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P -NILPOTENT COMPLETION
IS NOT IDEMPOTENT

Geok Choo Tan

Abstract
Let P be an arbitrary set of primes. The P -nilpotent completion
of a group G is defined by the group homomorphism η : G →
G

P̂
where G

P̂
= invlim(G/ΓiG)P . Here Γ2G is the commutator

subgroup [G, G] and ΓiG the subgroup [G, Γi−1G] when i > 2. In
this paper, we prove that P -nilpotent completion of an infinitely
generated free group F does not induce an isomorphism on the
first homology group with ZP coefficients. Hence, P -nilpotent
completion is not idempotent. Another important consequence of
the result in homotopy theory (as in [4]) is that any infinite wedge
of circles is R-bad, where R is any subring of rationals.

1. Introduction

For a group G, we denote by Γ2G the commutator subgroup [G,G]
and ΓiG the subgroup [G,Γi−1G] when i > 2. A group G is nilpotent if
Γi(G) is trivial for some i. The nilpotency class nil(G) of G is the least
c such that Γc(G) is trivial. Let P be a set of prime numbers. There is
a well-known P -localization in the category of nilpotent groups, [7]. We
denote this localization on a nilpotent group N by e : N → NP .

The P -nilpotent completion or ZP -completion of a group G is
defined to be the group homomorphism η : G → G

P̂
where G

P̂
=

invlim(G/ΓiG)P , with i running through all finite ordinals. For each i,
the group homomorphism G → (G/ΓiG)P defines a localization on the
category G of groups. Its universal property gives rise to a natural map
(G

P̂
/ΓiGP̂

)P → (G/ΓiG)P . Passing to inverse limit, we obtain a natural
transformation χ : (G

P̂
)
P̂
→ G

P̂
so that (( )

P̂
, η, χ) is a monad on G.

Let F be a free group on an infinitely countable set of generators.
In [4, Proposition IV.5.4], it is proved that the abelianization of
η : F → FẐ = invlim(F/ΓiF ) is not an isomorphism. This result is
used to verify that Z-completion (which is P -nilpotent completion when
P is the set of all primes) is not idempotent in [3].
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We study these proofs closely and obtain a similar proof of the non-
idempotence of P -nilpotent completion for any set P of primes. We use
results from orthogonal pairs, idempotent monads and the P -localization
on the category of nilpotent groups.

Although the P -nilpotent completion is not idempotent on the cate-
gory of groups, a procedure to obtain an idempotent monad from it is
described in [5]. This turns out to be the minimal P -localization, which
is also obtained in [2]. It is the “smallest” (in the sense that it provides
the least local objects) idempotent monad which extends P -localization
on the category of nilpotent groups to the category of groups. This min-
imal P -localization coincides with the P -nilpotent completion on groups
which have finitely generated abelianization [3] and groups with stable
lower central series [2].

2. The P -nilpotent completion is not idempotent

Let C be a category, X be an object of C and f : A → B be a
morphism of C. Then X and f are said to be orthogonal to each other,
denoted by X⊥f or f⊥X, if f∗ : C(B,X) ∼= C(A,X). For a class D
of objects in C, the orthogonal complement of D in C, denoted by D⊥,
is the class of morphisms orthogonal to every object in D. Dually, the
orthogonal complement of S can be defined for a class S of morphisms.
An orthogonal pair (S,D) in C comprises a collection S of morphisms in
C and a collection D of objects in C satisfying S = D⊥ and D = S⊥.
Every idempotent monad (see [8, p. 133]) (also known as localization in
[6]) is associated with a unique orthogonal pair.

Let a1, a2, . . . be elements of a group G. We define [a1, a2] =
a−1
1 a−1

2 a1a2 and [a1, a2, . . . , ak] = [[a1, . . . , ak−1], ak] recursively for
k ≥ 3.

Proposition 1. Let F be the free group on a1, . . . , ak. For every
positive integer n, [a1, . . . , ak]n does not belong to the subgroup of Γ2F
that is generated by Γk+1F and Γ2Γ2F .

Proof: Replacing F by the quotient F/〈Γk+1F,Γ2Γ2F 〉, the propo-
sition becomes: for each n, there exists a group G with the following
properties: (i) The commutator subgroup Γ2G is abelian, (ii) G is nilpo-
tent of class k + 1, and (iii) there exists x ∈ ΓkG such that xn 
= 1.

However, it is enough to pick a prime p that does not divide n and
find a p-group G such that Γ2G is abelian and G is nilpotent of class
k + 1. For any positive integer m, consider the Z/p vector space V on a
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basis {v1, v2, . . . , vpm} and let σ ∈ GL(V ) where

σ(vi) =
{

vi + vi+1 if i ≤ pm − 1
vpm if i = pm.

For each positive integer j ≤ pm,

σj(vi) =




∑j
l=0

(
j

l

)
vi+l if i ≤ pm − j

∑r
l=0

(
j

l

)
vi+l if i > pm − j, where r = pm − i

so that the order of σ is pm. The semi-direct product group of V and 〈σ〉
is a p-group whose commutator subgroup is abelian and has nilpotency
class pm (see [1] and [9]). By choosing m ≥ k + 1 and factoring this
semi-direct product group by the k + 1-th lower central term we obtain
a group G with the required properties.

Let P be a fixed set of prime numbers. We use the notation n ∈ P to
mean all prime divisors of n are in P and P ′ to denote the complement
of P in the set of all primes. A group G is said to be P -local if the map
g �→ gn is a bijection for all n ∈ P ′. A group homomorphism f : G→ K
is said to be (i) P -injective if for any two elements g1, g2 ∈ G such
that f(g1) = f(g2), there exists an integer n ∈ P ′ such that gn1 = gn2 ;
(ii) P -surjective if for every k ∈ K, there exists an integer n ∈ P ′

such that kn ∈ Imf; and (iii) P -bijective if f is both P -injective and
P -surjective.

On the category of nilpotent groups, there is a well-known P -localiza-
tion [7], which is denoted by e : N → NP for each nilpotent group N ,
where NP is P -local nilpotent and e is a P -bijection.

The P -nilpotent completion or ZP -completion of a group G is defined
to be the group homomorphism η : G → G

P̂
induced by the group ho-

momorphisms G � G/ΓiG
e→ (G/ΓiG)P , where G

P̂
= invlim(G/ΓiG)P ,

with i running through all finite ordinals. For each i, the above group ho-
momorphism G→ (G/ΓiG)P defines an idempotent monad on G whose
universal property enables us to complete the following diagram

G
P̂

−−−−→ (G
P̂
/ΓiGP̂

)P�
(G/ΓiG)P
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by a unique map (G
P̂
/ΓiGP̂

)P → (G/ΓiG)P . Passing to inverse limits,
we obtain a natural transformation χ : (G

P̂
)
P̂
→ G

P̂
so that (( )

P̂
, η, χ)

is a monad on G.
Let G be the category of groups and G′ be the full subcategory of

groups G such that the natural homomorphism G
P̂
→ (G

P̂
)
P̂

is an
isomorphism. Then ( )

P̂
restricts to an idempotent monad on G′. Let

(S′, D′) be the associated orthogonal pair. Since every abelian group A
satisfies A

P̂
∼= AP , all abelian groups are objects of G′; moreover, all

P -local abelian groups are in D′.
For any group G in G′, the completion homomorphism η : G→ G

P̂
is

in S′ and hence it is orthogonal to all P -local abelian groups. From this
fact it follows that, for all groups G in G′, the natural map

(G/Γ2G)P → (G
P̂
/Γ2GP̂

)P

induced by η is an isomorphism. Thus, if G is in G′, then H1(G;ZP ) ∼=
H1(GP̂

;ZP ).
For any group G, we denote by γi the projection of G onto G/ΓiG, by

θi the natural epimorphism from G
P̂

onto (G/ΓiG)P , by η̄ the abelian-
ization of η : G→ G

P̂
, and by e the P -localization homomorphism. Since

(G/Γ2G)P is abelian, there is a unique homomorphism θ̄2 : G
P̂
/Γ2GP̂

→
(G/Γ2G)P such that θ̄2γ2 = θ2. Now we have

θ̄2η̄γ2 = θ̄2γ2η = θ2η = eγ2.

Since γ2 is surjective, we infer that θ̄2η̄ = e. Under the assumption that
the group G is in the subcategory G′, both η̄ and e are P -bijections.
It follows that θ̄2 is a P -bijection as well. Hence, we have proved the
following result.

Proposition 2. For a group G, if the natural homomorphism
G
P̂
→ (G

P̂
)
P̂

is an isomorphism, then the homomorphism H1(G;ZP )→
H1(GP̂

;ZP ) induced by the P -completion map G → G
P̂

and the homo-
morphism H1(GP̂

;ZP ) → H1(G;ZP ) induced by the projection G
P̂
→

(G/Γ2G)P are isomorphisms, and they are inverse to each other.

We next prove that if F is a free group on an infinite set of generators,
then θ̄2 is not P -injective. This implies that F is not in G′, as desired.

Thus, we shall assume that θ̄2 is P -injective and arrive at a contra-
diction. Pick a countable subset of free generators of F and label them
as {aij}, where 1 ≤ j ≤ i. Denote by Fm the free group generated by
am1, . . . , amm. Let πm be the projection of F onto Fm sending all other
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generators to 1. Likewise, we denote by π̂m, the induced homomorphism
F
P̂
→ (Fm)

P̂
and by ηm, the completion map Fm → (Fm)

P̂
.

Consider the element b = (b2, b3, . . . ) ∈ FẐ, where b2 = 1 and, for
m ≥ 2, bm+1 is the class of

[a21, a22][a31, a32, a33] · · · [am1, . . . , amm]

in F/Γm+1F . Since the natural map FẐ → F
P̂

is injective, we may view
b as an element of F

P̂
as well. In fact we have

π̂m(b) = ηm([am1, . . . , amm]).

Since 1 = θ2(b) = θ̄2(γ2(b)) and θ̄2 is assumed to be P -injective, it
follows that γ2(b)n = 1 for some n ∈ P ′. Hence, bn ∈ Γ2FP̂ . Therefore
we may write

bn = [u1, u2] · · · [u2k−1, u2k],

with ui ∈ F
P̂

for all i. Now, for each i, we have θ2(ui)ti = e(γ2(zi)), for
some ti ∈ P ′ and zi ∈ F because e is P -surjective and γ2 is surjective.
Since only a finite number of generators of F are involved in zi, we have
πm(zi) = 1 for all i and all m except for a finite number of indices
m1, . . . ,mr. Choose any m 
= m1, . . . ,mr, which will remain fixed in
the rest of the argument.

Let ψm be the unique homomorphism that renders the following dia-
gram commutative:

F
P̂

θ2� (F/Γ2F )P
e←− (F/Γ2F )

γ2←− F�π̂m

�ψm

� πm

�
(Fm)

P̂

θ2� (Fm/Γ2Fm)P
e←− (Fm/Γ2Fm)

γ2←− Fm

For each i, we have

ψm(θ2(ui))ti = ψm(e(γ2(zi))) = e(γ2(πm(zi))) = 1.

Since the target of ψm is a P -local group, we infer that ψm(θ2(ui)) = 1,
and hence θ2(π̂m(ui)) = 1. Therefore, θm+1(π̂m(ui)) belongs to the
kernel of the reduction map (Fm/Γm+1Fm)P → (Fm/Γ2Fm)P , that is,

θm+1(π̂m(ui)) ∈ (Γ2Fm/Γm+1Fm)P
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for all i. Now observe that

θm+1(ηm([am1, . . . , amm]n)) = θm+1(π̂m(bn))
=[θm+1(π̂m(u1)), θm+1(π̂m(u2))]· · ·[θm+1(π̂m(u2k−1)), θm+1(π̂m(u2k))],

which is an element of (Γ2Γ2Fm/Γm+1Fm)P . Hence, there is an integer
q ∈ P ′ and an element x ∈ Γ2Γ2Fm/Γm+1Fm such that

θm+1(ηm([am1, . . . , amm]n))q = e(x).

Since we have the commutative diagram

Fm
ηm−−−−→ (Fm)

P̂

γm+1

� �θm+1

Fm/Γm+1Fm
e−−−−→ (Fm/Γm+1Fm)P

where Fm/Γm+1Fm is torsion-free and hence the localization map e is
injective, we infer that

γm+1([am1, . . . , amm]nq) = x.

It follows that [am1, . . . , amm]nq belongs to the subgroup of Fm generated
by Γ2Γ2Fm and Γm+1Fm. This contradicts Proposition 1. We have thus
shown

Theorem 3. Let F be a free group on an infinite set of generators.
Then, for any set of primes P , the natural homomorphisms H1(F ;ZP )→
H1(FP̂ ;ZP ) and η : F

P̂
→ (F

P̂
)
P̂

both fail to be isomorphisms.

We thus conclude that P -nilpotent completion is not idempotent on
the category of groups. As in [4, Proposition IV.5.4], it follows from our
theorem and [4, Proposition IV.5.3] that

Corollary 4. Any infinite wedge of circles is R-bad, where R is any
subring of the rationals.

Acknowledgements. The author wishes to thank Jon Berrick,
Carles Casacuberta and Garth Warner for many helpful comments and
the referee for his/her suggestions on the presentation of this paper.



P -nilpotent completion is not idempotent 487

References

1. R. Baer, Nilpotent groups and their generalizations, Trans. Amer.
Math. Soc. 47 (1940), 393–434.

2. A. J. Berrick and G. C. Tan, The minimal extension of P -loca-
lization on groups, Math. Proc. Cambridge Philos. Soc. 118 (1996),
243–255.

3. A. K. Bousfield, Homological localization towers for groups and
π-modules, Mem. Amer. Math. Soc. 10(186) (1977), ?.

4. A. K. Bousfield and D. M. Kan, “Homotopy Limits, Comple-
tions and Localizations,” Lecture Notes in Math. 304, Springer-
Verlag, Berlin, 1972.

5. C. Casacuberta, A. Frei and G. C. Tan, Extending localization
functors, J. Pure Appl. Algebra 103 (1995), 149–165.

6. C. Casacuberta, G. Peschke and M. Pfenniger, Orthogonal
pairs in categories and localization, in “Proc. Adams Memorial Sym-
posium,” London Math. Soc. Lecture Note Ser. 175, Camb. Univ.
Press, Cambridge, 1992, pp. 211–223.

7. P. Hilton, G. Mislin and J. Roitberg, “Localization of Nilpo-
tent Groups and Spaces,” North-Holland Math. Studies 15, North-
Holland, Amsterdam, 1975.

8. S. MacLane, “Categories for the Working Mathematician,” Grad-
uate Texts in Math. 5, Springer-Verlag, Berlin, 1972.

9. M. Suzuki, “Group Theory II,” Grundlehren der mathematischen
Wissenchaften 248, A series of Comprehensive Studies in Mathe-
matics, Springer Verlag, 1986.

Department of Mathematics
Faculty of Science
National University of Singapore
10 Kent Ridge Crescent
SINGAPORE 119260
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