SUPERSOLUTIONS AND STABILIZATION OF THE SOLUTIONS OF THE EQUATION $\frac{\partial u}{\partial t} - \operatorname{div}(|\nabla u|^{p-2} \nabla u) = h(x, u)$, PART II

A. EL HACHIMI AND F. DE THELIN

Abstract .

In this paper we consider a nonlinear parabolic equation of the following type:

$$(\mathcal{P}) \qquad \qquad \frac{\partial u}{\partial t} - \operatorname{div}(|\nabla u|^{p-2} \nabla u) = h(x, u)$$

with Dirichlet boundary conditions and initial data in the case when 1 .

We construct supersolutions of (\mathcal{P}) , and by use of them, we prove that, for $t_n \to +\infty$, the solution of (\mathcal{P}) converges to some solution of the elliptic equation associated with (\mathcal{P}) .

0. Introduction

This is the second part of a work concerning the existence and asymptotic behaviour of bounded non negative solutions of the following problem:

(0.1)
$$\mathcal{P}(\Omega) \begin{cases} \frac{\partial u}{\partial t} - \Delta_{p} u - h(x, u) = 0 \text{ in } \Omega \times \mathbb{R}_{+} \\ u(x, t) = 0 \text{ in } \partial \Omega \times \mathbb{R}_{+} \\ u(x, 0) = u_{0}(x) \text{ in } \Omega \end{cases}$$

where $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2} \nabla u)$, $1 and <math>\Omega$ is a regular open subset of \mathbb{R}^N , $N \ge 1$.

These problems arise from nonnewtonian fluid mechanics for $1 ([3]), and from glaciology for <math>p = \frac{N+1}{N}$ ([2]). In the first part ([5]), we were concerned with the case p > 2 and have proved that if $\mathcal{P}(\Omega)$ admits a uniform supersolution with spatially bounded support which is independent on T, then the orbits are compacts and any w in the ω -limit set:

$$\omega(u_0) = \left\{ w \in W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega) \middle| \exists t_n \longrightarrow +\infty : u(\cdot, t_n) \longrightarrow w \text{ in } W_0^{1,p}(\Omega) \right\}$$

is a solution of the elliptic problem associated with $\mathcal{P}(\Omega)$. Here, we study the case 1 and obtain similar results in the case when

$$\frac{2N}{N+2}$$

In addition, we give in this paper the justification of the formal derivation of the regularized equation associated with (0.1), by means of finite dimensional problems. That was not done in [5]. We also show the following regularizing effect:

$$|\nabla u|^{\frac{p-2}{2}} \frac{\partial}{\partial t} \nabla u \in L^2(t_0, +\infty; L^2(\Omega)).$$

Existence and regularity results can be found in Tsutsumi [18], Nakao [13], Diaz and Herrero [3]. Stabilization results are obtained by Otani [15] for the one dimensional case and by Langlais and Phillips [8] for a problem closely related to $\mathcal{P}(\Omega)$ and including the case p = 2. But they do not prove the compacity of the orbits. All our results for p > 2 were however extended to the case of a system by Elouardi and de Thelin [6] when Ω is bounded.

As in [5] our technique is based upon a comparaison principle and the construction of supersolutions. Some proofs already made in [5] are omited here. So we refer the reader [5] for completeness.

In the first section of this paper we give some preliminaries and state the main results. The proofs are given in section 2 and section 3 is devoted to the justification of the formal derivation.

1. Preliminaries and main results

1.1. Preliminaries. In all this paper Ω stands for a regular open subset of \mathbb{R}^N and may be unbounded. Let h be an application from \mathbb{R}^{N+1} to \mathbb{R} such that:

(1.1)
$$h \in \mathcal{C}(\overline{\Omega} \times \mathbb{R}) \text{ and } h(x,0) \ge 0 \text{ for any } x \in \Omega$$

and, for any M > 0, there exists $K_M > 0$ such that:

$$(1.2) h(x,u) - h(x,v) \le K_M(u-v) \quad \forall x \in \Omega, \ \forall u,v: 0 \le v \le u \le M.$$

Note that (1.2) is satisfied if for some $\lambda > 0$, $h - \lambda I$ is nonincreasing.

First we recall some notations and definitions used in [5]:

For T > 0,

$$Q_T = \Omega \times [0,T], S_T = \partial \Omega \times [0,T]$$

and for R > 0

$$\Omega_R = \overline{\Omega} \cap B(0, R).$$

$$F(\nabla u) = |\nabla u|^{p-2} \nabla u \text{ with } : 1
$$\Delta_p u = \operatorname{div}(F(\nabla u)).$$$$

Let u be given in $L^{\infty}(0,T; W^{1,p}(\Omega))$; we say that $u \ge 0$ in S_T [resp. u = 0 in S_T] iff

$$(-u)_+$$
 [resp. u] $\in L^{\infty}(0,T; W_0^{1,p} \cap L^{\infty}(\Omega)).$

Let u_0 be given such that:

(1.3)
$$u_0 \in W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$$

we say that u is a solution of $\mathcal{P}(\Omega)$ in Q_T [resp. \hat{u} is a supersolution of $\mathcal{P}(\Omega)$ in Q_T] iff:

(1.4)
$$u[\operatorname{resp.} \hat{u}] \in L^{\infty}(0,T; W^{1,p}(\Omega) \cap L^{\infty}(\Omega))$$

(1.5)
$$\frac{\partial u}{\partial t} \left[\text{resp. } \frac{\partial \hat{u}}{\partial t} \right] \in L^2(Q_T)$$

(1.6)
$$Au \equiv \frac{\partial u}{\partial t} - \Delta_p u - h(x, u) = 0 \text{ in } Q_T \text{ [resp. } A\hat{u} \ge 0 \text{ in } Q_T \text{]}$$

(in the distribution sense)

(1.7)
$$u = 0 \text{ [resp. } \hat{u} \ge 0 \text{] in } S_T$$

(1.8)
$$u(.,0) = u_0 [\text{resp. } \hat{u}(.,0) \ge u_0] \text{ in } \Omega.$$

We say that $u \in L^{\infty}(Q_T)$ [resp. $\hat{u} \in L^{\infty}(\Omega)$] has a spatially bounded support in Q_T [resp. has a bounded support in Ω] iff there exists R > 0 such that:

Supp
$$u \subset \overline{\Omega}_R \times [0, T]$$
 (resp. Supp $u \subset \overline{\Omega}_R$).

Let \hat{u} be a supersolution of $\mathcal{P}(\Omega)$ in Q_T for any T > 0. We say that \hat{u} is a uniform supersolution with spatially bounded support iff there exists $R_2 > 0$ and M > 0 both independent on T such that:

Supp
$$\hat{u} \subset \Omega_{R_2} \times \mathbb{R}_+$$

 $\|\hat{u}\|_{L^{\infty}(Q_T)} = M(T) \leq M.$

Supersolutions are very useful in our problem owing to the following comparison principle.

Theorem 0. [5] Suppose that f satisfies (1.1) and (1.2), that u_0 and \hat{u}_0 satisfy (1.3) and that u and \hat{u} satisfy (1.4) and (1.5). If

$$u(.,0) = u_0 \le \hat{u}_0 = \hat{u}(.,0) \text{ in } \Omega$$

$$u \le \hat{u} \text{ in } S_T$$

$$Au \le A\hat{u} \text{ in } \Omega \text{ (in the distribution sense).}$$

Then $u \leq \hat{u}$ in Q_T .

1.2. Main results. First we give some sufficient conditions for existence of supersolutions of $\mathcal{P}(\Omega)$.

Theorem 1. Let 1 be given.

If $u_0 \in W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$ has a bounded support and if there exists $\lambda > 0, \mu \ge 0, \sigma > 0, R_0 > 0$ and $\gamma_0, \gamma \in]0, p-1[$ such that:

(i) For any $x \in \overline{\Omega}_{R_0}$ and any $u \in \mathbb{R}_+$: $f(x, u) \leq \mu + \lambda u^{\gamma_0}$.

(ii) For any $x \in \Omega$, $|x| > R_0$ and for any $u \in \mathbb{R}_+$, $f(x, u) \leq -\sigma u^{\gamma}$.

Then $\mathcal{P}(\Omega)$ has a nonnegative uniform supersolution with spatially bounded support.

Theorem 2. (Existence) Let 1 , <math>T > 0 and $u_0 \in W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$, $u_0 \geq 0$ be given. Suppose that h satisfies (1.1) and (1.2) and that $\mathcal{P}(\Omega)$ admits a nonnegative supersolution \hat{u} with spatially bounded support in Q_T . Then $\mathcal{P}(\Omega)$ has a unique solution u in Q_T satisfying:

$$0 \leq u \leq \hat{u}$$
 in Q_T .

Remark 1. Theorem 2 extends some of Nakao's results [12] when Ω is unbounded and generalizes Diaz-Herrero's results [3] in the case when h may be nonmonotone.

When $h(x, u) = |u|^{\gamma-1}u$, by use of Theorem 1, we can find again Tsutsumi's results [18].

Corollary. (Semi-group property) If the hypothesis of Theorem 2 are satisfied, $\mathcal{P}(\Omega)$ generates a continuous semi-group on $L^2(\Omega)$.

Theorem 3. (Regularizing effects) Let $1 , <math>u_0 \in W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$ be given.

Suppose that h satisfies (1.1) and (1.2) and that $\mathcal{P}(\Omega)$ has a nonnegative uniform supersolution \hat{u} with spatially bounded support. Then for any $t_0 \in]0, 1[$, the solution u of $\mathcal{P}(\Omega)$ satisfies the following regularity estimates:

(1.9)
$$\frac{\partial u}{\partial t} \in L^2\left(t_0, +\infty; L^2(\Omega)\right) \cap L^{\infty}\left(t_0, +\infty; L^2(\Omega)\right)$$

(1.10)
$$|\nabla u|^{\frac{p-2}{2}} \frac{\partial}{\partial t} \nabla u \in L^2\left(t_0, +\infty; L^2(\Omega)\right)$$

and for any p such that

(1.11)
$$\frac{2N}{N+2}$$

there exists some $\sigma: 0 < \sigma < 1$ such that

(1.12)
$$u \in L^{\infty}\left(t_0, +\infty; B^{1+\sigma,p}_{\infty}(\Omega)\right)$$

where $B^{1+\sigma,p}_{\infty}(\Omega)$ is a Besov space [16] defined by the real interpolation method.

Let u be the solution of $\mathcal{P}(\Omega)$, we define the ω -limit set by:

$$\omega(u_0) = \left\{ w \in W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega) | \exists t_n \to \infty : u(.,t_n) \to w \text{ in } W_0^{1,p}(\Omega) \right\}.$$

Let \mathcal{E} be the set of nonnegative solutions w of the elliptic problem:

$$\begin{cases} -\Delta_p w = h(x, w) \text{ in } \Omega\\ w = 0 \text{ in } \partial \Omega. \end{cases}$$

Our main result is the following:

Theorem 4. (Stabilization) Let $\frac{2N}{N+2} , <math>u_0 \in W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$, $u_0 \ge 0$ be given. Suppose that h satisfies (1.1) and (1.2) and that $\mathcal{P}(\Omega)$ has a nonnegative uniform supersolutions \hat{u} with spatially bounded support. Then $\omega(u_0) \neq \phi$ and $\omega(u_0) \subset \mathcal{E}$.

Remark 2. In some cases [4], [10], [11] \mathcal{E} contains at least one nontrivial element w; if in addition we can construct some subsolution $\underline{u} \neq 0$, $\underline{u} \geq 0$ of $\mathcal{P}(\Omega)$ (see [5, corollary of Theorem 4 for sufficient conditions]), then $\omega(u_0) = \{w\}$ and $\lim u(.,t) = w$.

1.3. Examples. Theorems 2, 3 and 4 apply to the following examples:

1) Ω is a nonnecessarily bounded set and

$$h(x,u) = g(x)(1+u^2)^{\frac{1}{2}}$$

where $0 < \gamma < p - 1$ and $g \in \mathcal{C}(\overline{\Omega})$ satisfies:

 $g(x) \leq -\sigma < 0$ for any $x \in \Omega$, $|x| > R_0 > 0$.

(Apply Theorem 1).

Ì

2) Ω is a bounded set and

$$h(x,u) = g(x) |u|^{\gamma - 1} u$$

where $\gamma \geq 1$, $(\gamma + 1)(N - p) < Np$, $g \in C(\overline{\Omega})$, $||g||_{L^{\infty}} = \sigma$ and $u_0 \leq w, w \in W_0^{1,p}(\Omega)$ being a nontrivial solution of the equation [17]

$$-\Delta_p w = \sigma |w|^{\gamma-1} w \text{ in } \Omega.$$

3) Ω is a bounded set and $h \in C(\overline{\Omega} \times \mathbb{R})$ is any function such that h(x,0) = 0, $u \to h(x,u)$ is a non increasing function and $h(x,u) \le 0$ for $u \ge M > 0$.

4) Ω is a bounded set, $0 \le u_0 \le 1$, $a \in \mathcal{C}(\overline{\Omega})$ satisfies $0 \le a(x) \le 1$ and

$$h(x,u) = u(1-u)(u-a(x)).$$

2. Proofs of the main results

2.1. Sketch of the proof of Theorem 1: Let $M_0 = ||u_0||_{L^{\infty}(\Omega)}$, let R'_0 be such that supp $u_0 \subset \overline{\Omega}_{R'_0}$ and $R = \max(R_0, R'_0)$. Define \hat{u} by $\hat{u}(x, t) = \varphi(r)$ where r = |x| and:

$$\varphi(r) = \begin{cases} ar^{p} + b \text{ for } 0 \leq r \leq R \\ \alpha r + \beta \text{ for } R < r \leq R_{1} \\ K(R_{2} - r)^{m} \text{ for } R_{1} < r \leq R_{2} \\ 0 \text{ for } r > R_{2} \end{cases}$$

with $m = \frac{p}{p-1-\gamma} > 1$.

As in [5] straithforward considerations enable us to choose the constants $a, b, \alpha, \beta, K, R_1, R_2$ so that \hat{u} be a uniform supersolutions of $P(\Omega)$ in Q_T is for any T > 0. Whence Theorem 1 is proved.

2.2. Proof of Theorem 2: Let T > 0 be given and consider R > 0 such that

Supp
$$\hat{u} \subset \overline{\Omega}_R \times [0, T]$$
.

Let ω and ω' be bounded regular open sets such that:

$$\Omega \cap \overline{\Omega}_R \subset \omega' \subset \Omega \cap \overline{\omega}' \subset \omega \subset \Omega.$$

Note $q_T = \omega \times [0, T]$ and $S_T = \partial \omega \times [0, T]$.

It is well known (see for instance [8]) that there exists a sequence $h_{\epsilon} \in C^1(\overline{\Omega} \times \mathbb{R}_+)$ such that:

$$\begin{cases} h_{\epsilon} \searrow h \text{ uniformly as } \epsilon \to 0, \text{ and for any } \epsilon > 0\\ \frac{\partial h_{\epsilon}}{\partial u}(x, u) \le K_{M(T)}, h_{\epsilon}(x, 0) \ge 0\\ h_{\epsilon}(x, u) = 0 \text{ if } u \ge 3m(T) \end{cases}$$

on the other hand, let $(u_{0^{\epsilon}}) \subset \mathcal{D}(\omega)$, $0 \leq u_{0^{\epsilon}} \leq M(T)$, be such that $u_{0^{\epsilon}} \to u_{0}$ in $W_{0}^{1,2}(\omega)$.

From [7, pp. 457–459], for each $\varepsilon > 0$, there is a unique classical solution $u_{\varepsilon} \in C(\overline{q}_T) \cap C^{2,1}(q_T)$ of:

$$\left(\begin{array}{c} A_{\varepsilon}u_{\varepsilon} \equiv \frac{\partial u_{\varepsilon}}{\partial t} - \Delta_{p}^{\varepsilon}u_{\varepsilon} - h_{\varepsilon}(x, u_{\varepsilon}) = 0 \text{ in } Q_{T} \end{array}\right)$$

$$(2.1)$$

$$P_{\varepsilon}(\omega) \begin{cases} u_{\varepsilon}(x,t) = 0 \text{ in } s_{T} \\ u_{\varepsilon}(x,0) = u_{0^{\varepsilon}}(x) \text{ in } \omega \end{cases}$$

$$(2.2)$$

$$(2.3)$$

where $\Delta_p^{\epsilon} u_{\epsilon} = \operatorname{div} F_{\epsilon}(\nabla u_{\epsilon}), F_{\epsilon}(\nabla u_{\epsilon}) = (|\nabla u_{\epsilon}|^2 + \epsilon)^{\frac{p-2}{2}} \nabla u_{\epsilon}.$

Remark 3. Hereafter C(M(T)) stands for any constant which depends only on M(T). In the case when $\mathcal{P}(\Omega)$ has a nonnegative uniform supersolution, C(M(T)) does not depend on T.

We have the following:

Lemma 1. There exists C(M(T)) such that for any $\varepsilon \in]0, 1[$.

$$\|u_{\varepsilon}\|_{L^{\infty}(q_T)} \leq C(M(T))$$

(2.5)
$$\|u_{\varepsilon}\|_{L^{\infty}(0,T;W_{0}^{1,p}(\omega))} \leq C(M(T))$$

(2.6)
$$\left\|\frac{\partial u_{\varepsilon}}{\partial t}\right\|_{L^{2}(q_{T})} \leq C(M(T)).$$

Proof: 0 and 3M(T) are respectively subsolutions and supersolutions of $\mathcal{P}_{\varepsilon}(\omega)$; hence by Theorem 0, we have:

 $0 \le u_{\varepsilon} \le 3M(T)$ in q_T whence (2.4).

By the properties of h_{ε} we have that $h_{\varepsilon}(., u_{\varepsilon})$ is bounded in q_T . This implies that H_{ε} defined by $H_{\varepsilon}(x, u) = \int_0^u h_{\varepsilon}(x, v) \, dv$ satisfies $|H_{\varepsilon}(., u_{\varepsilon})| \leq C(M(T))$

whence:

$$\int_{q_{\tau}} h_{\varepsilon}(x, u_{\varepsilon}) \frac{\partial u_{\varepsilon}}{\partial t} dx = \int_{\omega} [H_{\varepsilon}(., u_{\varepsilon}(., \tau)) - H_{\varepsilon}(., 0))] dx \le C(M(T)),$$

$$\forall \tau : 0 < \tau < T.$$

Multiplying (2.1) by $\frac{\partial u_{\epsilon}}{\partial t}$ and integrating on q_{τ} we get:

$$\int_{q_{\tau}} \left(\frac{\partial u_{\varepsilon}}{\partial t}\right)^2 dx \, dt + \frac{1}{p} \int_{\omega} \left(|\nabla u_{\varepsilon}(.,\tau)|^2 + \varepsilon\right)^{p/2} dx$$
$$\leq \frac{1}{p} \int_{\omega} \left(|\nabla u_{\varepsilon}(.,0)|^2 + \varepsilon\right)^{p/2} dx + C(M(T)).$$

By Hölder inequality, $u_{\varepsilon}(.,0)$ converging to u(.,0) we get

$$\int_{\omega} \left(|\nabla u_{\varepsilon}(.,0)|^2 + \varepsilon \right)^{p/2} dx \le C(M(T))$$

whence (2.5) and (2.6) hold.

Lemma 2. $\mathcal{P}(\omega)$ has a unique solution u satisfying:

$$0 \leq u \leq \hat{u}$$
 in q_T .

Moreover u_{ϵ} converges strongly to u in $L^{p}(0,T;W^{1,p}(\omega))$.

Proof: By (2.4), (2.5), (2.6), there is a subsequence denoted again by u_{ϵ} which converges to u in weak $*L^{\infty}(0,T; W_0^{1,p}(\omega) \cap L^{\infty}(\omega))$ and in weak $L^p(0,T; W_0^{1,p}(\omega))$ such that $\frac{\partial u_{\epsilon}}{\partial t}$ converges to $\frac{\partial u}{\partial t}$ in weak $L^2(q_T)$ and $\Delta_p^{\epsilon} u_{\epsilon}$ converges to χ in $L^{p^*}(0,T; W^{-1,p^*}(\omega))$.

Moreover, multiplying (2.1) by u_{ε} , we have:

(2.7)
$$E_{\epsilon} \equiv \int_{q_T} \left(|\nabla u_{\epsilon}|^2 + \epsilon \right)^{\frac{p-2}{2}} |\nabla u_{\epsilon}|^2 dx dt$$
$$= \int_{q_T} u_{\epsilon} h_{\epsilon}(., u_{\epsilon}) dx dt + \frac{1}{2} \int_{\omega} u_{\epsilon}^2(., 0) dx - \frac{1}{2} \int_{\omega} u_{\epsilon}^2(., T) dx$$

 $u_{\varepsilon}h_{\varepsilon}$ being bounded, the same argument that [9, p. 160] shows that $u_{\varepsilon}(.,T)$ converges to u(.,T) in weak $L^{2}(\omega)$ and therefore:

(2.8)
$$\limsup_{\epsilon \to 0} - \int_{\omega} u_{\epsilon}^2(.,T) \leq - \int_{\omega} u^2(.,T).$$

Moreover, by lemma 1, u_{ϵ} is bounded in the space:

$$W = \left\{ v \in L^p(0,T;W_0^{1,p}(\omega)); \frac{\partial v}{\partial t} \in L^p(q_T) \right\}$$

and by [9, p. 58], u_{ε} converges to u in strong $L^{p}(q_{T})$. By (2.7), (2.8) and the use of the dominated convergence theorem we obtain:

$$\limsup_{\varepsilon \to 0} E_{\varepsilon} \leq \int_{q_T} uh(.,u) dx dt + \frac{1}{2} \int_{\omega} u_0^2 dx - \frac{1}{2} \int_{\omega} u^2(.,T) dx = \int_0^T \langle -\chi, u \rangle.$$

By standard monotonicity argument [9, p. 160], $\chi = \Delta_p u$; so u is a solution of $\mathcal{P}(\omega)$ satisfying $0 \le u \le \hat{u}$ and we have:

(2.9)
$$\limsup_{\varepsilon \to 0} E_{\varepsilon} \leq \int_{q_T} |\nabla u|^p dx \, dt.$$

Now, for any m > 0, we define:

$$q_{T,m} = \left\{ (x,t) \in q_T : |
abla u_arepsilon(x,t)|^2 \geq rac{arepsilon}{m}
ight\}$$

we get:

$$\int_{q_{T,m}} |\nabla u_{\varepsilon}|^p dx \, dt \leq (1+m)^{\frac{2-p}{2}} \int_{q_{T,m}} \left(|\nabla u_{\varepsilon}|^2 + \varepsilon \right)^{\frac{p-2}{2}} |\nabla u_{\varepsilon}|^2 dx \, dt$$

whence:

$$\int_{q_T} |\nabla u_\varepsilon|^p dx \, dt \leq \left(\frac{\varepsilon}{m}\right)^p \, \max \, (q_T) + (1+m)^{\frac{2-p}{2}} E_\varepsilon$$

with (2.9), we therefore obtain for any m > 0:

$$\limsup_{\varepsilon \to 0} \int_{q_T} |\nabla u_\varepsilon|^p dx \, dt \le (1+m)^{\frac{2-p}{2}} \int_{q_T} |\nabla u|^p dx \, dt$$

whence

(2.10)
$$\limsup_{\epsilon \to 0} \|\nabla u_{\epsilon}\|_{x}^{p} \leq \|\nabla u\|_{x}^{p}$$

where $X = L^p(0, T; W_0^{1,p}(\omega))$ is an uniformly convex space. So (2.10) and weak convergence of u_{ε} to u imply strong convergence of u_{ε} to u in X.

End of proof of Theorem 2: The supersolution \hat{u} vanishes in $(\omega \setminus \overline{\Omega}_R) \times [0, T]$ and, by lemma 2, u has the same property; so we can extend u by 0 out of ω and we get a unique solution of $\mathcal{P}(\Omega)$ notes also by u and satisfying:

$$0 \leq u \leq \hat{u}$$
 in q_T .

Proof of Theorem 3: Straightforward calculations give:

$$\begin{split} &\frac{\partial}{\partial t}F_{\epsilon}(\nabla u_{\varepsilon}) = \\ &\left(|\nabla u_{\varepsilon}|^{2} + \varepsilon\right)^{\frac{p-2}{2}}\frac{\partial}{\partial t}\nabla u_{\varepsilon} + (p-2)\left(|\nabla u_{\varepsilon}|^{2} + \varepsilon\right)^{\frac{p-4}{2}}\left(\nabla u_{\varepsilon} \cdot \frac{\partial}{\partial t}\nabla u_{\varepsilon}\right)\nabla u_{\varepsilon} \end{split}$$

whence:

$$(2.11) \quad \frac{\partial}{\partial t} F_{\varepsilon}(\nabla u_{\varepsilon}) \cdot \frac{\partial}{\partial t} \nabla u_{\varepsilon} = \left(|\nabla u_{\varepsilon}|^{2} + \varepsilon \right)^{\frac{p-2}{2}} \left| \frac{\partial}{\partial t} \nabla u_{\varepsilon} \right|^{2} + (p-2) \left(|\nabla u_{\varepsilon}|^{2} + \varepsilon \right)^{\frac{p-4}{2}} \left(\nabla u_{\varepsilon} \cdot \frac{\partial}{\partial t} \nabla u_{\varepsilon} \right)^{2} \ge (p-1) \left(|\nabla u_{\varepsilon}|^{2} + \varepsilon \right)^{\frac{p-2}{2}} \left| \frac{\partial}{\partial t} \nabla u_{\varepsilon} \right|^{2}$$

On the other hand, by formal derivation of (2.1) we get:

(2.12)
$$\frac{\partial^2 u_{\varepsilon}}{\partial t^2} - \operatorname{div} \frac{\partial}{\partial t} F_{\varepsilon}(\nabla u_{\varepsilon}) = \frac{\partial}{\partial t} h_{\varepsilon}(x, u_{\varepsilon}).$$

Multiplying (2.12) by $\frac{\partial u_t}{\partial t}$ and integrating, we get with (2.11):

$$(2.13) \quad \frac{1}{2} \frac{\partial}{\partial t} \left\| \frac{\partial u_{\epsilon}}{\partial t} (.,t) \right\|_{L^{2}(\omega)}^{2} + (p-1) \int_{\omega} \left(|\nabla u_{\epsilon}|^{2} + \epsilon \right)^{\frac{p-2}{2}} \left| \frac{\partial}{\partial t} \nabla u_{\epsilon} \right|^{2} dx$$
$$\leq K \int_{\omega} \left(\frac{\partial u_{\epsilon}}{\partial t} \right)^{2} dx$$

Furthermore by (2.6), there exists $t_{\epsilon} \in]0, t_0[$ such that:

$$\left\|\frac{\partial u_{\varepsilon}}{\partial t}(.,t_{\varepsilon})\right\|_{L^{2}(\omega)}^{2} = \frac{1}{t_{0}}\int_{0}^{t_{0}}\left\|\frac{\partial u_{\varepsilon}}{\partial t}(.,t)\right\|_{L^{2}(\omega)}^{2}dt \leq C \leq +\infty.$$

Integrating (2.13) on $[t_{\epsilon}, T]$ we get with (2.6) and remark 3:

$$(2.14) \quad \frac{1}{2} \left\| \frac{\partial u_{\varepsilon}}{\partial t}(.,T) \right\|_{L^{2}(\omega)}^{2} + (p-1) \int_{t_{0}}^{T} \int_{\omega} \left(|\nabla u_{\varepsilon}|^{2} + \varepsilon \right)^{\frac{p-2}{2}} \left| \frac{\partial}{\partial t} \nabla u_{\varepsilon} \right|^{2} dx \, dt \\ \leq K \int_{t_{\varepsilon}}^{T} \int_{\omega} \left(\frac{\partial u_{\varepsilon}}{\partial t} \right)^{2} dx \, dt + \frac{1}{2} \left\| \frac{\partial u_{\varepsilon}}{\partial t}(.,t_{\varepsilon}) \right\|_{L^{2}(\omega)}^{2} \leq C < +\infty.$$

From lemma 2 we deduce that

(2.15)
$$\nabla u_{\varepsilon} \longrightarrow \nabla u \text{ a.e. on } q_{T}$$

By (2.14) we obtain for any T > 0

(2.16)
$$\left\|\frac{\partial u_{\varepsilon}}{\partial t}(.,T)\right\|_{L^{2}(\omega)} \leq C < +\infty$$

and

(2.17)
$$\left\| |\nabla u_{\varepsilon}|^{\frac{p-2}{2}} \frac{\partial}{\partial t} \nabla u_{\varepsilon} \right\|_{L^{2}([t_{0},T]\times\omega)} \leq C < +\infty$$

From (2.16) we get:

$$\left\|\frac{\partial u}{\partial t}(.,T)\right\|_{L^{2}(\omega)} \leq C < +\infty \text{ for any } T \geq t_{0}.$$

ï

Thus by (2.6) and remark 3 we get:

(2.18)
$$\frac{\partial u}{\partial t} \in L^{\infty}(t_0, +\infty; L^2(\omega)) \cap L^2(t_0, +\infty; L^2(\omega))$$

Furthermore by (2.15) and (2.17) we have:

$$\left\| \left| \nabla u \right|^{\frac{p-2}{2}} \frac{\partial}{\partial t} \nabla u \right\|_{L^2([t_0,T] \times \omega)} \le C < +\infty \text{ for any } T > 0$$

Therefore

(2.19)
$$|\nabla u|^{\frac{p-2}{2}} \frac{\partial}{\partial t} \nabla u \in L^2(t_0, +\infty; L^2(\omega)).$$

Thus (1.9) and (1.10) hold respectively by (2.18) and (2.19), because u vanishes on $(\Omega \setminus \overline{\omega}) \times \mathbb{R}_+$.

On the other hand, by (1.11) there is some σ' , $0 < \sigma' < 1$, such that

$$L^2(\Omega) \hookrightarrow W^{-\sigma',p^*}(\Omega).$$

Simon's regularity results [17] concerning the equation:

$$-\Delta_p u = h(x, u) - \frac{\partial u}{\partial t} \in L^{\infty}(t_0, +\infty; B_{\infty}^{-\sigma', p^*}(\Omega))$$

then give for any t:

$$\|u(.,t)\|_{B^{1+(1-\sigma')(1-p)^2,p}(\Omega)} \leq C \left\|h(.,u) - \frac{\partial u}{\partial t}(.,t)\right\|_{B^{-\sigma',p^*}_{\infty}} + C'$$

where C and C' do not depend on t; whence (1.12) holds. \blacksquare

Remark 4. The compactness of the embedding

$$B^{1+(1-\sigma')(1-p)^2,p}_{\infty}(\Omega) \subset \mathcal{W}^{1,p}(\Omega)$$

ensures the compactness of the orbit

$$\omega(u_0) = \{ w \in w_0^{1,p}(\Omega) \cap L^{\infty}(\Omega) / \exists t_n \to \infty : u(.,t_n) \to w \text{ in } W_0^{1,p}(\Omega) \}.$$

Proof of Theorem 4 and its corollary:

a) $\omega(u_0) \neq \phi$ because supp $u \subset \omega \times \mathbb{R}_+$ and $B^{1+\sigma,p}_{\infty}(\omega)$ is compactly imbedded in $W^{1,p}(\omega)$.

b) Let $\omega = \lim_{n \to \infty} u(., t_n) \in \omega(u_0)$, we get $w \in \mathcal{E}$.

The proof of this, as well as the proof of corollary is the same as in [5] and is omited.

3. Justification of the formal proof in section 2

Let (w_j) be a basis of $W_0^{1,p}(\Omega)$ consisting of $C_0^{\infty}(\Omega)$ -functions. For $\varepsilon > 0$ given, we seek a sequence of functions u_m such that

$$u_m = \sum_{j=1}^m g_{jm}(t) w_j$$
 and $u_m \longrightarrow u_\epsilon$ in $W_0^{1,p}(\Omega)$.

The $g_{jm}(t)$ being solutions of the following system of ordinary differential equations:

(3.1) (3.1)
$$(S) \begin{cases} (u'_m(t), w_j) + a_{\varepsilon}(u_m(t), w_j) = (h_{\varepsilon}(., u_m(t)), w_j), \ 1 \le j \le m \\ u_m(0) = u_{0m}. \end{cases}$$

where: (.,.) is the canonical inner product in $L^2(\Omega)$

$$u_{0m} = \sum_{j=1}^m \alpha_{jm} w_j \longrightarrow u_{0\epsilon} \text{ in } W_0^{1,p}(\Omega)$$

and $a_{\varepsilon}(u,v) = \int_{\Omega} F_{\varepsilon}(\nabla u) \cdot \nabla v \, dx$ for any $u, v \in W_0^{1,p}(\Omega)$.

We shall use the following notations:

* For $q \in \mathbb{N}, \xi = (\xi_1, \dots, \xi_q)$ and $\eta = (\eta_1, \dots, \eta_q)$ in \mathbb{R}^q

$$\xi \cdot \eta = \sum_{j=1}^{q} \xi_j \eta_j$$

and $|\xi| = \left(\sum_{j=1}^{q} |\xi_j|^2\right)^{1/2}$

* For any matrix $\mathcal{U}=(a_{ij})$ in $\mathcal{M}(m,N)$

$$\|\mathcal{U}\| = \left(\sum_{i=1}^{m} \sum_{j=1}^{N} (a_{ij})^2\right)^{1/2}$$

* $G_m(t) = (g_{1m}(t), \dots, g_{mm}(t))$ for any $t \in [0, T]$.

* For any $x \in \Omega$:

$$w(x) = (w_1(x), \dots, w_m(x))$$
 and $W(x)$ is the matrix $: W(x) = \left(\frac{\partial w_j}{\partial x_i}\right)_{\substack{1 \le j \le m \\ 1 \le i \le N}}$

- * B is the Gram matrix of the system (w_1, \ldots, w_m) .
- * For any $\xi \in \mathbb{R}^m$

$$egin{aligned} &arphi_j(\xi)=\int_\Omega F_{m{e}}(W(x)\xi).
abla w_j(x)\,dx, & 1\leq j\leq m \end{aligned}$$
 and $&arphi=(arphi_1,\ldots,arphi_m), \cr &\Psi_j(\xi)=\int_\Omega h_{m{e}}(x,w(x).\xi)w_j(x)\,dx \end{aligned}$ and $&\Psi=(\Psi_1,\ldots,\Psi_m). \end{aligned}$

With these relations we have

$$u_m(x,t) = w(x).G_m(t)$$
 and
 $\nabla u_m(x,t) = W(x).G_m(t).$

Now, we go back to (S). Since B is inversible, we can write (S) in the form:

$$(S') \left\{ egin{array}{l} rac{dG_m}{dt} = \phi(G_m(t)) \ G_m(0) = lpha_m \end{array}
ight.$$

where $\phi(\xi) = B^{-1}[\Psi(\xi) - \varphi(\xi)]$ for any $\xi \in \mathbb{R}^n$ and $\alpha_m = (\alpha_{1m}, \dots, \alpha_{mm})$.

We shall prove that (S') admits a unique solution G_m in $\mathcal{C}^2(0,T;\mathbb{R}^m)$. We begin by the following:

Lemma 3. Suppose that the hypothesis (1.1), (1.2) and (1.3) are satisfied and that Ω bounded.

Then (S') admits a unique solution on]0, T[.

Proof: Let $F_j(x,\xi) = (|W(x)\xi|^2 + \epsilon)^{\frac{p-2}{2}} W(x)\xi \cdot \nabla w_j(x)$ and $\hat{h}_{\epsilon}(x,\xi) = h_{\epsilon}(x,w(x),\xi)$ for any $x \in \Omega$ and $\xi \in \mathbb{R}^m$.

 F_j and \hat{h}_e are locally lipschitz with respect to ξ . Thus ϕ satisfies the same property. This ensures the existence of G_m on an interval $]0, t_m[$. The estimates that follows enable us to have in fact $t_m = T$. Multiply (3.1) by $g_{jm}(t)$; after adding from j = 1 to j = m, we get:

(3.3)
$$\frac{1}{2} \frac{d}{dt} \left(\|u_m(t)\|_{L^2(\Omega)}^2 \right) + \int_{\Omega} \left(|\nabla u_m|^2 + \epsilon \right)^{\frac{p-2}{2}} |\nabla u_m(t)|^2 dx \\ = \int_{\Omega} h_e(., u_m) . u_m \, dx.$$

Since $h_{\epsilon}(x, u) \leq Ku_{\epsilon} + C_0$, where $C_0 = \sup_{x \in \Omega} h_{\epsilon}(x, 0)$, the left hand side of (3.3) is bounded by

$$\left(K+rac{1}{2}
ight)\|u_m(t)\|_{L^2(\Omega)}+rac{1}{2}C_0 ext{ meas }(\Omega).$$

Whence, by Gronwall's lemma, we get:

(3.4)
$$||u_m||_{L^{\infty}(0,T;L^2(\Omega))} \leq C(M(T)).$$

On the other hand, multiplying (3.1) by g'_{jm} and adding from j = 1 to j = m, we get:

$$(3.5) \quad \int_0^T \left\| u_m'(t) \right\|_{L^2(\Omega)}^2 dt + \frac{1}{p} \int_\Omega \left(|\nabla u_m(T)|^2 + \varepsilon \right)^{p/2} dx \le \frac{1}{p} \int_\Omega \left(|\nabla u_m(0)|^2 + \varepsilon \right)^{p/2} dx + \int_\Omega [H_\varepsilon(x, u_m(T)) - H_\varepsilon(x, u_m(0))] dx \le C(M_1)$$

where $H_\varepsilon(x, u) = \int_0^u h_\varepsilon(x, v) dv$.

Whence we obtain the estimate:

(3.6)
$$\|u'_m\|_{L^2(0,T;L^2(\Omega))} \leq C(M).$$

From (3.5) and (3.6) we deduce:

$$u_m \in \mathcal{C}(0,T; \mathbb{R}^m).$$

Therefore, by classical theory of ordinary differential equations, see for example [1], we get $t_m = T$.

0.1

Ĺ

Now we have the main result of this section:

Theorem 5.

$$G_m \in \mathbb{C}^2(0,T;\mathbb{R}^m).$$

Proof: By classical theory of ordinary differential equations it suffices to show that $\phi \in C^1(\mathbb{R}^m, \mathbb{R}^m)$.

For any $x \in \Omega$, we have:

$$F_j(x,.) \in \mathcal{C}^1(\mathbb{R}^m, \mathbb{R})$$

and $\frac{\partial F_j}{\partial \xi_h}(x,\xi) = (|W(x)\xi|^2 + \varepsilon)^{\frac{p-2}{2}} \nabla w_h \cdot \nabla w_j + (p-2).$

(3.7)
$$(|W(x)\xi|^2 + \varepsilon)^{\frac{p-4}{2}} \left(\sum_k \xi_k \nabla w_k \cdot \nabla w_h\right) \left(\sum_k \xi_k \nabla w_k \cdot \nabla w_j\right).$$

It's straithforward that $|\nabla w_j| \leq ||W(x)||$ for any $j: 1 \leq j \leq m$; therefore using Cauchy-Schwarz inequality we get:

$$\begin{aligned} (3.8) \\ \left| \frac{\partial F_j}{\partial \xi_h} \right| &\leq (|W(x)\xi|^2 + \varepsilon)^{\frac{p-2}{2}} \|W(x)\|^2 + (2-p)(|W(x)\xi|^2 + \varepsilon)^{\frac{p-4}{2}} \|W(x)\xi\|^2 \|W(x)\|^2 \\ &\leq \varepsilon^{\frac{p-2}{2}} \|W(x)\|^2 + (2-p)\varepsilon^{\frac{p-4}{2}} |\xi|^2 \|W(x)\|^4. \end{aligned}$$

From (3.8) and Lebesgue's theorem, we obtain:

$$rac{\partial F_j}{\partial \xi_h}(.,\xi)\in L^1(\Omega) ext{ for any } h:1\leq h\leq m ext{ and any } \xi\in \mathbb{R}.$$

By the same way we get that $\frac{\partial \varphi_j}{\partial \xi_h}$ exists and is continuous on \mathbb{R}^m whence:

(3.9)
$$\varphi \in \mathcal{C}^1(\mathbb{R}^m, \mathbb{R}^m)$$

On the other hand let $h_{\varepsilon}^{j}(x,\xi) = h_{\varepsilon}(x,w(x).\xi)w_{j}(x)$, we have:

$$\Psi_j(\xi) = \int_{\Omega} h^i_{\epsilon}(x,\xi) \, dx$$

and $h^j_{\epsilon}(x,.) \in \mathcal{C}^1(\mathbb{R}^m,\mathbb{R})$ for any $x \in \Omega$.

Furthermore:

$$\left|\frac{\partial h_{\epsilon}^{j}}{\partial \xi_{h}}(x,\xi)\right| = \left|\frac{\partial h_{\epsilon}}{\partial u}(x,w(x).\xi).w_{h}(x)w_{j}(x)\right| \leq K|w_{h}(x)||w_{j}(x)|.$$

Thus: $\frac{\partial h_{\varepsilon}^{j}}{\partial \xi_{h}}(.,\xi) \in L^{1}(\Omega)$ for any $h, j: 1 \leq h, j \leq m$ and any $\xi \in \mathbb{R}^{m}$.

Once again, by Lebesgue's continuity and derivability theorems, we obtain:

$$(3.10) \qquad \qquad \Psi \in \mathcal{C}^1(\mathbb{R}^m, \mathbb{R}^m).$$

By (3.9) and (3.10), we get $\phi \in \mathcal{C}^1(\mathbb{R}^m, \mathbb{R}^m)$. The proof of theorem 5 is now complete. \blacksquare

References

- 1. CARTAN, H., "Calcul différentiel," Hermann, 1967.
- DIAZ, J.I., "Nonlinear partial differential equations and free boundaries," Pitman, London, 1985.
- DIAZ, J.I. AND HERRERO, M.A., Estimates on the support of the solutions of some nonlinear elliptic and parabolic problems, *Proc. R. Soc. Edinb.* 89 A (1981), 249-258.
- DIAZ, J.I. AND SAA, J.E., Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C.R. Acad. Sc. Paris 305 (1987), 521-524.
- 5. EL HACHIMI, A. AND DE THELIN, F., Supersolutions and stabilization of the solutions of the equation: $\frac{\partial u}{\partial t} \operatorname{div}(|\nabla u|^{p-2} \nabla u) = f(x, u)$., Nonlinear Analysis T.M.A. 12, 12 (1988), 1385-1398.

- ELOUARDI, H. AND DE THELIN, F., Supersolutions and stabilization of the solution of a nonlinear parabolic system, *Publicacions Matemàtiques* 33, Barcelona (1989), 369-381.
- 7. LADYZENSKAYA, O., SOLONNIKOV, V.A. AND OURALTSEVA, N.N., "Equations paraboliques linéaires et quasilinéaires," Moscou, 1968.
- LANGLAIS, M. AND PHILLIPS, D., Stabilization of solutions on nonlinear and degenerate evolution equations, *Nonlinear Analysis T.M.A.* 9 (1985), 321-333.
- 9. LIONS, J.-L., "Quelques méthodes de résolution de problèmes aux limites non-linéaires," Dunod, Paris, 1969.
- 10. NABANA, E. AND DE THELIN, F., Unicité de la solution radiale positive de l'equation quasilinéaire $\Delta_p u + f(u, |x|) = 0$, C.R. Acad. Sc. Paris 397, série I (1988), 763-766.
- 11. NABANA, E., "Sur l'unicité de la solution positive d'une équation elliptique quasilinéaire," Thèse, Toulouse, 1989.
- 12. NAKAO, M., On the existence of bounded solutions for nonlinear evolution equation of parabolic type, *Math. Rep.* 11, 1, Kyushu Univ. (1977), 3-14.
- 13. NAKAO, M., On some regularizing and decay estimates for nonlinear diffusion equations, Nonlinear Analysis T.M.A. 7 (1983), 1455-1461.
- NAKAO, M., Existence and decay of global solutions of some nonlinear degenerate parabolic equations, Journal of Funct. Anal. and Appl. 109, 1 (1985), 118-129.
- OTANI, M., On certain second order ordinary differential equations associated with Sobolev-Poincaré type inequalities, *Nonlinear Analysis T.M.A.* 8 (1984), 1255–1270.
- 16. SIMON, J., Regularité de la solution d'un problème aux limites non linéaire, Annales Fac. Sc. Toulouse 3, Sér. 5 (1981), 247-274.
- 17. DE THELIN, F., Quelques résultats d'existence et de non existence pour une E.D.P. elliptique non linéaire, C.R. Acad. Sc. Paris 259(1984), 911-914.
- TSUTSUMI, M., Existence and nonexistence of global solutions of nonlinear parabolic equations, *Publi. R.I.M.S. Kyoto Univ.* 8 (1972), 211-229.
 - A. El Hachimi: Département de Mathématiques Faculté des Sciences
 B.P. 20, El Jadida MAROC
 F. de Thelin: Laboratoire d'Analyse Numérique Université Paul Sabatier
 118, route de Narbonne
 - 118, route de Narbonné 31062 Toulouse Cedex FRANCE

Rebut el 2 d'Abril de 1990