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ON CERTAIN CLASSES OF MODULES
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Abstract

Let X be any class of #-modules containing ¢ and closed under
isornorphic images. With any such X wc associate three classes
X, FX and AX. Thc study of some of the closure properties
of these classes allows us to obtain characlerization of Artinian
modules dualizing results of Chatlers. The theory of Dual Goldie
dimension as developed by the anthor in some of his earlier work
plays a crucial role in the present paper.

Introduction

Throughout this paper all the rings K we consider will be associative
with an identity element 15 # 0. Unless otherwise mentioned all the
notions such as artinianness, noetherianness will be left sided when we
deal with a ring R. The modules we consider will all be unital left
modules. In ring theory there are scores of results dealing with the
structure of a ring R (resp. of a module M) assuming certain c¢lasses of
modules (associated to M) posses certain properties and vice versa. The
results in the present paper are of a similar nature and are an outcome
of results proved in [1], [2], [3], [4], [5], [6], [8] and [9]. In [1] amcug
other results A. W. Chatters proves the following:

(i} R is noetherian if and only if every cyclic R-module is a direct
sum of a projective module and of a noetherian module.

(i1 Given an ordinal ¢, if every cyclic R-module is a direct sum of a

projective B-module and an fZ-module of Krull dimension < «,
then the left f-module /2 has Krull dimension < o + 1.

*While carrying ont this research the author was visiting the Thta Institute of Fun-
damental Rescarch on invitation from Lhe Nalional Board lor Tligher Mathematics of
India. Also part of Lhis research was enrried out at Stanford University where the
author spent a portion of his Sabbalical leave. Partial support ltom NSERC grant
A 8225 is grateflly acknowledged.
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In [4] P. F. Smith, Din Van Huynh and Nguyen V. Dung gen-
eralize these results of Chatters to module theoretic set up. Let
X be any class of R-modules closed under isomorphic images and
satisfying 0eX. To any such X, P. F. Smith et all associate three
classes DX, HX and EX and study some of their closure proper-
ties under suitable assumptions on X. ‘This not only led them to
simpler proofs of the aforementioned results of Chatters, but also
to their module theoretic generalizations. Let N, G, K, denote
respectively the classes of noctherian modules, finitely generated
modules and modules of Krull dimension < «. The module theo-
retic generalizations obtained in [4] could be stated as follows.

(i) GN DN = N (generalizing (i)).

(iv) GNDK, € K, generalizing (ii)). These are corollaries 3.3 and
2.8 respectively in [4].

Suggested by “duality” in the category R-mod of unital left
R-modules we associate to X three more classes X, AX and
I'X (see Section 1 for their definition). The study of some of
the closure properties of these classes leads to many interesting
results “dualizing” the results of P. F. Smith, Din Van Huynh and
Nguyen V. Dung [4]. The object of the present paper is to carry
out the study of these closure properties and present proofs of the
dual results. For instance one of the resnits we prove using our
methods is the following:

(v} Let M be a semi-perfect module in the sense of [13]. Assume
that either M is finitely generated or that M is finitely embedded
and J{M) is small in M. Then M is artinian if and only if every
submodule of M is a direct sum of an injective module and an
artinian module. _

Actually v) may be regarded as two forms of duals of (iil). A
corollary of v} is the following characterization of left artinian
rings.

(vi) A ring R is left artinian if and only if it is scmi-perfect and cvery
laft ideal of I is a direct sum of an injective left ideal and an
artinian left ideal.

1. The classes FX, AX and T'X

We will be working in the category: R-mod of unitary left B~-modules.
The classes X of B-modules we consider will always be assumed to satisfy
the following conditions a and b.

a. MeX, M' ~ M = M'eX.
b. DeX.
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To any such X, P. T Smith et all [4} associated three classes of modules
(though they worked in the category mod-R of right R-modules). Before
recalling the definition of these classes, we first explain the notation that
we will be adopting. For any Mefl-mmod, we write N < M to indicate
that N iy a submodule of A; N%M to indicate that N is an essential
submoduie of A and N & M to dencte that ¥V is a small submodule of
M. The three classes DX, HX and EX were delined as follows in [4].

DX ={MeR-mod|N < M = M=K&L with N<K and K/NeX}.
HX = {MecR-mod|N < M = M/NeX}

<
EX = {MeR-mod|NeM = M/NeX}.
Suggested by “duality” we introduce the following classes:

TX = {MeR-mod|N < M =2 M=K@L with K <N and N/KeX }.
FX = {MeR-mod|N < M = NcX}
AX = {MeR-mod|N « M = NeX}.

N, A U, K will denote respectively the classes of all R-modules, the
zero moduics, projective modules, injective modules, semi-simple mod-
ules, fimtely gencrated modules, noetherian modules, artinian modules,
modules of finite uniform dimension and modnles with Krull dimension
< a. Reeall [11] that AeR-mod is said to be of dual Goldie dimension
< k& if there exists no surjective map M £ Ny x ... %x N, with each
N;#Z0and r > (k+1). Here k is an integer > 0. The class of modules
of dual Coldic dimension < k will be denoted by H,. We write 8§ for
the class constituted by the simple modules together with the zero mod-
ule. We will mostly be following the notation and terminology in [4].
The class of modules of finite dual Goldie dimension (or corank) will be
denoted by H.

Lemma 1.1. Let X. Y be classes of R-modules

(i} X CY then LX CY where L stands for any one of the symbols
D H, E T, ForA,
(i) FX = F(FX)C X.
(ii) CCTX.
(iv) FX C F(I® X) C (L& X) = D(X) = [(X) € A(X).
() INTX C F(LO X).

Proof:
(1) Straight forward.
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(i) From the very definition of FX it is clear that FX C X. Hence
(i} above yields F(FX) C FX.

Let Me¢FX and N € M. Let N' < N. Then N’ < M, hence
N’eX yielding NeFX. This in turn implies that MeF(FX}),
hence F X C F(FX).

(#i1) Let MeC and N < M. Then M = N& L forsome L < M. Hence
the choice K = N fulfills the requirement for A7 to be in I'X.

{iv) Since X C I® X, from (i) weget FX C F(I @ X).

Let MeF(I® X) and N < M. Since MeF(I @ X} we get
Nel® X, Thus M = 0@ M and N/0 ~ Nel @ X. This means
Mel(Ie X). Hence FIo X)CI'l{e X}

Because of (i), to prove the equality I'( @ X) = I'X we have
only to show that T{I@ X) C T X. Let McI'({ @ X) and N < M.
Then M = K ® L with K < Nand N/Kel p X, From K £ N
we get N = K@ (LNNY); hence LNN ~ N/Kel @ X This yiclds
LN N =A@ B with Acl, BeX. Since Ael and A < L we could
write L = A@C with CeM. Thus M = KL = KOADC. Also
KoA<N Hence N=K@AG(CNN). Also ASLNN=
LAN=A0{CNNNL)=A® (CN N)since C < L. From
ABB=LNN=Ag{CNnN)weget Bx(LNN)/A=CNN
yielding CN NeX., Also M = KGA@C with KA < N
and N/{K @ A) ~ C N NeX. This proves that AMel’X. Hence
MIoX)CrX.

To complete the proof of iv) we have only to show that ['X C
AX. Let MelX and N €« M. Then M = K oL with X < N
and N/KeX. From K < N & M we get K <« M. Since K
is a direct summand of A this implics that K = 0; hence NeX
showing that MeAX.

(v} Let MeINTX and N < M. From M X weget M = KL
with K < N and N/KeX. Then N = K @ (L N N} yielding
N/K = LN NeX. Also Mel = Kel; hence Nel @ X. This
means MeF{I® X) yielding INTX CF(IgX). B

Before stating further results let us recall from [4] the definition of
SX, QX and PX.
SX ={N|N <M, MeX}.
QX ={M/N|IN <M, MeX}.
PX = {M)| there exists a finite chain 0 = Np < Ny <+ < Ny =M
with V;/N;_1eX for 1 < < k}.

X is said to be § (resp @ or P) closed if SX C X (resp. QX € X or
PX C X).
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Lemma 1.2. Left X be a class of R-modules. Then
(1) FX, AX, TX are all S-closed.

(ii) If X is S-closed, then X CI'X and XC C AX.

(i) TX @ X =TX if X is {S, P}-closed.

(ivi FUp X)=({IpX)NTX if X is {5 P}-closed.
(v] FX is Q-closed if X is Q-closed.

Proof:
(i) That FX is S-closed is clear. Let MeAX and M' < M. Let
N & M’ Then N’ « M and hence N'e¢X. This means M'eAX.
Let Mel’X and M’ < M. Let N < M'. From Me[ X we get
M=K®L with K <Nand NJKeX. From K < N < M’ we
get M = K& (M nL). Clearly N/Ke¢X; hence M'el'X.
(i) Let MeX and N < M. Since X is S-closcd we have NeX. Thus
M =0& M with N/O = NeX, yielding Mel’X. Hence X C X
Let MeX C. Then there exists a K < M with KeX and
M/KeC. Let N « M. Then N < J{M), the Jacobson radi-
cal of M. If 5 : M — M/K denotes the canonical quotient map
we get (N} < n(J(M)) € J(M/K) = 0 since M/KeC. Hence
N < K. Since X is S-closed we get NeX. Thus MeAX yielding
XCCAX
(i) Lot MTX @ X, say M = A® B with Ael'X, BeX. Let N < M.
Since Ael'X we get A = KL with K < NNiA and (NNA)/KeX.
Thus M = K@ L@ B and M/A = BeX. The exactness of
0 - N/(NNnA) — M/A together with the S-closed nature of
X ylelds N/{N N A)eX. The exactness of 0 — (NN A)/K —
N/K — N/(NNA) — 0and the P-closed nature of X imply that
N/KeX. Hence Mel' X, yiclding TX @ X € I'X. The reverse
inclusion F'X CT'X & X is obvious.
(iv) From lemma 1.1{ii} and (iv) we see that F(I®X) C (I X})NCX.
We can writc M = A @ B with Ael, BeX. From lemma 1.2(i)
we see that Ael'X. Let N < M. Since AeTX weget A=K L
with K < ANN and ANN/KeX. Hence M = K@ L@ L. From
K<Nweget N=Ka(LédB)NN. Also Acl = Kel. The
exactness of 0 = N/ (NN A) - M/Aand 0 = (AN N)/K —
N/K — N/{ANN)} — 0 and {5, P}-closedness of X immediately
vield N/KeX. But N/K ~ NN(Le B). Hence Nel & X, proving
that McF(I@ X). Hence (1@ X)NTX C F{Ie X).
(v) Let MeFX and N < M. Any submodule of M/N is of the form
L/N with N < L < M. From MeFX we infer LeX. Since X is
(2-closcd we get L/NeX. This implies that M/NcFX. W

Remarks 1.3. Lemma 1.1(v) in [4] also asserts that EX is S-closed
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if X is S-closed. The dual result if it were true would be that AX is
@-closed whenever X is @} closed. We now give an easy example to show
that the dual result is not true. Let Z denote the class consisting of the
zero modules in Z-mod. Clearly Z is Q-closed. Also AZ = {MeZ-mod
{J(M) = 0}. Clearly ZeAZ, but Z,» ¢ AZ for any prime p. This shows
that AZ is not ¢)-closed. :

Proposition 1.4. Let X be any {5, P}-closed family of modules.
ThenI'X =TX @ X & (PNTX).

Proof: We need only prove the inclusion TX 9 X & (PNIX)CTX.
From lemma 1.2{iv) we have X @ X = X, Hence it suffices to prove
that TX®(PNTX) CTX. Let M = A® B with Ael X and BePNTX.
Let N €< M and pp : M = A@® B — B the projection onto B. From
Bel'X we get B = By @ By with By < pp(N) and pg(N)/B1eX. From
BeP we get BreP and ByeP. Let o = pg|NN{A® B} : NN(A@ B} —
B,. Since B, < pp(N) we see that « - NN (4 & B,) — B, is onto.
Since BieP, there exists a splitting s : By — NN (A @ By) of 0. Let
N’ =5(B)). Then NN (A B) = N'& Ker a« = N'® (NN A). From
ATX weget A = A, @ Ag with A; < NNA and (NN A)/AjeX. Again,
NNA = A1 (NNANAg) = A B(NNAS) vields NNAy o (NNA)/A1eX.
Consider, pp/A® B, : A® By — B,. Clearly s is also a splitting for
pa/A® B). Since Ker pp/A@ B, = A we see that A® N’ is another
internal direci sum representation for A & B,. Hence M = A® B =
A@B‘l @Bg =AEBN;@BQ =A1 @A-}_@N’@Bg SiHC8A1®N" S N
weget N = A1 @8N @ NN (A D Ba). Lel v = pp|N N (A & By) ¢
NN (A @ Bs) = By. Since pp(A; ® N') < By and B = B1© By we
see that pp(N) N By = pa((A2 ® Bz) N N) = Iinage 7. But pp(N) =
B, @ (pa(N) N By); hence lmage v = pp(N)N B = pp(N)/Bi isin X.
Aslo Ker v = NN AyeX. Since X is P-closed we get N M (A2 @ By)eX.
Also N/(A; @ N') =~ NN {Ay ® By)eX. This shows that Me[X. Thus
rXeXxa (P NTX) C TCX. This compleLes the proof of proposition
1.4. 1A

Lemma 1.5. If X zs Q-closed then AX is elosed unider minimal epe-
morphic images.

Proof: Let McAX and M = M” a minimal epimorphism (i.e. Ker
¢ € M). Then N « M" & c“(N”) & M. In particular N «
M’ = e {N"Y « M = ¢ {(N"}eX = N"eX (since X is @-closed).
This proves that M”¢cAX. B

Before proceeding further we need to r'ecall some definitions and re-
sults from [7], [L1];[12], [18]). Let N < M. Then K < M is called a
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supplement, of N in M if

(a} K+ N = A and

(b) VM<K K'+N=M=K'=K.

It is known that K isasupplement of N in M ifand only if K+ N = A
and KON « K (Lemma 6.2 i [13]). s [13] we called & module M semi-
perfect if for every N < M there exists a supplement in M (Definition
6.6 in [13]). In [11] we referred o this as property (P} for M. The
module M is said to have property (P2) if for any L < M, N < M
satisfying L -+ N = M there exists a supplement K of N in M satistying
K < L. If M bas property (£;) then any quotient module of A7 has
property (£} for 4 = 1,2 {Proposition §.20 in [13] and Proposition 2.29
in [11]). Clearly P» = P).

Lemma 1.6. Let X be Q-closed and MeAX. Assume further that M
has property (Py). Then every epimorphic tmage of M is in AX.

Proof: Let n+ M — M" be any epimorphism and N = Ker . Let
K be asupplement. of N in M. Then K+ N =M and KENN « K.
In particular n/K : K — M’ is a mintmal epimorphism. From lemma
1.2(i) we get KeAX. Now lemma 1.5 yields M7c¢AX. &

Example 1.7.

{n} Let T denote the class of torsion abelian groups. In Z-mod,
T is {S,P.Q}-closcd. In [4] the class DT is completely determined
{Proposition 1.6 of [4]). It is easy to see that ET = M and that
HT =T = FT. For any MeZ-mod let J{M) denote its Jacobson
radical. Since J{A4) is the sum of all simall submodules of M we see
immediately that AT = {MeZ -mod |J{M )T ).

From lemnma 1.2(i) we know that I'T" is S-closed. Since the only direct
summands of Z are 0 and Z it follows that Z ¢ TL. Combining this
with the S-closed nature of I'T" we see that DT C T Also lemma 1.2(ii)
implies T C T, Hence I T =7

{b) Let T’ denote the class of torsion free abelian groups. Then 77 is
S-closed. It is trivial to see that FT' =77

Suppose Mel*T’. Since the only torsionfree factor group of a torsion
abelian group is 0 we see that any N < {{(M) is a direct summand of
M (here ${Af) denotes the torsion subgroup of Af). Tt follows that any
N < (M) is a divect suminand of ¢{M) and that (M) itselfl is a direct
summmand of M. Thus #(A)cC and M = ¢{M) D L with Led”. This
yields I'T' C C @ I'. Also AcC & A = #{A) and 1,(A) is a vector space
over Z, for every prime p. Let M = A @ B with AeC and BeZ'. Let
N < M. Then LN) <4(M) = A. Since AeC we get A = ¢{{N} @& L and
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both t(N) and L willbe in C. rom M = A@ B ={(N)® LG B and
N/t(N)eT' we see that Mel'T'. Hence C & T C I'T’. Using the reverse
inclusion already proved we get

(3) rr'=cort.

From lemma 1.1(iv) we have I'T" C AT'. We will actually give a com-
pletc characterization of the class AT from which it will follow inmedi-
ately that the inclusion I'T' € AT is a strict inclusion.

Let MeAT’. Supposc for some prime p, the p-primary torsion t,(A)
of M is non-zero. Then there exists a copy of Z, in ¢,(M). Suppose
N < M satisfies Z,+ N = M. Eithee NNZ, =Z, 00 NNZ, =0, in
the former case N = A and in the latter case M = N @ Z,. H for all
N < M satisfying Z, + N = M we have N = M, then Z, <« M and
this contradicts the assumption that MeAT'. Hence M = Z, & N for
some N < M. Thus we have shown that if £,{Ad) # 0, any copy of Z in
t,{ M) is a direct summand of M. In particular this implies that there
are no elements of order p? in ¢,(M), hence £,(M) is a vector space over
Z,. Hence t{M) = @, t,(M) isin C.

We claim that

(4) AT ={MeZ-mod / any Z, < M
for any prime p is a direct summand of A4},

Because of the obscrvations in the earlier paragraph, to prove {4} we
have only to show that if Me¢Z-mod has the property mentioned in the
right hand side of (4) and if N « M then NeT”. If on the contrary there
isan N « M with N ¢ T”, then t,(N) # 8 for some prime p. Then
there is a copy of Z,, in t,{N}. Since N « M it will follow that this copy
of Z, is small in M. However, any Z, < M being a direct summand of
M cannot be small in M.

From {4) we see that

=]z,
P

(direct product over all primes) is in AT'. However, t(M) = ©,2Z, and
it is well-known that t(M) does not split off from M. Hence M ¢ I'T".
This proves that the inclusion 7" C AT is strict.

2. Study of AX when X =An4H,

For results on dual Goldie dimension or corank the reader may refer
to [7], [11]. As already remarked in [11], if the dual Geldie dimension
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of M is infinise we cannot assert that there exists a surjective map ¢
M — TI2 | N; with each N; # 0. (See Proposition 1.6 in [11]). All we
can assert in this case is that, given any integer ¢ > 1 we can find a
certain surjection & : M — ]_I‘E_]L with each L; # 0 (the modules L,
in general will depend on d ). This different b(.hcwmur of dual Goldle
dimension as compared to Goldie dimension necessitates many changes
in the formulation and in the proofs of r esults dual fo those obtained
in Section 2 of {4] where the theory of Goldie dimension plays a crucial
role. We first observe that the class H is Q-closed.

Lemma 2.1, Lei X be Q-closed with X C H,. Let MeAX and
N < M satisfy N + J{ﬂff) = M. Asswne that M has property (£1).
Then M/NeH, .

Proof: Let  : M — M/N denote the quoticnt map. From N +
J(AMYy = M we get p{J(M)) = M/N. Hence J(M/N} = M/N. Suppose
if possible that M /N has dual Goldie dimension > & Then there cxists
a surjection ¢ : M/N — A; x .- x Ap with € > & and each A, # 0.
From J(M/N) = M/N we get J(A;} = A; for 1 < j < £ Since
J(A;}) = A; # 0 and J{A;) is the sum of all small submodules of A; we
sec that there exists a B; « A; with B; # 0. Then By < -+ x By €
Ay x oo % Ag. From lemma 1.6 we get 4; x -0 x ApgeAXN. This implies
B1 x - x BeeX. This coutradicts the assumption that X € H, , since
corank By x - x By >¢é>k MW

Corollary 2.2. Suppose X is Q-closed and X C H,. Let MeAX.
Suppose M has praperty (Py) and satisfies J{M) =M. Then MeH, .

Proof: Choose N =0 in lemma 2.1. &

Proposition 2.3. Let X be Q-closed with X C H,.. Let MeAX and
assume that M has property (Py). Then there exists an NeX such that
M/N =Ba& H with BeC and HeH, NAX.

Proof: Lel L be & supplement of J(Af) in M. Then L 4 .J(M) =M
and LNJ{M) < L. Also L/(LNJ(M)} ~ M/J(M)eAX by lemma 1.6,
Since AX is S-closed (lemma 1.2(3)) we get LeAX. From LNnJ(M) < L
we get LN J(M)eX . Since M/ J{(M) has property (P) (Propoesition 6.1
in [23]) and J{M/J(M}) = 0 from proposition 3.3 in [11] we see that
MIJ(MYeC. Hence LA{LNJ{M))eC. From lernma 2.1 we get M/ Lef,.
If weset N = LNJ(M) we get NeX and 0 — L/N — M/N — M/L — 0
exact,
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Since L + J(M) = M any xeM can be written as &5 4 1, with €el
and uzeJ(M). If 2 = £ +uy = £ + u,, are two such expressions, we
have £, — & = ), —u, is in LN J(M) = N. Thus the element Z. in
L/N represented by £, depends only on . Moreover, if xeN,z =0+ =z
is such an expression, hence £z = 0. It follows that one gets a well-
defined map o : M/N — L/N given by a{fz + N) = £, + N. [t is
easily checked that « yields a splitting of the inclusion L/N — M/N.
Hence M/N =~ L/N & M/L. Moreover L/NeC and M/LeH, N AX.
That M/LeAX is a consequence of lemma 1.6. Set B = L/N and
H=M/L &

Proposition 2.4, Let X be ¢ {P,Q,5}-closed class of R-modules.
Let MeR-mod and N < M satisfy NcX and M/N = B&(Hi+- -+ H})
with BeC end Hy + - - -+ Hy, an irredundant sum of hotlow modules (this
sum need not be direct). Suppose HieAX for 1 < i <k. Then MeAX.

Proof: Let K <« M. We have to show that KeX. Let n: M — M/N
denote the quotient map. Writing H for Hy + - - -+ Hy; we have M/N =
B@ H. Since K « M we get K < J{M), hence 5(K} < n(J(M)} &

J(M/NY = J(H) since BeC.

We claim that n{K) N H; # H; for each in 1 <4 < k. In fact from
Hi+ -+ H+- + H ;é H wech L=n"Y(B&(H + - +H+-
Hy)) # M. Here Hy + -+ H; + -+ + Hy, denotes the sum of the H’
with j # 4. If p(K)YN H; = H; we would have K + L = M contradmtmg
the fact that K <« M. Thus n(K) N H; # H;. Since H; is hollow we get
n(K) N H; < H;. Since H;eAX, this yields 5(K) N HieX.

Foreachd¢in 1 <i<klet A; =n(K)N(H +- -+ H;). By induction
on 7 we will show that A;eX for 1 € ¢ < k. We have seen already that
Ay =n(K)N Hyisin X. Let i < k& — 1 and assume that A;eX. From

A fA; =~ ”{g{;—f*— since X is @Q-closed we get A;41/A;¢X. Since X
is P-closed and A; is already in X we get 4,,1¢X, thus completing the
inductive step. Hence Ay = p{K)eX. Also NeX implies N N KeX since
X is S-closed. The exactness of 0 —» NN K — K — n{K) — 0 together
with the P-closedness of X yields KeX.

Remarks 2.5.

(i) It is clear that any non-artinian module Af will contain a proper
non-artinian submodule. Hence il M is a module with the prop-
erty that NeA for all N C M then M itself is in A. In particular
a hollow module A will satisfy HcAA if and only if HeA.

(ii) The classes A and N are {P, @, §}-closed. Hence proposition 2.4
is valid when X = A or N.
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(iii} Any MeA or any MeC or any hollow module A has property {Fs).
Modules with finite spauning dimension in Lhe sense of P. Fleury
(Section 4 of [11]} have property {%). All artinian modules have
finite spanning dimension and hence finite corank.

The following results proved in (7], [11] will be needed later in our

present paper

{iv) If M el has propecty (£} then A can be written as an irredun-
dant sum Hy + -+ + H, of hollow modules with v < k. This is
Theorem 2.39(1} in {11].

(v) If M = H +--- + H,. wilh H; hollow, then corank M < r. This
is Proposition 1.7 in [T]. For this part we need not assume that
M has property (Fa}.

Let us denote the class of iodules with propecty (P;) by M, (i = 1,2).

We can state one of our main resilis as follows.

Theorem 2.6. We have following inclusions.
() (C®A)A C AA.
(b) MyNA(ANH,) C(COANH)ANH,.

Proof: {a) Let Me(C & A)A. Then there exists an N < M with NeA
and M/N = Ba L with BeC and LeA. Since L has (%) and of finite
dual Goldie dimension we can write L = £y + -+ + H, an irredundant
sumn of hollow modules {see iv) in remark 2.5}. From LeA we sec that
H;eA. Since A is S-closed, we have A € AA. From proposition 2.4 we
see that MeAA.

(b} The class AN H, is Q-closed. Let MeM, NA{ANH,). From
proposition 2.3, there exists an Ned M H, such that M/N = Ba H
with BeC and HeH, N A(AN A, ). Since M has (P} it follows from
proposition 2.29 in [11; that A has (F%). Hence H = Hy + - + H, an
irredundant sum of hollow modules with » < k. From lemma 1.2(i) each
H;isin A{ANH,). In particular H;eA{A). From remark 2.5(1} we see
that Hyed Thus HeA N H, by remark 2.5). This proves (Ib). B

Stated in words Theorem 2.6{b} takes the following form.

Theorem 2.7. Lei M be a wodule with properly (7). Suppose every
small submodule of M s artinian and of duc! Goldie dimension < k.
Then there exists an artinian submodule N of M with corank N < k
such that M/N = B ® L with B semi-simple and L artinian of corvenk
<k

Corollary 2.8. Suppose M is a module with property () and of
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finite covank. Suppose every small submodule of M 15 artinian and of
dual Goldie dimension < k for some fized integer k. Then M is ariinian.

Proof: Trom the above theorem, there exists an artinian subrnodule
N of M such that M/N = B& L with BeC and LeA. Now, corank B <
corank M/N < corank M < co. A semi-simple module has finite corank
if and ouly if it is serni-siinple artinian. It follows that BeAd and hence
MeA. 1

We have a variant of corollary 2.8 which 1s actually easier to prove,

Pr0p051t10n 2.9. Let M be u finitely generated module with property
(P1). Then MeAA if ond only if M 15 artinien.

Proof: Since M/J(MY) has property (P;) and J{M/J(M)) =0 it fol-
lows that Af/J{M)eC. Since M is finitely gencrated it follows that
M/JF(M) is semi-simple artinian. Since M is finitely generated we also
have J(M) « M. Thus MeAA = J(M)cA. From M/J{M)cA we get
MeA. Conversely, we have already observed that AC AA. A

Proposition 2.10. Suppose X is a { P, Q}-closed closs satisfying S C
X C H. Suppose M is a finitely embedded module with property (F)
satisfying Mel' X and J(M)eX. Then MeX.

Proof: We will abbreviate finitely generated as f.g and finitely em-
bedded as f.e. We have M/J(M)eC because M/J(M) has (P} and
J(M/J(M)) = 0. If we show that M/J(M} is f.g it will follow from
S C X and the P-closed nature of X that A/ J(M)eX. Again J{M)eX
and M/J{MYeX will yield MeX.

Suppose on the contrary M /J{A) is not f.g. Then M/ J(M) = V1@V,
with Vi, V5 semi-simple and each not f.g. Since a non f.g semi-simple
module does not have finite corank we see that V; ¢ X for i = 1,2
Let 5 : M — M/J(M) denote the quotient map and L, = 7 '(V}).
Since V1 € X and X is @-closed it follows that L, ¢ X. From Mel'X
we get M = Ny @ W, with Ny < L; and L,/N1eX. From L; ¢ X
we get Ny # 0. From J(M) = J(N1}) @ J(W)) we get J(M)NN, =
J(N1) and J(M)N W) = J(W1). This yields M/J(M) = (N1/J(N1}) &
(W, /J(WD)). Also Ny/J(Ny) = Ny/J(M)NN, < L, /J(M) = V,. Since
M/J(M) =V, ®V; and V, is not f.g and N, /J(N,} <V it follows that
W1 /J(W,) is not [.g. Since W, is a direct summand of M we see that
W, is f.e. Since W, is a quotient of M we see that W) has property
(Pi). From lemma 1.2{i}, since Wy < M we get Wiel'A. Since X is
Q-closed, from J{M)eX we get J(W )eX. Thus W, satisfies all the
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conditions imposed on M and further W, /J{W1) is not [.g. Hence the
same arguments as above will yield a decomposition W, = No & Wo with
Ng £ 0,W, [e with properly (F), Woel X, J{(WoleX and Wo/J{Ws)
semi-simple but not f.g. Iteration of this argument yields for any integer
k > 1 a direct sumn decomposition M = Ny @ --- & Ny ¢ W, with each
N; # 0. This means that the Goldie dimension of M > k for every integer
k = 1. However, any f.e module trivially has finite Goldie dimension.
This contradiction shown that M/J(M) Las to be f.g thus completing
the proof of proposition 2.15. &

3. Dual of Chatters’ result

As stated in the introduction Chatters has proved that il every cyclic
R-module is a direct sum of a projective module and a noetherian mod-
ule, then i is noetherian. The module theorctic generalization obtained

"in [4] asserted that GN DN = N. In this section we will prove two forms
of duals for the above mentioned result.

Theorem 3.1. Let MeR-mod salisfy the condition that every sub-
module of M is the divect sum of an injective module and an arlinian
module. Suppose further that M salisfies one of the following conditions:

(i} M has (P\) and is f.q or
(i) M has (£1), ts feand HM) < M,

Then MecA.

Proof: Part of our hypothesis could be rephrased as MeF{IDA). Since
A is {8, P}~closed, from lemma 1.2(iv) we infer that Me(l @ A)NTA.
Lerama 1.1{iv) yields T4 € AA. It follows that MeAA.

In case (i) is valid, proposition 2.9 immediately yields MeA. In case
(ii) is valid, the assumption that J(M) <« M implies that J(M)eA.
Then proposition 2.10 yields MeA.

Conversely, if McA every N < M satisfies NeA. Thus N =06 N
is an expression for N as the direct sum of an injective module and an
artinian module. W

Corollary 3.2. Let R be a semz-perfect ring. Then every left ideal of
R 15 a direcl sum of an injective lefl ideal end an artinian left ideal if
and only if R is left artinion.

Proof: This is an immediate consequence of theorem 3.1(i). W
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Remarks 3.3.

(a) We have already observed that if MeR-mod satisfies the condition
that NeA for all N C M, then MeA. The module Z,_ in Z-mod has
the property that every N € Z,__ satisfies NeN but Z;,_ itself is not in
N .

(b) Dually if MeR-mod satisfies the condition that M/NeN for all
0 # N C M then MeN. Z in Z-mod satisfies the condition that for
any 0 # N C %4, the factor module Z/N is mtlma.n but Z itself is not
artinian.

(c) Recall that a module M is said to be Hopfian (resp. co-Hopfian) if
every surjective (resp. injective) map f: M — M is an isomorphism. It
is well-known that any Me/N is Hopfian (resp. any MeA is co-Hopfian),
Presently we will see that Hopfian (resp. co-Hopfilan} modules satisfy
the property stated in {b} (resp. a)).

Proposition 3.4. Suppose MeR-mod salisfies the condition that
M/N is Hopfian for every 0 # N C M. Then M itself is Hopfian.

Proof: Suppose on the contrary M is not Hopfian. Then there exists
a surjection f : M — M which is not an isomorphism. Let ¥ = ker
f. Then 0 # N and f induces an 1somorph1sm F:M/N - M If

n: M — M/N denotes the canonical quotient map, then M/N — wef M/N
is a surjection which is not an isomorphism, contradicting the Hopflian
nature of M/N. &

Proposition 3.5. Suppose MeR-mod satisfies the condition that N
is co-Hopfian for any N © M. Then M itself is co-Hopflan.

Proof- Suppose on the contrary M is not co-Hopfian. Then there
exists an injective map ¢ : M — M which is not an isomorphism. Let
N = Image g. Then N € Af and ¢ induces an isomorphism g: M — N,
Then §/N : N — N is an injective map which is not an isomorphism
contradicting the co-Hopflan nature of N.

It is casy to see that if M/ is f.g for every 0 # N € M then M ltqelf
is f.g. We have the following dual result. :

Proposition 3.6. Let MeR-mod satisfy the condition that for any
N C M N isfe Then M itself is fe

Proof: We may assume M # 0. We first show that Soc M is £.g. It this
is not the case we will have Soc M = &,,.58, with each S, simple and
J infinite. Let J' = J — {cp} where g is a chosen element in J. Then
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N = @nerSa © Soc M C M. Hence by assumption N is f.e. This means
Soe N has o be a direct suun of finitely many simple modules. But Soc
N = ®epSe with J' infinite, a contradiction. This contradiction shows
that Soc A = &,.,5, with cach S, simple and J fAnite.

Next we claim that Soc M # 0. EBither A is simple in which case
0 # M = Soc M or there exists an element © # 0 in M with N = Ry C
Ad. Then O # N and N is fe by assumption. Henee £{N) = E(Soc N)
yielding Soe ¥ # 0. From Soc N < Soc M we see that Soc A7 # 0. Now
we will show that BE{M)} = F{Soc M). This will prove that A is f.e. I
E{AM) # E{Soc M) we can write £{#M) = F® E(Soc M) with 0 # Fel.

Let O # weE, Then N = ReNM # 0 since M%E{M). Also zeff = fzn
Soc M =0 HN = M, we would have Re = M, hence Fan Soc M =
Soc M £ 0. This shows that N #£ M. Hence N is fe. Since N # {,
we sec that Soc N # 0. Then Soc N < Soc M will yield NNSochf >
See N # 0. This contradicts R Soc M = 0. This contradiction shows
that E(M) = E(Soc M). B

A ring R is said to be directly finite if weR. yeR, 2y =1 =y = 1. It
is well-known and easy to sce that £ is Hopfian in R-mod if and only
if R s directly fimite [14]. Is is shown in our carlier paper that R is
co-Hopfian in AR-mod if and only if every lefi. regular element a of R is
a two sided nnit (Proposition 1.4 in [14]). We are led to the following
questions from the resulls in our present paper.

(1) If every cyelic R-module i3 a direct sum of a projective module
and a Hoplinn module is it true that R is directly finite? More generally
what can we say about a module M which satisfies the condition that
every qurobient of Af is a direct sum of a projective module and a Hopfan
module? : :

(2} If every lefi ideal of R 15 a direct sum of an mjective left ideal
and a co-Hopfian left ideal is R co-Hopfian in R-mod? More generally if
MeR-mod satisfies the condition that every submodule of A is a direct
sum of an injective module and a co-Hophan module what can we say
about the structure of M7 Also the study of the [ollowing classes may
prove to be fruitful.

LX = {MeR-mod|NEM = NeX}

VX ={MeR-mod|N « M = M/NeX}.
Concerning these classes the following are easy to prove. LX C X and
VX C X Infact LX C X is immediale from the fact that M'é:\ff and
VX C X is immediate fromn the fact that § < M. [T denotes the class
of torsion abelian groups we get LT = VI = T. If 7 denotes the class

of torsion free abelian groups then LT =T,
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We will now characterize the class V{T'). We will show that

{5)

V(T') = {MeT'|J(M) = 0}

Let MeV(T'). We will show that 0 is the only small submodule of M.
Then it follows that J{M) = 0. Suppose on the contrary 0 # N < A,
Since V(T') € ¥ we have MeZ'. Hence NeZ'. This means there is a

copy
we g
fact

of Z in N. Consider the subgroup 2Z of 2. From2Z <Z < N « M
et 27 <« M. Now, M/2Z has non-zero 2 torsion, contradicting the
that MeV(T"). Conversely any MeT" with J(M) = 0 is clearly in

V(T') because then 0 is the only small submodule of M and M/0 =~
MeT'. This proves {5). From (5) we see that the inclusion V(T') C T’
is a strict inclusion, because Qe but @ € V{(T') since J(Q) = . We
included information on the classes LT, VT, LT and VT to complete
the examples discussed in 1.7.
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