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SUPERSOLUTIONS AND STABILIZATION
OF THE SOLUTIONS OF THE EQUATION
& _ div(|Vul?~? Vu) = h(z,u), PART II

A. EL HacHIMI AND F. DE THELIN

Abstract
In this paper we consider a nonlinear parabolic équation of the following
type:
G . _2
{7 2 div{|Vu|" ¢ Vu) = k{z, u)

with Dirichlet boundary conditions and initial data in the case when 1 <
p< 2

We construct supersclutions of ('P), and by use of them, we prove that,
for t, — oo, the solution of (P} converges to some solution of the elliptic
equation associated with {P).

0. Introduction

This is the second part of a work concerning the existence and asymptotic
behaviour of bounded non negative solutions of the following problem:
%—Apu—h(x,u)=0inﬂxﬁ+
(0.1) PN ulz, i) =0in I xRy
u(z, 0} = up({z) in Q2

where Aju = div{|Vu[P~? Vu)}, 1 < p < +oo and 1 is a regular open subset of
RN N >1.

These problems arise from nonnewtonian fluid mechanics for 1 < p < +oo
(I3]), and from glaciology for p = & ([2]). In the first part ([5]), we were
concerned with the case p > 2 and have proved that if P(£2) admits a uniform
supersolution with spatially bounded support which is independent on 7', then
the orbits are compacts and any w in the w-limit set:

wug) = {w € Wy P(§1y N L(R) |3¢n s 400 U, tn) — win Wg'p(si)}
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is a solution of the elliptic problem associated with P(2). Here, we study the
case 1 < p < 2 and obtain similar results in the case when

In addition, we give in this paper the justification of the formal derivation of
the regularized equation associated with {0.1), by means of finite dimensional
problems. That was not done in [5]. We also show the following regularizing
effect:

]Vu|r§—2§Vu € L? (to, +oo; L) .

Existence and regularity results can be found in Tsutsumi [18], Nakac [13],
Diaz and Herrero [3]. Stabilization results are obtained by Otani [15] for the
one dimensional case and by Langlais and Phillips [8] for a problem closely
related to P(f2) and including the case p = 2. But they do not prove the
compacity of the orbits. ANl our results for p > 2 were however extended to the
case of a system by Elouvardi and de Thelin [6] when 2 is bounded.

As in [5] our technique is based upon a comparaison principle and the con-
struction of supersolutions. Some proofs already made in [5] are omited here.
So we refer the reader [5] for completeness.

In the first section of this paper we give some preliminarics and state the
main results. The proofs are given in section 2 and section 3 is devoted to the
justification of the formal derivation.

1. Preliminaries and main results

1.1. Preliminaries. In all this paper {2 stands for a regular open subset
of R and may be unbounded. Let & be an application from RV*! to R such
that:

(1.1} heC(Tt xR and h{z,0) > Cforany 2 € Q
and, for any M > 0, there exists Kjps > 0 such that:
(1.2) hz,u) — h{z,v) < Kp{u—2) VzeQ, Vu,2:0<v<u< M.

Note that {1.2) is satisfied if for some A > 0, & — AT is nonincreasing.
First we recall some notations and definitions used in [5]:
For T > 0, .
Qr = x[6,T), Sy = 892 x [0,T)
and for B> 0
Qr=0nB(,R).
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F(Vu) = |VuP~?Vyu with 1 1< p <2
Apu = div(F(Vu)).
Let w be given in L*(0,T; WLP(Q)); we say that v > 0 in St [resp. u =
0 in S7| iff
(—w)4 [resp. u] € L0, T; Wy'® N L®(51).
Let uo be given such that:

(1.3) up € Wy (@) N L™()

we say that u is a solution of P(2) in Qr [resp. @ is a supersclution of P(£1)
in Q] iff:

(1.4) ufresp. @] € L0, T; WIP(Q) N L2(5))
du ] 2
{1.5) B [resp‘ E] e L(Q+)
_ Bu . . .
(1.6) Au= 5 Apu — h{z,u) = 0 in Qr [resp. A4 >0in Q]
{in the distribution sense)
(1.7) u = 0[resp. & > 0] in St
(1.8} ul.,0} = ug fresp. @(.,0) > uo) in 2.

We say that u € L*®(Qr) [resp. 4 € L°{)] has a spatially bounded support
in Qr [resp. has a bounded support in 2] iff there exists R > 0 such that:

Supp u C g X [0,7T) (resp. Supp u C Op).
Let 1 be a supersolution of P(Q2) in ¢ for any T > 0. We say that 4 is a
uniform supersolution with spatially bounded support iff there exists Ry > 0

and M > 0 both independent on T such that:

Supp & C g, x Ry
||| oo @y = M{T) < M.

Supersolutions are very useful in our problem owing to the following comparison
principle. :
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Theorem 0. (5] Suppose that f satisfies {1.1) and {1.2), that ug and 4o
satisfy (1.8) and that u and @ satisfy (1.4} and (1.5). If

u(.,O) =up X dg = ﬁ{,O) in
< din Sy
Au < Aft in Q {in the distribution sense).

Then u <4 in Qr.

1.2, Main results. First we give some sufficient conditions for existence of
supersolutions of P(£2).

Theorem 1. Let 1 < p < 2 be given.

Ifup € Wo P (INL®() has a bounded suppori and if there exisis A > 0, 4 >
0,0 >0, Rg > 0 and vy, v €]0,p — 1| such that:

(1) For any = € Qp, and eny u € Ry : flz,u) < p+ Iu™.

(it} For any x € §, |z| > Ry and for any v € B, flx,u) € —gu”.

Then P(QY) has e nonnegative uniform supersolution with spaticlly bounded
support.

Theorem 2. (Existence) Let 1 < p < 2,7 > 0 and up € Wy P() N
Lo(2), up > 0 be given. Suppose that h satisfies (1.1} and (1.2) and that
P(Y) admits a nonnegaiive supersoluiion i with spatially bounded support in
@r. Then P(§?) has a unique solution u in Qr satisfying:

0<u <t in Q.

Remark 1. Theorem 2 extends some of Nakao's results [12] when Q is
unbounded and generalizes Diaz-Herrero®s results {3] in the case when A may
be nonmonotone.

When h{z,u) = [u|""!u, by use of Theorem 1, we can find again Tsutsumi's
results [18].

Corollary. {Semi-group property) If the hypothesis of Theorem 2 are satis-
fied, P{Q) generates a continuous semi-group on L(Q).

Theorem 3. (Regularizing effects) Let 1 < p < 2, up € Wé"’(Q} M L)
be given.

Suppose that h sotisfies (1.1} and (1.2) and that P(}) has a nonnegative
unform supersolution & with spatially bounded support. Then for any to €]0, 1],
the solution u of P(§) saiisfies the following regularity estimates:

(1.9) ?9_? € L? {to, +00; L3(Q)) N L™ (to, +00; LE{Q))
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_2 3
(1.10) |vu|’é—5w € L% {tg,+00; L* ()

and for any p such that

(1.11) <p<?2

N+2
there ezists some o : 0 < ¢ < 1 such thet

(1.12) u € L™ {t, +00; BLF7(Q)}

where BLY*P((2) is a Besov space [16] defined by the real interpolation method.

Let u be the solution of P{{1), we define the w-limit set by:
wlug) = {w € WEP(Q) N L2 (3tn — 00 : (., tn) — w in ng{g)} .

Let £ be the sct of nonnegative solutions w of the elliptic problem:

~-Apw = h{z,w)in
w = 0in &L

Qur main result is the following:

Theorem 4. (Stabilization) Let % < p <2, up € WeP(Q)NL™(SY), uo >
0 be given. Suppose that h satisfies (1.1} and (1.2} epd that P(Q2} has o nonneg-
ative uniform supersolutions 4 with spotially bounded support. Then w(ug) # ¢
and w{ug) C €.

Remark 2. In some cases [4], {10], [L1] £ contains at least one nontrivial
element w; if in addition we can construct some subsolution u Z 0, u > 0 of
P(Q) {see [B, corollary of Theorem 4 for sufficient conditions]), then w{uo) =

{w} and limu(.,t) = w.

1.3. Examples. Theorems 2, 3 and 4 apply to the foliowing examples:
1) §1 is a nonnecessarily bounded set and

h(z,u) = g(z)(1 +v*)?
where 0 < v < p— 1 and g € C{{1) satishes:
gy < —o<Oforanyz e, jz] > Ro > 0.

{Apply Theorem 1}.
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2) €1 is a bounded set and
Mz, u) = g(z) Ju"tu

where y 2 1, (y + 1)(N —p) < Np, 9 € C(QQ), lgllze = 0 and ug < w, w €
WOI"’{Q) being a nontrivial solution of the equation [17]

—Ayw = olw|" 'w in Q.

3} is a bounded set and A € C(? x R) is any function such that h(z,0) =
0, v — h(x,u} is 2 non increasing function and h(z,u) <0 foru> M > 0.

4) Q2 is a bounded set, 0 < up < 1, o € () satisfies 0 < a{z) € 1 and

h(z,u) = u{l — w){u — a{x)).

2. Proofs of the main results

2.1. Sketch of the proof of Theorem 1: Let My = loll Lo g2y, let R be such
that supp up C {2z, and R = max(Ro, Ry} Define & by 4(z,t) = @{r) where
r = |z| and: )

ar? +hfor0<r <R

ar+dfor R<r< Ry
K{Ry—ry" for Ry <t < Ry
Oforr> Ry

p(r) =
with m = p_—%r > 1.

As in [5] straithforward considerations enable us to choose the constants
a, b, & 8, K, R), Rp so that & be a uniform supersolutions of P(Q2} in Qg is
for any T > 0. Whence Theorem 1 is proved. B

2.2. Proof of Theorem 2: Let T > 0 be given and consider R > 0 such that
Supp # C Nz x [0, 7).
Let w and w' be bounded regular open sets such that:
QNQrcw CcQNT cwc

Note g7 = w x [0,T] and Sy = 8w x [0, 7.
It is well known {see for instance (8]) that there exists a sequence h. €
CH x Ry ) such that:

fe \ h uniformly ase — 0, and for any g > 0
ke (z,u) < Kprqzy, he(z,0) 2 0
he{z,w) =0 if u 2 3m{T)
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on the other hand, let {ug:) C D{w}, 0 < uge < M{T), be such that uge — up
in Wy {w).

From (7, pp. 457-459], for each £ > 0, there is a unique classical solution
ue € C(Gp) DCQJ(QT) of:

Agu, = 2 ac — Afue — he(z, %) =0in Qr (2.1}
B.{w) {uz(a: £} =0in sp (2.2
ue{x,0) = upe (z) In w {2.3)

where ASus = div Fo (Vae), FoVte) = (| Vuel® + €)™F Vaie.

Remark 3. Hereafter C{M(T)) stands for any constant which depends only
on M{T). In the case when P{{) has a nonnegative uniform supersolution,
C{M{T}) does not depend on 7',

We have the following:

Lemma 1. There ezists C(M{T}) such that for any £ €0, 1.

(2.4) ate | oo gy < CLM(T))
(2.5) el Lo (0, T W5 P {w)) < C(M(T))
S, '
(2.6) < C(M(T)).
0t Nl L2(ary

Proof: {0 and 3M({T) are respectively subsolutions and supcrsolutions of
P.(w); hence by Theorem 0, we have:

0 < u. < 3M(T) in gpr whence (2.4).
By the properties of k. we have that h.(.,u.) is bounded in gr. This implies
that H, defined by H.(z,u) = f he{z, ) dv satisfies
0
|He{., ue)l < C{M(T))
whence:

[ helaud Gedz = [ Haouels ) Bl 0Dde < COM(D),

Yri0<r<T
Multiplying (2.1} by %% and integrating on g, we get:

'BUQ = N2 p/?
]q, ( at) d;-:dt%—p/w(quE(.,TN +e) " dz

< %/w {|Vue(., 0 +e)”’2 dz + C{M(T)).

By Holder ineguality, u.(.,0) converging to u(.,0) we get
/ (IVuel., 0 + &)”% dz < CLM(T))
whence (2.5) and (2.6) hold. B
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Lemma 2. P(w) has o unigue solution u satisfying:
0<u<dingp.
Moreover ue converges strongly to u in LP{0, T, W1 P{w)).
Proof: By {2.4), (2.5), {(2.8), there is a subsequence denocted again by wu.
which converges to u in weak *L%(0,T; Wo'P{w) N L®(w)) and in weak
LP(0,T; Wy P(w)) such that %";‘- converges to %:— in weak L*(gr) and AN TR

converges to x in L¥ (0, T; W17 (w)).
Moreover, multiplying (2.1} by u., we have:

-2
(2.7} EEE[ (|Vu€|2+s)%|Vu€|2dmdt
qr
:/ uahs(.,ue)d:cdt+%fuf(‘,o)dx— %/uf(.,T)dz
qT W w?

uche being bounded, the same argument that (8, p. 160] shows that u (., T}
converges to u(., T} in weak L?{w) and therefore:

(2.8) limsup — / w2, T < — / uw?{.,T).
e—{ Lt W
Moreover, by lemma 1, u. is bounded in the space:
1,p dv
W= {v e PO, Ty Wo ")) 5 € EPar)

and by [9, p. 58}, u. converges to u in strong LP{gr). By (2.7}, {2.8) and the
use of the dominated convergence theorem we obtain;

T
limsupE. s/ uh(.,u)dxdt+%/u§dx— %/ﬁ(.,ﬂdz:/ (—x, ).
w e 0

£—0 g

By standard monotonicity argument [9, p. 160], x = Ayu; so u is a solution of
P{w} satisfying 0 < u < @ and we have:
£—0

{2.9) lim supF; 5/ |VulPdz dt.
qr

Now, for any m > 0, we define:

£
arm = {(5,0) € r + [Vl 1) > =
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we getl:
— 2=2
/ Ve [Pdw dt < (1 + m)%-zf Vel + €)' | Ve 2z
T, m qr.m
whence:

/ |V |Pde di < (i)p meas {gr) + (1+ m)z_%EEe
qr m

with (2.9), we therefore obtain for any m > O

limsupj [V |Pdrdt < (14 m)z%‘g/ |Vu|Pdz di
qr T

E—Do
whence

(2.10) lim sup|| Ve | < [|Vulf
=)

where X = L?(0,T; WP (w)) is an uniformly convex space. So (2.10) and weak
convergence of u. to u imply strong convergence of 4. to v in X. W

End of proof of Theorem 2: The supersolution # vanishes in {(w\Q2g) x [0, T}
and, by lemma 2, u has the same property; so we can extend » by 0 out of w
and we get a unique solution of P(§2} notes also by u and satisfying:

0<u<Ltingr. K

Proof of Theorem 3: Straightforward calculations give:

3
EFE(Vue) =

72 = 8
(|V’u,.;!2 + E)Lr %Vug +{p—2) (|V'ug|2 + S)Lr (Vug : é-t-Vus) Vue

whence:

2

(2.11) EFs(v—uz +

at

(p-2) ((Vuc? +&)F" (we%w) > (p-1) (Vult +)

Vue = {|Vu:* +¢) F_’_ ‘&Vue

)8t

On the other hand, by formal derivation of {2.1) we get:

2
Oue dlv Fo(Vu) = 0 he(:r Ug ).

(2.12) o 5
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Multiplying (2.12) by 5 Q‘-“- and integrating, we get with {2.11}:

18
25t

aue

(2.13) i

(t)

+(p—1)f([Vus|2+E "T’ Vus

<K/(3u5) dz

L2(w)

Furthermore by (2.6), there exists £, €]0, #g[ such that:

Integrating (2.13) on (¢, T we get with {2.6) and remark 3:

2
e,

A,
g \te)

3t( t)

dt < C < 40,
LE{w)

L2(w) tﬁ

2

(2.14) —‘8”‘5( T) +(p—1)] / (IVue)? + ) = 6Vu€ dzdi

L2(u) to at

Ot 8“5 2
<K f ddt — (. te) < C < +oo.

L 3t a 2

€ L2(ew}
From lemma 2 we deduce that
(2.15) Vi, — Vu ae on gy,
By {2.14) we obtain for any T > 0

aue
(2.16) { T < < too
L3w)
and
a2 8
(2.17) |V | T = Ve < C < 400
at L2{[to, T} 3w}

From (2.16) we get:

(T) < < oo for any T > ¢,

L3{w)
Thus by (2.6) and remark 3 we get:
du oo 2 2 2

(2.18) — € L%, +o0; L (w)) N L¥{tg, +o0; L{w)).

ot
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Furthermore by {2.15) and (2.17) we have:

<C<tooforany T > 0.

kuﬁ%’*—a—w
Al L2 (o, Tixw)

Therefore
252 0 2 2
{2.19) |Vu| é—tVu € L¥{ta, +00; L*(w}).

Thus (1.9) and (1.10) hold respectively by (2.18) and (2.19), because u vanishes
on {{™\&) x Ry
On the other hand, by (1.11} there is some &', 0 < ¢’ < 1, such that

L) > WP (Q),
Simon’s regularity results [17] concerning the equation:

Bu

L® BT PH(R
5 € L7 (0, +00, BT P ()

—Apu = hiz,u) -
then give for any i
i Ol ooy < € B0 — 22,8 L
B ey = A TS

where C' and C' do not depend on ¢; whence {1.12) holds. &

Remark 4. The compactness of the embedding
Bgfl—ﬂ')(l—;’)z,p(g} C WP(Q)
ensures the compactness of the orbit

wlug) = {w € wP() N L® L)/ 3t — 0 : ul,t,) — w in Wa ()}

Proof of Theorem 4 and its corollary:

a) wlup) # ¢ because supp u C wx Ry and BFoP{w) is compactly imbedded
in Whe(w).

b) Let w = lim, o u(., ) € wlup), we get we &.

The proof of this, as well as the proof of corollary is the same as in [5] and
is omited. B '
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3. Justification of the formal proof in section 2

Let (w;) be a basis of W;'P(§2) consisting of Cg°(§2)-functions. For ¢ > 0
given, we seek a sequence of functions u,, such that

U = Zg}-m(t)wj and u,, — 4, in Wal'p(ﬂ).
i=1

The g;m(t} being solutions of the following system of ordinary differential equa-
tions:

(U {t), w;) + aclum(t), wy) = (Rl um{th,w;), 1< F < m
um(o) = UQm-

e o)

where: (,,.) is the canonical inner product in L2{2)

T
. 1,
U, = Zozjme- -— yg. in Wy'P(R)
3=1

and a.{u,v) = / Fo(Vu).Vudz for any u,v € Wy P(Q).
Q

We shall use the following notations:
+ForgeN,{=(£,... &) and n=_(m,...,7) in R?

q
En=> &n
=1

0 /2
and )&l = | > I¢; l’*) :
=1

* For any matrix U = (a;;) in M(m, N)

172

m N
el ={ > (ay)®

=1 §=1

# Gt} = {g1m{8), .. ., Gmm(t)) for any t € [0, 7.
* For any x € (&

)

w(z) = (wi(z), ..., wnlz)) and W(z} is the matrix : W{z) = (%) 1<5
i 14

=1

SigN
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+ B is the Gram matrix of the system (w1, ..., Wm)-
* For any £ € R™

0i(©) = [ RW@E)Vus@dz,  1<5<m
and ¢ = (©1,-. -, Pm),
¥,(©) = [ o wle)u,(a) ds
and ¥ = (¥,...,T.,.).
With these relations we have
U (T, 1) = w(z).Gm(t) and
V(2 1) = W(z).Gnm(t).
Now, we go back to {5). Since B is inversible, we can write ($) in the form:
") { L = $(Gm(®))
Grm(0) = 0

where ¢(£) = B [T(€) — p(&)] for any £ € R™ and am = (0t1m,y -+ s Qe }-
We shall prove that (S') admits a unique solution G, in C2(0, T;R™). We
begin by the following:

Lemma 3. Suppose that the hypothesis (1.1}, (1.2} and (1.3) are satisfied
and that §! bounded.

Then (§') admits a unique solution on |0, T,

Proof: Let Fi(z,£) = (W(=}P? + .‘:)‘“‘5‘2 W(z)¢.Vw,(z} and he(z,6) =
he(z, w(z).£) for any z € 2 and £ € R™,

F; and h. are locally lipschitz with respect to £. Thus ¢ satisfies the same
property. This ensures the existence of G, on an interval |0, te[. The estirnates
that follows enable us to have in fact t,, = T. Multiply {3.1) by g;m(t); after
adding from § =1 to j = m, we get:

89 33 (lum@lism) + [ (Vunl+)" [Vun (0 dz
=/ he(., Um ) tim d2.
1]

Since he (7, u) < Kue + Co, where Co = SUD,eq he(z,0), the left hand side of
(3.3) is bounded by

1 1
(K + -2—) ||um(t)!|Lz(g) + 500 meas (Q)
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Whence, by Gronwall's lemma, we get:

(3.4) % oo 0,720y < CLM(T)).

On the other hand, multiplying (3.1) by g;,, and adding from j =1 to = m,
we get:

T i P
(3.5) /@ e ®) oy 2+ fn (Ve (TP +.)"""ds <

z—i/ﬂ(|vum(0)|2+s)”’2dx+/n[ff£(x,um(r)) ~ H,(z, um(0)))dz < C(M)

U
where H,(z, u) =/ he{z, v) du.
0
Whence we obtain the estimate:

386y lum 20,7220 < C{M),

From (3.’5) and (3.6) we deduce:
Um € C(0,T; R™).

Therefors, by classical theory of ordinary differential equatxons sce for example
{1), we get t,,, =T W

Now we have the main result of this section:

Theorem 5.
Gm € C20,T;R™).

Proof: By classical theory of ordinary différential equations it suffices to show
that ¢ € C1(R™,R™).
For any z € 02, we have:

Fi(z,.) € C}@™,R)
and %(z, &) = (IW @)l + &) T Vuwn. Voo, + (p - 2). [

(3.7) (IW(z)E)? + )T (kaVwk th) (ng.vwk.wj). '
k

It’s straithforward that |Vw;| < [[W(z)[| for any 7 : 1 < j < mn; therefore using
Cauchy-Schware ineguality we get:

(38)

% <(|W(I)€|2+E) W @I+ (2-p) (W )2 4e) 5 IW(-’E)EIQIIW(x)II2

< T W ()7 + (2 - p)e™T [ERIW ()],



SUPERSOLUTIONS AND STABILIZATION 361

From (3.8) and Lebesgue’s_theorem, we cbtain:

8};:7( {)EL(Q)foranyh 1<h<mandany £cR

By the same way we get that g—"gf exists and is continuous on R™ whence:
(3.9) @ € CHR™,R™)

On the other hand let A(z,£) = h(z, w{z) )w;(z), we bave:
U0 = [ Ko 6ds
and k! (z,.) € CY(R™,R) for any x € (.
Furthermore:

e = (2, w(z).£)- wnlz)w;(z)| < Klwn(z)[lw;{(z)}.

‘ e}

Thus: g—zé(.,f) e L}Q) forany h,j: 1< h, j <m and any € € R™.
Once again, by Lebesgue's continuvity and derivability theorems, we obtain:

{3.10) ¥ € CHR™,R™).

By (3.9) and (3.10), we get ¢ € C*(R™,R™). The proof of theorem 5 is now
complete. N
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