SUPERSOLUTIONS AND STABILIZATION OF THE SOLUTIONS OF THE EQUATION $\frac{\partial u}{\partial t}-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=h(x, u)$, PART II

a. El Hachimi and F. de Thelin

Abstract
In this paper we consider a nonlinear parabolic equation of the following type:

$$
\begin{equation*}
\frac{\partial u}{\partial t}-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=h(x, u) \tag{P}
\end{equation*}
$$

with Dirichlet boundary conditions and initial data in the case when $1<$ $p<2$.

We construct supersolutions of (\mathcal{P}), and by use of them, we prove that, for $t_{n} \rightarrow+\infty$, the solution of (\mathcal{P}) converges to some solution of the elliptic equation associated with (\mathcal{P}).

0 . Introduction

This is the second part of a work concerning the existence and asymptotic behaviour of bounded non negative solutions of the following problem:

$$
\mathcal{P}(\Omega)\left\{\begin{array}{l}
\frac{\partial u}{\partial t}-\Delta_{p} u-h(x, u)=0 \text { in } \Omega \times \mathbb{R}_{+} \tag{0.1}\\
u(x, t)=0 \text { in } \partial \Omega \times \mathbb{R}_{+} \\
u(x, 0)=u_{0}(x) \text { in } \Omega
\end{array}\right.
$$

where $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right), 1<p<+\infty$ and Ω is a regular open subset of $\mathbb{R}^{N}, N \geq 1$.
These problems arise from nonnewtonian fluid mechanics for $1<p<+\infty$ ([3]), and from glaciology for $p=\frac{N+1}{N}([2])$. In the first part ([5]), we were concerned with the case $p>2$ and have proved that if $\mathcal{P}(\Omega)$ admits a uniform supersolution with spatially bounded support which is independent on T, then the orbits are compacts and any w in the ω-limit set:

$$
\omega\left(u_{0}\right)=\left\{w \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega) \mid \exists t_{n} \longrightarrow+\infty: u\left(., t_{n}\right) \longrightarrow w \text { in } W_{0}^{1, p}(\Omega)\right\}
$$

is a solution of the elliptic problem associated with $\mathcal{P}(\Omega)$. Here, we study the case $1<p<2$ and obtain similar results in the case when

$$
\frac{2 N}{N+2}<p<2
$$

In addition, we give in this paper the justification of the formal derivation of the regularized equation associated with (0.1), by means of finite dimensional problems. That was not done in [5]. We also show the following regularizing effect:

$$
|\nabla u|^{\frac{p-2}{2}} \frac{\partial}{\partial t} \nabla u \in L^{2}\left(t_{0},+\infty ; L^{2}(\Omega)\right)
$$

Existence and regularity results can be found in Tsutsumi [18], Nakao [13], Diaz and Herrero [3]. Stabilization results are obtained by Otani [15] for the one dimensional case and by Langlais and Phillips [8] for a problem closely related to $\mathcal{P}(\Omega)$ and including the case $p=2$. But they do not prove the compacity of the orbits. All our results for $p>2$ were however extended to the case of a system by Elouardi and de Thelin [6] when Ω is bounded.

As in [5] our technique is based upon a comparaison principle and the construction of supersolutions. Some proofs already made in [5] are omited here. So we refer the reader [5] for completeness.

In the first section of this paper we give some preliminarics and state the main results. The proofs are given in section 2 and section 3 is devoted to the justification of the formal derivation.

1. Preliminaries and main results

1.1. Preliminaries. In all this paper Ω stands for a regular open subset of \mathbb{R}^{N} and may be unbounded. Let h be an application from \mathbb{R}^{N+1} to \mathbb{R} such that:

$$
\begin{equation*}
h \in \mathcal{C}(\bar{\Omega} \times \mathbb{P}) \text { and } h(x, 0) \geq 0 \text { for any } x \in \Omega \tag{1.1}
\end{equation*}
$$

and, for any $M>0$, there exists $K_{M}>0$ such that:

$$
\begin{equation*}
h(x, u)-h(x, v) \leq K_{M}(u-v) \quad \forall x \in \Omega, \forall u, v: 0 \leq v \leq u \leq M \tag{1.2}
\end{equation*}
$$

Note that (1.2) is satisfied if for some $\lambda>0, h-\lambda I$ is nonincreasing.
First we recall some notations and definitions used in [5]:
For $T>0$,

$$
Q_{T}=\Omega \times[0, T], S_{T}=\partial \Omega \times[0, T]
$$

and for $R>0$

$$
\Omega_{R}=\bar{\Omega} \cap B(0, R)
$$

$$
\begin{aligned}
F(\nabla u) & =|\nabla u|^{p-2} \nabla u \text { with }: 1<p<2 \\
\Delta_{p} u & =\operatorname{div}(F(\nabla u))
\end{aligned}
$$

Let u be given in $L^{\infty}\left(0, T ; W^{1, p}(\Omega)\right)$; we say that $u \geq 0$ in S_{T} [resp. $u=$ 0 in $\left.S_{T}\right]$ iff

$$
(-u)_{+}[r e s p . u] \in L^{\infty}\left(0, T ; W_{0}^{1, p} \cap L^{\infty}(\Omega)\right)
$$

Let u_{0} be given such that:

$$
\begin{equation*}
u_{0} \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega) \tag{1.3}
\end{equation*}
$$

we say that u is a solution of $\mathcal{P}(\Omega)$ in Q_{T} [resp. \hat{u} is a supersolution of $\mathcal{P}(\Omega)$ in Q_{T}] iff:

$$
\begin{gather*}
u[\text { resp. } \hat{u}] \in L^{\infty}\left(0, T ; W^{1, p}(\Omega) \cap L^{\infty}(\Omega)\right) \tag{1.4}\\
\frac{\partial u}{\partial t}\left[\text { resp. } \frac{\partial \hat{u}}{\partial t}\right] \in L^{2}\left(Q_{T}\right) \tag{1.5}
\end{gather*}
$$

$$
\begin{equation*}
A u \equiv \frac{\partial u}{\partial t}-\Delta_{p} u-h(x, u)=0 \text { in } Q_{T}\left[\text { resp. } A \hat{u} \geq 0 \text { in } Q_{T}\right] \tag{1.6}
\end{equation*}
$$

(in the distribution sense)

$$
\begin{equation*}
u(., 0)=u_{0}\left[\text { resp. } \hat{u}(., 0) \geq u_{0}\right] \text { in } \Omega . \tag{1.8}
\end{equation*}
$$

We say that $u \in L^{\infty}\left(Q_{T}\right)$ [resp. $\left.\hat{u} \in L^{\infty}(\Omega)\right]$ has a spatially bounded support in $Q_{T}[$ resp. has a bounded support in $\Omega]$ iff there exists $R>0$ such that:

$$
\text { Supp } u \subset \bar{\Omega}_{R} \times[0, T]\left(\text { resp. Supp } u \subset \bar{\Omega}_{R}\right)
$$

Let \hat{u} be a supersolution of $\mathcal{P}(\Omega)$ in Q_{T} for any $T>0$. We say that \hat{u} is a uniform supersolution with spatially bounded support iff there exists $R_{2}>0$ and $M>0$ both independent on T such that:

$$
\begin{aligned}
& \text { Supp } \hat{u} \subset \bar{\Omega}_{R_{2}} \times \mathbb{R}_{+} \\
& \|\hat{u}\|_{L^{\infty}\left(Q_{T}\right)}=M(T) \leq M .
\end{aligned}
$$

Supersolutions are very useful in our problem owing to the following comparison principle.

Theorem 0. [5] Suppose that f satisfies (1.1) and (1.2), that u_{0} and \hat{u}_{0} satisfy (1.3) and that u and \hat{u} satisfy (1.4) and (1.5). If

$$
\begin{aligned}
u(, 0)= & u_{0} \leq \hat{u}_{0}=\hat{u}(., 0) \text { in } \Omega \\
& u \leq \hat{u} \text { in } S_{T} \\
& A u \leq A \hat{u} \text { in } \Omega \text { (in the distribution sense). }
\end{aligned}
$$

Then $u \leq \hat{u}$ in Q_{T}.
1.2. Main results. First we give some sufficient conditions for existence of supersolutions of $\mathcal{P}(\Omega)$.

Theorem 1. Let $1<p<2$ be given.
If $u_{0} \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ has a bounded support and if there exists $\lambda>0, \mu \geq$ $0, \sigma>0, R_{0}>0$ and $\left.\gamma_{0}, \gamma \in\right] 0, p-1[$ such that:
(i) For any $x \in \bar{\Omega}_{R_{0}}$ and any $u \in \mathbb{R}_{+}: f(x, u) \leq \mu+\lambda u^{\gamma_{0}}$.
(ii) For any $x \in \Omega,|x|>R_{0}$ and for any $u \in \mathbb{R}_{+}, f(x, u) \leq-\sigma u^{\gamma}$.

Then $\mathcal{P}(\Omega)$ has a nonnegative uniform supersolution with spatiolly bounded support.

Theorem 2. (Existence) Let $1<p<2, T>0$ and $u_{0} \in W_{0}^{1, p}(\Omega) \cap$ $L^{\infty}(\Omega), u_{0} \geq 0$ be given. Suppose that h satisfies (1.1) and (1.2) and that $\mathcal{P}(\Omega)$ admits a nonnegative supersolution \hat{u} with spatially bounded support in Q_{T}. Then $\mathcal{P}(\Omega)$ has a unique solution u in Q_{T} satisfying:

$$
0 \leq u \leq \hat{u} \text { in } Q_{T}
$$

Remark 1. Theorem 2 extends some of Nakao's results [12] when Ω is unbounded and generalizes Diaz-Herrero's results [3] in the case when h may be nonmonotone.

When $h(x, u)=|u|^{\gamma-1} u$, by use of Theorem 1, we can find again Tsutsumi's results [18].

Corollary. (Semi-group property) If the hypothesis of Theorem 2 are satisfied, $\mathcal{P}(\Omega)$ generates a continuous semi-group on $L^{2}(\Omega)$.

Theorem 3. (Regularizing effects) Let $1<p<2, u_{0} \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ be given.

Suppose that h satisfies (1.1) and (1.2) and that $\mathcal{P}(\Omega)$ has a nonnegative uniform supersolution \hat{u} with spatially bounded support. Then for any $\left.t_{0} \in\right] 0,1[$, the solution u of $\mathcal{P}(\Omega)$ satisfies the following regularity estimates:

$$
\begin{equation*}
\frac{\partial u}{\partial t} \in L^{2}\left(t_{0},+\infty ; L^{2}(\Omega)\right) \cap L^{\infty}\left(t_{0},+\infty ; L^{2}(\Omega)\right) \tag{1.9}
\end{equation*}
$$

$$
\begin{equation*}
|\nabla u|^{\frac{p-2}{2}} \frac{\partial}{\partial t} \nabla u \in L^{2}\left(t_{0},+\infty ; L^{2}(\Omega)\right) \tag{1.10}
\end{equation*}
$$

and for any p such that

$$
\begin{equation*}
\frac{2 N}{N+2}<p<2 \tag{1.11}
\end{equation*}
$$

there exists some $\sigma: 0<\sigma<1$ such that

$$
\begin{equation*}
u \in L^{\infty}\left(t_{0},+\infty ; B_{\infty}^{1+\sigma_{,}, p}(\Omega)\right) \tag{1.12}
\end{equation*}
$$

where $B_{\infty}^{1+\sigma, p}(\Omega)$ is a Besov space [16] defined by the real interpolation method.
Let u be the solution of $\mathcal{P}(\Omega)$, we define the ω-limit set by:

$$
\omega\left(u_{0}\right)=\left\{w \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega) \mid \exists t_{n} \rightarrow \infty: u\left(., t_{n}\right) \rightarrow w \text { in } W_{0}^{1, p}(\Omega)\right\}
$$

Let \mathcal{E} be the set of nonnegative solutions w of the elliptic problem:

$$
\left\{\begin{array}{l}
-\Delta_{p} w=h(x, w) \text { in } \Omega \\
w=0 \text { in } \partial \Omega
\end{array}\right.
$$

Our main result is the following:
Theorem 4. (Stabilization) Let $\frac{2 N}{N+2}<p<2, u_{0} \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega), u_{0} \geq$ 0 be given. Suppose that h satisfies (1.1) and (1.2) and that $\mathcal{P}(\Omega)$ has a nonnegative uniform supersolutions \hat{u} with spatially bounded support. Then $\omega\left(u_{0}\right) \neq \phi$ and $\omega\left(u_{0}\right) \subset \mathcal{E}$.

Remark 2. In some cases [4], $[10],[11] \mathcal{E}$ contains at least one nontrivial element w; if in addition we can construct some subsolution $\underline{u} \not \equiv 0, \underline{u} \geq 0$ of $\mathcal{P}(\Omega)$ (see [5, corollary of Theorem 4 for sufficient conditions]), then $\omega\left(u_{0}\right)=$ $\{w\}$ and $\lim u(., t)=w$.
1.3. Examples. Theorems 2,3 and 4 apply to the following examples:

1) Ω is a nonnecessarily bounded set and

$$
h(x, u)=g(x)\left(1+u^{2}\right)^{\frac{7}{2}}
$$

where $0<\gamma<p-1$ and $g \in \mathcal{C}(\bar{\Omega})$ satisfies:

$$
g(x) \leq-\sigma<0 \text { for any } x \in \Omega,|x|>R_{0}>0
$$

(Apply Theorem I).
2) Ω is a bounded set and

$$
h(x, u)=g(x)|u|^{\gamma-1} u
$$

where $\gamma \geq \mathrm{I},(\gamma+1)(N-p)<N p, g \in C(\bar{\Omega}),\|g\|_{L^{\infty}}=\sigma$ and $u_{0} \leq w, w \in$ $W_{0}^{1, p}(\Omega)$ being a nontrivial solution of the equation [17]

$$
-\Delta_{p} w=\sigma|w|^{\gamma-1} w \operatorname{in} \Omega .
$$

3) Ω is a bounded set and $h \in \mathcal{C}(\bar{\Omega} \times \mathbb{R})$ is any function such that $h(x, 0)=$ $0, u \rightarrow h(x, u)$ is a non increasing function and $h(x, u) \leq 0$ for $u \geq M>0$.
4) Ω is a bounded set, $0 \leq u_{0} \leq 1, a \in \mathcal{C}(\bar{\Omega})$ satisfies $0 \leq a(x) \leq 1$ and

$$
h(x, u)=u(1-u)(u-a(x))
$$

2. Proofs of the main results

2.1. Sketch of the proof of Theorem 1: Let $M_{0}=\left\|u_{0}\right\|_{L^{\infty}(\Omega)}$, let R_{0}^{\prime} be such that supp $u_{0} \subset \bar{\Omega}_{R_{0}^{\prime}}$ and $R=\max \left(R_{0}, R_{0}^{\prime}\right)$. Define \hat{u} by $\hat{u}(x, t)=\varphi(r)$ where $r=|x|$ and:

$$
\varphi(r)=\left\{\begin{array}{l}
a r^{p^{*}}+b \text { for } 0 \leq r \leq R \\
\alpha r+\beta \text { for } R<r \leq R_{1} \\
K\left(R_{2}-r\right)^{m} \text { for } R_{1}<\tau \leq R_{2} \\
0 \text { for } r>R_{2}
\end{array}\right.
$$

with $m=\frac{p}{p-1-\gamma}>1$.
As in [5] straithforward considerations enable us to choose the constants $a, b, \alpha, \beta, K, R_{1}, R_{2}$ so that \hat{u} be a uniform supersolutions of $P(\Omega)$ in Q_{T} is for any $T>0$. Whence Theorem 1 is proved.
2.2. Proof of Theorem 2: Let $T>0$ be given and consider $R>0$ such that

$$
\text { Supp } \tilde{u} \subset \bar{\Omega}_{R} \times[0, T] \text {. }
$$

Let ω and ω^{\prime} be bounded regular open sets such that:

$$
\Omega \cap \bar{\Omega}_{R} \subset \omega^{\prime} \subset \Omega \cap \bar{\omega}^{\prime} \subset \omega \subset \Omega
$$

Note $q_{T}=\omega \times[0, T]$ and $S_{T}=\partial \omega \times[0, T]$.
It is well known (see for instance [8]) that there exists a sequence $h_{\varepsilon} \in$ $\mathcal{C}^{1}\left(\bar{\Omega} \times \mathbb{R}_{+}\right)$such that:

$$
\left\{\begin{array}{l}
h_{\varepsilon} \searrow h \text { uniformly as } \varepsilon \rightarrow 0, \text { and for any } \varepsilon>0 \\
\frac{\partial h_{\epsilon}}{\partial u}(x, u) \leq K_{M(T)}, h_{\varepsilon}(x, 0) \geq 0 \\
h_{\varepsilon}(x, u)=0 \text { if } u \geq 3 m(T)
\end{array}\right.
$$

on the other hand, let $\left(u_{0^{\kappa}}\right) \subset \mathcal{D}(\omega), 0 \leq u_{0^{c}} \leq M(T)$, be such that $u_{0_{e}} \rightarrow u_{0}$ in $W_{0}^{1,2}(\omega)$.

From [7, pp. 457-459], for each $\varepsilon>0$, there is a unique classical solution $u_{\varepsilon} \in \mathcal{C}\left(\bar{q}_{T}\right) \cap \mathcal{C}^{2,1}\left(q_{T}\right)$ of:

$$
P_{\varepsilon}(\omega)\left\{\begin{array}{l}
A_{\varepsilon} u_{\epsilon} \equiv \frac{\partial u_{\varepsilon}}{\partial t}-\Delta_{p}^{\varepsilon} u_{\varepsilon}-h_{\varepsilon}\left(x, u_{\varepsilon}\right)=0 \text { in } Q_{T} \tag{2.1}\\
u_{\varepsilon}(x, t)=0 \text { in } s T \\
u_{\varepsilon}(x, 0)=u_{0^{e}}(x) \text { in } \omega
\end{array}\right.
$$

where $\Delta_{p}^{\varepsilon} u_{\varepsilon}=\operatorname{div} F_{\varepsilon}\left(\nabla u_{\varepsilon}\right), F_{\varepsilon}\left(\nabla u_{\epsilon}\right)=\left(\left|\nabla u_{\varepsilon}\right|^{2}+\varepsilon\right)^{\frac{p-2}{2}} \nabla u_{\varepsilon}$.
Remark 3. Hereafter $C(M(T))$ stands for any constant which depends only on $M(T)$. In the case when $\mathcal{P}(\Omega)$ has a nonnegative uniform supersolution, $C(M(T))$ does not depend on T.

We have the following:
Lemma 1. There exists $C(M(T))$ such that for any $\varepsilon \in] 0,1[$.

$$
\begin{equation*}
\left\|u_{\varepsilon}\right\|_{L^{\infty}\left(q_{T}\right)} \leq C(M(T)) \tag{2.4}
\end{equation*}
$$

$$
\begin{gather*}
\left\|u_{\varepsilon}\right\|_{L^{\infty}\left(0, T ; W_{0}^{1, p}(\omega)\right)} \leq C(M(T)) \tag{2.5}\\
\left\|\frac{\partial u_{\varepsilon}}{\partial t}\right\|_{L^{2}\left(q_{T}\right)} \leq C(M(T)) . \tag{2.6}
\end{gather*}
$$

Proof: 0 and $3 M(T)$ are respectively subsolutions and supersolutions of $\mathcal{P}_{\varepsilon}(\omega)$; hence by Theorem 0 , we have:

$$
0 \leq u_{\varepsilon} \leq 3 M(T) \text { in } q_{T} \text { whence (2.4) }
$$

By the properties of h_{ε} we have that $h_{\varepsilon}\left(., u_{\epsilon}\right)$ is bounded in q_{T}. This implies that H_{ε} defined by $H_{\varepsilon}(x, u)=\int_{0}^{u} h_{\varepsilon}(x, v) d v$ satisfies

$$
\left|H_{\varepsilon}\left(., u_{\varepsilon}\right)\right| \leq C(M(T))
$$

whence:

$$
\begin{aligned}
&\left.\int_{q_{\tau}} h_{\varepsilon}\left(x, u_{\varepsilon}\right) \frac{\partial u_{\varepsilon}}{\partial t} d x=\int_{\omega}\left[H_{\varepsilon}\left(., u_{\varepsilon}(., r)\right)-H_{\varepsilon}(., 0)\right)\right] d x \leq C(M(T)) \\
& \forall \tau: 0<\tau<T
\end{aligned}
$$

Multiplying (2.1) by $\frac{\partial u_{c}}{\partial t}$ and integrating on q_{τ} we get:

$$
\begin{aligned}
& \int_{q_{\tau}}\left(\frac{\partial u_{\epsilon}}{\partial t}\right)^{2} d x d t+\frac{1}{p} \int_{\omega}\left(\left|\nabla u_{\varepsilon}(., r)\right|^{2}+\varepsilon\right)^{p / 2} d x \\
& \leq \frac{I}{p} \int_{\omega}\left(\left|\nabla u_{\varepsilon}(., 0)\right|^{2}+\varepsilon\right)^{p / 2} d x+C(M(T))
\end{aligned}
$$

By Holder inequality, $u_{\varepsilon}(., 0)$ converging to $u(., 0)$ we get

$$
\int_{w}\left(\left|\nabla u_{\varepsilon}(., 0)\right|^{2}+\varepsilon\right)^{p / 2} d x \leq C(M(T))
$$

whence (2.5) and (2.6) hold.

Lemma 2. $\mathcal{P}(\omega)$ has a unique solution u satisfying:

$$
0 \leq u \leq \hat{u} \text { in } q_{T}
$$

Moreover u_{ε} converges strongly to u in $L^{p}\left(0, T ; W^{1, p}(\omega)\right)$.
Proof: By (2.4), (2.5), (2.6), there is a subsequence denoted again by u_{ε} which converges to u in weak $* L^{\infty}\left(0, T ; W_{0}^{1, p}(\omega) \cap L^{\infty}(\omega)\right)$ and in weak $L^{p}\left(0, T ; W_{0}^{1, p}(\omega)\right)$ such that $\frac{\partial u_{c}}{\partial t}$ converges to $\frac{\partial u}{\partial t}$ in weak $L^{2}\left(q_{T}\right)$ and $\Delta_{p}^{\varepsilon} u_{\varepsilon}$ converges to χ in $L^{p^{*}}\left(0, T ; W^{-1, p^{*}}(\omega)\right)$.

Moreover, multiplying (2.1) by u_{ε}, we have:

$$
\begin{align*}
& E_{\varepsilon} \equiv \int_{q_{T}}\left(\left|\nabla u_{\varepsilon}\right|^{2}+\varepsilon\right)^{\frac{p-2}{2}}\left|\nabla u_{\varepsilon}\right|^{2} d x d t \tag{2.7}\\
&=\int_{q_{T}} u_{\varepsilon} h_{\varepsilon}\left(., u_{\varepsilon}\right) d x d t+\frac{1}{2} \int_{\omega} u_{\varepsilon}^{2}(., 0) d x-\frac{1}{2} \int_{\omega} u_{\varepsilon}^{2}(., T) d x
\end{align*}
$$

$u_{\epsilon} h_{\varepsilon}$ being bounded, the same argument that [9, p. 160] shows that $u_{\varepsilon}(., T)$ converges to $u(,, T)$ in weak $L^{2}(\omega)$ and therefore:

$$
\begin{equation*}
\limsup _{\varepsilon \rightarrow 0}-\int_{\omega} u_{\varepsilon}^{2}(., T) \leq-\int_{\omega} u^{2}(., T) \tag{2.8}
\end{equation*}
$$

Moreover, by lemma I, u_{ε} is bounded in the space:

$$
W=\left\{v \in L^{p}\left(0, T ; W_{0}^{1, p}(\omega)\right) ; \frac{\partial v}{\partial t} \in L^{p}\left(q_{T}\right)\right\}
$$

and by $[9$, p. 58$], u_{\varepsilon}$ converges to u in strong $L^{p}\left(q_{T}\right)$. By (2.7), (2.8) and the use of the dominated convergence theorem we obtain;

$$
\limsup _{\varepsilon \rightarrow 0} E_{\varepsilon} \leq \int_{q_{T}} u h(., u) d x d t+\frac{1}{2} \int_{\omega} u_{0}^{2} d x-\frac{1}{2} \int_{\omega} u^{2}(., T) d x=\int_{0}^{T}\langle-\chi, u\rangle
$$

By standard monotonicity argument [9, p. 160], $\chi=\Delta_{p} u$; so u is a solution of $\mathcal{P}(\omega)$ satisfying $0 \leq u \leq \hat{u}$ and we have:

$$
\begin{equation*}
\underset{\varepsilon \rightarrow 0}{\limsup } E_{\varepsilon} \leq \int_{q_{T}}|\nabla u|^{p} d x d t . \tag{2.9}
\end{equation*}
$$

Now, for any $m>0$, we define:

$$
q_{T, m}=\left\{(x, t) \in q_{T}:\left|\nabla u_{\varepsilon}(x, t)\right|^{2} \geq \frac{\varepsilon}{m}\right\}
$$

we get:

$$
\int_{q_{T, m}}\left|\nabla u_{\varepsilon}\right|^{p} d x d t \leq(1+m)^{\frac{2-\rho}{2}} \int_{q_{T . m}}\left(\left|\nabla u_{\varepsilon}\right|^{2}+\varepsilon\right)^{\frac{p-2}{2}}\left|\nabla u_{\varepsilon}\right|^{2} d x d t
$$

whence:

$$
\int_{q_{T}}\left|\nabla u_{\varepsilon}\right|^{p} d x d t \leq\left(\frac{\varepsilon}{m}\right)^{p} \text { meas }\left(q_{T}\right)+(1+m)^{\frac{2-p}{2}} E_{\varepsilon}
$$

with (2.9), we therefore obtain for any $m>0$:

$$
\underset{\varepsilon \rightarrow 0}{\limsup } \int_{q_{T}}\left|\nabla u_{\varepsilon}\right|^{p} d x d t \leq(1+m)^{\frac{2-\bar{p}}{2}} \int_{q_{T}}|\nabla u|^{p} d x d t
$$

whence

$$
\begin{equation*}
\limsup _{\varepsilon \rightarrow 0}\left\|\nabla u_{\varepsilon}\right\|_{x}^{p} \leq\|\nabla u\|_{x}^{p} \tag{2.10}
\end{equation*}
$$

where $X=L^{p}\left(0, T ; W_{0}^{1, p}(\omega)\right)$ is an uniformly convex space. So (2.10) and weak convergence of u_{ε} to u imply strong convergence of u_{ε} to u in X.

End of proof of Theorem 2: The supersolution \hat{u} vanishes in $\left(\omega \backslash \bar{\Omega}_{R}\right) \times[0, T]$ and, by lemma $2, u$ has the same property; so we can extend u by 0 out of ω and we get a unique solution of $\mathcal{P}(\Omega)$ notes also by u and satisfying:

$$
0 \leq u \leq \hat{u} \text { in } q_{T} .
$$

Proof of Theorem 3: Straightforward calculations give:

$$
\begin{aligned}
& \frac{\partial}{\partial t} F_{\varepsilon}\left(\nabla u_{\epsilon}\right)= \\
& \quad\left(\left|\nabla u_{\varepsilon}\right|^{2}+\varepsilon\right)^{\frac{p-2}{2}} \frac{\partial}{\partial t} \nabla u_{\varepsilon}+(p-2)\left(\left|\nabla u_{\varepsilon}\right|^{2}+\varepsilon\right)^{\frac{p-4}{2}}\left(\nabla u_{\varepsilon} \cdot \frac{\partial}{\partial t} \nabla u_{\varepsilon}\right) \nabla u_{\varepsilon}
\end{aligned}
$$

whence:
(2.11) $\frac{\partial}{\partial t} F_{\varepsilon}\left(\nabla u_{\varepsilon}\right) \cdot \frac{\partial}{\partial t} \nabla u_{\varepsilon}=\left(\left|\nabla u_{\varepsilon}\right|^{2}+\varepsilon\right)^{\frac{p-z}{2}}\left|\frac{\partial}{\partial t} \nabla u_{\varepsilon}\right|^{2}+$
$(p-2)\left(\left|\nabla u_{\varepsilon}\right|^{2}+\varepsilon\right)^{\frac{p-4}{2}}\left(\nabla u_{\varepsilon} \cdot \frac{\partial}{\partial t} \nabla u_{\varepsilon}\right)^{2} \geq(p-1)\left(\left|\nabla u_{\varepsilon}\right|^{2}+\varepsilon\right)^{\frac{p-2}{2}}\left|\frac{\partial}{\partial t} \nabla u_{\varepsilon}\right|^{2}$.
On the other hand, by formal derivation of (2.1) we get:

$$
\begin{equation*}
\frac{\partial^{2} u_{\epsilon}}{\partial t^{2}}-\operatorname{div} \frac{\partial}{\partial t} F_{\epsilon}\left(\nabla u_{\varepsilon}\right)=\frac{\partial}{\partial t} h_{\varepsilon}\left(x, u_{\varepsilon}\right) \tag{2.12}
\end{equation*}
$$

Multiplying (2.12) by $\frac{\partial u z_{t}}{\partial t}$ and integrating, we get with (2.11):

$$
\begin{align*}
\frac{1}{2} \frac{\partial}{\partial t}\left\|\frac{\partial u_{\epsilon}}{\partial t}(., t)\right\|_{L^{2}(\omega)}^{2}+(p-1) \int_{\omega}\left(\left|\nabla u_{\epsilon}\right|^{2}+\varepsilon\right)^{\frac{p-2}{2}} & \left|\frac{\partial}{\partial t} \nabla u_{\varepsilon}\right|^{2} d x \tag{2.13}\\
& \leq K \int_{\omega}\left(\frac{\partial u_{\varepsilon}}{\partial t}\right)^{2} d x
\end{align*}
$$

Furthermore by (2.6), there exists $\left.t_{\epsilon} \in\right] 0$, $t_{0}[$ such that:

$$
\left\|\frac{\partial u_{\varepsilon}}{\partial t}\left(., t_{\epsilon}\right)\right\|_{L^{2}(\omega)}^{2}=\frac{1}{t_{0}} \int_{0}^{t_{0}}\left\|\frac{\partial u_{\varepsilon}}{\partial t}(., t)\right\|_{L^{2}(\omega)}^{2} d t \leq C \leq+\infty .
$$

Integrating (2.13) on $\left[t_{\varepsilon}, T\right]$ we get with (2.6) and remark 3:

$$
\begin{align*}
& \frac{1}{2}\left\|\frac{\partial u_{\varepsilon}}{\partial t}(., T)\right\|_{L^{2}(\omega)}^{2}+(p-1) \int_{t_{0}}^{T} \int_{\omega}\left(\left|\nabla u_{\varepsilon}\right|^{2}+\varepsilon\right)^{\frac{v^{2}}{2}}\left|\frac{\partial}{\partial t} \nabla u_{\varepsilon}\right|^{2} d x d t \tag{2.14}\\
& \quad \leq K \int_{t_{\varepsilon}}^{T} \int_{\omega}\left(\frac{\partial u_{\varepsilon}}{\partial t}\right)^{2} d x d t+\frac{1}{2}\left\|\frac{\partial u_{\varepsilon}}{\partial t}\left(,, t_{\varepsilon}\right)\right\|_{L^{2}(\omega)}^{2} \leq C<+\infty .
\end{align*}
$$

From lemma 2 we deduce that

$$
\begin{equation*}
\nabla u_{\varepsilon} \longrightarrow \nabla u \text { a.e. on } q_{T} . \tag{2.15}
\end{equation*}
$$

By (2.14) we obtain for any $T>0$

$$
\begin{equation*}
\left\|\frac{\partial u_{\varepsilon}}{\partial t}(,, T)\right\|_{L^{2}(\omega)} \leq C<+\infty \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\left|\nabla u_{\varepsilon}\right|^{\frac{L^{2}}{2}} \frac{\partial}{\partial t} \nabla u_{\epsilon}\right\|_{\left.L^{2}\left(\mid t_{0}, T\right) \times \omega\right)} \leq C<+\infty \tag{2.17}
\end{equation*}
$$

From (2.16) we get:

$$
\left\|\frac{\partial u}{\partial t}(., T)\right\|_{L^{2}(\omega)} \leq C<+\infty \text { for any } T \geq t_{0} .
$$

Thus by (2.6) and remark 3 we get:

$$
\begin{equation*}
\frac{\partial u}{\partial t} \in L^{\infty}\left(t_{0},+\infty ; L^{2}(\omega)\right) \cap L^{2}\left(t_{0},+\infty ; L^{2}(\omega)\right) . \tag{2.18}
\end{equation*}
$$

Furthermore by (2.15) and (2.17) we have:

$$
\left\||\nabla u|^{\frac{p-2}{2}} \frac{\partial}{\partial t} \nabla u\right\|_{L^{2}([t 0, T] \times \omega)} \leq C<+\infty \text { for any } T>0 .
$$

Therefore

$$
\begin{equation*}
|\nabla u|^{\frac{k_{\overline{2}}^{2}}{2}} \frac{\partial}{\partial t} \nabla u \in L^{2}\left(t_{0},+\infty ; L^{2}(\omega)\right) . \tag{2.19}
\end{equation*}
$$

Thus (1.9) and (1.10) hold respectively by (2.18) and (2.19), because u vanishes on $(\Omega \backslash \bar{\omega}) \times \mathbb{R}_{+}$.

On the other hand, by (1.11) there is some $\sigma^{\prime}, 0<\sigma^{\prime}<1$, such that

$$
L^{2}(\Omega) \hookrightarrow W^{-\sigma^{\prime}, p^{*}}(\Omega)
$$

Simon's regularity results [17] concerning the equation:

$$
-\Delta_{p} u=h(x, u)-\frac{\partial u}{\partial t} \in L^{\infty}\left(t_{0},+\infty ; B_{\infty}^{-\sigma^{\prime}, p^{*}}(\Omega)\right)
$$

then give for any t :

$$
\|u(., t)\|_{B_{\infty}^{1+\left\langle 1-\sigma^{\prime}\right)(1-p\rangle^{2} . p}(\Omega)} \leq C\left\|h(., u)-\frac{\partial u}{\partial t}(., t)\right\|_{B_{\infty}^{-\sigma^{\prime} \cdot p^{*}}}+C^{\prime}
$$

where C and C^{\prime} do not depend on t; whence (1.12) holds.
Remark 4. The compactness of the embedding

$$
B_{\infty}^{1+\left(1-\sigma^{\prime}\right)(1-p)^{2}, p}(\Omega) \subset W^{1, p}(\Omega)
$$

ensures the compactness of the orbit

$$
\omega\left(u_{0}\right)=\left\{w \in w_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega) / \exists t_{n} \rightarrow \infty: u\left(., t_{n}\right) \rightarrow w \text { in } W_{0}^{1, p}(\Omega)\right\}
$$

Proof of Theorem 4 and its corollary:
a) $\omega\left(u_{0}\right) \neq \phi$ because supp $u \subset \omega \times \mathbb{R}_{+}$and $B_{\infty}^{1+\sigma, p}(\omega)$ is compactly imbedded in $W^{1, p}(\omega)$.
b) Let $\omega=\lim _{n+\infty} u\left(., t_{n}\right) \in \omega\left(u_{0}\right)$, we get $w \in \mathcal{E}$.

The proof of this, as well as the proof of corollary is the same as in [5] and is omited.

3. Justification of the formal proof in section 2

Let $\left(w_{j}\right)$ be a basis of $W_{0}^{1, p}(\Omega)$ consisting of $C_{0}^{\infty}(\Omega)$-functions. For $\varepsilon>0$ given, we seek a sequence of functions u_{m} such that

$$
u_{m}=\sum_{j=1}^{m} g_{j m}(t) w_{j} \text { and } u_{m} \longrightarrow u_{\epsilon} \text { in } W_{0}^{1, p}(\Omega)
$$

The $g_{j m}(t)$ being solutions of the following system of ordinary differential equations:

$$
(S)\left\{\begin{array}{l}
\left(u_{m}^{\prime}(t), w_{j}\right)+a_{\varepsilon}\left(u_{m}(t), w_{j}\right)=\left(h_{\varepsilon}\left(,, u_{m}(t)\right), w_{j}\right), 1 \leq j \leq m \tag{3.1}\\
u_{m}(0)=u_{0 m}
\end{array}\right.
$$

where: $(, .$.$) is the canonical inner product in L^{2}(\Omega)$

$$
u_{0 m}=\sum_{j=1}^{m} \alpha_{j m} w_{j} \longrightarrow u_{0 \varepsilon} \text { in } W_{0}^{1, p}(\Omega)
$$

and $a_{\varepsilon}(u, v)=\int_{\Omega} F_{\varepsilon}(\nabla u) . \nabla v d x$ for any $u, v \in W_{0}^{1, p}(\Omega)$.
We shall use the following notations:

* For $q \in \mathbb{N}, \xi=\left(\xi_{1}, \ldots, \xi_{q}\right)$ and $\eta=\left(\eta_{1}, \ldots, \eta_{q}\right)$ in \mathbb{R}^{q}

$$
\begin{aligned}
\xi \cdot \eta & =\sum_{j=1}^{q} \xi_{j} \eta_{j} \\
\text { and }|\xi| & =\left(\sum_{j=1}^{q}\left|\xi_{j}\right|^{2}\right)^{1 / 2} .
\end{aligned}
$$

* For any matrix $\mathcal{U}=\left(a_{i j}\right)$ in $\mathcal{M}(m, N)$

$$
\|\mathcal{U}\|=\left(\sum_{i=1}^{m} \sum_{j=1}^{N}\left(a_{i j}\right)^{2}\right)^{1 / 2} .
$$

* $G_{m}(t)=\left(g_{1 m}(t), \ldots, g_{m m}(t)\right)$ for any $t \in[0, T]$.
* For any $x \in \Omega$:
$w(x)=\left(w_{1}(x), \ldots, w_{m}(x)\right)$ and $W(x)$ is the matrix $: W(x)=\left(\frac{\partial w_{j}}{\partial x_{i}}\right)_{1 \leq j \leq m}$
* B is the Gram matrix of the system $\left(w_{1}, \ldots, w_{m}\right)$.
* For any $\xi \in \mathbb{R}^{m}$

$$
\begin{aligned}
\varphi_{j}(\xi) & =\int_{\Omega} F_{\xi}(W(x) \xi) \cdot \nabla w_{j}(x) d x, \quad 1 \leq j \leq m \\
\text { and } \varphi & =\left(\varphi_{1}, \ldots, \varphi_{m}\right) \\
\Psi_{j}(\xi) & =\int_{\Omega} h_{\varepsilon}(x, w(x) \cdot \xi) w_{j}(x) d x \\
\text { and } \Psi & =\left(\Psi_{1}, \ldots, \Psi_{m}\right)
\end{aligned}
$$

With these relations we have

$$
\begin{aligned}
u_{m}(x, t) & =w(x) \cdot G_{m}(t) \text { and } \\
\nabla u_{m}(x, t) & =W(x) \cdot G_{m}(t)
\end{aligned}
$$

Now, we go back to (S). Since B is inversible, we can write (S) in the form:

$$
\left(S^{\prime}\right)\left\{\begin{array}{l}
\frac{d G_{m}}{d t}=\phi\left(G_{m}(t)\right) \\
G_{m}(0)=\alpha_{m}
\end{array}\right.
$$

where $\phi(\xi)=B^{-1}[\Psi(\xi)-\varphi(\xi)]$ for any $\xi \in \mathbb{R}^{n}$ and $\alpha_{m}=\left(\alpha_{1 m}, \ldots, \alpha_{m m}\right)$.
We shall prove that $\left(S^{\prime}\right)$ admits a unique solution G_{m} in $\mathcal{C}^{2}\left(0, T ; \boldsymbol{R}^{m}\right)$. We begin by the following:

Lemma 3. Suppose that the hypothesis (1.1), (1.2) and (1.3) are satisfied and that Ω bounded.

Then $\left(S^{\prime}\right)$ admits a unique solution on $] 0, T[$.
Proof: Let $F_{j}(x, \xi)=\left(|W(x) \xi|^{2}+\varepsilon\right)^{\frac{p-2}{2}} W(x) \xi \cdot \nabla w_{j}(x)$ and $\hat{h}_{\varepsilon}(x, \xi)=$ $h_{\xi}(x, w(x) . \xi)$ for any $x \in \Omega$ and $\xi \in \mathscr{R}^{m}$.
F_{j} and \hat{h}_{ϵ} are locally lipschitz with respect to ξ. Thus ϕ satisfies the same property. This ensures the existence of G_{m} on an interval $] 0, t_{m}[$. The estimates that follows enable us to have in fact $t_{m}=T$. Multiply (3.1) by $g_{j m}(t)$; after adding from $j=1$ to $j=m$, we get:

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\left(\left\|u_{m}(t)\right\|_{L^{2}(\Omega)}^{2}\right)+\int_{\Omega}\left(\left|\nabla u_{m}\right|^{2}+\varepsilon\right)^{\frac{R-2}{2}}\left|\nabla u_{m}(t)\right|^{2} d x \tag{3.3}\\
&=\int_{\Omega} h_{\varepsilon}\left(., u_{m}\right) \cdot u_{m} d x
\end{align*}
$$

Since $h_{\epsilon}(x, u) \leq K u_{\epsilon}+C_{0}$, where $C_{0}=\sup _{x \in \Omega} h_{\varepsilon}(x, 0)$, the left hand side of (3.3) is bounded by

$$
\left(K+\frac{1}{2}\right)\left\|u_{m}(t)\right\|_{L^{2}(\Omega)}+\frac{1}{2} C_{0} \text { meas }(\Omega)
$$

Whence, by Gronwall's lemma, we get:

$$
\begin{equation*}
\left\|u_{m}\right\|_{L^{\infty}\left(0, T_{i} L^{2}(\Omega)\right)} \leq C(M(T)) . \tag{3.4}
\end{equation*}
$$

On the other hand, multiplying (3.1) by $g_{j m}^{\prime}$ and adding from $j=1$ to $j=m$, we get:

$$
\begin{equation*}
\int_{0}^{T}\left\|u_{m}^{\prime}(t)\right\|_{L^{2}(\Omega)}^{2} d t+\frac{1}{p} \int_{\Omega}\left(\left|\nabla u_{m}(T)\right|^{2}+\varepsilon\right)^{p / 2} d x \leq \tag{3.5}
\end{equation*}
$$

$$
\frac{1}{p} \int_{\Omega}\left(\left|\nabla u_{m}(0)\right|^{2}+\varepsilon\right)^{p / 2} d x+\int_{\Omega}\left[H_{\varepsilon}\left(x, u_{m}(T)\right)-H_{\varepsilon}\left(x, u_{m}(0)\right)\right] d x \leq C\left(M_{1}\right)
$$

where $H_{\varepsilon}(x, u)=\int_{0}^{u} h_{\varepsilon}(x, v) d v$.
Whence we obtain the estimate:

$$
\begin{equation*}
\left\|u_{m}^{\prime}\right\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)} \leq C(M) \tag{3.6}
\end{equation*}
$$

From (3.5) and (3.6) we deduce:

$$
u_{m} \in \mathcal{C}\left(0, T ; \mathbb{R}^{m}\right)
$$

Therefore, by classical theory of ordinary differential equations, see for example [1], we get $t_{m}=T$.

Now we have the main result of this section:

Theorem 5.

$$
G_{m} \in \mathbb{C}^{2}\left(0, T ; \mathbb{B}^{m}\right)
$$

Proof: By classical theory of ordinary differential equations it suffices to show that $\phi \in \mathcal{C}^{1}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$.

For any $x \in \Omega$, we have:

$$
\begin{gather*}
F_{j}(x, .) \in \mathcal{C}^{1}\left(\mathbb{R}^{m}, \mathbb{R}\right) \\
\text { and } \frac{\partial F_{j}}{\partial \xi_{h}}(x, \xi)=\left(|W(x) \xi|^{2}+\varepsilon\right)^{\frac{p-2}{2}} \nabla w_{h} \cdot \nabla w_{j}+(p-2) . \\
\left(|W(x) \xi|^{2}+\varepsilon\right)^{\frac{p-4}{2}}\left(\sum_{k} \xi_{k} \nabla w_{k} \cdot \nabla w_{h}\right)\left(\sum_{k} \xi_{k} \nabla w_{k} \cdot \nabla w_{j}\right) . \tag{3.7}
\end{gather*}
$$

It's straithforward that $\left|\nabla w_{j}\right| \leq\|W(x)\|$ for any $j: 1 \leq j \leq m$; therefore using Cauchy-Schwarz inequality we get:
(3.8)

$$
\begin{array}{r}
\left|\frac{\partial F_{j}}{\partial \xi_{k}}\right| \leq\left(|W(x) \xi|^{2}+\varepsilon\right)^{\frac{p-2}{2}}\|W(x)\|^{2}+(2-p)\left(|W(x) \xi|^{2}+\varepsilon\right)^{\frac{p^{2-4}}{2}}|W(x) \xi|^{2}\|W(x)\|^{2} \\
\leq \varepsilon^{\frac{p-2}{2}}\|W(x)\|^{2}+(2-p) \epsilon^{\frac{p-4}{2}}|\xi|^{2}\|W(x)\|^{4}
\end{array}
$$

From (3.8) and Lebesgue's theorem, we obtain:

$$
\frac{\partial F_{j}}{\partial \xi_{h}}(., \xi) \in L^{1}(\Omega) \text { for any } h: 1 \leq h \leq m \text { and any } \xi \in \mathbb{R}
$$

By the same way we get that $\frac{\partial \varphi_{j}}{\partial \xi_{h}}$ exists and is continuous on \mathbb{R}^{m} whence:

$$
\begin{equation*}
\varphi \in \mathcal{C}^{1}\left(\mathbb{B}^{m}, \mathbb{R}^{m}\right) \tag{3.9}
\end{equation*}
$$

On the other hand let $h_{\varepsilon}^{j}(x, \xi)=h_{\varepsilon}(x, w(x), \xi) w_{j}(x)$, we have:

$$
\begin{gathered}
\Psi_{j}(\xi)=\int_{\Omega} h_{\varepsilon}^{i}(x, \xi) d x \\
\text { and } h_{\varepsilon}^{j}(x, .) \in \mathcal{C}^{1}\left(\mathbb{R}^{m}, \mathbb{R}\right) \text { for any } x \in \Omega
\end{gathered}
$$

Furthermore:

$$
\left|\frac{\partial h_{\epsilon}^{j}}{\partial \xi_{h}}(x, \xi)\right|=\left|\frac{\partial h_{\varepsilon}}{\partial u}(x, w(x) \cdot \xi) \cdot w_{h}(x) w_{j}(x)\right| \leq K\left|w_{h}(x)\right|\left|w_{j}(x)\right|
$$

Thus: $\frac{\partial h_{\varepsilon}^{j}}{\partial \xi_{h}}(., \xi) \in L^{1}(\Omega)$ for any $h, j: 1 \leq h, j \leq m$ and any $\xi \in \mathbb{B}^{m}$.
Once again, by Lebesgue's continuity and derivability theorems, we obtain:

$$
\begin{equation*}
\Psi \in \mathcal{C}^{1}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right) \tag{3.10}
\end{equation*}
$$

By (3.9) and (3.10), we get $\phi \in \mathcal{C}^{\lambda}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$. The proof of theorem 5 is now complete.

References

1. Cartan, H., "Calcul différentiel," Hermann, 1967.
2. Diaz, J.I., "Nonlinear partial differential equations and free boundaries," Pitman, London, 1985.
3. Diaz, J.I. and Herrero, M.A., Estimates on the support of the solutions of some nonlinear elliptic and parabolic problems, Proc. R. Soc. Edinb. 89 A (1981), 249-258.
4. DIAZ, J.I. AND SAA, J.E., Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C.R. Acad. Sc. Paris 305 (1987), 521-524.
5. El Hachimp, A. and De Thelin, F., Supersolutions and stabilization of the solutions of the equation: $\frac{\partial u}{\partial t}-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=f(x, u)$, Nonlinear Analysis T.M.A. 12, 12 (1988), 1385-1398.
6. Elouardi, H. and De Thelin, F., Supersolutions and stabilization of the solution of a nonlinear parabolic system, Publicacions Matemàtiques 33, Barcelona (1989), 369-381.
7. Ladyzenskaya, O., SOlonnikov, V.A. and Ouraltseva, N.N., "Equations paraboliques linéaires et quasilinéaires," Moscou, 1968.
8. Langlais, M. and Phhifles, D., Stabilization of solutions on nonlinear and degenerate evolution equations, Nonlinear Analysis T.M.A. 9 (1985), 321-333.
9. Lions, J.-L., "Quelques méthodes de résolution de problèmes aux limites non-linéaires," Dunod, Paris, 1969.
10. Nabana, E. and De Thelin, F., Unicité de la solution radiale positive de l'cquation quasilinéaire $\Delta_{p} u+f(u,|x|)=0$, C.R. Acad. Sc. Paris 397, série I (1988), 763-766.
11. NABANA, E., "Sur l'unicité de la solution positive d'une équation elliptique quasilinéaire," Thèse, Toulouse, 1989.
12. Nakao, M., On the existence of bounded solutions for nonlinear evolution equation of parabolic type, Math. Rep. 11, 1, Kyushu Univ. (1977), 3-14.
13. NAKAO, M., On some regularizing and decay estimates for nonlinear diffusion equations, Nonlinear Analysis T.M.A. 7 (1983), 1455-1461.
14. NAKAO, M., Existence and decay of global solutions of some nonlincar degenerate parabolic equations: Journal of Funct. Anal. and Appl. 109, 1 (1985), 118-129.
15. OTANI, M., On certain second order ordinary differential equations associated with Sobolev-Poincaré type incqualities, Nonlinear Analysis T.M.A. 8 (1984), 1255-1270.
16. Simon, J., Regularité de la solution d'un problème aux limites non linćaire, Annales Fac. Sc. Toulouse 3, Sér. 5 (1981), 247-274.
17. De Thelin, F., Quelques résultats d'existence et do non existence pour une E.D.P. elliptique non linéaire, C.R. Acad. Sc. Paris 259(1984), 911-914.
18. TSUTSUMI, M., Existence and nonexistence of global solutions of nonlinear parabolic equations, Publi. R.I.M.S. Kyoto Univ. 8 (1972), 211-229.
A. El Hachimi: Département de Mathématiques
Faculté des Sciences
B.P. 20, El Jadida
MAROC
F. de Thelin: Laboratoire d'Analyse Numérique
Université Paul Sabatier

118, route de Narbonne

31062 Toulouse Cedex

FRANCE

