which are finite a.e. and
verify

[ My <o [ eypute) iz
X X

for all suitable f, where C = C(p,w) is Independent of f. For p = 1, we
define W; = W;i(M) as the class of those w 2 0, finite a.e. and satisfying
Muw(z) £ Cw(z) a.e. for a certain C. Then we have the following

Theorem 2.3. (Factorization theorem for weights). Let 1 < p < o0, and
suppose that w € W, and w PP g Wy, Then, there exist wg,w; € Wi such
that w(z) = wo(x)uwy(z) 7.

Proof: Let T denote the family of lincar operators of the form Tf(z) =
Sicrai{z)Eif(z) where (a.(2});er are measurable functions a;(z) 2 O and
5, ai{z) = 1. The family 7 will be used as a linearization of M. Denoting by
T* the adjoint of T (relative to the measure dz) we have:

ifr 1fr
(Z |ij,-|’) £C (Z If;'l") pPPErsoo
1 Lp'{w—?'fr) ? Le'(w=#"ir)
and
1fr ifr
YT R scl{ Sl 1s7<p
J J
Le{w} Lr{w)

where T; € 7.

The first inequality is proved by interpclation in 7.
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For r = p' it is trivial:

1y

YL AP = [ Rimpei s

2
L (w=p'1p}

<o [ i = o | {315
X ;

1/p'

Lo’ (w-'i2)

just because w™? /P € W
For 7 = co it is also easy because sup; |T;f;| £ M(sup; {f;]), so that

lsup |5 5l omsirny 1M (sup £ DNl Lot ¢mrriny € Cllsup 151l 1ot gramst 2
i J ¥

The second inequality follows by duality. In order to prove the theorem, note
that if it is true for some p, it is also true for p’, so we may assume 1 < p S 2.

We use the inequality

ZIT}J’J‘I £C Z | £51

Lr{u} Le{w}

Applying theorem 1.14. (now a = p’} we know that for every u € Lf:(w)
there exists v € L% {w) such that u S v, |[ofl 1o (uy S 2{lull ey, 2nd

[ I slte)u@ dz < 40 [ If)iee) ds
X X

This is equivalent to T{vw) £ 4Cvw that is: vw = wy € W;. We also need

Fie w; =vi-T € Wy or, in other words

w=wer ! = wgwll_
M{uP' 7y < CyP'lr

This can also be achieved, since v — C‘lM(vP""P}PfP' 15 a sublinear contraction

in L#'(w).

It is sublinear because p'/p > 1 and also

f|M(UP'/P)PIP'iP'w= /M(Up'!p)pw < C-/v"'w. n



THE WORK OF JosE Luis RUBIO DE FRANCIA 43

Corollary 2.4. Suppose that
. . ) PfP’
(2.5} we W, if end only if sup Ejw(z) (E,-(w_*’ h’}{x)) SClap<x
133
Then W, = {wgwi_IJ two,w € Wil

Proof: First of all, it follows from (2.5) that w € W, if and only if wP'/P ¢
W)y, thus theorem 2.3. gives us the factorization of every w € W,. On the
other hand, if w = wew] ~? with wg,w, € W, then:

RV -
Ei(w) (Ei(w_P '!p))p = Ei(wow; P)Ei{w, ;Jf‘wl}”'l <
< CEi{wo)Ei(w:) "PEi(wo) ' Ex(w )P ' =C. B

{2.5) holds in many interesting cases, which we collect below:
a) Let B be a basis in R", that is, a collection of open subsets B ¢ ™. For

each B € B, we consider
Eoth) = (1217 [ 1) xa

The corresponding maximal operator will be
My f(z} = sup |Epf(z)|
BeB
We shall also define the classes A, g1 < p < oo in the following way:

w € A, g if and only if sup(Epw(z))(Eg(w™?/"'Yz))?/* < C
BEB

We say that B is a Muckenhoupt basis if W, coincides with A, g for all 1 <
P < co, that is, if we have: Mg is bounded in IP{w) & w € A, 1 < p< oo
For any basis 8, the definition of A4; g as limit of the conditions Ay 5, coincides
with W,

Corollary 2.4. applies to every Muckenhoupt basis, giving

1=
AP,B = {wgwl P, Wg, Wy € A;_g}.

Here are some examples of Muckenhoupt bases:

1) The basis @ formed by the cubes with sides parallel to the coordinate
axes Mg = M = Hardy-Littlewood maximal operator. Apg = 4, =
the usual Muckenhoupt classes. That @ is a Muckenhoupt basis was
shown by Muckenhoupt [26]. See also [5] and [12, chapter IV].

2) The basis R formed by all n-ditnensional intervals.

Mp = strong maximal function 4, g = A; in the notation of {12,
chapter IV], where it is shown that R is & Muckenhoupt basis.

3} The basis { formed by the intervals in B™ whose sidelenghts are of the
form {s,¢,st}. This was shown to be a Muckenhoupt basis by R. Feffer-
man (see, for example [9]).
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b) Let ((Filoct<oo be an increasing family of o-algebras in a probability
space {2, F, P) such that {J, F; = F. We denote by E; the conditional expec-
tation operator with respect to Fi and write E*f = sup,|E,f|. Assume that,
for each f € L1({2) we can define (fi)iso s0 that f; = Eif ae. (f > 0) and
sup fi- (0)/ fi(w) & C (a.e.)(this happens, for example in Brownian martin-
gales). Then W,o{E*) = Ap({Fi}) is given by condition (2.5), and therefore
corollary 2.4. applies (see [7], {34]). The same can be said in the discrete case
(Fn}nen where we have to assume that

Eof £ CEnuf e (nEN,f € L}).
c) Let D be the unit ball in C* equipped with the measure
dma(z) = (1~ [2[7)* " dm(z)

where m = m; is Lebesgue measure. If B is the family of balls touching the
boundary 8D, then the operator

Mof(z)= sup me{B)"} |/de?’:10

zEBEB

is bounded in L?(wdm,) if and only if w € W,(M,) = By which is defined as
in (2.5). Therefore the factorization By = Bf(Bf)' ™7 holds. See [2).

d} Let (2, F, P} be a non-atomic probability space, and let T be an ergodic
measure preserving bijection in §2. It is shown in [1] that if

Emaf(z)y={n+m+1)""! i HTz), n,m 20
j=-n

then E*f = sup, , |En,mf| is bounded in LP(wdP), 1 <p < o0 if and only if
wE A; which means

' p/r’
sup Ey mw(z)- (Eg,m(w"’ "p)(z)) < C ae
m
Therefore, corollary 2.4. also applies in this case.

3. Extrapolation theorems

By using factorization, P. Jones observed the following simple consequence:
Suppose T is a linear operator, which is bounded in LP*(w) for every w € Ay,
and in LPt{w) for every w € 4,, where 1 < po <p1 < 0 and the classes A, are
those of Muckenhoupt (example 2) 1 at the end of section 2). Then for every
po < p < p; and every w € Ay, T is bounded in L?(w). Indeed if w € A, we
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can write w = wgwl_p with wg, w; € A;. Then T is bounded in LPo(w wl P
1 ¥ iy

and in LP’(wgwi_p‘). By using the theorem of interpolation with change of
measure of Stein-Weiss [33] we get that T is bounded in LP{w).

One of the great discoveries of José Luis Rubio was the extrapolation theorem
which seys that only the boundedness at LPo{w) for every w € A,, is encugh to
imply boundedness in LF(w) for every w € A, and every 1 < p < co. We shall
not present the extrapolation theorem in the first formulation he gave [28]. We
shall choose a slightly more general setting following two later papers of José
Luis [29] and [30].

This will allow us to get a deeper insight into the fact that the boundedness
properties of an operator are all contained in the weighted L? inegualities it
satisfies.

We fix a complete o-finite measure space (§1, p) and consider real Banach
lattices X < L%p), ie. (X,|| - ||x) is 2 Banach space whose elements are
equivalence classes (modulo equality a.e.) of measurable functions in (Q, x)
and such that:

z € X and [y(w)| £ |z(w)] ae. = y € X, [lyl|x = [=flx

All the lattices considered will also satisfy the following two properties:

1) There exists z € X such that z(w) > 0 a.c.
) Hap € X,0S 2{w) S 2p{w) £--- S ap(w) £ -+ — z(w) ae. and if
sup,, [|zn|/x < 00, then z € X and ||z||x = limy, ||[za]lx.

1) is usually refered to by saying that X bhas a weak unit or that the support of
X isall of Q. i1} is called the Fatou property. Examples of lattices fulfilling these
requirements are: I# = LP(y) and the Lorentz spaces L{p,q}, 1 £ p,q £ oo
{except L(1,00) which is not normed); Orlicz spaces @(L) where ® is convex,
strictly increasing in [0, c0] and $(0) = 0; the mixed norm spaces LP1?2(Q, 1)
if Q=5 x Q and g = p; ® o) weighted spaces LP(w) where w is a weight,
that is, a measurable function in §2 such that 0 < w{w) < oo ae. etc. Given a
lattice X, we shall use the following notation:

X* =dualof X

It is a lattice but, in general it can not be identified with a lattice of functions
in (2, )

X'=a~dualof X = {y € L°(p) : zy € L' (u)¥z € X}

X' is a lattice of functions on (§,u) with the norm Hy|lx» = sup{|lzyl: :
llzllx € 1}. X' is a closed norming subspace of X*. Norming means that

lz)lx = sup{llzy|: : yllx- = 1}, forallz € X
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This holds due to the Fatou property
Xi={zeX zw)>0ae}

Fora>0
X ={y e L’(p}:|y| = =" for some z € X}

If we define ||y|lx- = [|[#]'/*||%, we get a norm if @ £ 1 and (in general) a
{1/a)ynorm if & > 1. However for some lattices X¢ is a Banach lattice for
some @ > 1. For example if X = L p > 1, then X = L?/® and this is still
a Banach lattice for @ £ p, and not only for @ £ 1. This characterizes the
p-convex Banach lattices.

Drefinition 3.1. Let 1 £ p, ¢ < oo. The lattice X is said to be

a} p-convex if
n 1/p n 1/p
(leilp) =M (Z ||Ia'||’3<)
i=1 i=1

X
b) ¢-concave if

(2:; le.-||3f) " M (z": |$;‘|“") s

=1

X

Proposition 3.2, {see [22]}.

a} Every Banach latlice is I-convez and co-concave.

b} If X is po-convex and go-concave, then if is also p-convexr for 1 S p £ py
and g-concave for g4 < ¢ £ co.

e} X" =(X") = X (for this it is basic thai X salisfies properiy i) above).

d) X' salisfies i) and 4} elso.

e) If X 15 p-conven and g-concave, an egquivalent norm can be defined so
that tnequalities a) and b} in the definition above hold with M = 1.

I} X is p-convez if and only if X? is o Banach laitice (with X renormed
according to e)).

g) X is p-convez (g-concave) if and only if X' is p'-concave (¢'-convez).

When for a single operator T we say that T : X — Y is bounded and also
T:Z — W is bounded, we are always implicitly assuming that X N Z is dense
in both X and Z, which justifies the uniqueness of its extension so that we may
consider it as the same operator.

Let us start by presenting a version of theorem 1.9. valid for 2-convex lattices.
Clearly L% is g-convex and, consequently 2-convex if ¢ > 2. For a 2-convex
lattice X we define a new lattice X = (X?Y. For example if X = L9 with
g >2then X? = L9? and X = (X?) = Lla/¥)",

Here is the version of the factorization theorem we need, also part of Maurey’s
theory.,
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Theorem 3.3. Let X be a 2-conver Banach lattice and B ¢ Bunach space.
IfT: X — Bis a bounded sublinear operator, the following are equivalent:

a) T factors through L? in this form:
T:x M2 5, p

where | To[| < C, g € (X)/? with ||g|| g2/n € 1.
b) T X(P) > 14 is bounded or, in other words: forallzy,zq,...,2, € X

/2 172

YoT=zIE ) S leyl?
; i

X

When X = L% ¢ > 2, this s contained in theorern 1.9. Note that the
condition ¢ € X? means that |zg|* € L'¥z € X and this is exactly what
we need for the operator Mg to be bounded from X to L2 Of course if
X =19 Xt = LW "’andW (1——)———— ~ in theorem 1.8,

We shall use theorem 3.3. in order to derive a boundedness criterion similar
to theorem 2.2. but valid for Banach lattices {2-convex or 2-concave). We shall
need the following extension of the Marcinkiewicz and Zygmund theorem.

Theorem 3.4. (Grothendieck-Krivine). Let T : X — Y be a linear operator
bounded from X 1o Y, both Benach lattices. Then

1/2 1/2
oITh S KallTh || >_Wil
7 ¥
¥ X
for fi,.... fa € X; where K is Grothendieck’s universal constant, whose ezact

value 13 still unknown, although 1 < Kg < 2.
In other words, the vector extension T is bounded from X(I%) to Y{I%) with
IT)) £ KTl (see [21], [22]).

Here is our boundedness criterion for 8-conver Banach lattices.

Theorem 3.5. Lei X and Y be 2-convezr Banoch lattices in Q). Fore
linear operator T, the following statements are equivalent:
a} T is @ bounded operator from X to Y.
b} For everyu € ?+; there exisfs v & )~(+ such that T is a bounded operator
from L?( v) to Li(u).
¢} There is a constant C > 0 such that &) holds with Iellx = JJullx and
"Tx"L'l(u) < C”x"L?(u) forallz e X.
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Moreover if C is the least constant in c) and M = 1Tl Lix,yy we have:
MECEKe M.

Proof: The difficult part is 2) = ¢). The proof is similar to that of part 1}
in theorem 1.11. Let T be linear and bounded 7' : X — Y with norm = M.
Given u € Yy we assume without loss of generality that |lu|ly = 1. Then we
see that ¥ < L%(u}. Indeed

[ttt 1k ey = ol
Putting L*(u) = B, we have, from the Grothendieck-Krivine theorem plus the
inclusion ¥ — B:

1/2 1/2

> IT=% =1 Y (7=,
i i

A

B

12 1/2
Y 1Tyl S Ke-M (Zlf-jlz)
3

[ Fa¥

H

Y X

According to theorem 3.3. this implies the factorization
7.x M5 2 By B - [2(u)

with || To[| £ C and ||g(| 52 £ 1.
In other words

ITzll20 € C? L eg? du

This is precisely ¢) with v = g? € X3 and C £ Kg - M.

¢) = b) We bave T : X — L?(u) bounded when we consider on X the
norm || + || 2w}

We know X — L*(v). This is proved exactly as the inclusion ¥ «—
L*{u). It is enough to prove that X is dense in L?(v). In order o do
that we use the Hahn-Banach theorem. Let ¢ € L?(»)* = L*(»™') and
suppose that g vanishes on X as a functional, i.c. fzgdy =0Vz € X.
Now L2(v~!} C X'. Thus ||g||x+ = 0. But this implies g = 0 a.c. This
finishes the proof that X is dense in L*{v).

b) = =) Given an arbitrary u € Yy, let v € X4 the function associated
to u in b). As we have seen X — L*(%). Therefore we can define T'z
for every = € X. Besides, this definition is independent of v. We have
T:X-T{X)C ﬂne?+L2{u) =Y.
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The last identity is proved as follows:

If y € L*{u) for every u € Yy, we have |yf?u € L! for every u € (¥?)'. Thus
lyl? € (Y?)" = Y? since Y7 satisfies Fatou’s property. This is the same as
saying y € Y.

Consequently we have a linear operator: T : X — Y. Iis boundedness will
be a consequence of the closed graph theorem. Suppose z, — 0 in X and
Tz, — yin Y. We take v and v such that T : L?(v) — L?(u) is continuous.
Since X — L*(v} and ¥ — L%*u) we have: T, — 0in L*(v) and Tz, —» y in
L*(u). Therefore y = 0, and we have T : X — ¥ continuous.

The equivalence a} & b) & ¢ is already established. In order to complete
the proof of the theorem, we need to see that M £ C. But

IT=N% = |[|Tz|%]|y: = sup {f |Tz|?udy : fu]ly € 1} =
< sup{c” JERE LT 1} — ¥l = CPlely m

Now exactly as theorem 1.12. (part 1) can be improved for operators bounded
in a fixed LP space giving rise to theorems 1.14. and 2.2,, theorem 3.5. can
also be improved by unifying the weight when we are desling with operators
bounded In a fixed 2-convex Banach lattice. We obtain the following result:

Theorem 3.6, Let X be o 2-convezr Benach lattice in (2, ). For g lineer
operator T, the following statemnents are equivelent:
2} T 13 a bounded operator 1n X.
b) For each u € Xy, there ezists w € Xy such thatu S wand T i3 a
bounded operator in L*(w).
¢} There is ¢ constani C > 0 such that b) holds with |lw| 5 < 2|Jul|; end
1T L2quy & CllzllL2wy for every z € X.
Moreover the least consiani € in ¢) 13 comparabie to | Tl ix)y-

Proof: We prove ¢) = b) = a) and M £ +/2C as in the proof of theorem
3.5. Then we use the R. de F. algorithm to prove that a) = ¢). Given u € X4
we define (u;)j=0,1,... inductively by: up = u, uy = v,...,%;4; = vj,... where
v, is the weight associated to u; as in theorem 3.5. This means [Ju;]|z = llullx
and

[ TalPusdi < (Ko - MY [ foftunr du
a

Now we define w = 37727 7u; and we have:

[ =]
w S, Jul S 2ulls and [ [TePuwds =Y 27 [ [TaPuyd g
) = )

g(I{GM)222—ff |$|2uj+;d;zé?(KGM)2L|m|2wdp
Q

=0
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This proves ¢} with C £ V2KgM. K

From theorems 3.5. and 3.6, we shall obtain, by duality, results for 2-concave
lattices. For a 2-concave lattice X, we consider:

X={eeclu):zg€ X?’v¥gec L")

Note that if X = L(p), ¢ < 2, then X = L7(z) where L = -1
We define fjz]| ¢ = supyy, <1 [[<gllx=-

Lemma 3.7. Let X be a 2-concave Banach lattice satisfying i) and if).
Then:
a} X is a Banack laitice with the norm Iz
b) X also salisfies i} and ii).
) (XY = X'? with identity of norms.

Proof: X'is 2-convex, thus X'? is a Banach lattice verifying i) and ii). Also
Z = (X" satisfies 1) and ii) and Z’ = X'2. It is enough to check that X = Z
with identity of norms. But: z € X e |z|1/2h cXVhec? & |a':|1'!2hy e
DVye X' helPo 2y LPVye X axlyf e l’'Vye X' &z ¢
(Xm): -7 n

Theorem 3.8, Let X and Y be 2-concave Banach laitices in (Q, p). For a
linear operator T, the following statemenis are equivalent;
a) T 1s a bounded operator from X fo Y.
b) For eachu € X-h there ezisis v € ¥y such that T is ¢ bounded operator
from L¥u~1) to L3v™1).
c) There is a constant ' > 0 such that b) holds with ||v|ly £ Ju| 5 ond
IT2lz2¢-2) & Cllellzgu- Yo € L),
Moreover K5'C £ ||T|lix vy £ C-

Proof: The proof is based upon the following facts:

1} X* = X', Y* = Y’ because X and Y are sequentially order complete
(since they are 2-concave) and have weak units (see [22)).
2} The adjoint operator T* defined by

f(TI)y' du = /(T‘y')a: dp zeX, yeY’
@ Q

is a well defined operator from Y’ to X' (which are 2-convex) and
TN zex,vy = 1T ey xos.
3) T: L*(u™*) » L*v~!}is a bounded operatorif and only if T : L*(v) —
© L*(u} is a bounded operator.
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Using this 3 facts, we just need {o apply theorem 3.5, to the operator 7% :
YV=X'. 1

The version for an operator bounded on a given 2-concave Banach lattice is
as follows:

Theorem 3.9. Let X be a 2-concave Banach latlice in (Q, p). For a linear
eperator T, the following statemenis are equivalent:

a) T ts o bounded operator in X.

b} For eachu € Xy, there ezists w € X, such that w € w and T is bounded
in LE(w™). '

¢) There 15 g constant C, such that b) holds with [lw]y < 2||u[ 5 aend
”T:'-"IIL?(w—‘) é CIII"L?(w") forallz € Lz(w_l).

Moreover the least constant C in ¢} is comparable to || T| 1¢x;-

We are going to obtain now, from theorems 3.5, 3.6., 3.8. and 3.9., a quali-
tative result that will make precise the boundedness principle given as 2, in the
introduction, and which will also be a general version of a theorem of extrapo-
lation (from L?).

We shall be able to handle non-necessarily linear operators.

Definition 3.10. T : X — L) is linearizable if there exists a Ba-
nach space B and a linear operator Tp : X — L%y, B} such that Tz{w) =
iiToz{w)||a ¥z € X.

For example if {T,,} are linear operators defined in X, the maximal operator
Mz{w) = sup,, |Trz{w)| is linearizable.

We shall use the following notation:

V{T) = {(v,v){u >0 ae,v>0aec and
T : L*(v) — L*(u} is bounded}
W(T) ={w > 0 ae.: T: L¥(w) — L%(w) is bounded}

Theorem 3.11. Let S and T be operators such thai:
a) 5 13 linear.
b) T 13 linearizable.
e) V{§yC V(D).
If X andY are Banach lattices in (Q, u) both 2-convez or both 2-concave and
S X Y i3 a bounded operator, then T is also bounded from X to V.
In the case X =Y, ¢} can be replaced by the weaker hypothesis
') W(S) Cc W(T).

FProof: Suppose first that X and Y arc 2-convex. If § is bounded from X
to Y, then b) of theorem 3.5. holds for §, and because of ¢), b} of theorem
3.5. also holds for 7. Now the implication b) = a} in the proof of theorem
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3.5. is equally correct for linearizable operators because we have a well defined
operator

To: X — Y(By={z€L(wB): z(}zec¥}
= Ouew, L)
and the continuity follows from the closed graph theorem.
When X and Y are 2-concave, we get also Tp : X — Y{(B) by using X =
Uyex, LH(u") and Y(B) = Uy, LE(v™"). In order to prove the continuity,

u EX+
we consider the family of linear operators

Thz(w) = (Toz{w), H{w))

associated to A € LE. with ||R]| £ 1.

Since T'z(w) = sup, [Taz{w)|, it is enough to prove that the T} are uiiiformly
bounded from X to Y. But this follows from the Banach-Steinhauss thecrem,
since

a) Every T} is bounded from X to Y.
b) For each z € X sup,, [[Tazlly £ ||suppey Trz( )y = |Tzlly < oc. @

In theorems 3.5., 3.6., 3.8. and 3.9. the exponent 2 was crucial because of the
Grothendieck- Krivine inequality, which is false in general for exponents 7 # 2.
However, if for a given operator T € L{X,Y") we know that '

1/r

(312) Sirar) | scf(Tr)”

Y

X

the arguments used in the proofs of those theorems work provided that X and
Y are both r-convex or both 7-concave.

We state the analogue of theorem 3.5. in this situation.

Theorem 3.13. Let X andY be 7-convez Bunech lattices for some 1 <7 <
o0, For a linear operator T, the following are equivalent to (3.12):
a) For each u € (Y)Y, there czists v € (X 7)Yy such that T is @ bounded
aperator from L7{v} to L7(u}.
b) The preceding statement holds with |[v]| xry < lullqyry end | Tx]lL- @y <
£ Cllzllgr oy for all 2 € X (C being as in (5.12)).

We could also formmulate results corresponding to theorems 3.6.,3.8. and 3.9.
A particular case in which {3.12) holds with 1 £ 7 £ o0 and C = ||T||1¢x,v)
is when T' is a positive operator. Indeed

1fr
n 4] n
r
E ERN 2 ch}-z}- whenever Z ja;]” =1
j=1 =1

j=1
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Therefore, since T is positive:

1/r

L L
T Z]zﬂf = EajT:c_,-
j=1 j=1

Hence

147 1/7
n T n n
ZIT:BJ-F = sup Zaijj:Z|aj|p 1} ET z:|:cj|r
=1 i=1 i=t i=1

and, consequently

1fr 1ir 1fr
> T ST {2 bl SITN D 1=l
i=1 v j=1 v i=t x

With the help of this observation we can obtain a counterpart of theorem
3.11. valid for § linear and positive and an exponent r # 2. We shall use the
following notation:

)

Vo(T) ={(u,v)ju > 0 ac,v >0 ae and
T : L*(v} — L¥{u) is bounded }
Wo(Ty ={w > 8ae |T: L (w)— LP(w) is bounded }.

Theorem 3.14. Let 1 < r < oo and suppose that § and T are opereiors
such that:

a) § is hneer and positive.
b} T is linearizable.
c) Vi(5)yC V(T
If X and Y are Banach lattices in {1, p) whick are both 7-conver or both
T-concave and S X o Y is bounded, then T is also bounded from X fo V.

In case X =Y, condition ¢) can be replaced by the weaker hypothesis
Wo{S) C W.(T).

For every fixed 7 and p, 1 < 7, p < oo and weights u{z), v{z}, the lattices
X = LP(v), Y = LP{u} are either r-convex if 7 £ por r-concave if 7 2 p. If we
apply theorems 3.11. and 3.14. to this case, we obtain:
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Theorem 3.15. Let S be a Lnear operator and T o lincarizable operator.
a) If Wo{S) C Wa(T), then W,(S) C Wi(T), 1 < p < co.
b) If Va(S) C Va(T}, then Vp{S) C Vo(T), 1 < p < o0,
¢} If § is positive and W (S) C W.(T) for some 7, then W,(8) C W, {T),
1< p<oo.
d) If § is pesitive and V. (S) C V(T) for some 7, then Vp(S) C V,(T),
1<p<oo.

Theorem 3.15. is a general extrapolation theorem. Part c) was obtained by
Jawerth [19] with a constructive proof.

By making specific choices of the operator S, we get concrete extrapolation
theorems. For example, if $ = Ry + Ry +--- + B, where B;1 £ j £ n are the
Riesz transforms in R™, given as muitipliers by

(B fYNE) = (—i6:/1EDF(©)
then W,(5) = A,, the Muckenhoupt class, for 1 < p < oo (see [12]).
Likewise, if we take 5 to be the multiple Hilbert transform in R™, it is also

shown in [12] that W, () = 4}, the class associated to the basic ? of intervals.
We con write

C rollary 3.16. Let T be a linearizable operator which is bounded in L?(w)
for allw € Ay n R” (resp. A}). Then T s bounded in L¥(w) for all w € A,
{resp. Ay ) where 1 < p < oo,

This corollary (for the classes A,) is contained in [10] with a constructive
preof. See also [11], [14] and [17].

4. Applications

The three applications we shall present are all contained n [29).

The first one consists in obtaining weighted inequelities for singular iniegrals
with nen-smooth kernels.

We shall consider a singular integral
Ty =py. [ K@i -y
with a kernel K satisfying:
) K(y)= T2, v = &, with Qe L=(T, ).
1) fz K(y)do(y) = 0 where ¢ is Lebesgue measure over 3., the
n—1 .

unit sphere of R™.

It is known from [5] (sce also [12]) that when Q is smooth, T is bounded in
LP(w) for every w € A,, 1 < p < co. J. Duoandikoetxea and J.L. Rubio [8]
proved that the result holds without any regularity assumption on 2. Here is
their result
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Theorem 4.1, If T is as above, then T i3 bounded in LP(w) for every w €
€A, 1<p<oo

Proof: For f € 8§, the Schwartz class, we decompose

riw =3 [

—ooj

=2 3 e [ Kl wi@RE A
Efe—y|cai+t

—oo § —oal

Kz =) [ fe) " dedy =

$<femgl<ai+t

where ¥ € § has support in [1/2,2] and satisifes 3°% ; ¥(2t)? = 1 for every
t>0.

In the double sum we group terms for which the difference between { and j
is constant. For k € Z we define

)= 3 (= Y [Rds - 0)Sui(Suif))dy

i—j=k —oo)

where K;{y) = K(?J)X[ei .21+1[(|yf) and

(StANE) = (2IENFE).

Then Tf =3,z Trf. We shall prove:

(4.2} ITxf 2y E CllFflezquys w € Az
(4.3) 1T flle < C27 2| £ s

This will be enough. Indeed, given w € A; we know that w't € A, for some
€ > 0 {with another constant C,).

Lis

Since w} = w' T T . 175 we get, by interpolation with change of measure

[33]:
LI
7% fl| 2goy £ Ce2777 [l 2wy

enough to conclude that:

I7f 2wy £ D7 NTkF ety £ ClUFN Lagwy-
k

All that remains is to prove {4.2) and (4.3). (4.2) is proved by using the
Littlewood-Paley inequality and its dual, which hold in L?(w} provided w is an
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Ag weight
2
<

ITe FIz2 ey = Z Sers(K; * Seasf) S
J

L2 (w)

<C [ S« Suf (@) ulz)de S oy 1) S
<O'Y [(Seasf o) wi@)de <
<O'Y [ Isest@l o) dz S C 1N

In order to prove (4.3), observe that

/ AY) - amic 4

1<tz W%

fz o) f - X go(y)| <

! ! : =2 irt dr
1

[Ro(6)] =

From the obvious estimates {I{t})] £ 1, {I(t)| £ &, we get [[(t)| £ Clt|~¥2.
Therefore:
KafO S C [ I €7 o) < Ol
Also |Bo(6)] £ Cl€| € ClEP? for |€] £ 1 since Ky is € and Ko{0) = 0
Now K;(€) = Ko(27€) and
2

T fIIZ = dé <

> Ko(276) (2 |e)* £(8)
sC f (Zminil?él‘”. I2"£I“’2)‘I’(2*+’I£I)2lf(&)l) de <

2
£C f (min(?",-z"?)‘”-z 'I*(2‘rI£|_-)_2) IF(&)1F de = C27*ljjf)i3. m
!

. The second application will deal w:th the Hszert imnaform for groups. and
zts action on Banech latticey. . s . : . :
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Let G be a compact abelian group with an ordered dual I' (iff G is connected).
In L*(G) we define the conjugate function or Hilbert transform by:

—if(y) ify>0
(HfMNyy={ 0  ify=0
if(y) fy<o0

The theorem of M. Riesz extends to this context, namely: H is bounded in
LP(G) 1 < p < oo {see [31]). The same happens with the Helson-Szegd theorem
characterizing those w such that H is bounded in L%*(w).

Theorem 4.4. (Helson-Seegd). Given w € LL(G), the following conditions
are equivalent:
a} H is bounded in L2(w).
b} w = e*F Y with u v € L%, |plos < 7/2.
¢) w~wy (e, Clw S wy £ Cw) with |[Huwg| £ K - wy a.e.
Movreover the conslanis ||ul|eo, arctan ||v||ee in 8) and C, K in ¢) are con-
trolled in terms of the norm of H in L*(w).

See [16] and [15].
Definition 4.5. Given a lattice X, an operator linear T: X — L% is
i) u-bounded in X if

sup mf (]lyll + ||Ty||) =0U<o
Hzlis1 %12

1) semi-bounded in X i for every z € X, there exists y € X such that
|z| £ v and [Ty| £ const. y a.e.

We have T bounded = Tu-bounded = T semi-bounded {To prove the second
imphcation, given ¥ = xg € X define (x,)(yn} so that z, E yn

lwall + 1Tyl = Clieall, 2a4: = Tya

and then y = S.o. ({2C) "y, € X satisfies ii)) ¢) above is equivalent to the
fact that H is u-bounded in w - L*°.

Since w- L™ = LY w)" = L*(w)™ the following is a natural extension of the
Helson-Szegd theorem to Banach lattices.

Corollary 4.6. Given ¢ Banach luttice in (G, dx) which is 2-convez (resp.
2-concave), the following condilions are equivalent
a) H is ¢ bounded operator in X.
b} H i3 u-bounded in X (resp n X)
e} H is semi-bounded in X (resp. in X ).
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Proof: Suppose first that X is 2-convex a) = b). By theorem 3.6., given
u€ X with [ulg =1, thereis w € Xy 3 |u| S w,fjw|g £ 2and His
bounded in L*(w) with norm £ M (independent of u}. Therefore ¢} in the
Helson-Szegd theorem holds with some wg, which satisfies

[u] Sw S we S C%w |Huwo| £ Ko
where € and K are independent of u. In particnlar
llwoll  + | Huwollx < 2C*(1 + K)

This shows that H is u-bounded in X.

b} = c¢) is true in general.
c) = a)Givenu € X, we know |Hw| £ Cw for some w € X, w 2 u. This
implies that H is bounded in L*(w) by the Helson-Szegd theorem. Thus
b} in theorem 3.8. holds, showing that H is bounded in X.
The proof for 2-concave lattices is similar using now theorem 3.9 plus the
fact that H bounded in L2(w) & H bounded in L¥{w™1). R

When p > 2, (LP(w))~ = LP/2(w) = L&/ (!~ /D), Call w = wl /2
and write (p/2)' = g. Then T is u-bounded or semi-bounded in L%(w) if and
only if f — w”qT(w'”qf) satisfies the same property in LY. Thus we obtain
a result of Cotlar and Sadosky [6]:

If p » 2, H is bounded in LP{w} if and only if §f = w“ﬁH(w”Pf) is
u-bounded in L? if and only if § is semi-bounded in LY.

Corollary 4.7. Lel H be the Hilbert iransform in & compact, abelian, con-
nected group G and let 1 < p < oo, Ifw € W, (H), then there exists ¢ > 0 such
that w € Wy_(H) and w't® € W,{H).

Proof: We have w € W, & wi=F € We,l<p<oowe W, =>we
Wel<p<g<oo

The first property is proved by duality. Since H* = —H. The second by
proving W, C Wy, by means of the magic formula

(HfY =f*+2H(fHf)

and then using reiteration and interpolation. Now we observe that w € Wy
implies w® € W, for some o > 1 due to the Helson-Szegd theorem. Next we
prove the same thing for w € Wy, p > 2,

The operator Twf = wlfPH(w_”pf) is bounded in L? and theorem 3.6.
gives Vu € L{3v € LY 3 u £ v, [vlly £ 2||u||, and T, is bounded in L*(v)
with norm £ M where ¢ = (p/2) and M depends only on w (not on u}.

The last assertion means that H is bounded in Lz(w%v) le. wrv € Ws.
Therefore vow’s € W, for some a > 1 (depending only on AM}.
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On the other hand w € W,{p > 2} implies w? ~! € W,. Interpolating we get
2 g we g

anwQ(xﬁ‘fpw(p'—l)(l—l?) c le

Taking 6 = | we get

ot

2
v r

D8 _ 304 £ gy,
where ¢ = £(p' —1){1 - 4).

Thus, again by theorem 3.6., T+ is bounded in L?, i.e. w!™ € W, as we
wanted to prove.

If1<p <2, we use duality.

Then, to prove that w € W, = w € W,_, we proceed as follows: for any
1< p < oo H is bounded in L?(w!*®) and also H is bounded in L7 for 7 < p.
By interpolation with change of measure we get that H is bounded in LP~“(w}
for some e > 0. N

This is a proof of w € W, = w IEE W, by complex variable methods.
w € Wy (H) = we W, (H}means that if H is bounded in X = LP(w), then
it is also bounded in X® = LP/*(w) for some o > 1. The same methods yield:

Theorem 4.8. If X 15 e Z-conver latlice on (G,dz) end H is bounded in
X, then there exists o > 1 such that H i3 bounde in X°.

The last application will be to U M. D. lattices. Given a Banach space B, we
consider LY = LE{T) the space of functions f : T — B strongly measurable
and such that = — ||f(z)||s belongs to L2. For functions f € L? ® B, that is,
for finite linear combinations of functions of the type ¢{z)- b(p € L%, b€ B)

the vectorial conjugate operator H = H® id can be defined by

L3 n
B> wiby ] = Hlpj)-b;
j=1 =1

The problem to characterize when H can be extended to a bounded operator
in L} is solved by the following result (Burkholder (4], Bourgain [3]).

Theorem 4.9. For ¢ Banach space B, ithe followsng eonditions are equiva-
lent

a) 15 flley € Cliflloz (VS € L @ B).
b) B is (-comvez, 1.e. I({z,y) real on B x B, conver in cach verichle
2 6(0,0) >0, {(z,y) S Iz + vils, when lleflz £ 12 |lylls-
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The same result is valid for L¥, 1 < p < oo. Thus {-convexity is necessary
and sufficiente for the partial sums

Snf(.l') = z }E(k)e?m'k:

of the Fourier series of f € L%(T) to converge in L 1 < p < oo.

It is natural to think that {-convexity {or U.M.D. as it is alternatively called)
is a sufficient condition to extend to the vectorial case {he basic results of
Fourier Analysis. In particular, for Carleson’s theorem, we get the following
partial answer

Theorem 4.10. Lel B be a Banach lattice over (1, 1) (with weak unit and
Fatou properiy). Suppose thet B is 2-convez or 2-comcave. Then the partial
sums Spf(2) - f(z) a.e. for every f € LY if and only if B 13 (-convez.

Proof: In general for any Banach space the convergence in measure of S, f for
every f € L% implies the boundedness of H in all the L% 's and, consequently,
the C—convemty

Suppose, conversely, that B is {-convex. Comsider X = L% If B is a Banach
lattice on (2, i) we can identify X = LY with a lattice over (T x ,{dz) ® u)
with

190 = [ £ W ds
Then H, which is bounded in X, is defined as H f(z,w) = H(f(-,w)}(z). Like-

wise Sy f(z,w) = Sa(f(-,w))(z). It is enough to prove that the maximal oper-
ator M f(z,w) = sup,, |S-f{#,w)] is bounded in X; because then

j sup ||Snf(z)|% dx S f | sup [Su (2. Y% dz =

T n T n
f (M f(z, Wpde S C f IF () da.
T T

Now if B is 2-convex (resp. 2-concave}, X is alsc 2-convex {resp. 2-concave).
Since M is linearizable, we can use theorem 3.11. It is encugh to prove that

w € W(H) = w ¢ W(M)

where now w are w{z,w)oa T x {L

Given w € W(f?) consider functions f(x,w) = g(z)xp(w) where g is a
trigonometric polynomial with rational coefficients and £ is a measurable sub-
set of £2. Then Hf(z w) = Hg(z) - xg(w} and the inequality HHflle{w)
Cllf 2w is now

|Hg(2)"w(z,w) dz dp(w) £ C* lg(a)["w(z,w) dz dp(w)
JoJ JoJ
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Since this happens for every measurable E, we get

(4.11} ﬂ_ng(r)fzw(J:,w)dxgczfrjg(r)Pw(z,u)dw

p-ae. for every g, and also for all the g we have considered, since they form a
countable collection.

Now if w € £} is such that (4,11} holds for every g, then w{-,w) € 4, with
As constant £ €, Thus

(4.12) sup (I—}_j-lw(:r,w)dr) (%ffw(z,w)_ldz) £C

Hra.e.
We shall see that (4.12) implies w € W{M}. We use the (scalar) result of R.
Hunt and W.S. Young [18] which says

[ s eta)tu@ dz <€) [ ootz de
T T

where C(v) depends only on the 4; constant of v and 5*p(z) = sup, |S.e(z)|
Thus (4.12) implies

1M fllLegwy = /ﬂ ]T IS* () )(2) P, w) do dpw) S
<c /ﬂ fT 1 ,0)F(z,0) dz dpx(w) = | fll 20y B
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THE WORK OF
JOSE LUIS RUBIO DE FRANCIA IiI

The aim of this paper is to review a set of articles ([6], [10], [11], [13], [16],
[25]) of which José Luis Rubio de Francia was author or co-author written
between 1985 and 1887.

I had the luck of being his graduate student arcund this time so that we
collaberated in some of this work. It is hard to say in a few words how was
José Luis Rubio but at least I would like to point out that he influenced my
career in 2 decisive way and that he was one of the nicest persons I have ever
met.

1. Singular integrals with rough kernels:
L theory ([16], [s], [13])

In all these papers a2 common approach in used to study the boundedness of
several singular integrals, based on the following idea: decompose the operator
T as a sum

T:iﬁ

k=—co

in such a way that

(1) “’ﬂf"g < CQ‘“'*F”ng for some a > 0;

if now one of the following inequalities happens

(2) ISl < Cllf N2
(3 1 lps < C)£llpo for some po # 2;

{4) 1T fll 36y < CllFllz2(w) for some weight w,
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interpolation with (1), summing a geometric series and duality give the bound-
edness of Tin L?, 1 < p < 00, in L?, py < p < Py (or ph < p < po) and LE{(w?),
0 < 8 < 1, respectively. Polynomisl growth in k can be allowed in inequalities
{2}, (3) and (4} with the same conclusion.

To get {1) we'll start with a natural descomposition of T as )
cach T} is given by convolution with a measure o;.

o0

j=—oa T; where

If, for example, one can prove

(8) |6,(6)| < € min(|27¢],{27¢|71)* for some a > 0,

then we can construct Ty as follows: choose a function ¥ € C°(R™), supported
in % < [£] < 2 and such that

(6) ST (Pey=1  VE#£0,

j=—co

define §; as

(5;F)(&) = {278}/ (&)
and take

(7) Tk= Z Tij.;k‘

j==ce

Under these circunstances, (1} is easily verified using (5} and Plancherel’s
theorem.

a) The simplest application will consider the singular integral

(®) 75w =pa. [ T 1= vy

where {} is homogeneous of degree zero, its restriction to the unit sphere has
- mean value zero and is in L9857~ for some ¢ > 1. It is well-known that
T is bounded in LF{R"), 1 < p < oo, by using the method of rotations
but the present method offers an alternative approach. Tjf is the integral
restricted to 27 < |y| < 2/*! and o; is the integrable function given by
QY| 7" Xai cwlyl<2i+1} Where A4 stands for the characteristic function of
the set A. The estimation of an oscillatory integral shows that (5) happens for
any a < 1/g'.
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Theorem 1. Let {0;} be a sequence of Borel measures supporied in {z €
R"™: |z| £ 2}, with uniform tolal variation end integral zero such thot

[6;48)] < C|27¢]™ for some & > 0.
Then, Tf =3 0+ f 15 bounded in LP, 1 < p < 00.

Defining T} as above we only need to compute the Hormander constant of
its kernel to show that (2} is verified with constant C{1 + |&|).

As an application, singular integrals of the type {8) are bounded in L?(R"},
1 <« p < oo. If one introduces a bounded radial function in the kermel of
(8), the method of rotations is not applicable but theorem 1 gives again the
L?-boundedness, 1 < p < 0o.

Before modifiying some aspects of this theorem, let us state a new one related
to maximal operators.

Theorem 2. Let {u;} & sequence of positive Borel measures supported in
{z € R": |z| < 27}, with uniform iotel variation such that

l5(€)] < C|2€|™° for some a > 0,

then, Mf(z) = sup; Ju; f(z)| defines a bounded operator in LP(R™), 1 < p <
oo,

To prove this theorem, define g; = u; — i;{0)p; where ¢; = 279%p(277.)
and ¢ is a C°°(R") function, supported in the unit ball and such that $(0) = 1.
Then, the sequence {o,} satisfies the hypotheses of theorem 1 and the same is
true for {e;0;}, where e; = £1 arbitrarily, with constants independent of the
sequence of signs. [t is enough to observe that

9 M) < (D loy < F@)) % + M f(x)

{where M stands for the Hardy-Littlewood maximal function) and apply the-
orem 1 to get the LP-boundedness of the square function (via the uniform
boundedness of }°.¢;0; % f and the usual argument with Rademacher func-
tions).

A consequence of theorem 2 1s the L7-boundedness of the lacunary spherical
maximal function {take u; = normalized Lebesgue measure over the sphere
of radius 27). Obviously one can substitute the sphere by any other compact
surface with enough curvature to ensure the reguired decay condition of the
Fourier transform for the Lebesgue measure carried by it.

b) Given a matrix A whose eigenvalues have nonnegative real part, we can
define the associated group of dilations {§,} by 6,2 = t*z and a “norm” in R®
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such that ||6;z{l = ¢||z||, ¢t > C, (see [26]). If this norm is used in theorcms 1
and 2 instead of the euclidean norm, they are still true. Apart from standard
modifications of operators like (8), this provides other interesting results.

Given a curve I : ¢ — 4{t) in R", two operators are usually associated to it:
the Hilbert transform along I

Hi@ =po. [ fe—~@)T

and the maximal function along T
L
Mrfx) =sup ool [ fe = (o)l
A0 —h

1
Hrf =3, 0;+f where ¢} is the measure of size S over the portion of I where

27 < ¢ < 27*! and Mt is equivalent to sup, |u; « f| where g is the measure
of size 2777 over the same portion of I'. A homogeneous curve is given by

() =tPu, t>0, (&) = (=t)*v, t <.

where w,v € S"7! and the positive and negative parts of y generate the same
subspace of R®. The boundedness of the Hilbert transform and the maximal
function along a homogeneous curve are now a consequence of the estimates
for &; and g, which can be found in [26]. In that paper L?-boundedness for
P # 2 is proved via analytic interpolation which we avoid here. The same result
holds for well-curved curves, see again [26] for the definition and the proof of
the key estimate.

¢) Inequalities like {3) can be used instead of {2). In order to get them one
modifies the choice of 3 above requiring

o0

(10) > P =1, VE#£0

i= oo

instead of {6) so that } . §% = I and Littlewood-Paley type inequalities occur
in both senses {sce [17, chap. V]). The following chain of inequalities can be
written

(1Tefllpo = b D TiStsafllpe < CUO T3 8546V 2Nl <
j i

(11)
< (T 1S540 £ llpe < Cllflper
¥
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provided the {T};} satisfy the following vector-value inequality
IO AT 5 2 lpe < CU 1) -
i i

This inequality is casily obtained from an uniformn weighted inequality

(12) Jmitusc [ima

where A is bounded from L% to L? and ¢ = (%(1)’. For convolution operators
T; with kernel gy, (12 holds with Aw = o*(w) = sup; ||o;| * w).
We can state the following theorem:

Theorem 3. Let {5;} be a sequence of Borel measures in R™ with uniform
total variation, such that

(5) 65(6)] < € min(|27€], |27€]1)° for some & > 0.

If o™ is bounded in LY (R") for some g 2 1, then Tf = 2.;05* f is bounded
in PR, [~ 3] < .

We can avoid the compactness assumption for the support of a; but no new
interesting results come from this generalization. Iis main interest with respect
to theorem 1 lies in the modifications to be given below.

Theorem 2 is also cbtained from theorem 3 by using a bootstraping argument
(again we don’t need to assume that supp p; is compact but then we have to
add [¢;(€) — f;(0)| € C|27¢]™). As before we define ¢; = p; — 4i;(0)p; and
apart from (9) we also have

(13) Y MF+CMY.

This inequality together with theorem 3 and (9) imply: if M is bounded in
L%, 4t 15 also bounded in LP, % —% < a_lg: (te,p> q—i&)

Starting with ¢ = 2 where the result is given by the hypotheses on (£},
any p > 1 is reached after a finite number of steps.

d) Let £ = (£5,£2) € R™ x R* ™™, theorem 3 can be modified in the following
way:
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Theorem 4. If in theorem § we gasume

(14) |6:(6)] € C min(j27&:,127&|71) for some a > 0,
instead of (5), the same conclusion holds.

The same proof works after taking operators §; which act only on the variable
&1

Condition (14) implies 6;(0, &) = 0, V€ € R®*™™ which is usualiy too strong.
It scems better to assumne

15) 9,(61,60) = 6,(0,62)] < CI&A°
5,61 < CIPa |~

But then one has to make some hypothesis on 6;(0, &, ), for example,

(16, |6,(0,€2)] < Cmin([27€2],12762] 7)™
Writting

Fi{&r,&2) = [0;(&, &) — F3(0,£2)p{&)] + F5(0, & )pi(&1)

theorem ¢ is applied twice.

For the maximal operator conditions like {15} are to be assumed on {y;} and
an extra hypothesis on the boundedness of the maximal operator associated to
#;(0,£2). All the technical details can be found in [16].

Now we can prove the boundedness of the Hilbert transform and the maximal
function along a homogeneous curve with A diagenal by induction without using
non-isotropic dilations. If the entries in A are integers, the estimations we need
are also much easier. In addition we get a result for flat curves which is not
given by theorem 1 and 2:

Corollary 5. Let I' = (¢, p(¢)) be a curve in R? such that ¢(0) = ¢'(0) =0,
©"{(t) > 0 and increasing for t > 0, @ odd or even, then Hr and Mr are bounded
in LP(R?), 1 < p < oo.

e) If in the hypotheses of corollary 5 we merely assume ¢"(t) > 0 (i.e. not
necessarily increasing) the conclusion can be false. In [21] the following result
was proved: let T = (,¢(1)) be an even conves curve in R?, then Hr is bounded
in L? if and only if 3C > 1 such that
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(17) $'(Ct) 2 26'(1), VE> 0.

Assuming {17), inequality {14) fails in an angular sector which moves with
7. This sequence of sectors is lacunary so that one can apply Littlewood-Paley
inequalities associated to them as was proved by Nagel, Stein and Wainger [22].
Combining these inequalities with theorem 4, the following is proved in [6]:

Theorem 6. Let I' = (¢,(t}) be a curve in RE, odd or even, ©"(#) > O for
t > 0, satisfying (17). Then, My and Hy are bounded in LP(R?), 1 < p < 0.

Together with the resuli in [21] this theorem implies that for ¢ even, (17} is
necessary and sufficient for the L? boundedness.

In [13], A. Cérdoba and José Luis Rubio de Francia generalized the preceding
theorem to the case where the curve is neither odd nor even. The proof works
when some balance condition between the positive and negative parts of the
curve is assumed. They also proved that the condition is necessary.

Theorem 7. Let [ = (1, ¢{t)) be a curve in R? such that u(0) = /(0 = 0;
|#'(t)] increasing if t > 0 and decreasing if £ < O; 3C > 1 such that |¢'(Ct)] >
210" (#)),Vt # 0 and 3k > 1 st |p(k~1t)| < |p(—t)| < |(kt}] for every ¢ > O
(balance condition). Then Mr and Hy are bounded in LP{R?), 1 < p < co.

f} Inequality (4) is also useful and gives weighted inequalities for singular
integrals with rough kernels. In the chain of inequalities (11}, one can use the
L%*w) norm instead of LP if w € A; and the first and third inequalities still
hold for the Littlewood-Paley theory {see [28]}.

If T is given by (8) with @ € L, T;f < CM§f and the vector valued
inequality also holds in L*{w) (see [17]). Then

Theorem 8. Let T be as in (8) with Q € L°(S™ ). Then, T is bounded
i LP(w), Yw € A,

To pass from L?{w) inequalities to all LP{w), w € A,, one uses the extrapo-
lation theorem of Rubio de Francia ([24]). :

g) For all the singular integrals studied above, including Hilbert transforms
along curves, the maximal operator over the truncated integrals is shown to
be bounded in the same spaces giving the a.e. convergence of the truncated
integrals.

M. Christ used in [8] and (9] methods similar to those developed here, in-
dependently. In fact, theorem 1 is a modification of [16] following his ideas.
In [8], Hilbert transform and maximal functions along homogeneous curves in
nilpotent groups are studied.
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Extensions of the theory to the multiparameter setting with applications to
multiple singular integrals and operators along hypersurfaces are in [14], to
operators which are not necessarily of convolution type in [3] and [5]. Further
results on curves are in 4] {see also Wainger’s lecture in this Proceedings) and
more weighted inequalities appear in [15] and [27].

2. Maximal functions with continuous parameter [25]

Maximal functions were studied in the preceding scction only when they
were controlled by their dyadic version but this is not the general case as the
spherical maximal function shows. Moreover, this is also an example where
the dyadic maximal function is bounded in & range which is larger than the
one for the continuecuns maximal function. In [25], José L. Rubio de Francia
gave a simple proof of the theorem of Stein on the boundedness of ihe spherical

T _» = 3, (see [26] for the original proof).

maximal function for p > )
”—

Theorem 8. Let m be the Fourier transform of @ compactly supportied pos-
itive measure u in R" such that

1
{18) |m ()] < ClE|7° for some a > 3
Then, the mazimal operator

T* f(z) = sup(m )£ (=)

2a+1

. ) R®
is bounded in IP(R"™), p > 7

(Vv stands for the inverse Fourier transform.}
Let us sketch the proof: take a cuiting function o € C*(R") supported in

1
3 < |€] < 2 and also ¢ € C*°(R") supported in |£] < 1, such that

&)+ (278 =1

=0

and consider m; = m (279}, Since the maximal function associated to m ¢
is bounded by the Hardy-Littlewood maximal function, if is enough to prove
that

T} f(z) = fgg(mj(i-)f )¥(z)
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satisfies _
125 filp < C27) £l

for the desired range of p’s. This is achieved in a way similar to the one in the
preceding paragraph, starting with an L?—inequality. In fact, due to the size
hypothesis on m one gets

17} Fll2 < 2798 £,

For p = 1, looking at T as a vector valued singular integral, one car compute
the Hormander constant of the kernel to obtain

I3 fll: < C327 |\ f (o>

Interpolating and summing in j gives the result for p < 2. But for p = oo
the theorem holds trivially and the proof is ended.

When p is the Lebesgue measure over the unit sphere, (18) is satisfied with

and Stein's result is obtained. For other hypersurfaces a theorem of

g =
Greenleaf in [18] is obtained.

Sinee this method is based on a good L?—estimate which is false in n = 2, it
is not applicable to get Bourgain’s result [1].

If m is not the Fourier transform of a measure as before, the L™ estimate
can be false. In [25] there is also a theorem concerning this case.

Theorem 10. Lel s be an integer > g, m € C*TIR™) suck thet
|D* m{£}] < Cle|~° Via| < s+ 1 with ¢ > é

Then, T is bounded in LP{R™) for

2n < <2n—2
n42z—1 P n—2a

n+t1l

{1 on the left if a >

, 00 on the right if a > %)
For p < 2 the proof follows the same way as'in Theorem 9 but now

* ; —a L3
IT5 Fle < G235 Difn Vg > 2.

When p > 2, the theory of vector valued singular integrals is again applied
to get an L™ -BMO estimate:

* 18 T
177 fllamo < Cs2P | fllee VB > 5
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This copstant is smaller than the H' — L! constant so that the range in
Theorem 10 is not symmetric.

Notice that for p < 2, Theorem 9 is better than theorem 10 if a < ®5* and
conversely if & > 221 Since this second theorem applies also in the ﬁrst case
one ust combine both results to obtain the optimal situation when At comes
as the Fourier transform of a measure.

3. Operators related to the method of rotations
and the Radon transform {10]

a) Given an one-dimensional operator $ bounded in LP(R), we can define &
collection of n-dimensional analogues: for any u € §™71,

Suf(z) = S{f(z + -u})(0}).

All these operators are uniformly bounded in LPF{R"). We look for inequali-
ties of the type

(19) (/R (/Sl |Suf(m)|?dn>m dz)”p < ClIfllp-

The left-hand side is called the LP(LY) mixed norm of the family {S.f}.
Inequality (19} is trivial for p = ¢ (hence for p > g} because the order of
integration can be reversed.

When § is the Hilbert transform, Hardy-Littlewood maximal function or
maximal Hilbert transform, inequalities like (19) are used in the method of
rotations for singular integral operators with variable kernel {[2]}:

(20) 7fz) = po. [ Q(I;if')f(r _y)dy

where
sup |8z, Hlzr(s~-1y < +oo for some r > 1.

Taking f = characteristic function of the unit ball, one proves that {19) only
n—p

7 -t

[10] the following is proved

can be true when for the three operators listed above. In

Theorem 11.

(1) When S =M, (18) holdsforl > ntl

n—p
— " whenever p < max{2, ——
{(n—1)p ( 2
(i) When 5 i3 an one- demenswnal operator bounded in L7(w)} for every
weight w € A-(R), then (18) holds in the same range as ().
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In both cases interpolation with the trivial case p = ¢ gives 2 result for

p > max{2, n_—2}-1) which is sharp if n = 2 but leaves an undecided region when

n>3.
The proof of (a) for p = 2 uses an estimate from L* to L*(L%) where L}

2{n —1)

n—-2"

exists # < % such that L5(S"') € L9(5§™"). The estimate is obtained via

is a Sobolev space. By the embedding theorems, for any 4 < there

1 )
the Fourier transform. Forp = %, the X-ray transform and its L? mapping
properties are used. See [10] for details. (b) is ther obtained from {a).

Applying theorem 11 to the method of rotations in {2] we get:

Corollary 12. Lei T be a singuler integral operaior hke {20) and T™ the
mazimal operator of the truncated infegrals. Then, T and T* are bounded in

1
LP(R™) if 1 < p < max(2, “;

foranyr > 1 and if n 2 3, for

)andr)n_lp’. Ifn=2alsofor2 <p< oo

1 2
nt Sp<ooz'fr>2pi1.

This result is sharp in n = 2 but there is probably a better result if n > 3.
A maximal operator related to the Bochner-Riesz multipliers is given by

1
Myf(z) = sup o fR \f(z -yl dy

where for a fixed § > 0, the supremum is taken over all the parallelopipeds
containing the origin and having one side of length r and (n — 1) sides of length
§r, ¥r > 0. The conjecture is

(21) M5 f)la < Cllog 6)*[|f]In

which was proved by Cérdeba [12] for n = 2, the only case where it is known.

If {21} was true, interpolating with the trivial estimate with constant 61"
for p close to 1 would give

(22) M5 fllp < Cllog 8)°6' (i fllp, 1<p<n

As a consequence of theorem 10 {a} we have:

Corollary 13. (22) holds if 1 < p < max(2, #}.

For n = 2 this gives a new proof of Cérdoba’s resuit.
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b} A maximal operator associated to the Radon transform is

1
Rf(x,u) = sup o f |f{z —idMy), z€ R*, veg §*!
>0 <r
<3!ﬁl|13=0

where A is the Lebesgue measure on the hyperplane < y,u >= 0. Remember
that for u € S*~! and ¢t € R, the Radon transform of f in (u,t) is obtained
by integrating f over the hyperplene < z,u >= t (see [23]}. Again one can
constder mixed norm estimates

23) (L“(LMJRﬁauwmQﬁqa)upscwm

and the theorem proved in {10] is:

Theorem 14. Inegquality (23) holds whenever

1 1
1<pe 2t and  => = _(n—1)
7 p
o 1 1,2 1
Ptlop<e and i1s(E-1
n g P n—1
ar

p>2 and g < 00,
n+t1

It is enough to prove the theorem forp =2, ¢ < ccandg=n+1,p >

and interpolate with the trivial case p = ¢. The L?—theory is handled with
the Fourier transform and the mapping properties of the Radon transform are
used in the remainder.

c) Let us include two more results from [10]:

Theorem 15, LetT" be a reclifiable curve in R™ which crosses af most M
times (M > 0 given) every hyperplane sn R™ and uy, ..., uy, N poinis over T
If Hu,,..., Hu, are the Hilbert transforms in these directions, then

/g

v
% S 1,717 ) e < Callfle
=1 '

and
| sup |Hy flliz < Clog N||f]|z.
1<isN

Notice that 5! has the finite crossing property of the theorem so that any
set of N points in R? satisfies those inequalities.

As a consequence we have
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. : 4
Corollary 16. Let uy,...,un as in the preceding theorvem, if 3 <p <4,

1/2 1/2

N N
11
WS IHG AP < Clog M= [ ST 5] ),
i=1

F=1

with C independent of N.

4. Singular integrals with rough kernel:
weak (1,1) estimates [11]

The singular integral (8) and the related maximal operator

(24) M f(z) = sup — ] 905" ) f(z - )| dy
20T Jgl<r

are easily scen to be bounded in LP{R™), 1 < p < oo, by using the method
of rotations. But this method does not apply to obtain a weak (1,1) estimate
because the weak L' —space is not a normed space. The question remained
open for a long time until M. Christ gave in [7] the first proof of the weak
(1,1) estimate for Mg in the two-dimensional case. Subsequently, in a joint
paper with José L. Rubio de Francia [11], they were able to cxtend the result
to all dimensions for Mg and to prove it for n = 2 for the singular integral
(they claim that in this case the proof can be extended to n < 5). S. Hofmann
proved independently the result for the singular integral in [19).

Theorem 17. The mazimal operator My given by (24) is of weak type (1,1)
when n > 2 and 2 € Llog L(S"™!). The singular integral operalor T' given by
(8) 13 of weak type (1,1) whenn =2, Q € Llog L(S') and [ =0,

The proof foliows the usual Calderén-Zygmund argument with just one mod-
ification: after decomposing f = g+5 where b is a sum of functions b; supported
in disjoint dyadic cubes @, and with mean value zerc, one takes away an ex-
ceptional set E formed by dilations of the cubes ; and usually proves that
1Tz (rmy&y < CllBll:- Instead of this inequality, what is used in the above
papers is

(76N 2mm vy < CAlIBIL

where A > 0 is the height at which the Calderén-Zygmund decomposition
has been made. The idea of using this inequality goes back to a paper of C.
Fefferman.

In practice, one takes K;(z) = 277"p(2772)}xz) where 7 is a radial C

function, nonnegative, supported in 3 < |z| £ 4 and identically one on 1 €
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|z} < 2. Then Mof < Csup, f+K;if f > 0anditis enough to prove the weak
{1,1} estimate for sup; f * K.

If b is the “bad function” in the Calderén-Zygmund decomposition of f and
the exceptional set F is constructed by taking the union of the cubes with same
centers as (J; and five times their sides, for a fixed j, b; « K;(z) is different from
zero in some point z ¢ E only if the side of the cube Qi where &; is supported
is less than 27, For each s € 7, denote by B, the sum of the b; for which
the sidelength of @) is 2% then, the key estimate is the following: assuming
Qe L=(S" ") and s > 0,

l sup ¢ * Bisllliaqmny € €272

for some ¢ > 0. By dilation invariance it is enough to prove it for j = 0. ¥
Ka(z) = Ko{—2) we have

1Ko * B3 =< Ko* Kox B_y,B_; >

and it is enough to prove

|Eo * Ko * B_y|loo < CIQUIZ277" A,

The convolution Ko * Ko has better propertics than A alone and this makes
possible the above estimate to hold. When n = 2, Eq + Ky is Holder continuous
outside the origin and this is enough (sec [7]) but for n > 3 this Holder property
does not hold and onc has to go into harder geometric considerations (see [11]).

For the singular integral there is an additional complication coming from the
fact that the key estimate must be now proved for a sum instead of a supremum

IS K # B allfamny € C27 MBI 125

i

The square of the sum presents cross terms which are hard to handle. This
is the reason why the proof works only in low dimensions.
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THE WORK OF
JOSE LUIS RUBIO DE FRANCIA IV

José Luis and I first met at the famous - and hugely enjoyable 1883 El
Escorial conference of which he and Ireneo Peral were the chief organisers, but
we did not really discuss inathematics together until the spring and summer of
1985. There is an old question - formally posed by Stein in the proceedings of
the 1978 Williamstown conference [St] - concerning the dise multiplier and the
Bochner-Riesz means.

For A > 0, let _ i
(TRF)(€) = (1 - 1P /R*)3 (8,
and for & > 0 (small} let

(S*FY(&) = ms(€)f(E)

where m; is a smooth radial bump function associated to the annulus {1 -4 <
€] < 1}. Tt is known, [CIS], [HB], [F], [C61] that in R2, for A > 0, T}
is bounded on L*, and that the L* operator norm of mg is O(log(1/6)'/4).
Thus, according to the “Boundedness Principle” of José Luis, {see the lecture of
Garcia-Cuerva in this volume) there must be L?-weighted inequalities reflecting
these facts. In particular, there is an inequality of the form

[ ssite< [ 1t

with w — & bounded on LZ{R?) with constant Oflog(1/8)'/?). In analogy
with what happens in the one-dimnensicnal case, where the Hardy-Littlewood
maximal function controls things, one would hope that it would be possible to
choose the operator M : w — & to be the Kakeya maximal function of C.
Fefferman and A. Cdrdoba [F), [Cé1]. This, roughly speaking, was what Stein
proposed,

As we know, José Luis had a great interest in both the disc muitiplier opera-
tors and, of course, weighted inequalities. So this was a problem he found very
attractive - and about which he was very optimistic - so much so that he bet
me L5 during the Arcata conference that it would be resolved in the affirmative
by the end of 1988. {He later remarked that I had the better end of the bet - if
he wanted LS he'd have to work for it, whereas I could just sit back and hope
that no - one else was working very hard!}.

What I want o describe here is some of the progress made by José Luis
in the last few years in the direction of this and related problems. One such
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related problem is that of almost-everywhere convergence for Bochner-Riesz
means. That is, do we have, as £ — oo,

TAf(e) - f(z) ae VfEIP(RY), 2<p<2nf(n-1), A>0%

Of course the one dimensional problem is classical, and it was known (see
[C1]) that the answer was affirmative when n = 2 for 2 < p < 4. In higher
dimensions, even the boundedness of T{ on LP{R™), 2 < p < 2n/(n—1) remains
unsolved. Imagine, then, my reaction, while visiting Madrid in March 1987,
when José Luis asked me what I would say were he to tell me that “almost-
everywhere convergence holds in the optimal range of p in all dimensions™.
While my mouth was still open he changed the question - what if he were to
tell me that “almost-everywhere convergence holds in the optimal range of p
in all even dimensions”!. Laughing, I replied that | would say that he was
making a joke with me. But he wasn't making a joke, and it’s the circle of
ideas surrounding this result that I want to relate in this article,

José Luis’ last work is entitled “Transference Principles for Radial Multipli-
ers”, and the resuit he told me about was precisely that, a transference result,
starting out with the (known} result in 2 dimensions, and transferring up 2
dimensions at a time. Of course one is not going to transfer a.c. convergence
properties directly, but some quantitative estimates which imply them. The
standard thing to consider is the maximal operator

T} f(z) = sup ITAF(2)),

but immediately one reslises that the usual method - involving boundedness of
the maximal operator on LF - is not appropriate here because boundedness of
T} is not known. Thus (and this was a typical José Luis idea) one should show
that T2 is well-behaved on a larger space than LP(R™} - and what beiter place
to start than with the mixed-norm spaces LP(L?) - old friends of José Luis? In
this case the index p refers to the radial variable and the 2 refers to the angular
variable - so that LP(L?) is the space of functions for which the norm

s = { [ 1emypasere dr}"P

is finite. (The reader should beware that ||||a,2 here is what José Luis called

[ ll2,p)- Notice that by Holder's inequality, when p > 2 we have LP C LP(L?).
The José Luis philosophy (the “Boundedness Principle”) tells us that to

understand bounded linear operators, we need to understand the weighted L?

*One can also pose the problem for 2n/{n + 1) £ p < 2, but this version has a somewhat
different Ravour.
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inequalities they satisfy. For the case of LP(L?), {(p > 2), these are precisely
the L? incqualities with redial weights; that is, of the form

/ [TF{r8)|*dbu(r)r™~ dr < f |F(r8)[dB(ryr™ dr

with
"{:3" L?”J’(rn— 14r) < C"wllbg’f?]' (rr-1dr)’

From this one can immediately see that if T is both bounded on LP(R") and
rotationally invariant - for example, given by a radial Fourier multiplier - then
it is bounded on LP(L?). For the boundedness of T on L? and the boundedness
principle give a weighted inequality of the form

[mites [isra

with w — & bounded on L(P“)’(R“), and if we now choose w € L(P/Q)‘(R“)

radial and use rotation nvariance of T, we see that @(p-) works just as well as

@, for any p € SO(n). Hence so docs its average @ = W{pz)dp which is
S50(n}

now a radial weight satisfying ||| pieray (n-10ry < Ol pisr2y (rn-rary-

This latter fact (that, {or rotationally invariant linear operators, boundedness
on L7 implies boundedness on LP(L?)) is essentially a particular case of the
result of Herz and Riviére in [HR]. However, it is nice to notice that one
can usc the boundedness principle instead of the usual argument using the
Marcinkiewicz-Zygmund theorem to prove it. (Similar reasoning applies to
show that translation-invariant linear operators which are bounded on
Lr(Tmtnzy or LP(R™*™2) are also bounded on Ly, (L3.,)9)

d.“.z

THE FIRST TRANSFERENCE PRINCIPLE

Let M = [0,00) = C be o bounded function, and define T simulioneously on
R* (for each k€ N) by

(TF)(€) = M(IEDF(g),  €eRE

The First Transference Principle. Let n > 2, and let T be as cbove.
Suppase for given measurable w,& 1 [0,00) — [0,00) and for all continuous f
with compact suppori we have

M L et < [ f@Pagss

Then
/ Tf(z)*w(|z{)dz < / (N2
Rr+2m R=+Im
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for each m € N, and oll suitable f.

The proof is a model of elegance and simplicity. Let T be the action of T on
radial functions in R¥, that is (with F denoting the action of the k-dimensional
Fourier transform on radial functions in R¥ )

Tig(r) = Fo {Frg(IME)3(r).
Lemma. If n > 2, then (1)} holds &
[ FusssatoPatrymian < [ igtr)Fatye-tar
(2) ¢ 0
Yk € N, Vg € C ([0, 00])}.
Proof: A function § € C.(R") has a spherical harmonic development

> Fulle)Pulz)
k=0
with Py a homogeneous harmonic polynomial of degree k satisfiying

[Sn_l [Pe{8)d8 = 1.
Hence }
[Cvretens - [ [ icopssera

3 o
:Zfe ()P (r)r?E " dr.

k>0

By the Hecke-Bochner formula,

Tf(z)y= Z(—1)HIP;((—:C)TR.”;‘}‘;;UZD
k=0
and so

@ [ Eeeeis = 3 [ Mol

£>0

Combining {3) and (4} and “cancelling out the Z signs” completes the
proof. B

The First Transference Principle is now immediate: if the set of inequalities
(2) holds for a given = > 2, it also holds for n + 2m, m € N.

The hypothesis that n be at least 2 is essential: although A_; 5 is a bounded
multiplier on L3(R,w) for even 4; weights, Xj¢<1 is not a multiplier on LR w)
for radial A; weights. In particular, Andersen’s conjecture [A] is false; this had
also been observed by Mockenhaupt [M). On the other hand, as the proof
shows, the theorem works just as well in the Hilbert-space valued setting.
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Corollary 1. If niseven, A>0 and 2 < p £
on LP{L*)(R™).

2n , then T2 is bounded
n—1

Proof: There is a standard mmajorisation
T} f(x) < C{Mf(z) + G*f(=)}
where M is the (harmless} Hardy-Littlewood maximal function and G*, A > 0

is a square function given by a radial multiplier. It is known (see [C1], [C2]3
that G* is bounded on L#(R?) and hence that there is an inequality

[ 16*sta)Putields < [ 1i)Fa(alds
R? R?

where

[ 6o <0 [T wtrrar

By the First Transference Principle, the same inequality holds in all higher
even dimensions, lL.e.

fem js |G* f(r8)Pdbo(r)r™~Tdr < [O fs |F(r8)2dbs(r )™ dr.

Given w and &, define u by u(r) = r "~ 2u(r} and d4(r) = r O V20(r)

so that
/uz(r)r“"}dr = /w?(?')rdﬂr

fﬁz(r)r“"ldr = /r.?)?(r)rdr.

and

Thus, if n is even

/] |G f(r8)|2dfu(ryrin-1¥2n-D/igy
¢ Sn-t

g// |F(r8)2dBi(r)rin-¥2n=D 0 gy
0 Jsn-t

from which it follows that |z)("~D/4GX() . |24 f())z) is bounded on
LY L?)}R"). Moreover |z| 723G - |V/2 f(-))(z) is bounded on L¥}(L?)(R®) =

L}(R") for all n. (This merely says that ][G*f(z)Izdzhﬂ <C / |f|2a‘z/|I| .

for which fact see below). Therefore, by interpolation, G* f(z) is bounded on
L3/ (n=1(L2YR") provided that n is even. M
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* * #*

With his First Transference Principle, José Luis solved the almost-every-
where convergence problem for Bochner-Riesz means in even dimensions by
means of a judicious use of weighied inequalities for radial weights. But what
about odd dimensions? Once one realises that L? boundedness of the maximal
operator is not the right way to proceed, many possibilities arise. In particular,
one only needs to show that T f(z) is finite almost everywhere for all f in L?
- in particular boundedness of T from LP to L*(w) for any positive weight
w would be sufficient. Thus one is led to study L? weighted inequalities for
particular radial weights - for example for radial power weights - as well as
for the general radial weights considered above. Luis Vega had already been
studying L? power weighted inequalities for the Schrédinger operator in his
thesis, and many of his ideas came in useful in the Bochner-Riesz context too.
He, José Luis and I showed in [CR de FV] that G* and T? are indeed finite

almost everywhere for f € LF(R"),2<p < —gﬁ-i, A > 0, all n, by establishing
n—

the following estimate:

Theorem 2. Let A>0and 0<a <1+ 2X < n. Then

A 2 8% z
® /IGf{}lllaSCamf 1f<)||,a

2
(The assertion about L? now follows, because if 2 < p £ n—n-i,' then I? C

L? 4+ L*(dz /33 ) for some 0 < & < 1; notice that this theorem also fills in the
gap left in the proof of Corollary 1}.

José Luis observed that the “essential” part of this result - when 0 < a < 1-
can also be obtained in R™ once it is known in R}, This led him to his Second
Transference Principle.

THE SECOND TRANSFERENCE PRINCIPLE

Suppose M : [0,00} — C satisfies [M{r}{ < 1, and that T is defined simul-
taneously on each R¥ by

(TFY () = MUEHF(E)

The Second Transference Principle., Let T be as above. Suppose that
for some —1 < a < 1 and for all continuous f of compact support we have

f|Tf(z)["'|:c|°’d:c§f |f(2))*|z|"d=.
R R
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Then for each n € N there is a C = C{a,n) such that
/ ITf(z))* || d 50] | £ (@))% d.
R» Rn

As the proof will show, the theorem is also valid in the Hilbert-space valued
setting (with possibly different Hilbert spaces for the domain and range). By
duality is suffices to consider the case o > 0.

Lemma. Let ||€|| = max ||, and with T as above let

(S5(&) = MUESE)-

Under the hypothesis of the Second Transference Principle, we have
[ 1@z <€ [ ifta) el
R= i Al

Proof: The ides is to split R® into cones, on each of which § looks like its
one-dimensional version. Let T; = {£ € R™ | [i¢|]| = {&}. Let (PfY(&) =

X (E)F(€) = F:(€). Then (SAY(E) = MUEDFAE). Since
[ 1Pafialeds < ¢ [ lgfialeas,
it suffices fo show that |
[1ssbieras <c [ipprds.

Let (RfY(¢) = M(|€1|)f(§) By symmetry in the coordinate variables, we
will be done if we can show

[ Rfitadz < ¢ [ 17Pefeds.
But, by hypothesis, for each fixed T = {zs,...,z,}, we have

f Rf(z1,5)[%dz, < [ (22, 5) 2z,

and

/ RS, 8)Plealdas < [ 15, 2Pl don

Multiply the first of these inequalities by )z|® and add the result to the
second; now integrate with respect to Z. Using the fact that for « > 0, |z;[* +
|£]® = |z|* completes the proof. @
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Proof of the Second Transference Principle: By Plancherel’s Theorem, what
we are trying to show is that M(|¢]} is a pointwise multiplier for the space

afz(Rn) = {g| / lDoﬂg(ﬁ)Fdw < oo}, where
Rﬂ

Digiz) = ( [ lota ti)2 o(2)” f;—T )’

It is quite apparent that LZ{R™) is invariant under bilipschitzian changes of
variables provided # < 1: just think about changing variables in the formula
for DA, Hence the space of pointwise multipliers of L (R“} is also invariant
under a bilipschitzian change of variables, if # < 1. Fmally, since by the lemma
M - ) is & multiplier of Lo,fzv 80 18 M(||A§||} = M([£]) where A is the
bilipschitzian function on R™ defined by A& = £|¢[/ - W

The samc example as before shows that the Second Transference Principle
does not extend to general A; weights. José Luis noted that the proof of this
principle is really just a simple adaptation of old ideas of Hirschman, [Hi};
nevertheless, it was José Luis' own notien that such a general statement would

hold.

Let us now see an application of the Second Principle to José Luis” “arbitrary
intervals” Littlewood-Paley operator.

Theorem 3. Let {I;} be a sequence of disjoint intervals in [0,00), and lel

;= {€ € R™ | [€l € I}, Let (A;£)(€) = Xa; (E)f(€). Then for0 < o < 1,

we have

/[ S 2 <o [P

(The result concerning the square function G alluded to above is essentially
a consequence of this theorem).

Procf: By the Sccond Transference Principle, it is enough to establish the
inequality when n = 1. By duality, what we need is equivalent to

f I3 AP lelde < Ca 3 / lg; Plz|"da,
J F]

and by Plancherel’s theorem this is equivalent to

D21 Xa i} lg < Ca Y 1D/ h5115,
; J
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with D? defined as above. In fact,

|2 (Ko )€ + ) = (Ko, i)l
(03 Xa, R} = [ = o

7} |71

< TP, (€N A UlE + € & 0rn € 45))

¥

<Y (DM Xa hy)Y(E)
J
since the [; are mutually disjoint. Hence we want to show that

STID 2 Xa, hills < Ca Y 1D

¥ }

We cancel out the Z signs, and appeal to the standard result {Hirschman)
that f I C R is an interval and (S; f) () = X;({)f({), then

or <o, [ o
(6) [ sis@r s <c. [ @i

|z

for 0 € o < 1, with C, independent of J. B

(The proof given here is differcnt from the one José Luis gave in (R de F2J;
in fact it is more reminiscent of the ideas contained in {CR de FV]).

Any radial multiplier operator whose one-dimensional version is controlled
by the arbitrary intervals square function will now automatically be bounded
on L}(R", |z|®dz) for —1 < o < 1. This applies in particular to multipliers
such that

; 12
sup sup ( | (t:) — m(t;_;)|2) < 00
1

KEZ 2h=tp <., t; =28 +!

- see [CoR de FS§].

* * *

The reader may notice a ceriain historical anomaly in the above (chronclog-
ical) account. In order to prove Corellary 1, José Luis needed Theorem 2 to
finish off the argument. What had happened, of course, was that José Luis
was thinking in terms of the scalar-valued operator T} where instead of (5)
one would only need {8). “Vectorialising” {8) leads to (5) and to the result for
T?. What had escaped José Luis’ notice was that Theorem 2 already implied
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almost everywhere convergence in ell dimensions! Had the realised this from
the outstart we might ncver have had the beautiful Transference Principles to
behold today. i

* * *

The influence of José Luis will be with us for a long time to come. His
understanding of vector-valued inequalities, weights and Littlewood-Paley the-
ory was profound, his ability to apply this understanding to concrete operators
such as the disec multiplier and singular integrals along curves astounding. Even
within the relatively narrow field covered by this lecture, he has inspired and
continues to inspire much work. We now wish to give a few examples of recent
developments:

1} Weighted inequalities for the disc multiplier. Recenily, G. Mock-
enhaupt proved the following theorem:

Theorem {M]. Let w be an cven non-negative measurable function on R

which salisfies
1/2

w(t) € Az(R)

1- Rt
14+ Rt

uniformly in R > 0. Then

j T8 f (=) Pu(lzl)dz < C. f |F(2) (2] )da.

Mockenhaupt also indicates that there are explicit weighted inequalities for

. 2
the disc multiplier which lead to its boundedness on L?{L?), % <p<
n
2n
n—1' ]
and a positive resolution of the aforementioned question of Stein for radial
weights have recently been obtained by Carbery, Romera and Soria.

(a result rediscovered in [C62]). A restricted weak type endpoint resuit

2) Localisation for the disc multipliers. While the conjecture that
THf(z) — f(z) ae. as R — oo for f € LP(R™) 2 £ p < 2n/(q_1) still seems
very far away from being solved, nevertheless a localisation principle has been
established: i f as above is zero on an open set 2 in R™, then TS f(z) — 0 a.e.
on {}. This result, in [CS], uses very heavily the ideas of [CR de FV] and [R
de F2).

3) Results for the maximal disc multiplier acting on radial func-
tions. In this connection, we refer only to the work of Prestini [P), Kanjin [K],
Romera and Soria [RS], and Crespi [Cr].

[ would also hke to recall two problems, explicity posed by Joseé Luis, which
arc closely related to the material of this lecture,
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Problem 1. Is the First Transference Principle valid for transfercnce
through all dimensions, not just even ones? José Luis said: “I believe that
transference of a weighted L? estimate (with a radial weight) from a given
dimension 2 2 to any higher dimension must hold; this would be a very satis-
factory improvement ..., but the method of proof should be quite different”. In
particular, a positive solution to this problem would also solve:

Problem 1{a). Establish whether the maximal Bochner Riesz operator is
bounded in L**/(*~1}(1?) for A > 0 in all dimensions.

The second problem José Luis mentioned a number of times. (See [R de F1]
and [R de F2]}.

Problem 2. Let G{f)*(z) = Z |A;f|*{z) be the arbitrary intervals square
function on R. Is it true that

[ 6P <C / |F(2) (=)
R i 8

for all A; weights w? It holds in the equally spaced and lacunary cases - “ex-
treme cases”; the theorem above with weights |z[*, ~1 < o £ 0 was regarded
by José Luis as fairly strong evidence that it is true for general A, weights.

To conclude, I would hike to mention one further corollary to the “arbitrary
intervals” Theorem 3.

Corollary 4. If0 < Ry < ... < Rj — oo, then for all f € LP(R™), 2<p <
2n

n—1'

we have
lim ]Ig flz) - ’-I?c- JE) -0
j—oo ? =

almost everywhere,

1/2 1/2

The proof is a triviality: (Z |Tg}_f - ng_lflg) / = (Z |Aj-f]2) / and
IPC L2y Lz(dl‘llxla ), {8 < o < 1). Nevertheless, this result, for me, captures
the spirit of José Luis, his ability to use his remarkably powerful imagination
with great elegance to bring deceptively simple abstract ideas to bear on gen-
uine problems in concrete analysis. His sense of direction was unerring: all the
tools and technigues which he helped to develop, and in some cases pioneer -
vector-vatued inequalities, weights, mixed norms, the Boundedness Principle,
Littlewood-Paley theory - play some role here. With a certain sad and ironic
symmetry, this last result about almost everywhere convergence for Fouricr in-
tegrals brought him back to the very same problems he began his mathemnatical
career with such a short time ago,
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