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SIMPLE AND COMPLEX DYNAMICS
FOR CIRCLE MAPS*

L1yfs ALSEDA AND VLADIMIR FEDORENKO

Abstract

The continuous self maps of a closed interval of the real line with
zero topological entropy can be characterized in terms of the dy-
namics of the map on its chain recurrent set. In this paper we
extend this characterization to continuous self maps of the circle.
We show that, for these maps, the chain recurrent set can exhibit
a new dynamic behaviour which is specific of the circle maps of
degree one.

1. Introduction.

The aim of this paper is to extend the characterization of the complex
and simple interval maps (in the sense of positive or zero topological
entropy respectively) to circle maps. We shall start by stating this char-
acterization for interval maps for completeness {see Theorem A). To do
it we have to introduce the appropriate notation.

Let f be a map from a topological space X into itself. We shall denote
by f* the map fo fo...o fn times {if n =0 we set f* =1d).

Let now f be an interval map (that is, a continucus map from a closed
interval I of the real line into itself). We say that f has a horseshoe
if there exist n > 0 and two closed intervals I}, fz C I with pairwise
digjoint interiors such that I, UJl; C f*(11) and I) UL, C f7(I).

The above condition was used for the first time by Sharkovskii(see [13])
and has been used widely in the study of interval maps (see (9], [4] and
(12]). The name of horseshoe was given ta this condition by Misiurewicz
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in [9]. An interval map having a horseshoe was called turbulent by Block
(see [4]) and in [12] a similar notion was called an L-scheme.

We note that the set of interval maps having a horseshoe is open and
dense in the space of all interval maps (we suppose this space endowed
with the topology of the uniform convergence). Thus, in this sense, the
property that a map has a horseshoe is generic.

It is well known that a map has positive topological entropy if and only
if it has a horseshoe {sce []). In other words, the existence of horseshoes
characterizes the complex interval maps.

Now we introduce the necessary notions to characterize the simple
interval maps. Let S be a closed invariant set of an interval map f. We
say that § splits into Sp and S) if Sp and 5 are closed nonempty subsets
of S such that {5} N {S:) = @ (where {S;) denotes the convex hull of
Sii=1,2), SiUS; =8, f(51) = 52 and f(S2) = 51, We also say that
S splits k times if S splits into Sp and S and each of them splits (k — 1)
times under f2. The set § is said to be simple if cither it is a fixed point
or it splits k times for each & < log, Card § (sec [6]).

Remark 1.1. From the above definition it follows easily that each
sirnple set cither consists on a unique periodic orbit or does not contain
any periodic orbit,

Recall that if f is a continnous map from & metric space X into itself
the set of chain recurrent points of f 1s denoted by C'R(f) and is defined
to be the set of all z € X such that for each € > 0 there exists {z;}]
with xg = 2, = 7z and |f(2;) — 2| <efori=0,1.2,... ,n— 1.

The following theorem characterizes the complex and simple interval
maps (see [6]).

Theorem A. Fach interval map f satisfies one and only one of the
following two conditions.

a} f has a horseshoe.
{b) The chain recurrent set of [ is the union of all simple sets of f.

To extend Theorem A to circle maps we have Lo reformulate the above
notions in this context.

We shall represent the circle 8! as the set {z € C: |z| = 1}. Any
continuous map from S! into itself will be called a circle map.

We note that the notion of a simple set and of horseshoe extends
naturally to circle maps by simply replacing closed intervals by closed
arcs of the circle (that is, subsets of S! which are homeomorphic to closed
intervals of the real line).
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We note that if an interval map f has a horseshoe 11, I then we always
have that, for each 2,5 € {1,2}, there exist a closed interval I} C I; such
that f*(I}) = I,. However, this is not the case if we are talking about
horseshoes of circle maps. Indeed, if I;, Iz € 8! is a horseshoe of a circle
map g it may happen that g"{[)) = 8! in such a way that ¢"|ims,)
is injective and g"{a} = g"(») € Int(lz) where a and b denote the two
endpoints of [;. Then, clearly, does not hold that for each 17,5 € {1,2}
there exist a closed arc Ij C I; such that g“(Ij) =1

Let f be a map from a topological space X into itself and let z € X.
We say that x is a periodic point of f if f*(z) = z for some n > 0. The
smallest n with the above property is called the period of 2. If x € X is
a periodic point of f of period n then the set {z, f(z),..., f* *{x)} will
be called a pertodic orbit of f of period n. Iu the sequel we shall denote
by Per(f) the set of periods of all periodic points of f. Also, if z € X
we shall denote by w.(f) the omega limit sef of x which is defined to be
the set of all accumulation points of {f™(x) : n > 0}. We will also use
the notation w(f) to denote Uge xwy(f).

The main result of this paper is the following.

Theorem 1.2, Fach circle map f satisfies one and only one from the
following three conditions:

{a) F has a horseshoe.
{b) There existn > 0 such that w,{f™) is a simple set for each z € S,

{c¢) Per(f)=10.

We note that, as for interval maps, Condition (a) of the above theorem
is generic in the space of circle maps endowed with the topology of the
uniform convergence and is a criterion for positive topological entropy
{sce [9]). On the other hand, it is known that Condition (b) with n =1,
in the case of an interval map, is equivalent to Condition (b} of Theo-
rem A (see for instance Theorem 2 of [7]). However, for circle maps it is
not. Theorcm 1.2 is stated in this way for simplicity but in Section 4 the
topological picture of the chain recurrent set in this case will be described
in detail. Finally, the dynamics of a circle map satisfying Condition (c)
of the above theorem can be roughly described as follows. The map f
has a unique w-lmit set which is minimal {i.e. it has no closed invariant
proper subset) and the restriction of f to it is semi-conjugate to a ro-
tation of the circle by an irrational angle. A detailed description of the
dynamics of such a map can be found in [3] and [11].
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2. Definitions and preliminary results.

In this section we will introduce the necessary notation 1o prove The-
orem 1.2. Also we will prove a lemma that will play a key role in that
proof.

Let f be a circle map. As usual, instead of working with f itself we
shall use a lifting of f. A continucus map F: R — R is called a lifting of
fifeoF = foe, where e(z) = exp(2miz) is the natural projection from
R to S!. We note that if F is a lifting of f then F' + m is also a lifting
of f for each m € Z and that F* is a lifting of f*. Also, there exists an
integer d such that F(z + 1) = F(z) + d for each 2 € R. This number d
is called the degree of f and is denoted by deg(f). It is not difficult to
see that deg(f"} = deg{f)".

We say that a point z € R is periodic {mod. 1} of period q for F if
Fiz)—zcZbut Fi{zy—az¢Zforj=1,2,...,¢— L Clearly, z is a
periodic {(mod. 1) point of F of period ¢ if and only if e{z) is a periodic
peint of f of period g.

Let F be a lifting of a circle map f. In the sequel we shall denote by
Per{F) the set of periods of all periodic {mod. 1) points of F. Clearly,
Per{f) = Per(F}.

Let f be a circle map of degree one and let F be a lifting of f. For
z € B we define its F-rotation number as

F*z) —
lim sup—(ﬁ)—E
N— 00

and denote it by pr{z). We note that, since f has degree 1, pp(z) =
pr{z+m) for all m € Z. Also, if z is a pertodic {mod. 1) point of period
g of F' then

_ Filz)y—-=z

pr(z) Q.

The set {pr(z) : z € R} = {pp{z) : z € [0,1)} is denoted by Lg. Ito in
[8] proved that Lp is a closed interval (perhaps degenerate to a point)
of R. Thus, in the sequel Lz will be called the rotfation interval of F.

The rotation interval of a lifting of a circle map of degree one captures
a lot of its dynamical properties and plays a2 fundamental role in their
study (see for instance [10] and [2]).

Let F be a lifting of a circle map of degree one. We define (see [1]}

Fy(z) =sup{F(y):y < z}.
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It is not difficult to see that F,, is non-decreasing and that it is a lifting
of a circle map of degree one. Moreover, F < F,,.

Now we are ready to state and prove the lemma we are looking for.

Lemma 2.1. Let f be a circle map and let F be o lifting of f. Then
one of the following properties hold:

(a) f has o horseshoe.

{b) There ezist g € N, p € Z and I = [z,2 + 1] C R such that
(F—p)(I) C I.

{c) Per{f) =%

Proof: If deg{f) & {—1,0,1} then clearly f has a horseshoe. Thus,
(a) holds.

Assume now that deg(f) = 0. Then, F{z + 1} = F(z) for all z € R.
Hence, F(R} = F([0,1]) = [a,b]. Ifb<c+1thenweset g=1,p=0
and I = [e,a+1]; and (b) holds. Thus, assume that b > a+1. Letc€ R
be such that F{c) = a. Clearly F(c+1) = a and there exist € (¢, c+ 1)
such that F{d) = b. Set I; = e{[¢,d]} and Iy = e{[d,c + 1]). Clearly I,
and Ip are arcs of S! and f(I;) = f(I,) D S8! D I, UI;. Thus, f has a
horseshoe and {a) holds.

Now we consider the case deg(f) = 1. From [10] it follows that
Per(f) = @ if and only if Lr = {a} with a ¢ @ and that f has a
horseshoe if Lp is non-degenerate. Thus we only have to consider the
case Ly = {p/q} with ¢ € N and p € Z relatively prime. From [5] (see
also [1, Theorem 3.7.20 and its proof]} it follows that there exists 7, a
periodic {mod. 1} point of F of periocd ¢ and rotation number p/q, such
that Fi{z) = Fi{z) for all i > 0. Set

P={Fi{x)+m: i=0,1,2,...,q—1, mecZ} =
=e M{{fi(e(z)): i=0,1,2,...,4—1}) =
= {...I_g}x_l,a?g,i‘l,xz,‘”}
with (2, 2:41)NP =Bforalli € Z. Setalso G = Ff—pand G, = Fi—p.

Since F, is non-decreasing so is G, and, hence, G < G, because F < F,.
Therefore, if y € R, 2 € £ and y < 2 then

Gly) £ Guly) < Gulz) = G(z) = 2.

Moreover, it is not difficult to see that Lg = {0}.
Set J = {xg,zg + 1]. We note that J C G{J) becanse G{z;} = z;
for all i € Z. Thus, GY{J) € G*}{J) for all i € N. Let K be the
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closure of | fi2; G*(J). Clearly K is a closed mterval such that J C K C
(~00,zg+1] and G(K) C K. If K is not bounded, then thereexist Z € J
and m € N such that G™{Z) < zg — 1. Thercfore, there exists 2 € J such
that G™(z) = z — 1. That is, z is a pericdic {mod. 1) point of & with
rotation number --1/m. This contradicts the fact that Lg = {0}. Thus,
K is of the form {a, %y + 1] with & < zg.

If & € P then we take I = ja, @ + 1]. Since o + 1 € P we have that
G(I) C (—oo,cx + 1]. On the other hand, G(I) C G{K) C K. Thus
G(I) C I and we are done.

Now assume that ¢ € P. Then there exists ¢ < 0 such that a €
(24,2441} Since G{x;) = x; there exists a fixed point of G in [x;, a]. Let
y be the supremum of these fixed points. Since G(a) > a we see that
for each z € [y, «] we have that G(2) > y. Thus the set

S={y€z;,a]: Gly) =y and G(z) > yfor each z € [y, al}

is non-empty. So we set § = inf S and K = (8. o + 1].

Since zi41 € P and 341 < zo we have that G{l8,a]) C [8,2:4:1] C K.
Therefore, G(K) C K. Now, if # = z; we sct I = [3,8 + 1] and we
preceed as above to get G{I) C I. So we may assume that 3 # z,.

If G{|z,,3]) C [—oc, H] then we shall show that G{I) C T with I =
[3.8 + 1]. To see this it is enough to prove that if z < S+ 1 then
G{z) < 8+ 1 becanse I C K and G(K} C K. We shall prove first that if
z < (3 then G(z) < 8. If z € [z;, 8] then this follows by the assumption.
If z < z; then, since z; € P we have that G(z) < z; < $. Hence, since
G is a lifting of f7 which has degree one, for each # < 84 1 we have
G(z) =G(z—-1)+1< 8+ 1 and we arc done. Thus, we may assume
that there exists t € [z;, 8] such that G(¢} > 8.

Since z; # 3, by the definition of /3, there exists Z € [z;, 3] such that
G(Z) < z;. If t < 7 then the intervals [t, 7] and [Z, §] form a horseshoe
of G. So F has s horseshoe and (a) holds. If Z < ¢ then there is a fixed
point of & in (Z,t). Let ¢ be the supremum of these fixed points. We

have
~<t< B and
G(z) >y forall z € [y,¢].

I alse G{z) > v for all z € [t, 3] then v € § which contradicts the {act
that 3 = inf S. So, there exists ¥ € (¢, 3) such that f(¥) =+. Then the
intervals [y,t] and [¢,7] form a horseshoe of G, This ends the proof of
the lemma in the case when f has degree one,

Finally assume that deg(f) = —1. By the definition of degree of a
map, f has a fixed point. Thus, Per(f) # 0. Let us consider f2. It has



SIMPLE AND COMPLEX DYNAMICS FOR CIRCLE MAPS 311

degree 1 and F? as a lifting. Thus, in view of the degree one case, either
f? has a horseshoe or there exist g € N, p € Z and [ = [z, z+1] such that
((F2)9—p}(I) < I. Hence, cither f has a horseshoe or (F2—p)(I) C 1. &

Remark 2.2. From the proof of the above lemma it follows that if f
is a circle map satisfying (b) of Lemma 2.1, then deg(f) € {—1,0,1}.

3. Proof of Theorem 1.2.
We shall start with some technical lemmas on interval maps.

Lemma 3.1. Let f be o continuous map of the inferval I into itself
having a horseshoe. Then, f has o horseshoe in Int(1).

Proof: Since f has a horscshoe thereexist n € Nand I1,I; C 1, two
closed intervals with pairwise disjoint interiors, such that

LUl f™h) and LHubhc ™).

Then, there exist J!,J3 C I, and J? J§ C I, closed intervals with
pairwise disjoint interiors such that

JLULR U UJEC T

with 4,7 € {1,2}. Clearly, two of these intervals are contained in Int(]).
Then, f has a horseshoe in Int(f}). W

Lemma 3.2. Let f be a continuous map of the interval J = [a,a + 1]
into itself such that fla+1) = fla)+d withd € {-1,8,1}. Assume that
wol( f) is ¢ simple set for eny z € I and that a € w(f) enda+1 € wy(f)
for some x,y € I. Then the following statements hold:

(8) If we(f) # wy(f) then wo(f) and w,(f) are fized points of .
(b) If wo(f) = wy(f) then w{f) is a periodic orbit of period 2 of f.

Proof: 1t will be divided into several cases.

Case 1: d = 0. We shall prove that {g,e + 1} ¢ w(f) and thus the
lemma holds. In view of Theorem A and the fact that for an interval map
the chain recurrent set is a union of simple sets if and only if each omega
lirnit set is a simple set, it is enough to show that if {a,a + 1} C w(f)
then f has a horseshoe.

If fla+1) = f(a) = a then, since e+ 1 € wy,{f) and w,(f) is invariant,
it follows that there exists z € [ such that f(z) = a + 1. Thus, [, 2] and
[#, &+ 1] form a horseshoe for f.
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If fla+ 1} = f{a) = a + 1 we proceed in a similar way to obtain a
horseshoe for f.

Assume now that a < f{a) = f{a + 1) < a + 1. As hefore, there exist
z,2' € I such that f(z) = g and f{2’} = a + 1. Moreover, there exists 1,
a fixed point of f between z and 2/ :

If 2 < 2’ and f{a) > ¢ then the intervals [a, z] and [2,¢} form a horse-
shoe of f. If z < 2’ and f(a) < ¢t then the horseshoe of f is given by
(£, 7] and [#',a + 1]. Thus, if z < 2’ we are done.

If 2 < 2z and fla) > ¢ we set A = [o,2'], B = [/,t] and C = [t, 2]
Then we have f(4) 2 C, f(B) D C and f(C) D AU B. Hence,

fHAYDAUB and f3B)DAUB.

Thus A and B form a horseshoe of f. If 2’ < z but fla) < ¢ then, in a
similar way we can see that [t, 2] and [z,a + 1] form a horseshoe of f.

Case 2: d = 1. We have that f{a) = ¢ and f{a+ 1) = a+ 1. Thus,
wo{f} and wy(f) are simple sets which contain a fixed point. In view of
Remark 1.1 we obtain that wz(f) = {a} and w,{f} = {a + 1}.

Case 3: ¢ = —1. We have that {a,a + 1} is now a periodic orbit of
f of period 2. Thus, again by Remark 1.1 we see that w,(f) = w,(f) =
{e,a+1}. 1

Let now f be a circle map and let F be a lifting of f. Wesay that f € A
if there exist z € R and p € Z such that (F — p)([z,z + 1]} C [z, z + 1].
That is, if F* satisfies (b} of Lemma 2.1 with ¢ = 1. From Remark 2.2
we note that deg(f) € {-1,0,1}.

Lemma 3.3. Each map f € A has one and only one from the follow-
ing two properties:

{(a) f has a horseshoe.

{b) w,{f) is a simple set for each z € 8,

Proof: Let F be a lifting of f. Since f € A there exist x € R and
p € Z such that (F — p}{[z,z +1]) C jz,z + 1. In view of Theorem A,
Lemmas 3.1 and 3.2 and the fact that the chain recurrent set of an
interval map is union of simple sets if and only if each omega limit set is
a simple set we get that {F — p) has one and only one from the following
two properties.

(i) (F — p) has a horseshoe in {z,z + 1).
(i1} wy(F —p}is asimple set for each y € [z,2+1] and if 2 € ws, (F—p)
and z+1 € w,, (F —p) for some 23,25 € [z,z-+1] then w,, (F—p)
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and wg,{f — p) are fixed points of {F — p) when w; (F —p) =
we, {(F — p) and wy, (F — p) is a periodic orbit of period 2 when

wm(F -pr# wzz(F - p)'
Since (F—p) isalso a lifting of fand e: (z,z + 1) — 8\ {e(z)} 52
homeomorphism we get the desired conclusion. B

Now we are ready to prove the main result of this paper.

Proof of Theorem 1.2: Tt follows straightforwardly from Lemmas 2.1
and 3.3 and from the fact that if f satisfies {a} or {b) of Lemma 2.1 then
Per(f1#£ ¢ m

4. A geometric view-point of Condition {b) of Theorem 1.2.

Throughout this section we will assume that f is a circle map satisfying
Condition (b} of Theorem 1.2. We shall try to explain this condition in
terms of the graph of the map and the chain recurrent set of f.

From Remark 2.2 we have that deg(f) € {—1,0,1}. If deg{f) €
{-1,0}, by looking at the proof of Theorem 1.2, we can prove that
the situation for the chain recurrent set of f is the same as in the case
of interval maps. That is, the chain recurrent set of f is the unicn of all
simple sets.

Now assume that deg(f) = 1. Also from the proof of Lemma 2.1
and from the fact that a circle map satisfies one and only one from
the conditions of Theorem 1.2 we see that if F is a lifting of f then
Ly = {p/q} with ¢ € N and p € Z relatively prime. By using the
notation from the proof of Lemima 2.1 we see that there exists a periodic
{mod. 1} point # of F with rotation number p/q such that

(FT—p)[B,8+ 1)) C[8,8+1].

If we set

Q={Fi(f+m:i=0,1,2,... ,g-1,meZ} =
e H{f(e(B): i=0,1,2,... g 1}) =
{ . B2.8.4,06,8,P2...}

then it is not difficult to prove that (F? — p)(|8:, Bi+1]) € [Bi, Bita] for
all ¢ € Z and that for each i, 7 € Z the diagram
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B T, )él I Jéz I Bs Iy Ba=ho+1

Figure 1: The typical situation of a chain recurrent set of a circle map
f of degrec one. Each 8; is a periodic (mod. 1) point of F of pericd 4
and rotation number p/4 for some p € Z. The picture shows the graph
of the map F* —p. Here B, C L, U {3} and T; ¢ L\ (LU {B:)).

Glisy ;411
_—

(8, Bis1] (Gis Biv1]

| |-

(8, B541) —— (85,8541

i .ﬁjq.l]

commutes, where h;; is the unique bijective affine map from [;, Bi4.1] to
185+ B41)-

It is also easy to see {see [1] for instance) that By, = B; + 1 and
F{;) = B.4p for each ¢ € Z. Thus, if we define [; = e{[8;, fiv1)) for
i=0,1,2,...,¢—1 we get that f{L) = L, (mod ) @0d [z, is conjugate
to f9|;, for each ¢,j € {0,1,2,... ,¢— 1}.

Let now € denote the chain recurrent set of f and set &, =C N for
i=0,1,...,¢—1. Since C is invariant we have that f{C;) = Cii5(med g
foreach i € {0,1,2,... ,g—1}. That is, the chain recurrent set is formed
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by ¢ “rotating” disjoint pieces. Moreover, C; = CR(f9) N I; and fi|¢,
is conjugate to fi¢, for each ¢,7 € {0,1,2,...,¢ — 1}. To end the
description of the dynamics of f on € we still need to describe the
dynamics of f9 on the sets C;. Each of these sets C; can be decomposed
in a union of two more sets: R; and 7;. In general the set 7 can be
empty while R; it is not. The dynamics of f7|p, is the one of a simple
interval map on its chain recurrent set. That is, R; is the union of all
simple sets of f9];,. On the other hand, f|r, i a monotone map. A
typical situation where T, # @ is illustrated in Figure 1.
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