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UNIQUE CONTINUATION
FOR SCHRODINGER OPERATORS WITH
POTENTIAL IN MORREY SPACES

ALBERTO RUIZ aND LU1s VEGA

0. Introduction

Let us consider in a domain @ of R™ solutions of the differential inequality
(1) |Au(z)] < V{z)lu(z}], = €,

where V is a non smooth, positive potential.

We are interested in global unique continuation properties. That means that
u must be identically zero on € if it vanishes on an open subset of £

There is an extensive literature on the matter, mainly to relax the local
integrability condition required to the potential V. When L} classes are con-
sidered, p > n/% is a necessary and sufficient condition for the strong unique
continuation property [JK] {see [K] for references). In this paper we shall con-
sider some spaces introduced by Morrey [M], which have been recently used by
C. Fefferman and D.H. Phong [FP] ir studing the eigenvalues of Schrodinger
operators; these spaces contain L}:’!:‘

We say that V € FP, L, , with A = 2p — n In classical notation [P}, if
Vi, = swpi@P/ ([ (vP)le < oo
o

where the sup is taken over all cubes in R”™ and [}] = Volume of ¢}. Notice
FrC Frifp>g.

In this paper we prove that any solution of {1) has the global unique contin-
uation property if V € F}, and p > (n — 2}/2.

Very recently T. Wolf has obtained the same result with 2 different approach.
We would like to thank C. Kenig for telling us about T. Wolf's result.

This improves the previously knowr resnlis where p > (n—;lz (see [CS) and
[ChR]}.

The point to obtain this improvement is that in the above works the Carleman
estimate is seen as a consequence of a uniform Sobolev inequality (see [KRS)).

2) lellzzqvy < CUVIIre I(A + 238/ 82 + blul| 2w -,
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where C is independent of the linear perturbation of the Laplacian. Neverthe-
less, we prove directly the Carleman estimate

(3) lle™ ull oz vy < ClIVIpelle™ AullLzv-1y,

where C is independent of T for 7 in (75,0}

As we shall see while (2) is based on the restriction theorem for the Fourier
Transform on the (n— 1} —dimensional sphere, together with classical theory of
weights, cur proof follows from a detailed analysis of the multiplier associated
to {3} which just involves the restriction theorem in dimension n-2. Therefore
the assumption in p comes from the restriction operator in the sphere. We think
that this is just & technical obstruction and the restriction theorem should be
true for p > 1. Notice that we are close in the case n = 4. We also remark that
F} _ contains the so called Kato-Stummel class which B. Simen has conjectured

is enough to assure unique continuation (see [S]).

2
o

In the sequel we denote by Hi (51} the classical Sobolev space, and

Avgf = (1/Q)) [Q 7.

We define the local Morrey class as the functions W such that

[IW I} = suplimsup lix gey. ()W )|lre < oo
yeER r—=Q

The main theorem is:

Theorem 1. Let u € H}, (Q),n 2 3, be o solution of (1), then there ezists
an g > 0, only depending en p and n, such that of V € F_1|V|rr < €,p >
{n — 2)/2. and v venishes in an open subdomain of 2, then u must be zero
everywhere in 1.

The proof is related to a restriction theoremn for the Fourier Transform, ob-
tained in [CS] and [ChR], for which we are going to give an casy proof. Let
us define, for this purpose, the Morrey classes; we say that V is in FOP if

¥ lllap = sup r*(Avpa,n VF)P < o,
rz

where the sup is taken on all the balls contained in . This notation corresponds
to £7*F in [P), 1 € @ < nfp. Also F?? = FP.

Theorem 2. Lef do be the uniform measure on the unit sphere S*~% in
R", and (do)A ils Fourier iransform, let V € F®P p > (n — 1}/2( — 1), and
consider the operaior

Tf(z) = (do)" * f(2).
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Then there exists ¢ constant C such that
1T/ 2wy SCNV opllfl 22w -2y
for any f in C§°.

It would be interesting to understand how this theorem is related to the
one in [V] for mixed norm introduced by Rubio de Francia in the study of
Bochner-Riesz operators [R].

1. The Carleman estimate

It is standard to obtain Theorem 1 as a consequence of the following Carle-
man estimate. This reduction can be seen in the case of L? weighted estimates

in [C8] or [ChR].

Theorem (1.1). There ezists a constant C' > 0 such thet for V in FP,
P> (n—2}/2, the inequality

(1.1) le™*xllzzvy < ClIV || Felle™ " Au| L2gv-1y,
holds for every uw in Cf° and 7 in R.

Proof: We can reduce to the case r = 1 in the following way:
Take f{z) = e """ u(z), then (1.1} reduces to

(1.2) 1 fllezevy = VI I1PAD)fll 2y -1y,

where P,{D) has symbol P.(£) = [¢]* — 72 + iré,,.
The change of variable f{r~'z} = g{z) reduces (1.2) to

lglezv,y < CUVelles 1P (D)l a2y
where V. {z) = V (£), since [|[V;|lr» < 72| VHFs.
Consider the inverse operator given by the Fourier multiplier
1

(T)" (&) = T{{jgn(f)-

Our theorem reduces to prove that T : LV 1) — L} (V) for Vin F¥ p >

(n—2)/2.

We are going to use a decomposition of 7' in the phase space. Consider first

PE)™ = (p(€) + oa(8) + @a( NP (E) ! = st(f),
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where ; is in C§%, 1 = 1,2; supp o1 C {|§] < 1/2},p1 =1 in {|£] < 1/4};
supp w3 C {|£] > 2},s =1 in {|¢| > 3}.

The Fourier multiplier corresponding to m; has a kernel rapidly decreasing
and hence satisfies the inequality. For mj just observe that it behaves like {€|72
and by known results, see [FeP), satisfies the inequality for V in FP withp > 1.

We may decompose m; as a finite sum of operators the worst of which is
given by the multiplier

(&) = (&) 1(I€)* — 1)¥2(),

with € = (€1, én-1), supp ¥ C [~1,1], supp % C [~1/4,1/4],4) € C§°.
Now we may write

M) = > (6,

=1

for m;(£) = ms(€) = ;{3 (mé_—l) g (%ﬁ) ,6 = 277 with appropiate a;
with 671 < |a;| <267, W

Hence we may reduce our inequality to the study of the operator Kj given by
a Fourier multiplier which has L® norm as § ! and is supported in the “torus”
I€] — 1 < 28,|8,] < 6. It is enough to prove:

Lemma, For 0 < § < 1/2 and Ts defined by

(Ts)™&) = m(&HFNE),

where . :

the following tnequalities hold:

ooy 1f2 1/2
) (/ ITafle) < Co|log 8|1V fjes (] |f|*v-‘)  po = (n—2)/2.

(i)
1/2 1/2
Umﬂ?v) < C8 || V]ips (f |f|2V—‘) L with 0 < < 1—(n—2)/2p.

Proof: Let us call K(z) = m”(x) and consider {3;} a smooth partition of
unity

1= 4, supp ; C (27,2 =12,
j=0
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Define I} f = K;* f, where K;{z) = 3;(|2'|)K(z}and z = (¢/,z,) € R*"" ! xR.
We shall obtain a good estimate for K; which will allow us to sum in j.

On one hand observe that a straightforward calculation gives |m {8 =
[(K;YM€)] < Cmin{276,1} and, as a consequence,

(1.3) ( / IT}fI")m < Cmin{296,1) ( / |f|2)m.

On the other hand for any natural number m there exists a constant C,,
such that

(1.4) K i(2)| € Crn22730 D121 4 Sz, )™ (1 + 629)™™.
Consider first the case 0 < j <14 [logl/$l. For k € Z we define
Kjn(x) = Ki(2) - (s 1351 {Zn)-

Then _
[Kja(z)] S Cné 27900 D2 (1 4 k)

Finally we can make in R" a grid with paralellepipeds {Q,} such that the
dimension of (, are 2/ x ... x 2 x6~,

Call f. = f-xq,. Then
/|Kjk + fl'w = flKjk x Y folfw
<Cy / |Kji * fol*w
<C (Siipl?.p w) Z 1555 * £l 2 oo @e vy

where @} is a paraleliepiped with the same center as @, and side ten times
bigger than the sides of Q,. By (1.4} and Young's inequality

< Crb*27H=D(1 4 k)2 (stip /Q-, w) Z (f Ihl))2

2
< Cpr§12770 D1 4 Ry 2 (Supf w) /m?w-‘
¥

Now observe that if w = VP and V € FP then

sup / w < O8IV, .
I Q"p
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Thus,

(f |K; = fizw,,)l” < csoin—a/zgy e (/ |flzv—po)

Interpolation with {1.3) gives

1/2

1/2 1/2
(flK_,—*ﬂzV) < C8||V || peo (.[U!?V_l) ,f0<7 <1+ logl/é).
In the case § > 1+[log 1/6], let us define K as K;(2)xs2i (k+1)2){Zn), with

k ¢ Z. Now for j fixed we consider in R" a grid of cubes of side 27. Repeating
the above process we obtain

142
([ sv)
1/2
< sy, ( [ipyre)

Again interpolation with (1.3) gives for j 2 1+ [log 1/4]

( [ *f|%’)m < 2|V ]lpro ( Juev)

Adding up in j we prove {1).

1/2

In order to prove {ii) we proceed as follows:

Define K;{z}) = ¥;(8)z(}K(z}, with ¢; as above 7 = 0,1, ... and the support
of K; C B{(0,2?¥'671). Then fix j and construct a grid of cubes {Q,} os side
2i§~t Then it is enough to prove the estimate for f, = f- xq,-

Take VE FPand (n—2)/2 =ps < p< oo, let uscall w = V2iPo then

142 1/2 1/2
(frat)" ([ mre) " = (Jmsrer)” oo

w, = wxg.,; then w, € F?* and

wollmeo < CYV|[BIPo(29 67120 -2/70) and then by (i)

t/2 _ 12
(/'ijd?w) < Cb|log 6|(235—1)i(l—p/po)HV"}fppo (/1fvl2w_l) ‘

But also

1/2 1/2 2
(fmse)” <c([1nr) " ma vy inerpaasion ([ 1,57 )

1/2
< Céz—p/pe|30g5|pa!p2-2j(1—pufp)"V"FF (/ lfy|2V_l> :

and (ii) is proved, W
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2. The Restriction theorem

We give the proof of thecrem 2. Let us remak again that this theorem is
contained in [CS] and [ChR], but the simplicity of our proof justifies to write
it here.

Proof of theorem 2: It is known that
K(z) = (do)™z) = 2] ™2V Ty o s {I2]),

where J, designs the Bessel function of order A, Then decompose

K(z) =Y K,(z) with

j=0
Ki{z) = (do) =W {|z]), 7 =1,2,..., supp ¢; C [2/7%,27%]);
Ko(z) = (do)Ma)b(|z]), supp ¥ C [-1,1).
The classical P. Tomas, estimate for the Fourier Transform of K;(z) gives us

the boundedness of T; = K;* from L? to L? with norm 27.

We can repeat the argument in the proof of theorem 1 and obtain, for w = VP,

Ty« L*(w™") — L%(w) with norm bounded by 277"~/ (sup[ w)
Qe v

where @, is a cube in the grid in R™ of side 27. Since ¥V € F? we obtain
1Tilz2ga-1)=p2w € CHETPT DAV

Interpolation gives

n=l42rl 3
F

. I—a
ITillesqv-1y~ragvy S C27) 7 |[V]laps

the sum is convergent if p > 2(’;—__115

It is an open question if the above operator send LXH{V ™!} to L}(V) for V in
F®P p < (n—1)/2. The answer to this question would be the corner stone to
extend unique continuation properties to potential in F? for p < (n — 2)/2.
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