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Abstract

SUPERSOLUTIONS AND STABILIZATION
OF THE SOLUTIONS OF THE EQUATION

at - div(1VUIp-2 Vu) = h(x,u), PART II

In this paper we consider a nonlinear parabolic équation of the following
type:

A . EL HACHIMI AND F . DE THELIN

óu - div(17uIP -z Du) = h(x, u)at

with Dirichlet boundary conditions and initial data in the case when 1 <
p<2.
We construct supersolutions of (P), and by use of them, we prove that,

for tn - +oo, the solution of (1P) converges to some solution of the elliptic
equation associated with (P) .

0. Introduction

This is the second part of a work concerning the existence and asymptotic
behaviour of bounded non negative solutions of the following problem :

at -

	

pu - h(x, u) = 0 in 9 x R+

P(S2)

	

u(x, t) = 0 in a9 x IR+

{ u(x, 0) = uo(x) in 9

where Apu = div(17uIP-2 Vu), 1 < p < +oo and 9 is a regular open
ION , N > 1 .

These problems arise from nonnewtonian fluid mechanics for 1 <
([3]), and from glaciology for p = NÑ1 ([2]) . In the first part ([5]),
concerned with the case p > 2 and Nave proved that if P(Q) admits a uniform
supersolution with spatially bounded support which is independent on T, then
the orbits áre compacts and any w in the w-limit set :

subset of

p<+oo
we were

w(uo) _ {w E Wó'P(Q) f1 L- (Q) 3t,,, - +oo :. u( ., t,,) - w in Wó'P(9)
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is a solution of the elliptic problem associated with P(Q) . Here, we study the
case 1 < p < 2 and obtain similar results in the case when

2N
N+2 <p<2.

In addition, we give in this paper the justification of the formal derivation of
the regularized equation associated with (0.1), by means of finite dimensional
problems . That was not done in [5] . We also show the following regularizing
effect :

Ivul p22

	

Du E L2 (to,+oo ; L2 (q)) .

Existente and regularity results can be found in Tsutsumi [18], Nal{ao [13],
Diaz and Herrero [3] . Stabilization results are obtained by Otani [15] for the
one dimensional case and by Langlais and Phillips [8] for a problem closely
related to P(S2) and including the case p = 2 . But they do not prove the
compacity of the orbits . All oúr results for p > 2 were however extended to the
case of a system by Elouardi and de Thelin [6] when 9 is bounded .
As in [5] our technique is based upon a comparaison principle and the con-

struction of supersolutions . Some proofs already made in [5] are omited here .
So we refer the reader [5] for completeness.
In the first section of this paper we give sorne preliminaries and state the

main results . The proofs are, given in section 2 and section 3 is devoted to the
justification of the formal derivation .

1 . Preliminaries and main results

1 .1 . Preliminaries . In all this paper 9 stands for a regular open subset
of RN and may be unbounded . Let h be an application from R'V-4-1 to R such
that :

(1.1)

	

hECf xR)andh(x,0)>OforanyxE9

and, for any M > 0, there exists KM > 0 such that :

(1 .2)

	

h(x, u) - h(x, v) < Km (u - v)

	

`dx E 9, V'u, v : 0 < v < u < M.

Note that (1 .2) is satisfied if for some \ > 0, h - .\I is nonincreasing.
First we recall some notations and definitions used in [5] :
For T > 0,

and for R > 0

QT = 9 x [0, T], ST =02 x [0, T],

QR=52nB(0,R) .
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F(Du) = IVUIp-27U with : 1 < p < 2
Apu.= div(F(Du)) .

Let u be given in L°° (0, T;Whp(S2)) ; we say that u >_ 0 in ST [resp . u
0 in ST] iff

(-u)+ [resp . u] E L°° (0, T; Wl , P n L-(g» .

Let uo be given such that :

(1 .3)

	

uo E W.' , P(Q) f1 L- (Q)

we say that u is a solution of F(Q) in QT [resp . ú is a supersolution of R(Q)
in QT] iff:

(1 .4)

	

u [resp . ú] E L°° (0, T ; WI,p(2) n L-(g»

(1 .5)

	

át Iresp . Tt] E L2 (QT)

_ au

at -
Opu - h(x, u) = 0 in QT [resp . Aiu > 0 in QT]

(in the distribution sense)

(1.7)

	

u = 0[resp . ú > 0] in ST

(1.8)

	

u( ., 0) = uo [resp. ú( ., 0) > uo] in 9 .

We say that u E L'(QT) [resp . ú E L°°(S2)] has a spatially bounded support
in QT [resp . has a bounded support in 2] iff there exists R > 0 such that :

Supp u C IR x [0, T] (resp . Supp u C S2R)

Supp ú C QR2 x R+
IIúIIL~cQT~ = M(T) < M.

Let ú be a supersolution of P(S2) in QT for any T > 0 . We say that v, is a
uniform supersolution with spatially bounded support iff there exists R2 > 0
and M > 0 both independent on T such that :

Supersolutions are very useful in our problem owing to the following comparison
principie.
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Theorem 0 . [5] Suppose that f satisfees (1.1) and (1 .2), that uo and fio
satisfy (1.3) and that u and ú satisfy (1.4) and (1.5). If

Then u < fi in QT .

u( ., 0) =uo < fio = fi( ., 0) in SZ
u<fi inST

Au < Afi in 9 (in the distribution sense) .

1.2 . Main results . First we give some sufficient conditions for existente of
supersolutions of P(Q) .

Theorem 1. Let 1 < p < 2 be given.
Ifuo E Wó'P(9)nL-(9) has a bounded support and if there exists A > 0, t >

0, a > 0, Ro > 0 and -yo, -y E]0, p- 1 [ such that :
(i) For any x E S2R,, and any u E R+ : f (x, u) <_ p + Au'y° .
(ii) For any x E 9, Ix1 > Ro and for any u E R+, f(x, u) < -uu'y .
Then P(S2) has a nonnegative uniform supersolution with spatially bounded

support.

Theorem 2. (Existente) Let 1 < p < 2, T > 0 and uo E Wó'P(Q) n
L'(Q), uo >_ 0 be given. Suppose that h satisfces (1.1) and (1.2) and that
P(S2) admits a nonnegative supersolution ú with spatially bounded support in
QT . Then P(S2) has a unique solution u in QT satisfying:

0<u<fiinQT .

Remark 1. Theorem 2 extends some of Nakao's results [12] when 52 is
unbounded and generalizes Diaz-Herreros results [3] in the case when h may
be nonmonotone .
When h(x, u) = ¡u¡-Y -lu, by use of Theorem 1, we can find again Tsutsumi's

results [18] .

Corollary . (Semi-group property) If the hypothesis of Theorem 2 are satis-
fied, P(S2) generates a continuous semi-group on L2 (Q) .

Theorem 3 . (Regularizing effects) Let 1 < p < 2, uo E W¿'P(SZ) n Lw(9)
be given.
Suppose that h satisfies (1 .1) and (1 .2) and that P(Q) has a nonnegative

uniform supersolution ú with spatially bounded support. Then for any to E]0,1[,
the solution u of P(S2) satisfaes the following regularity estimates:

(1 .9)

	

át E
La (to,+co; L2

(S2» n L°° (to,+oo; Lz
(
9

))



Z
(1 .10)

	

Ivu1

	

aat vu EL2 (to,+w ; L2 (9))

and for anyp such that

(1.11)

	

N+2 <p<2

there exists some u : 0 < a < 1 such that

(1.12)

	

u E L°° (to,+oo ; B..°,P(S2))

where B~°,P(S2) is a Besov space [16] defined by the real interpolation method .

Let u be the solution of P(9), we define the w-limit set by :

w(uo) = {w E Wó'P(S2) fl L-.(Q) 13tn -> oo : u( .,tn) -- w in Wó'P(S2)} .

Let £ be the set of nonnegative solutions w of the elliptic problem:

OPw = h(x, w) in 9
w = 0 in ag.

Our main result is the following:
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Theorem 4. (Stabilization) Let iv+2 < p < 2, uo E Wó'P (9)f1L-(9), uo >_

0 be given. Suppose that h satisfies (1 .1) and (1 .2) and that P(S2) has a nonneg-
ative uniform supersolutions ú with spatially bounded support. Then w(uo) =,A
and w(uo) C £ .

Remark 2. In some cases [4], [10], [11] £ contains at least one nontrivial
element w; if in addition we can construct some subsolution u ~t 0, u > 0 of
P(S2) (see [5, corollary of Theorem 4 for suficient conditions]), then w(uo) _
{w} and lim u( ., t) = w.

1.3 . Examples. Theorems 2, 3 and 4 apply to the following examples :
1) 9 is a nonnecessarily bounded set and

h(x,u) = g(x)(1 + u2)2

where 0 < 7 < p - 1 and g E C(D) satisfies :

g(x) <-u<0foranyxES2, Ix1>Ro>0.

(Apply Theorem 1) .
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2) 2 is a bounded set and

h(x,u) = g(x) ¡u¡"-1U

where y > 1, (y + 1) (N - p) < Np, g E Cf), II9II L- = o, and uo < w, w E
Wó'P(S2) being a nontrivial solution of the equation [17]

-APw = ulwi'Y -1w in S2 .

3) 52 is a bounded set and h E C (S2 x IR) is any function such that h(x, 0) _
0, u -> h(x, u) is a non increasing function and h(x, u) < 0 for u > M > 0.

4) 9 is a bounded set, 0 < uo < 1, a E Cf) satisfies 0 < a(x) < 1 and

h(x,u) = u(1 - u) (u - a(x)) .

2 . Proofs of the main results

2.1 . Sketch of the proof of Theorem 1 : Let Mo = IIuo1IL-(P), let Ró be such
that supp uo C PR ó and R = max(RO, Ró) . Define ú by v,(x, t) = W(r) where
r = Ix1 and :

with m =

	

P

	

> 1 .P_1_7

arP * +bfor0<r<R
_ ar+0forR<r<R1

~P(r)

	

K(R2 - r)_ for Rl . < r < R2
0forr>R2

As in [5] straithforward considerations enable us to choose the constants
a, b, a, Q, K, R1, R2 so that ú be a uniform supersolutions of P(S2) in QT is
for any T > 0 . Whence Theorem 1 is proved .
2.2 . Proof of Theorem 2: Let T > 0 be given and consider R > 0 such that

Supp v, C DR x [0, T] .

Let w and w' be bounded regular open sets such that :

S2naRCw'CQnW'CWCQ.

Note qT = w x [0, T] and ST = áw x [0, T] .
It is well known (see for instance [8]) that there exists a sequence hE E

C 1 (S2 x R+) such that :

h E \, h uniform1y as e - 0, and for any e > 0
ah F
au (x, u)

	

Km17, ), hE (x, 0) ? 0
hE (x, u) = 0 if u > 3m(T)
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on the other hand, let (uoE) C D(w), 0 < uoE < M(T), be such that uoE ,.uo

From [7, pp . 457-459], for each e > 0, there is a unique classical solution
uE E C(4T) nC,1(gT) of:

AEu, = áe - A'u, - hE(x,uE) = 0 in QT	(2 .1)
PE (w)

	

UE (x,t) = 0 in sT

	

(2.2)

{ u,(x,0) = uoE (x) in w

	

(2.3)
2

where D'u, = div F, (7u,), FE(Vu,) = (1DUE 12 +e)~VUE .

Remark 3. Hereafter C(M(T)) stands for any constant which depends only
on M(T). In the case when P(Q) has a nonnegative uniform supersolution,
C(M(T)) does not depend on T.
We have the following:

Lemma 1. There exists C(M(T)) such that for any e E]0,1[ .

Proof.. 0 and 3M(T) are respectively subsolutions and supersolutions of
PE (w) ; hence by Theorem 0, we have :

0 < uE < 3M(T) in qT whence (2.4) .
By the properties of hE we have that h,( ., u.) is bounded in qT . This implies

that HE defined by HE (x, u) =

	

pu
hE (x, v) dv satisfies

J0

whence :
1H,(.,uE)I <_ C(M(T))

~ThE(x,uE)atedx= [HE( .,uE(.,T))-HE(.,0))]dx<C(M(T)),
q

Multiplying (2.1) by u and integrating on qT we get :
2

C auEl

	

dxdt+ 1 f (IDuE ( ., T) 12
+E) p/2 dx

qT at

<
p
f (IVUE(.,0)12 +e)pl2 dx+C(M(T)) .

By Hdlder inequality, u,( ., 0) converging to u( ., 0) we get

J
(1VUE(.,0)12+e)p/2dx < C(M(T))

whence (2.5) and (2.6) hold .

d-r : 0< ,r<T.

(2.4) IIuEI~L°° (9T) < C(M(T))

(2.5) IIUEIIL~(o,T;wó. P(~,)) <_ C(M(T))

(2.6)
~~ at,

< C(M(T)).
L2

(qT )
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Lemma 2 . P(w) has a unique solution u satisfying :

0<u<úingT.

Moreoveru, converges strongly to u in LP(O,T;WI,P(w)) .

Proof.. By (2 .4), (2 .5), (2 .6), there is a subsequence denoted again by uE
which converges to u in weak *L'(O,T;Wó'P(w) fl °°(w» and in weak
LP(O,T;W0'P(w)) such that áe converges to áé in weak L2 (gT) and A' u,,
converges to X in LP. (0, T; W- 1,P* (w)) .

Moreover, multiplying (2.1) by uE , we have :

2(2.7)

	

EE - f
9T

(1DUE 12 +e) IVU E 1 2dxdt

u, h, being bounded, the same argument that [9, p .

	

160] shows that u,( ., T)
converges to u( ., T) in weak L2 (w) and therefore :

(2 .8)

	

limsup-f u2 ( ., T) <
-f

u2 ( ., T) .
E-.0 fJ

	

LJ

Moreover, by lemma 1, uE is bounded in the space :

W = ( v E LP(O,T;W01'P(w)) ;
ót E LP(gT)~

and by [9, p. 58], uE converges to u in strong LP(gT) . By (2.7), (2.8) and the
use of the dominated convergente theorem we obtain :

T
lim supEE < f uh(., u)dx dt + 1f uádx - 1f u2 ( ., T)dx

	

u).
E-.0

	

qT

	

2 W

	

2

	

o

By standard monotonicity argument [9, p . 160], X = APu ; so u is a solution of
P(w) satisfying 0 < u < ú and we have :

=f uEhE( ~uE)dxdt+ 1 1U 2 ( .,0)dx
-

9T

	

2 w

(2.9)

	

lim supEE <

	

1Vul Pdx dt .
E-0 f9T

Now, for any m > 0, we define :

qT,,n _ { (x, t) E qT : IVUE (x)
t)12

> m J

1 f U2 ( ., T)dx
2 ~,



we get :

whence :

whence

(2.10)
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2
Ivu,IPdxdt <_ (1+m) 22P

	

(IvuE l 2 +e)

	

IVUE 1 2 dxdt
qT.,n

	

qT,-

I vu E IPdx dt < ( ~)
P
meas (qT) + (l + m)

	

EE
qT

	

- m
with (2.9), we therefore obtain for any m > 0 :

lim sup

	

IvuE I Pdx dt <_ (l+ m) 22" 1

	

lvuI Pdx dt
E-0 qT

	

qT

limsupllvu E JIP < 11vulip
E-.0

where X = LP(O,T ; WO'P(w)) is an uniformly convex space . So (2.10) and weak
convergente of uE to u imply strong convergente of u E to u in X.

End ofproof of Theorem 2: The supersolution ú vanishes in (w\QR) x [0, T]
and, by lemma 2, u has the same property ; so we can extend u by 0 out of w
and we get a unique solution of P(Q) notes also by u and satisfying:

0<u<úingT .

Proof of Theorem 3 : Straightforward calculations give :

UtFE(vuE) -

(1VUE1 2 +e)
p22

~tvu,+(p-2) (IvuE l 2 +e)
~_ Cvu,-

~t vu,) vu,

whence :
p-2 a ~2

(2.11)

	

8 FE (vuE)

	

ávuE = (IvuE 12 + E) 2

	

at
vuE

	

+

22

	

2

(p-2) (IvuEl2+E)p2
4

vu, at vuE) >- (p-1) (IvuEl 2 +E)

	

9 vuElat

	

l

On the other hand, by formal derivation of (2.1) we get :

2
(2.12)

	

át2E -
diva F, (vu.) = a h,, (x, u.)
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Multiplying (2.12) byat and Integrating, we get with (2.11) :

2

	

2

	

~

	

á

	

~ 21 a auE	¡

	

p-
(2.13)

	

2 át II ~t (.' t) I

	

z

	

+ (p
-1) J

	

(wUE l 2 + E) ~ at vuE

	

dx
L (W)

<K
f (
t

)
2dx

Furthermore by (2.6), there exists tE E]0, to [ such that :

2

	

fl, ~~~l 2

atE (;

	

~~
te)

L2 w - to	á~(''t)

	

2

	

dt < C < +oo .
()

	

L (W)

Integrating (2.13) on [t,, T] we get with (2.6) and remark 3:

2

	

T

	

2

	

2
(2.14)

	

2

	

atE ( ' T)

	

z

	

+ (p -1) J

	

f (1 VUE 1 2 +

	

2

	

e vuE l

	

dx dt
L (~)

	

to w

< KJ TJ

	

(
at

	

2
dx dt + 2 I

atE
(.,te) 12

Z

	

< c < +oo.
tE w

	

L
(w)

_

From lemma 2 we deduce that

(2.15)

	

vu,

	

> vu a.e. on qT .

By (2.14) we obtain for any T > 0

(2.16)

	

~ ~
a(

., T) I ~

	

< C < +oo
L2 (W)

and

(2.17)

	

vu,I 'Ii2 ávu, I

	

<C< +ooá
L2([tojlxw)

From (2.16) we get :

II~t( .,T)I
z (W)

<C<+ooforanyT>to .
L

Thus by (2 .6) and remark 3 we get :

(2.18)

	

8t EL°°(to,+oo;L2(w))nL2(to,+oo;L2(c~)) .



Furthermore by (2.15) and (2.17) we have :

Therefore

then give for any t :
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IIVu,á7ull <C<+ooforanyT>0.
at LZ([to,T]xw)

(2.19)

	

1 Vul %-2
~t
Vu E L2 (to, +oo ; L2(w)) .

Thus (1.9) and (1 .10) hold respectively by (2.18) and (2.19), because u vanishes
on (SZ\w) x R+ .

On the other hand, by (1 .11) there is some u', 0 < u' < 1, such that

11uG1t)11B11G-X1)(1-P)ZIPA < C

ensures the compactness of the orbit

L 2 (9) c_j 1,1/ -,' ,p` (Q) .

Simon's regularity results [17] concerning the equation :

-OPu

	

h(x,
u)

	

8t E L'(to, +oo ; Boó_

	

_

	

',P. (g))

h( ., u) -
áu

( ., t)

	

+C'
at

	

B~~ ~

	

P.

where C and C do not depend on t ; whence (1.12) holds .

Remark 4. The compactness of the embedding

B~(1-Q)(1_P)2,P(Q) C W1,P(9)

w(uo) = {w E wó ,P(Q) n L- (P)/3t, , oo : u( ., t.,) - w in Wó'p(9)} .

Proof of Theorem 4 and its corollary:
a) w(uo)

	

because supp u C w x R+ and B~

	

(w) is compactly imbedded
in W1,P(w ) .

b) Let w = lim,+,, u( ., t,) E w(uo), we get w E E .
The proof of this, as well as the proof of corollary is the same as in [5] and

is omited .
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3 . Justification of the formal proof in section 2

Let (wj) be a basis of W0'P(Q) consisting of Có (S2)-functions . For e > 0
given, we seek a sequence of functions u�, such that

* For any x E 52 :

u,,,, = 57 gj�, (t)wj and u�,

	

> u, in Wó'P(S2) .

The gj,,(t) being solutions of the following system of ordinary differential equa-
tions :

(3.1)

	

(S)~
(U'(t),wj)+a,(u,,.(t),wj) = (h, ( ., u,(t)),wj), 1 < :7 :5 m
u,(0) = uo,

where : ( ., .) is the canonical inner product in L2(9)

uo~ = wj -> uO, in W01,P(S2)

and a, (u, v) =
f2
F.(Vu).Vvdx for any u, v E Wo'P(SZ) .

We shall use the following notations :
* For q E IN1, ~ = (~1, . . . , Sq) and 77 = (771, . ., 17,,) in Rq

q

1- 77 = 1: SJrfj
j=1

and 111 =/'\ ~ I1j ~2

\j=1

* For any matrix U = (a¡.,) in M (m, N)

N
1/2

ra

(ajj )

* G�,,(t) _ (gl�,(t), . . . . g�,,�.,,(t)) for any t E [0, TI .

w(x) _ (w1(x), . . .,w�,,(x)) and W(x) is the matriz : W(x) = Caw~J1<j<~m,
axti

	

1<á<N
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* B is the Gram matrix of the system (wl, . . . , w�b) .
*Forany1ER'

wj () _

	

FE(W(x)j) .Vwj (x) dx,

	

1 < j < m

and cp = (~PI,

	

. . , cpn,.),

,I`,(O = L h. (x,w(x) .~)wj(x) dx
sz

With these relations we have

u �.(x, t) = w(x).G.(t) and
Du �,,(x,t) =W(x).G �,,(t) .

Now, we go back to (S) . Since B is inversible, we can write (S) in the form:

(S,)~

d

	

_ O(G,r,,(t))

G�,,(0)

where 0(1) = B-1 [lP(j) - cw(1)] for any ~ E R'L and a �,, = (al�, ) . . . , a�,�,,) .
We shall prove that (S') admits a unique solution G n in C2 (0, T ; Rm) . We

begin by the following :

Lemma 3. Suppose that the hypothesis (1 .1), (1 .2) and (1.3) are satisfied
and that 9 bounded.
Then (S') admits a unique solution on ]0, T[.

Proof. Let Fj (x, j)

	

=

	

(1W(x)t i2 + e) %-2 W(x)j.Owj (x) and hE (x, l)

	

_
h, (x, w(x) .j) for any x E SZ and ¿ E H'.

Fj and hE are locally lipschitz with respect to 1 . Thus 0 satisfies the same
property. This ensures the existence of G� ,, on an interval ]0, t�, [. The estimates
that follows enable us to have in fact t�, = T . Multiply (3.1) by gj,,,(t), after
adding from j = 1 to j = m, we get :

(3 .3)

	

2 dt (JIU.(t)II~2(n)) +L (IVu~12 +e) '2 IDu�,,(t)1 2 dx

=

	

hE ( ., u,,, ).u. dx.
sz

Since h, (x, u) <_ Ku, + Co, where Co = SupyEn h,(x, 0), the left hand side of
(3.3) is bounded by

(K
+ 2) JIU.(t)IIL2(9) + 2 Go

meas (S2) .
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Whence, by Gronwall's lemma, we get :

(3 .4)

	

IIumIIL-(O,T;L2(9» <_ C(M(T)) .

On the other hand, multiplying (3.1) by gj �, and adding from j = 1 to j = m,
we get :

(3.5)

	

f

T

Ilum(t)Ili2(Q) dt+ pf (Iou,(T)1 2 +e)Pl2 dx <

11f (IVu~(0 )I 2 +e)p/2 dx+ f [HE(x,u,(T))-HE(x,u.(0))]dx<C(MI)

where HE(x, u) =f

	

hE (x, v) dv .
0

Whence we obtain the estimate :

(3 .6)

	

IIUM.IIL2(o,T;L2(n» < C(M) .
From (3.5) and (3.6) we deduce :

u�,, E C(O,T ; RM).

Therefore, by classical theory of ordinary differential equations, see for example
[1], we get t�,, ='T .
Now we have the main result of this section :

Theorem 5.
G~ E C2 (0, T ; R-) .

Proof. By classical theory of ordinary différential equations it suffices to'áhow
that

	

E CI(IR-, , R-) .
For any x E 52, we have :

Fj(x,) E C I (R- , R)

and
aEh

(x, ) _ (IW(x)~12 +E) 2 VWh.7w; + (p - 2.) .

(3 .7)

	

(IW(x)f +e) -24
1

:~kVwk .Vwh
/
C~Wk7WOw,

/(

	

.
k

	

k

It's straithforward that I Vwj I _< II W (x) II for any j : 1 <_ j < rn ;
Cauchy-Schwarz inequality we get :

therefore using

(3 .8)

eh
:5 (IW(x)f+E)-IIW(x)11 2 +(2-p)(IW(x) I 2+e)LIW(x)~I2 IIW(x)II

< E
p22

[W(X)112 + (2 - p)E
P24

l~1 2 II W(x)II 4 .
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From (3.8) and Lebesgue's.theorem, we obtain:

~'h
( ., ~) E LI (S2) for any h : 1 < h < m and any ~ E R.

By the same way we get that a' exists and is continuous on R' whence:

(3.9)

	

cp E C' (R-, R-)

On the other hand let hE(x, j) = hE (x, w(x) .~)wj(x), we have :

Furthermore :

i () _
f9

hÉ (x, ~) dx

and M (x, .) E Cl(R', R) for any x E Q.

,9hh (x,) =

	

auE (X' w(x) .~) .wh(x)wj(x) <_ KI wh(x) IIwj(x) I

Thus : h(., ~) E L' (Q) for any h, j : 1 < h, j < m and any 1 E R' .

Once again, by Lebesgue's continuity and derivability theorems, we obtain :

(3.10)

	

p E CI(R-, R-) .

By (3.9) and (3 .10), we get

	

E Cl (Rm, Rm) . The proof of theorem 5 is now
complete .
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