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DIVISION AND EXTENSION IN WEIGHTED
BERGMAN-SOBOLEV SPACES

JoaQuiN M., ORIEGA AND JOAN FABRECA

Abstract

Lel 2 be a bounded striclly psendoconvex domain of O with
€™ boundary and ¥ = {z;u1(2) = -++ =~ w(z) = 0} a holomor-
phic submanifold in a neighbourhood of D, of codimension { and
trapnsversal to the boundary of 3.

In this work we give a decomposition formula f = w1 fr +--- +
wy f; Tor Tunctions f of the Bergman-Sobolev space vanishing on
M =Y M. Also we give necessary and suflicignt conditions on
set of holomarphic functions { f. }lﬂlsm on M, so that Lthere exists
a holomorphic function in the Bergman-Sobolev space such that
D% flag = fo for all o] < m.

I. Introduction and main results

Let D = {2 p(z) < 0} be a bounded strictly psendocouvex domain
of C™ with C®-boundary. Let ¥ = {z; ui(z) =... = u{z) = 0} denote
a holomorphic submanifold in a neighbourhood of D, of codimension {
and transversal to the boundary of DNY, ie. dpAdu Ao . Adw # 0
on the intersection of the boundary of £ and the submanifold ¥.

Forevery l <p < oo, é>0,and £=0,1,... we consider the weighted
Soholev space

LE (D) = { f measurable ; [|f|[,s0 <oc}

where

fllpse = sup ( /Div‘-‘f?-‘*ﬂ” (—p)ﬁ“l) ol + 18] < k
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alel & alil
and D?:E‘-}:’D,?:@Zg' .

Also, we define for cvery p, 8,k the weighted Bergmman-Sobolev space
as the space of holomorphic functions A5 (D) = L (D) N O(D).

Replacing the derivatives 2%, DY for tangent-derivatives on the sub-
manifold Y, we define in the same way the spaces L , (M), and A% (M)
in the submanifold AMf = ¥ N D.

It is well known (sce for instance [3), [4]) that

n- &
2]

>0

(1.1) AR (D) ¢ AYDY, if t=k-

where A*(D) denotes the corresponding space of the holomorphic Lips-
chitz functions. It is also well known that

(1.2) AP (D) = AR (D), if 68 = p(k—k).

One of the main resulis that we will prove in this work is a result of
division in the spaces A%, (D).

We recall $he following result of division in the holomorphie Lipschita
spaces, due to P. Bonneau, A. Cumenge and A. Zériahi ([6]):

If f is a holomorphie Lipschitz function of class A'{D) vanishing in
the submanifold A, then there exist functions f;, 7 = 1,... 1, of class
A=3(D) such that f = ui fi +... +w fi.

We prove in this paper the following theorem:

Theorem 1.1.

If Fis a funclion of class A (D) wenishing on the submarnifold
M = ¥ N D transversal to the boundary of D, then there exist functions
Fivi=1,...,0 of class A _, (D) such that

‘21

i

(13) f = Z g fj'

7=1

Observe that by (1.1) and (1.2) the Theorem: 1.1 is in some sense a
refinement of the above result of division in the holomorphic Lipschitz
Spaces.

In the limit case where ¥ is a point ¢ of D, the Theorem 1.1 is the
Gleason’s problem. In this case (see [11]) it is known that

F2y =z = ) fil2), £ € AL D).

g1
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The second main resull Lhal we will prove is an extension theorem of
jets. This consists to give necessary and sufficient conditions on a set
{ fo }Ha|<m of holomorphic functions on the submanifold M =Y M D so
that there exists a Af ,(D)-function f, such that D [, = fs for all
ler] <

The case m = 0, i.e. the problem of extension and restriction of func-
tions of class A;;,k (12}, has been studied by many authors using different
methods. {See for exemple [3], [4], [9]). The result obtained in this case
is

A?,k(f)) M = A?-}-;,k(ﬂ’*{)-

The above problem in the holomorphic Lipschitz spaces has been
proved by us in [12].

Tu order Lo state the result of extension let us introduce the following
definitions,

We consider smooth vecior fields on D

T

i 8
N = Z (1-,:(2’) 3—21:.

i=1

For these vector fields we say thay X is complex-tangential if Xp(z) =
0 for every z in a neighbourhood of the boundary of 72, and we define
its weight w(X) in the usual way:

]
IS w(X) = { 2 if X is complex-tangential
1 in other case.
I X = X, ... X, is a differential operator we define its weight by
k
w(X) = z wi{ X;).
i=1

We recall that for a holemorphic function f on D the 7 — £k covariant
differential of f at a poiut z € D is defined by:

d(}fz = f(z)
& (X X)) = Xy d T X, X)) —

i—1
Z A7 (X VX XGo)
i=1
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and thal in coordinates we can write

- & f(z)
djfz = Z Wdz“@@dz%

Also, lixed m, we denote by
Jn fo = (dofz: » dmfz)

the holomorphic jet of order e at Lhe point z € D induced by f.

Moreover, if the function f is of class Ag,k(D), then it is well known
(see [1], [3], [4]) that the function & f.(Xi,...,X;)|,, is of class
LYy 1 wooyp (M) where X is the differential operator formed by the
vector fields X;,... , X}

Thus, if we define the covariant tensors of order § at a point z € M
as

Fg =d [z

then they satisly ihe lollowing conditions for every 0 < 7 < mu
I-1) At every point z € M, F} is a j-covariant symmetric tensor.
1-2) FJ ( 2 8 ..., 52 ) are holomorphic functions

F E TR - T R I I ' Ban
on M.
1—3) F7 (Xl,,.< ,XJ) = Xj Fj_l (X],... ;Xj—l)_

J—1
S FTNXy VK, Xn1)
i=1

for every tangent vector field X at M.

I-4) F3 (X1, Xj) = LE-{-E—i—w(.—\')p:k(‘M)'

Therefore, it is natural to introduce the following definition:

Definition 1.2,

F=(F°.. . F™)isan A} ,-jet of order 7n on M if it satistics the four
previous conditions,

The condition I-3} just gives a relation of coberence between the ten-
sors I7. We point out that a Ag:k-jet on M of order 0 is a function of
class Af,, (M).

The notation of A7, -jet is justified by the [ollowing result.
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Theorem 1.3.
F=(F" . ,F"™)isa A% -jet of order m on M if and only if there
exists a function f of class Af;,k(D) such that ., f = F on M,

We recall that in [12] we said that F = (F?,... , F™) is an A'-jet if it
satisfies the conditions I-1, I-2, I-3 of the Definition 1.2 and the condition

(1.4) | Xi o Xyt FIX, . XG) | < e Mt —w(X),2)

where the function M (s, z} is defined by

1 ifs>0
(1.5) M{s,z) = < |loglp(z)j] ifs=0
|p(2)]* if s <0

and the vector fields X;41,... , X are tangential to the submanifold Y.

In the same paper [12] we proved that:

(1.6) F is a A*-jet of order m on M if and only if there exists a holo-
morphic Lipschitz function f of class AY(D) such that J, f = F
on M.

To prove the Theorem 1.3 we will use the Theorem 1.1, the results
(1.1}, (1.2) and (1.6) and a result of resolution of the d-equation in the
spaces Lf (D).

As usually several diferent constants in the inequalities will be denoted
by ¢.

IT. Some integral formulas

In this section we give an extension operator and an explicit solution
of the & -equation.

We denote by (¢, z) the support function of Henkin and we put
a{¢,2) = —p(¢) + ®((, 2).

Using the results of B. Berndtsson and M. Andersson [5], lor every
positive integer s we can construct kernels K¢ and H* of type

(2.1) K5(C.2) = (—p(CJ)’m wo(C,2)

a(g,z) |C_ ZI2‘N.
=1

(=p(Q)" 7 p;(¢, 2)
Zl af

C- 2)-r1+s+1 |C _ 2[2?1—‘23'

(2.2) E( z) = {_:((Cc )i;@+$| 2
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which have the following properties:

1. d¢ . K* = R* outside the diagonal, and R® is holomorphic in the

variable z. L
2. The forms v, , s =0,...,n are of class C*{D x D}.
3 los ) < cld=2, =0, ,m-1

4. Koppelman Formulas. Let Kj  be the component of K* of
bidegree (p,q) in z, {(n-p,n-¢-1) in {, and let RS, be the component of R*

"4
of bidegree (p,q) in 2, and (n-p,n-q) in {. Then, if f is a (p,q) form unth
coefficients in C1(D), we have

— (—1yetetl 5 5 )
16 = 1 [ 50 n K gl60) +
(2.3) (~1)74 8, f HOAKS, \(Gx)  ifgx1
pl
F(z) = (=1 / BI(C)AKSo(C,2) =
Fal
LJ(C) ;‘0(§,2), ifg=0

Now, if Y ={z;:1=...=2z =0} and M = Y N D, then the same
construction used in [5] to prove these results gives for each s > % an
extension operator from the space Ag?k(M) to the space of holomorphic
functions (D). This operator is defined by

(2.4) B f(z) = ]ﬁ HQRuG)

where

(=p(8))*

MG 2) = W‘P(C,z% (eM,zeD

and the form ¢ has coefficients of class £ (M x D) and it is holomorphic
in z.

Moreover, the same formula (2.3) also gives an explicit integral oper-
ator to solve the d-equation for {0,q) forms é-closed. This operator is
given by the kernel K5 (¢, 2}.

The estimates for these kernels are given by the following Lemma.



DIVISION AND EXTENSION IN BERGMAN-SOBOLEV 843

Lemma 2.1.

Lel § < 20— 1 be an integer. Then with M (s, z) defined as {1.5) we
have

Mn+l-t—142) i §< 2n - 3.

/ 1 < 1 ifj=2n-2,t<2

—— < ¢

p lal*l¢—2zF ~ M2 —1,2) |loglplz)|| Hi=2n-2,t>2
M{1—1,z2} ifj=2n—-1

Proof:

Using the vsual change of coardinates and computing the respective
integrals we obtain these estimates. (See for instance [10]}. ®

Now we will state some formulas of integration by parts.

The first formnla is contained in the following Lemma of [7):

Lemma 2.2.
Let | be a (0,1) form B-closed with cocfficients of class C1(D). Then

Dy = ~/ DE‘_{/\K{J‘,O-%Z/ DY fADERY,
o 0

where in the last terms v and B are mulliindezes with |v|+ (8] = |a| — 1,
i=1,...,n, and Ry | denotes the coefficient of dz; in the component
of the kernel R® of degrec (1,0) in z and (n,n-1}in {.

Before to state the second formula we introduce the following kernels,
that are a geueralization of the extension kernels Ij,.

Definition 2.3.

IfY={zn=...=z=0}and M = Y N D, we dehne the kernels

R L(C2) = (—p(Q) (C,2), (EM,zeD

where the form (¢, 2) has the coefficients of class C*°(M x D}, and it
satisfies

D2 D8 DY (G, 2) | < elal¢,2) Aot g+

for every multiindexes e, 3, 7.
Let also Ry, denote the integral operator given by this kernel.

Observe that the extension operator R3,(¢,z) is a R;;;,Eﬂ_i““]
operator, because | Dea((,2) | < ¢|¢ — 2| = elalC, z)!z.

These operators have the following properties:
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Lemma 2.4.

) D2 RS, = Ry,

i) fu ‘R;\J’;‘w‘ <eM{n—t+1+s+n2)

Proof:
t) is clear and ii) follows from Lemma 2.1. B

Lemma 2.5.

If [ is a function of class C*(M), then, fized an integer g, we can find
operators Ryy'y", Ry such that :

o pSs.T _ 51W1 i
LL'Rhﬂ$f E:: ﬂ4¢7f) f.+
[y|=Fk
Se Ty 2 strhh—jal
pyzstk

St "
>, R Dif
fiel <k

s,.+ru 2 q
sy zstk

Remark. Roughly speaking, the Lemma 2.4 prove that the coefficient
$ + 7 measures the regularity of the operator Ry . and thereforc the
Operators RM J in Lemma 2.5 have at least the same regularity than the
operator RM » Plus k—al. On the other hand, choosing ¢ large enought
we can assume that the operators R} 'dj‘ are as regular as required.

Proof:
Using the transversavility of the submanifold Y, we can choose a cov-
ering {U; }g__o of M such that
) M=U2 U, and Uy = {z p(z) <=6}, §>0.
ii) For each i, 1 <4 <4 there is I + 1 < j; < n such that %ﬁ_l #0
on U;.
Let {x;} be a partition of the unity for this covering and we put

in

ar 5,7
By = 2 Bai g
i=0

We want to prove the Lemma for each one of the operators of the sum.
Il £ = 0 the result is clear by the properties of ¢ and the property i)
of the covering.
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If ¢ > 1 by the property ii) of the covering we have
/ RM a (€2} 18 =

o L eor 5 (xz .0 (L) f{CJ) -

: af a+lr—2L
R\~+],.rr.r"_"‘_ +/ R :
/M M g ¢, YR f

Iterating this process in the terms which have less than & derivatives
on the funceion f, and using the Lemma 2.4 1) we obtain the result. M

II1. Solution of the d-equation in the L} (D) space

The aim of this section is to prove the following Theorems.

Theorem 3.1.

If f is o (0.q) form O-closed with coefficients of class "'st).,o(‘o): l<p<
o0, § > 0, then there exisis a (0,¢-1) form g with coefficients of class
Ly. o(D) for all §* > 86— §, 8 >0 such that dg = [.

Theorem 3.2.

If f is o (0,1) form 8-closed with coefficients of class LE (D), 1<p<
00, §>0, k=0,1,..., then there exists a funclion g with coefficients
of class L. (D) for all §* 2 8 — 5, 6" > 0 such that 0g = f.

To prove these Theorems we need the following Lemima.

Lemma 3.3.
if a kernel K((,z) satisfies | K((,2}| < ez CE;)T‘%;IJ $,t>0,7=
0,....2n— 1, and f is of class L5 (D), 1 <p <00, 0 <81 < sp,

then the function K [ is of class L. o(D), 6 > 6 — Ap, §* > 0, where

?'L+l+s~—!.—% if < 2n—2
A= 2—e+s5—1# fi=2n—-2, e>10
Ids—~1 ifyg=2n-1
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Proof:

We want to see that for a §* fixed which satisfies the previous condi-
tions we have

=[] |K(c,z)||f(c)rdc)p (—pl) "V dz <
c [D P (~o(O)F de.

First we consider the case p =1 and j # 2n — 2.
In this case applying the I'ubini Theorem we have

R I S e

and using that |a(¢, 2)| = |a(z, ()|, —p(z) £ ¢le(¢, 2)| and the Lemma
2.1 we get

a1 I<e fD IO (—p(O))* M(5" — 14+ A — 5,0) €.

Now, if 8* ~ 1+ A—s > 0 we have that {(—p(¢))* M (5" —1+A—5,¢) <
e{—p(¢))°L, since s > 6 ~ 1.

Moreover, if §* — 1+ —5 <0 then (—p(¢))* M($* -1+ A—5,¢) <
e[—p(ENE 1A < o(=p(¢))57T because §* > § — .

Hence

I <e /D O () de.

If p=1and j = 2n — 2 we obtain in (3.1} the estimate

I<e fD (O (=p(0)° M(5* + 1~ 1,C) loglo(O)] dC

and applying the same reasoning as in the above case we prove the result,
Now we consider the case 1 < p < oc and j £ 2n - 3.
Let p' = 5‘2—1‘ Taking  such that

-1 ] -1 7 ar
p——-(n+1—£—)<r<p—(n+l—i+ )
P 2 p
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and applying the Hélder inequalities we get

<[ ([ e okt (? r_ ,x)
(/D |af C,z)|’=?’ = ) -l <

T S |
) “.fJ [J z
sc / LA {=p(O))" ( (t—r) i
pJo |ee(<, 2} PI( — 2

By Fubini Theorem and the Lemma 4.2 we have

)?Hl TR —

¢ dz.

Pe [ QP Es)T M (nr1—-rp-d4
(11--!—1—?‘;!)’—%)(3)—1)-{-6*—1,() da¢ =
[P oy (e oo =10 ) de <
e [ 1FQP (a0 ot

and hence this case is proved.
The cases 1 < p < oo and j = 2n — 2, 2n — 1 follow in the same way
taking r such that

Corollary 3.4.

If R, is the operator of the Definition 2.3 and f is of class Lf (D),
§ — 1 < sp, then the function Ry, f is of class L. (D), for all §* =
§—(n+l+s-+r)p, >0

Proof:
Applying the Lemimas 2.5, 3.3 we obtain the result.

Proof of Theorem 3.1:

We take s > 0 such that sp > § — 1 and we define the function
g = - fD [ AKG,_y, where the kernel K is given in (2.1).

Tt is clear by (2.3) that ¢ = f. Now, using the estimate

_ Yt =t o atats—i
|I{9| < ( ﬂ) + Z ( P) .
|a|ﬂ.+s |C _ zl?n—] po |a‘}n+1+s |C _ z|2?1—21—1
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and applying the Lemma 3.3 we obtain the result. B

Preof of Theorem 3.2:
We define ¢ as in the previous Theorem.
By Lemmas 2.2 and 2.4 we have

D7 g = / DEFAK S+ > / Dy f ,\st—(n+1+s+|ﬁn

I+ 18l < ]|

(n+1+s+|8])

where the kernels RD are holomorphic in z.

The same reasoning used in the proof of Theorem 3.1 shows that the
term [, D¢ f A K3, is of class LL. .

Moreover the Corollary 3.4 shows that the term

¥ s, ~{n+1+s5+[8])
fD DIfAK

: . AP — r
is of class A5 igip i1 (D) = As o151 (D)
Now, using that |a| — |4] — v/ 2 1 we end the proof. ®

IV. Division in the A}, spaces

To prove the Theorem 1.1, we will first solve the problem locally using
the following projection.

Lemma 4.1.

LetY ={z 21 =...= 2 =0} be ¢ linear submanifold transversal to
the boundary of D. Then for every point w in the boundary of M = YN D,
there czists ¢ neighbourhood V of w and e projection

n:v —vny

of class C®(V), such that
DIz =2z+zma +.. .+ 2w
) p(T(=)) < p(2) = 2, 2= (a1, .., 2,000 ,0), >0
i) le(¢, 2)| < ela((,11(2)] < e (Jal(, )] + |21

Remark. Observe that the condition ii) implies that if z € V1 D
then I1(z) € VN M.



DIVISION ANID EXTENSION IN BERGMAN-SOBOLEV 849

Proof:
We write

Tt
(C,z}:Zin . Z =22
i=1

(L), 2_(o a2
acT\BG a6 ) 0 A T\ Bl 86

Let U be a neighbourhood of the boundary of Af. Shrinking U and
>e>0o0n U

and therefore, for every 1 < j < {, we can take a function &7 : U — C"
of class C*° (/) such that

using the transversavility of ¥ we can assume that ‘6 i

_ 8 _
(A1) W =0 =1y, Ok, B, and (22, 89) =0
The next step is to see that for a certain d > 0 the projection
plz
(1.2) {z) = z+ zh' +... + 2kt — d1z’|2aL;;1

satisfies the required conditions,
It is obvious that 11 satisfies i} for every d.
Using the Taylor development and the properties (4.1} we have that

pUIH() <p(2) = 2412 | E2 ) 4 o 11C2) - 2P

p(z) — (2dey — ¢y |z 1 + eadd|2’|?
where ¢y, e, €3 > 0.
Now taking d such that 2d¢) — 2 > ¢ > 0 and shrinking U we obtain
ii).

"To prove iii) we recall that ®((, z) is holomorphic in z and

B((,2) = (P20, —2) = <§,—C 2y 0 - 2P,

Using this and the properiies {4.1}, we have

(43) a(¢,2) — a(¢11{(z)) = (P(¢,2) = PG TH(z), ¢ — 20+
{
(PG T(2)), 2 = 11(2) Z

with

(¢ 2) < ell€— 2l +2]) = e(l¢ =K+ 12]).

Finally, using that [¢—z| <cla(¢, 2)|F and |¢—T1(2)], |2'| € cla(¢, TI(2))¢
we obtain iii). ®
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Lemma 4.2.
If [ is @ function of class L (M), then the function Ryf,fi6—1<sp
is of class LE. (D} for all 6" 26 —1—(n+1+s+7)p, 6" > 0.

Proof:

Appliying the estimates of Theorem 2.4 of [3] and the same reasoning
that in the Lemma 3.3, we obtain the result. ®

Corollary 4.3.

If f s a function of class LY (M), then the function R}/ o 6=l <sp
is of class L. (D) for all & >d—l—(n+l+s+r)p, 6 >0.

Proof:

The proof is a consequence of the above Lemma and of the integration
by parts formula given in the Lemma 2.5. B

Lemma 4.4.
Let be f e (0,1) form 8-closed with coefficients of class L’g:k(D), d>p

and let u be a holomorphic function on a neighbourhood of D, such that
uf has coefficienis of class Lf,i’__ 2 (L), Then there exists « funclion g of
2k

class LY 2 (D) such that g = f and ug is of class Ly (D)

Proof:
We take g = — [, f A KJ, as in the Theorem 3.2.
Hence, we only need to see that ug is of class Lf (D).

By (2.3) we have f,; g3y = 0 and therefore we can write
w(e)olx) = [ wOFO A KE(GD) + [ ()~ w000 Rl ).

The Theorem 3.2 gives that the first term is of class Lf_ (D).

Moreover {u{z) — w(()) R§e((.2) = RS'2 2+ and therefore by

Corollary 4.3 we obtain Lthat the second tcrrn is of class LY__ (D). &

To prove the result of division given in the Theorem 1.1, first we
consider the linear case to obtain local solutions. Finally using these
solutions, the Lemma 4.4 and a result of division in the holomorphic
Lipschitz spaces (16}) we will obtain the result.
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Proposition 4.5.

Y = {2 2, =0} is transversal to the boundary of D, and f is a
function of closs A§ (D) that is zero on M, then there ewists o function

fi of class A§+E‘k(D) such that f = 21 fi.

Proof:
We consider a covering {I/;}i%, of D such that:
1) Up= {z; p{z) < -6 <0}
2) If 1 <2 <4 then 2z # 0 on Uy
3) If 4) < i < ip then theve exists a projection II; as the one in the
Leinma 4.1,
Let { x; } a partition of the unity for this covering.
We want to see that x; ;% is a function of class L6+H J{‘(D).
We consider the three following cases.
Ii=0
In this case using that Up CC D then we can take the function }% of
class £°(U/g) and therefore the result is true.
2)1<i<yy
In this case (4.1) is clear.
Nia<i=Zio
We will write IT instead IT;. Thus

1) = 1) = 1) = [ 70 (B(G2) — RGTIR) d¢ =
[ 110 (280 vl (P ACTED Y

a(Cjz)n—i—l-i-s U»(C,H(Z))n+l+3

where ©((, 2) is a function of class C*°(D x D} and holomorphic in 2.
Using (4.2) IT1{z) — z = 21 h' —d|z1|? E*.% where Al is a tangential
camplex vector, and thus we have
i} (¢, 2) — (¢, I{z)) = z19'(¢, 2} with ¥'((, 2) of class C*°(
i) a(¢, 2)—a({, I1(2)) = 21 9"(¢, z) with ¥"”((, 2) of class C°(
and |#7(¢, 2)| = O(|¢ — 2| + {¢ — NI{2}|}. {See (4.3)).
Hence, we have

X ) / O pa()c) ﬁgﬂﬂc‘z) +

-8
Z/ 1l PO xa(zin (G, 2)

T ol

x D)

D
DxD)
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where ¥'(¢, z), ¥1({, z) are functions of class (D x D) and

1((2) e ([¢— 2+ ¢ -T(z)]).

With these notations we have that the above kernels are of the class
R':J',_,;ﬂ+5+s) and therefore by Corollary 3.4 we obtain that Xg(z)%f} is
a function of class L}, , (D).

Rl

Thus finally f = £ is of class A? , (D). m
R

z]

Definition 4.6.

We say that the halomorphic submanifold ¥ = {z; w1(z) = ... =
up(z) = 0} is totally transversal to the boundary of £ if for every 1 <
A <. <G <Yy = {2 u; (2} =... = u;,{z) =0} is a holomorphic
submanifold of codimension s and transversal to the boundary of D.

Proposition 4.7.

IfY ={z: z1= ... =2,=0} is a holomorphic submanifold toially
transversel to the boundary of D and f is a function of class AL (D)
such that is zero on M, then there exist funclions f;, 7 = 1,... |, of
class A§+g‘k(D) such that

t
fzzzjfj

Moreouver, for all j = 1,... 1 the functions z; f; are of class A;k(D),
Proof:

We will construct the functions f; inductively.

Say Ym={z:z2pmy1=...=20=0} , Vi =C*rand M, =Y, D.

Using the hypothesis of total transversavility we have that for each m,
M., is a strictly pseudoconvex domain with boundary of class C*° and
that ¥,,—, is lransversal to the boundary of M.

By (1.1) we say that f|sr, is a function of class A§+:-1,k(Ml) that is
zero on My and hence by Proposition 4.5 there exists a function &y of

“class A§+!—1+§(Mi) such that f = z A on M.

We define f(2) = [, 13, (¢, 2) l(¢) d¢ where Ry, is the extension
operador (2.3).

By Lemma 4.2 we have that f; is of class AE_F‘;_J‘(D).

Also putting

2hi(z) = /M (1= OHO R + [ 0 Rig, (€ 2) o
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and using that |21 — (1| < e|a(¢, 2)|% and the Corollary 4.3 we have that
z) fi is of class AL (D).

If we consider the function f — 21 fi and we repeat the above method
on My we will find fy, and by iteration we will obtain the remaining
fom

We introduce the fellowing covering of 2 which is a variation of the
one of A.Cumenge [9].

Lemma 4.8.

For 0 < &y < ... < &, there exist poinds {z; iy 4 of D and
strictly pseudoconver domains with C*° boundary { D} };:1L By such
that:

1) Blw,eo D)0 DCDl C Blw,s)NDif 1l <r<rg.
i) U, Dl =D
i) Ifi) <4 <ip there is 1 € 1; <1 such that uy, # 0 in D],
vy If1<i<y then
a) DT NY #£B.
b) For every D" there ezists a holomorphic system of coordi-
netes such that the i first ave uy, ... ,uy.
v] Y is totelly transversal to DY for all 1 €1 <4, 1 <7 <7g.
vil If v < v and Drn...nDi # B then there exisis a sirictly
pseudoconver domain DY with C boundaery, such that
¢) D, N...DI. CDjC DI N...NDj.
6) If DYNY # 0 then Y is totally transversal to the boundary
of Dj.

Proof of Theorem 1.1:

We take the covering of D of the Lemma 4.8. We fix an » and we write
D, instead 0],
By Proposition 4.7 in each [, we have:

!

fz) = wi2) filz)

=1

fj(Z) € A§+§;I¢.{Di)s 1y f} € Ag,k(Di)

We define g;(z) = 3, x:(2) fi{2) where {x;} is a partition of the
unity with respect to the covering {;}.

It is clear that Zi.:, gy = f.
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For each j we denote by w; the solution of the equation 5wj = 593-
given by the Lemma 4.3 and we put

! !
f= Z i (g — wy) + Z Uj Wy
4=1 =1

By Lemma 4.4 and (1.2) we have

hi = g; — w; € A% o (D)

{
h = Z ujw; € Aé*% L+1(D)

7=1

Hence, we have proved that for every function [ € Apk(D) that is
zero on M, there exist functions &, € AL, (D) and h € AF €2
such that

iy f= EJ cuihy + R

i} kis zero on M.

5+E k 5+2 k+1

Iterating this method with the function h we obtain

i)f ZJ LU+ AT
i) #" € A§+—-‘i k+r (D) and is zero on Af

i) A% € Ap+%lk(1)) i=1,...,1L

Taking v such that t = &k — ”+5 + 5> k+ 2 and applying (1.1} we
have that kA" is a holomorphic L1psch1La function of class A*(D) that is
zero on M. Therefore by a result of [6] we have

i
"= S wki, BT e ATE(D) C CR(D)NO(D).

Finally, if we define f; = A} + h;“ we end the proof. B

V. Extension of A} -jets
First we prove the extesion result in the linear case.
Theorem 5.1.

If the linear submangfold Y = {z € C* 7z = ... = 2 =0} is
transversal lo the boundary of D and F is an Ag,k-jet of order m on M



DIVISION AND EXTENSION IN BERGMAN-SORBOLEV 855
then there exists a function f of class AL, (D) such that T [ = F on
M.

Proof:

First we consider the case Y = {z; 21 =0},
We take 5 > % and for 7 = 0,...,m we define by induction the
functions

g0 = E‘i FO
(5.1)

7 .
j_]{ES (FJ _ (ijgj—l) ( g g )

E"C_L:,.. ,a_c.l'

where the operator E¥ is the extension operator (2.4) given by the kernel
5
A

9 = i1+

1t is ¢lear that the function f = g, satisfies J,, f = I on M.

To prove the Theorem we will show by induction on the index 7 in
{5.1) that the functions g; are of class A, (D).

If 4 =0, using that 3, = Ri;,;f)"”'“) and applying the Corolary
4.3, we obtain the result.

Now we assnme that g;_1 € A%, (D). As follows from (5.1}, to prove
that g; € Af (D) is sufficient to see that

. , . 3, 0
hy = J/ Ry (F7 — &y, (—:_)
i = A y a 9i-1) G a1

is of class A%, (D).

Consider the normal complex field

dp &
8¢ ag

T

T
l0ni

defined in a netghbourhood of the boundary of I, and the decomposition
of the vector field

- o _ % 8 9
Z=Z(zz_C1)a—gl:Z(Z,—Ct)(a—cz—xa—;i\;)+XZﬂJ'V
i=1 g=1

where y is a function with compact support and that is 1 in a neigh-
bourhood of the boundary of D.
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We denote by T; the complex tangent vector field T; = 5‘%-‘_ - a%% N,

With these notations and by the properties I-1, 1-2 and I-3 of the
Definition 1.1, we can write

b= [ R (P - B0y G20 =

Z‘ ]M‘ RI}:A’ (21 - Cl)ﬁl - (zn. - Cﬂ,)'g“ (Zp)’s"‘+1 g8

181=4

where gg = (F/ — & g;—y ) (11, .V T, ... N, Brid N,
Observe that by the hypothesis of induction and the property 1-4, we
: : 2
have that the function gg is of class L5+B botpn +ﬁn+1,k(M)'
Moreover, using that |¢ — z|?, | Z p] < ¢la({, 2)} we can write
ra— - + ...+
hj — Ri,d’ ;g(n+l {+s} a5 re = 5 Br + ﬁn+l
: 2
2= .
and applying the Corollary 4.3 we end the proof in this case.
The proof in the case Y = {27z = ... = 2y = 0} is similar to the
case Y = {z; z = 0}. In the same way, in this case the function f is
defined by f = g, where :

go = EP F°

g =g + B ((FF —dgi) (z2—¢,...,z2—¢()}. =

Before proving the Theorem 1.3 we introduce the following definition.
Definition 5.2.
For every £ > 0 small enough, we define

De = {¢p(Q) —eu(Q)* < 0}

where [uf2 = w12+ ... + [w ]2
It is clear that these domains are strictly pseudoconvex domains with
€™ boundary, D. NY = M and Y is transversal to D,.

Lemma 5.2.
Iffe LE (Do), § > 8, thenu; f € Lg_E,k[DE) Jor every § =
1,....Land0<e <&
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Proof:

The result is a consequence of the fact that

1
;] < ﬁ'(—p + ' luf?)E on D,
e —g)?
forallé >d—p, >0 8
Proof of Theorem 1.3:
We take a covering {DI} = (D }0srsro

=1 o of D as the one in the
Lemma 4.8 and we also consider the domains {D],} ,e 2 0.

Wealsotake O<r <7’ <7’ |, D<e<e.
By Proposition 5.1 we have that {or every D:’E such that D;NY # 8,
there exists a function f; € Az,k(D;‘;,) such that J,, fi = Fon ¥ ND;.
Using {1.2} we can assume that § > p.
For the remaining D; we define f; = 0.

We consider the function g = 3, x: fi where x; Is a partition of the
unity with respect to the { DI, }.

This function g is of class Lz__k(D) and verifies J,, g = F.

Letw € Lf;_,__.'k(D) be the solution of the dw = 8¢ given hy Lemma
4.4,

Note that h = g —w € A}, (D} and that F = Jnh + Jnw.
The next step is to sce that J, w is an A§+g‘k+l-jet,.

Wesay fi; = f — f;in DI C Dy nDy.
Using the Theorema 1.1 we can write

_ E : v T ¥ P v
fij - u g-gj 3 gij € A5+S'“‘;'lﬂ,k(Dij|5r)‘
byl=m+1

We define in DT the function g = 3, Xs 4/
This function satisfies

Z uTg;Y:fi_ZXsfs:fi_g'

||=rm+1

By Lemma 4.4 we con bake w, such that

Y p "
4, , w] € L6+%E’k(Di€,),
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oreover, using the Lemina 4.4, the Lemma 5.2 and (1.2) we have
£ i r r
hi=w — Z ww! € A“%,k_!_](Dl-[e)
[v|=m+1

also Jp bl = Jpgon Y N DT

Hence, we have that J,, ¢ is a A§+E wqqyjet of order m on A,
)

By iteration of this method we obtain

with

Now if we take s such that t = k + s — %5 -2

F=70.F+ 4.9

h* € Af (D) and Jmg® isin A§+‘;§,k+3-jet.

£ > k+ 3, then (1.1},

(1.4) and (1.6) shows that J,, ¢° is a A*-jet of order wm. Finally applying
the extension result of A-jets (1.6) we can take a function h of class
AY(D) such that J, h = J,,g° on M and defining f = h® + h we end
the proof. =
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