CONVERGENCE OF THE AVERAGES AND FINITENESS OF ERGODIC POWER FUNCTIONS IN WEIGHTED L¹ SPACES

PEDRO ORTEGA SALVADOR

Abstract

Let (X, \mathcal{F}, μ) be a finite measure space. Let $T: X \longrightarrow X$ be a measure preserving transformation and let $A_n f$ denote the average of $T^k f$, $k = 0, \ldots, n$. Given a real positive function ν on X, we prove that $\{A_n f\}$ converges in the a.e. sense for every f in $L^1(\upsilon d\mu)$ if and only if $\inf_{i\geq 0} \upsilon(T^i x) > 0$ a.e., and that the same condition is equivalent to the finiteness of a related ergodic power function $P_r f$ for every f in $L^1(\upsilon d\mu)$. We apply this result to characterize, being T null-preserving, the finite measures ν for which the sequence $\{A_n f\}$ converges a.e. for every $f \in L^1(d\nu)$ and to prove that uniform boundedness of the averages in L^1 is sufficient for finiteness a.e. of P_r .

1. Introduction

Let (X, \mathcal{F}, μ) be a finite measure space and let $T : X \longrightarrow X$ be a measure preserving transformation. For every measurable function f on X we consider the averages

$$A_n f = (n+1)^{-1} \sum_{j=0}^n T^j f$$

where $T^{j}f(x) = f(T^{j}x)$, the maximal operator

$$Mf = \sup_{n \ge 0} A_n |f|$$

and the power function

$$P_{r}f = \left(\sum_{n=0}^{\infty} |A_{n+1}f - A_{n}f|^{r}\right)^{1/r} \qquad (r > 1).$$

This research has been supported by C.A.I.C.Y.T. Grant (PB85-0434).

In [7], Martin Reyes and A. de la Torre characterized the positive measurable functions v such that $\{A_n f\}$ converges a.e. for all f in $L^1(v d\mu)$ as those functions that verify

(1.1)
$$\inf_{i>0} v(T^i x) > 0 \text{ a.e.}$$

(see also [15] for a ratio theorem).

Section 3 of this note is devoted to give a simpler proof for this result and to prove a similar theorem for P_r . It is seen that condition (1.1) is also valid for P_r . The main tools we use are Nikishin's theorem and conditional expectations which solve the problems derived from the non-invertibility of the transformation. These technics have been recently used to solve the problem of the convergence of the averages for p > 1 (see [8]).

As a previous result, we have to state the weak type (1, 1) for P_r . This question was solved in [17] by Yoshimoto. Our approach is different, but suitable for our purposes. It was also treated in [5] and [11], but under more restrictive conditions.

Finally, in section 4 we work with a null-preserving transformation T and characterize the finite measures ν for which the sequence of the ergodic averages $\{A_n f\}$ converges a.e. for every $f \in L^1(d\nu)$ as those measures with the property: there exists a measure γ equivalent to ν such that

$$\gamma(\{x \in X/Mf(x) > \lambda\}) \le \lambda^{-1} \int_X |f| \, d\nu$$

for every $f \in L^1(d\nu)$.

In [13], Ryll-Nardzewski characterized the finite measures ν for which the ergodic averages $\{A_n f\}$ converge a.e. to a L^1 -function for every $f \in L^1(d\nu)$ as those measures that verify Hartman's condition: there exists a constant K such that

$$\limsup_{n} n^{-1} \sum_{i=0}^{n-1} \nu(T^{-i}E) \le K\nu(E)$$

for every set E.

Our result is different from the Ryll-Nardzevsky's one, because we allow the limit function not to be in $L^1(d\nu)$. This situation is possible as Dowker's example shows (see [1] and, for a two-dimensional version, see [12]) and, therefore, our condition is strictly weaker than Hartman's condition.

As a corollary, we prove that uniform boundedness of the averages is a sufficient condition for finiteness of P_r for every $f \in L^1$. This result is a L^1 version of theorem 3.1 in [10]. Other references about P_r are [14] and [16].

2. Previous results

We will need two lemmas and several results about the operators P_r , q_r and Q_r , where q_r is defined on functions on N, the set of the natural numbers, by

$$q_r a(i) = \left(\sum_{k=0}^{\infty} |a(i+k)|^r (k+1)^{-r}\right)^{1/r} \qquad (i \in N)$$

and Q_r on functions on X by

$$Q_r f(x) = \left(\sum_{k=0}^{\infty} |f(T^k x)|^r (k+1)^{-r}\right)^{1/r}$$

Lemma 1. Let k be a natural number. Then, there exists a countable family $\{B_i : i \in \mathbb{N}\}$ of measurable sets such that

- i) $X = \bigcup_i B_i$
- ii) $B_i \cap B_j = \phi$ if $i \neq j$
- iii) For every *i*, there exists a natural number s(i) with $0 \le s(i) \le k$ such that the sets $\{T^{-j}B_i: 0 \le j \le s(i)\}$ are pairwise disjoint and such that if s(i) < k then $T^{-1-s(i)}A = A$ for every subset A of B_i . Consequently, for every subset A of B_i

$$\sum_{j=0}^{k} \chi_{T^{-j}A} \le C(i) \sum_{j=0}^{s(i)} \chi_{T^{-j}A} \le 2 \sum_{j=0}^{k} \chi_{T^{-j}A}$$

where C(i) is the least integer bigger than or equal to $(k+1)(1+s(i))^{-1}$.

For the proof see lemma (2.10) in [9] changing T^{h} by T^{-h} .

Lemma 2. Let (X, \mathcal{F}, μ) be a finite measure space and let $\{\mathcal{F}_n\}$ be a decreasing sequence of sub- σ -algebras. Let $\mathcal{F}_{\infty} = \bigcap_n \mathcal{F}_n$ and denote by E_n the conditional expectation with respect to \mathcal{F}_n . If $\{f_n\}$ is an a.e. convergent sequence of functions such that $|f_n| \leq C$ a.e. and f is the a.e. limit of f_n then $E_{\infty}f$ is the a.e. limit of $E_n f_n$.

This lemma follows from theorem 7.6 in [6] and the decreasing martingale theorem.

Theorem 1. q_r is of weak type (1, 1) with respect to the counting measure on N.

Proof: The proof is the same as the one of theorem (3.8) in [10] with obvious changes derived from the facts that we are working in N and that lemma (3.2) (in [10]) is not necessary.

Theorem 2. Q_r is of weak type (1, 1).

Proof: It follows from theorem 1 and transference arguments (see [11]).

Theorem 3. P_r is of weak type (1,1) and, as a consequence, the series

$$\sum_{k=0}^{\infty} |A_{k+1}f - A_kf|^r$$

is a.e. convergent for every f in $L^{1}(d\mu)$.

Proof: It follows inmediately by theorem 2, the ergodic theorem and the well-known inequality

$$P_r f \leq CMf + Q_r f.$$

Remark. Note that theorems 2 and 3 do not need finiteness of the measure space.

3. Main result

Theorem 4. Let (X, \mathcal{F}, μ) be a finite measure space. Let $T: X \longrightarrow X$ be a measure preserving transformation. Let v be a positive measurable function on X. The following are equivalent:

- a) The sequence $\{A_n f\}$ converges a.e. for all f in $L^1(v d\mu)$.
- b) $\sum_{k=0}^{\infty} |A_{k+1}f A_kf|^r < \infty$ in the a.e. sense for all f in $L^1(vd\mu)$. c) $\sum_{k=0}^{\infty} (k+1)^{-r} |T^kf|^r < \infty$ in the a.e. sense for all f in $L^1(vd\mu)$.
- d) $Mf < \infty$ a.e. for all f in $L^1(v d\mu)$.
- e) There exists a positive measurable function u such that $\int_{\{x:Mf(x)>\lambda\}} u \, d\mu$ $\leq \lambda^{-1} \int_X |f| v d\mu$ for all $\lambda > 0$ and all f in $L^1(v d\mu)$. f) There exists a positive measurable function u such that $\sup_{k \geq 0} |f| v d\mu$.
- $\int_{\{x:A_k f(x) > \lambda\}} u \, d\mu \le \lambda^{-1} \int_X |f| v \, d\mu \text{ for all } \lambda > 0 \text{ and all } f \text{ in } L^1(v \, d\mu).$
- g) There exists a positive measurable function u such that $\int_{\{x:P_rf(x)>\lambda\}} u \, d\mu$ $\leq \lambda^{-1} \int_X |f| v \, d\mu$ for all $\lambda > 0$ and all f in $L^1(v \, d\mu)$.
- h) There exists a positive measurable function u such that $\int_{\{x:Q_rf(x)>\lambda\}} u \, d\mu$ $\leq \lambda^{-1} \int_{X} |f| v \, d\mu$ for all $\lambda > 0$ and all f in $L^{1}(v \, d\mu)$.
- i) $\inf_{i>0} v(T^i x) > 0$ a.e.

Proof: Implications a) \Rightarrow d) and e) \Rightarrow f) are clear. d) implies e), b) implies g) and c) implies h) by Nikishin's theorem (see [2] pages 536-537 and [3]). Nikishin's theorem needs the continuity in measure of the operators M, P_r and Q_r from $L^1(v \, d\mu)$ to $L^0(d\mu)$. This condition follows by theorem 1.1.1 in [4], page 10.

f) \Rightarrow i) We may assume $u \leq 1$. Let k be a nonnegative integer. Let $\{B_i\}$ be the sequence of sets associated to k by lemma 1. Fix i and let A be a measurable subset of B_i . Let $R = \bigcup_{0 \leq j \leq k} T^{-j}A = \bigcup_{0 \leq j \leq s(i)} T^{-j}A$. It is clear that R is contained in $\{x : A_k(\chi_A)(x) \geq C(i)(k+1)^{-1}\}$. Then f), lemma 1 and the fact that T is m.p.t. give

$$\int_{T^{-k}A} \sum_{j=0}^{k} u(T^{j}x) d\mu = \sum_{j=0}^{k} \int_{T^{-j}A} u d\mu \le C(i) \sum_{j=0}^{s(i)} \int_{T^{-j}A} u d\mu = C(i) \int_{R} u d\mu$$
$$\le (k+1) \int_{A} v d\mu = (k+1) \int_{T^{-k}A} v(T^{k}x) d\mu.$$

The above inequality has been proved for a measurable subset A of B_i . Since $X = \bigcup_i B_i$, it is clear that the inequality is true for every measurable subset A of X and therefore if E_k is the conditional expectation with respect to the sub- σ -algebra $T^{-k}\mathcal{F}$ we have

$$E_k\left((k+1)^{-1}\sum_{j=0}^k T^j u\right)(x) \le T^k v(x) \text{ a.e. } x \in X.$$

Taking lim inf when k tends to infinity, Birkhoff's theorem and lemma 2 give

$$Eu(x) \leq \lim_{k \to \infty} T^k v(x) \text{ a.e. } x \in X,$$

where Eu is the conditional expectation of u with respect to the sub- σ -algebra of the invariant sets.

Since Eu is positive a.e., we obtain $\inf_{k\geq 0} v(T^k x) > 0$ a.e.

g) \Rightarrow i) We may assume $u \leq 1$. Let k be a natural number and $\{B_i\}$ be the sequence of sets given by lemma 1. Fix i with s(i) > 0 and let A be contained in B_i . Let $R = \bigcup_{0 \leq j \leq k} T^{-j} A = \bigcup_{0 \leq j \leq s(i)} T^{-j} A$. Let's see that R - A is contained in $\{x : P_r(\chi_A)(x) \geq (1 + s(i))^{-1}\}$.

Let $y \in R - A$. There exists one and only one h with $0 < h \leq s(i)$ such that $T^h y \in A$. Then

$$P_r(\chi_A)(y) \ge \left| (h+1)^{-1} \sum_{j=0}^h \chi_A(T^j y) - h^{-1} \sum_{j=0}^{h-1} \chi_A(T^j y) \right| \ge (1+s(i))^{-1}.$$

Therefore g) gives

$$\int_{R-A} u \, d\mu \leq (1+s(i)) \int_A v \, d\mu$$

Since $u \leq v$ we have

$$\int_{R} u \, d\mu \leq (2 + s(i)) \int_{A} v \, d\mu.$$

Recall that we have been working with s(i) > 0. But if s(i) = 0 the last inequality is trivial. Then

$$\int_{T^{-k}A} \sum_{j=0}^{k} u(T^{j}x) \, d\mu \leq C(i) \int_{R} u \, d\mu \leq C(i)(s(i)+2) \int_{A} v \, d\mu \leq 4(k+1) \int_{A} v \, d\mu.$$

Now, the same argument used in the above implication gives i).

h) \Rightarrow i) Let k, $\{B_i\}$, A and R as in f) \Rightarrow i). It is easy to see that R is contained in $\{x : Q_r(\chi_A)(x) > (1 + s(i))^{-1}\}$. Then, the argument follows as in f) \Rightarrow i).

i) \Rightarrow a) The proof of this implication can be seen in [7]. We include it for this section to be selfcontained.

Let $B_k = \{x : \inf_{i \ge 0} v(T^i x) < 2^{-k}\}$. B_k and $X - B_k$ are invariant under T and since $v(x) \ge 2^{-k}$ on $X - B_k$ we have that $L^1(X - B_k, v d\mu)$ is contained in $L^1(X - B_k, d\mu)$. Then Birkhoff's theorem shows that $\{A_n f\}$ converges a.e. on $X - B_k$ for every $f \in L^1(X - B_k, v d\mu)$. Since $\lim_k \mu(B_k) = 0$ by (i), we obtain (a).

Finally, i) \Rightarrow b) and i) \Rightarrow c) by the same argument that the above but using theorems 3 and 2 respectively in place of Birkhoff's theorem.

4. Convergence of the averages and finiteness of P_r in the general case

Theorem 5. Let (X, \mathcal{F}, ν) be a finite measure space and let $T : X \longrightarrow X$ be a null-preserving transformation. The following statements are equivalent:

a) There exists a measure γ equivalent to ν such that

$$\gamma(\{x \in X/Mf(x) > \lambda\}) \le \lambda^{-1} \int_X |f| \, d\nu$$

for every $f \in L^1(d\nu)$.

b) There exists a measure γ equivalent to ν such that

$$\sup_{n\geq 0}\gamma\left(\left\{x\in X/A_n|f|(x)>\lambda\right\}\right)\leq \lambda^{-1}\int_X|f|\,d\nu$$

for every $f \in L^1(d\nu)$.

c) $\{A_n f\}$ converges a.e. for every $f \in L^1(d\nu)$.

d) $Mf(x) < \infty$ a.e. for every $f \in L^1(d\nu)$.

Moreover, if one of the above conditions holds, then $Q_r f$ and $P_r f$ are finite a.e. for every $f \in L^1(d\nu)$.

Proof: Implications a) \Rightarrow b) and c) \Rightarrow d) are obvious. On the other hand, a) follows from d) by Nikishin's theorem. We only have to prove b) \Rightarrow c). Simultaneously, we will see that b) implies finiteness a.e. for Q_r and P_r .

From b) and Marcinkiewicz's interpolation theorem we have

(4.1)
$$\sup_{k\geq 0} \int_X |A_k f|^2 \, d\gamma \leq C \int_X |f|^2 \, d\nu \text{ for every } f \in L^2(d\nu).$$

Let L be a Banach's limit (for instance see [6]) and define

$$\mu(E) = L\left(\left\{\int_X A_k \chi_E \, d\gamma\right\}\right) \qquad (E \in \mathcal{F})$$

 μ is well defined by (4.1). μ is an invariant measure and it is absolutely continuous with respect to ν . Let ν be the Radon-Nikodym derivative $d\mu/d\nu$, $D = \{x : \nu(x) \neq 0\}$ and $Y = \bigcap_{n\geq 0} T^{-n}D$. It is clear that $\mu(X - Y) = 0$ and $T|_Y$ applies Y in Y. Therefore we have that $\nu|_Y$ is equivalent to the invariant measure $\mu|_Y$. Then it follows by theorem 4 that the averages $\{A_kf\}$ converge and Mf, Q_rf and P_rf are finite a.e. (ν) in Y for every $f \in L^1(d\nu)$.

To prove the a.e. (ν) convergence of $\{A_k f\}$ and the finiteness of Mf, $Q_r f$ and $P_r f$ on X - Y we shall first state that for almost all x (ν) in X there exists n such that $T^n x \in Y$. If this property is not true, then there exists B with $\nu(B) > 0$ such that for every i, B is contained in $T^{-i}(X - Y)$. Then for every k

$$\gamma(B) \leq (k+1)^{-1} \sum_{i=0}^{k} \gamma(T^{-i}(X-Y)) = \int_{X} A_k \chi_{X-Y} \, d\gamma$$

and the properties of Banach's limits give

$$\gamma(B) \leq L\left(\left\{\int_X A_n \chi_{X-Y} \, d\gamma\right\}\right) = \mu(X-Y) = 0,$$

which goes against $\nu(B) > 0$ since γ and ν are equivalent.

Let x be in X - Y and let n be an integer verifying $T^n x \in Y$. Let $k \ge n$. Then

$$\begin{aligned} A_k f(x) &= (k+1)^{-1} \left(\sum_{i=0}^{n-1} f(T^i x) \right) + (k-n+1)(k+1)^{-1} (k-n+1)^{-1} \sum_{i=n}^k f(T^i x) \\ \text{and} \ \sum_{j=0}^k (j+1)^{-r} |f(T^j x)|^r &\leq \sum_{j=0}^{n-1} (j+1)^{-r} |f(T^j x)|^r \\ &+ \sum_{j=A}^k (j-n+1)^{-r} |f(T^j x)|^r. \end{aligned}$$

Since $T^n x \in Y$ and T applies Y in Y, when k tends to infinity we obtain finite limits. Therefore, we have proved that $\{A_k f(x)\}$ converges a.e. and that Mf(x) and $Q_r f(x)$ are finite a.e. for every f in $L^1(d\nu)$. Then, since $P_r f \leq CMf + Q_r f$ we obtain the finiteness of P_r .

Corollary. Let (X, \mathcal{F}, ν) be a finite measure space and let $T : X \longrightarrow X$ be a null-preserving transformation. If $\sup_{k\geq 0} ||A_k||_1 < \infty$ then $\{A_k f\}$ converges a.e. and Mf, $Q_r f$ and $P_r f$ are finite a.e. for every $f \in L^1(d\nu)$.

Acknowledgements. I have to thank Professor Martín Reyes for his continuous help. Also, I would like to thank the referee for his helpful comments and suggestions.

References

- YAEL NAIM DOWKER, A note on the ergodic theorems, Bull. Amer. Math. Soc. 55 (1949), 379-383.
- 2. J. GARCÍA CUERVA AND J.L. RUBIO DE FRANCIA, "Weigthed norm inequalities and related topics," North Holland, 1985.
- 3. J.E. GILBERT, Nikishin-Stein theory and factorization with applications, Proc. Sympos. Pure Math. 35, 2 (1979).
- 4. M. DE GUZMÁN, "Real variable methods in Fourier analysis," North Holland, 1981.
- R.L. JONES, Inequalities for the ergodic maximal function, Studia Math. 60 (1977), 101-129.
- 6. U. KRENGEL, "Ergodic theorems," Walter de Gruyter, 1985.
- F.J. MARTÍN-REYES AND A. DE LA TORRE, Weigthed weak type inequalities for the ergodic maximal function and the pointwise ergodic theorem, Studia Math. 87 (1987), 33-46.
- F.J. MARTÍN-REYES AND A. DE LA TORRE, On the almost everywhere convergence of the ergodic averages, Ergod. Th. and Dinam. Sys. 10 (1990), 141-149.
- F.J. MARTÍN-REYES, Inequalities for the maximal function and convergence of the averages in weighted L^p-spaces, Trans. Amer. Math. Soc. 296 (1986), 61-82.
- F.J. MARTÍN-REYES AND P. ORTEGA SALVADOR, Ergodic power functions for mean bounded, invertible, positive operators, *Studia Math.* 91, 2 (1988), 131-139.
- 11. F.J. MARTÍN-REYES, Weights for ergodic square functions, Ann. Inst. Henri Poincare (Probabilites et Statisques) 22, 3 (1986), 333-345.

- 12. F.J. MARTÍN-REYES, On a pointwise ergodic theorem for multiparameter groups, Proceedings of the International convergence on almost everywhere convergence held in Columbus, Ohio (1988), 267–279.
- 13. C. RYLL-NARDZEWSKI, On the ergodic theorems (I) (Generalized ergodic theorems), *Studia Math.* 12 (1951), 65-73.
- 14. R. SATO, On the ergodic power function for invertible positive operators, Studia Math. 90, 2 (1988), 129-134.
- 15. R. SATO, On a ratio ergodic theorem, Studia Math. 87 (1987), 47-52.
- 16. A. DE LA TORRE, The square function for $L^1 L^{\infty}$ contractions, *Proc.* Sympos. Pure Math. 35, 2 (1979), 435-438.
- 17. T. YOSHIMOTO, Some inequalities for ergodic power functions, Act. Math. Acad. Sci. Hung. 36 (1-2) (1980), 19-24.

Departamento de Estadística y Econometría Facultad de Económicas Universidad de Málaga 29013 - Málaga SPAIN

Primera versió rebuda el 20 de Febrer de 1990, darrera versió rebuda el 3 d'Agost de 1990