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THE FIRST DERIVATIVE
OF THE PERIOD FUNCTION
OF A PLANE VECTOR FIELD

J.-P. Françoise

Abstract
The algorithm of the successive derivatives introduced in [5] was
implemented in [7], [8]. This algorithm is based on the existence of
a decomposition of 1-forms associated to the relative cohomology
of the Hamiltonian function which is perturbed. We explain here
how the first step of this algorithm gives also the first derivative of
the period function. This includes, for instance, new presentations
of formulas obtained by Carmen Chicone and Marc Jacobs in [3].

1. Introduction

Let Xε be a vector field of the type:

(1) X = x
∂

∂y
− y

∂

∂x
+ ε

∑
2≤i+j≤n

aijx
iyj ∂

∂x
+ bijx

iyj ∂

∂y
.

((aij , bij) ∈ R
2), ε is a parameter.

For a vector field Xε corresponding to fixed values of (aij , bij), there is
a neighborhood U of the origin 0 ∈ R

2 on which the flow of Xε, solution
of the differential system:

(2)




ẋ = −y + ε
∑

2≤i+j≤n

aijx
iyj

ẏ = x+ ε
∑

2≤i+j≤n

bijx
iyj

exists for all initial values which belong to this neighborhood.
There is furthermore a first return mapping Lε defined on U . Given

for instance, an initial point (r, 0), r > 0 the solution of equation (2)
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with initial data (r, 0) intersects again for the first time the x-axis at
some point (Lε(r), 0), Lε(r) > 0. We denote by Σ = {(x, 0) ∈ U} the
transversal section. By transversality, the mapping Lε is analytic and it
can be represented as a convergent Taylor series:

(3) Lε(r) = r + L2(r)ε2 + · · · + Lk(r)εk + · · ·

In [5], an algorithm was introduced to compute the first non-vanishing
coefficient Lk0(r)(a, b) for a homogeneous perturbative part. It was later
implemented in [7], [8].

Introduce now γε the arc of the trajectory of Xε between the two points
(r, 0) and (Lε(r), 0) and Tε the time along the flow between these two
points. We give here a practical formula to compute the first derivative
∂Tε

∂ε |ε=0
. This formula is based on the relative cohomology decomposition

of 1-forms used in preceding articles [5], [7], [8].

2. The relative cohomology decomposition of 1-forms

We use complex coordinates z = (1/
√

2)(x+ iy), z̄ = (1/
√

2)(x− iy);
and the 1-form ωε = iXε

(dx ∧ dy). With these new notations, we use:

(4) ωε = dH + εω1 = dH + ε
∑

2≤i+j≤d

Aijz
iz̄jdz + Āij z̄

izjdz̄.

The complex coefficients Aij of equation (4) are easily related to the real
coefficients (aij , bij). The function H is H : (z, z̄) �→ H(z, z̄) = zz̄. We
remind without proof the following

Proposition 1. Any polynomial 1-form ω can be decomposed into

ω = gdH + dR + (1/2)ψ(H)[zdz̄ − z̄dz]

where g, R are polynomials (R(0) = 0) in (z, z̄) and ψ is a polynomial
in one variable.

To compute g and ψ(H), take dω = F (z, z̄). Write

F (z, z̄) =
∑
i �=j

Fijz
iz̄j +

∑
i=j

Fij(zz̄)i,

then

g =
∑
i �=j

Fijz
iz̄j

i− j
.
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To find ψ, take
φ(t) =

∑
i

Fiit
i.

Then solve tψ′(t) + ψ(t) = φ(t). Now get R by applying Poincaré’s
theorem to

dω − dg ∧ dH − φ(H)dz ∧ dz̄.

In the sequel, we describe the method given in [5] to get the successive
derivatives of the return mapping.

A classical formula gives:

(5) L1(r,Aij , Āij) = −
∫

H=r

ω1.

Assume that L1(r,Aij , Āij) ≡ 0 (as a function of r) then there is a
polynomial g1 such that

(6) ω1 = g1dH + dR1.

And we get

(7) L2(r,Aij , Āij) = −
∫

H=r

g1ω1.

One can show inductively that given

(8) Lk(r,Aij , Āij) = −
∫

H=r

gk−1ω1,

if Lk(r,Aij , Āij) ≡ 0 (as a function of r), then there is a polynomial gk

such that

(9) gk−1ω1 = gkdH + dRk

and then

(10) Lk+1(r,Aij , Āij) = −
∫

H=r

gkω1.

As a consequence, we can compute the first non-zero coefficient
Lk(r,Aij , Āij) by building the sequence of polynomials g1, . . . , gk, . . .
.

At each step k we have a 1-form gkω1. We must first compute the
differential d(gkω1) = F k(z, z̄)dz ∧ dz̄. We then split into two parts:

F k(z, z̄) =
∑
i �=j

F k
ijz

iz̄j +
∑
i=j

F k
ij(zz̄)

i.
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We find that
Lk+1(r,Aij , Āij) =

∑
F k

llr
l,

and we introduce

gk+1 =
∑
i �=j

F k
ijz

iz̄j

i− j
.

Next we compute d(gk+1ω1) and we repeat the process.

3. The first derivative of the period

We write Tε = T0+εT1+O(ε2)(T0 = 2π). Let !0 = dθ then !0∧dH =
rdθ ∧ dr = dx ∧ dy and

∫
γε
!0 = 2π = TO.

Definition 2. A 1-form !0 + ε!1 + · · · + εk!k is said to be
k-isochronous to Xε if (!0 + ε!1 + · · · + εk!k) (Xε) = 1 +O(εk+1).

Proposition 3. Let !0 + ε!1 be a 1-isochronous 1-form, then
Tε =

∫
γε

(!0 + ε!1) +O(ε2) = 2π + ε
∫

H=r2 !1 +O(ε2).

Proof:

∫
γε

(!0 + ε!1) =
∫

γε

(!0 + ε!1)(Xε) dt =
∫

γε

dt+O(ε2) = Tε+O(ε2).

We now try to build a 1-isochronous form. This yields:

(11) (!0 + ε!1) ∧ (dH + εω1) = (1 +O(ε2))dx ∧ dy.

The 1-form !1 should be such that

(12) !1 ∧ dH = −!0 ∧ ω1.

Now the relative cohomology decomposition of ω1 displays:

(13) ω1 = gdH + dR + (1/2)ψ(H)[zdz̄ − z̄dz].

This yields to a possible choice for !1:

(14) !1 = −
[
g + (1/r)

(
∂R

∂r

)]
!0.
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Now, we obtain with this choice of !1:

(15) T1 =
∫

H=r2
!1 = −

∫
H=r2

[
g + (1/r)

(
∂R

∂r

)]
dθ.

Now, we remark that the construction of g yields:
∫

H=r2 g dθ = 0.

We expand R:

R(z, z̄) =
∑
i �=j

Rijz
iz̄j +

∑
i=j

Rii(zz̄)i

and get ultimately:

(16) T1(r) = −4π
∑

k

kRkkr
(2k−2).

To summarize, the first derivative ∂Tε

∂ε |ε=0
is essentially given by the

part in the Taylor development of R which depends only in H = zz̄. An
equivalent expression was already derived by C. Chicone and M. Jacobs
in [3, Lemma 3.2, p. 455]. Our main point here was to clear up the link
of their result with the relative cohomology of forms.

4. The case of an homogeneous perturbative part

To illustrate the preceding formula, we consider the situation where
the perturbative part ω1 is homogeneous of degree n. So we consider
now the 1-form

(17) ωε = dH + εω1 = dH + ε
∑

2≤i+j=n

Aijz
iz̄jdz + Āij z̄

izjdz̄.

We first compute dω1 = D(z, z̄)dz ∧ dz̄,

(18) D(z, z̄) =
∑

i+j=n

[−jAijz
iz̄j−1 + jĀij z̄

izj−1].
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There is a contribution to φ(H) only if i = j − 1, hence n + 1 = 2j. So
n must be odd. Write n = 2J − 1, then i = J − 1 and

(19) φ(H) = −2J Im(AJ−1J)H(J−1).

So the first condition for a center is Im(AJ−1J) = 0 [5]. We have now:

(20) g =
∑

i �=j−1

[−jAijz
iz̄j−1 + jĀij z̄

izj−1]/(i− j + 1).

Note that g is homogeneous of degree n− 1. We have then to consider

(21) ω1 − gdH − (1/2)ψ(H)[zdz̄ − z̄dz] = Ω.

Note that Ω is homogeneous of degree n + 1, then we obtain Ω =
d[(iCΩ/(n + 1)] where C = z ∂

∂z + z̄ ∂
∂z̄ is the Euler vector field. So

we can choose

(22) R = [ω1(C) − 2gH]/(n+ 1).

Now we have to isolate the monomials in R for which the exponent of z
equals the exponent of z̄. There are no such monomials in gH. Hence it
is only necessary to look at those in ω1(C). This yields

(23) ω1(C) =
∑

i+j=n

[Aijz
i+1z̄j + Āij z̄

i+1zj ].

The monomials in ω1(C) such that i + 1 = j and i + j = n exist only if
n = 2I + 1 and we ultimately obtain

(24) T1(r) = 4πRe(AII+1)r2I.

In particular, this yields the “second” condition for a center to be
isochronous

(25) Re(AII+1) = 0,

if n = 2I + 1. This condition was previously obtained by [9]. In this
article, the authors use the Cherkas transform and deal with the Abel
Equation.
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5. Final remarks on the isochronous centres

The search for isochronous centres is certainly one the priority subjects
in the bifurcation theory of differential systems. To name few of the many
important contributions to this field, we mention the articles of [1], [2],
[10]. Recently, C. J. Christopher and J. Devlin [4] and independently
B. Schuman [11] proved that the origin is never isochronous in non zero
homogeneous hamiltonian perturbations. It may be of some interest
to see appropriate extensions to several variables in the general setting
provided by normal form theory. (cf. [6]).

References

1. R. Conti, Centers of quadratic systems, Ricerche Mat. Suppl. 36
(1987), 117–126.

2. R. Conti, Uniformly isochronous centres of polynomial systems, in
“Lecture Notes in Pure and Applied Math.,” 152, 1994, pp. 21–31.

3. C. Chicone and M. Jacobs., Bifurcations of critical periods for
plane vector fields, Trans. Amer. Math. Soc. 312 (1989), 433–486.

4. C. J. Christopher and J. Devlin, Isochronous centers in planar
polynomial systems, SIAM J. Math. Anal., (to appear).

5. J.-P. Françoise, Successive derivatives of a first return map, ap-
plication to quadratic vector fields, Ergodic Theory Dynam. Systems
16 (1996), 87–96.

6. J.-P. Françoise, Birkhoff normal forms and analytic geometry,
Differential geometry and mathematical physics, Banach Center
Publications, Warsaw (1996).

7. J.-P. Françoise and R. Pons, Computer algebra methods and
the stability of differential systems, Random Comput. Dynam. 3(4)
(1995), 265–287.

8. J.-P. Françoise et R. Pons, Une approche algorithmique du
problème du centre pour des perturbations homogènes, Bull. Sci.
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Primera versió rebuda el 30 de Novembre de 1996,
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