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THE VORONOVSKAYA THEOREM
FOR SOME LINEAR POSITIVE OPERATORS
IN EXPONENTIAL WEIGHT SPACES

L. REMPULSKA AND M. SKORUPKA

Abstract

In this note we give the Voronovskaya theorem for some linear
positive operators of the Szasz-Mirakjan type defined in the space
of functions continuous on [0,+4oc0) and having the exponential
growth at infinity.

Some approximation properties of these operators are given in
(3], [4].

1. Preliminaries

1.1. Let Ry :=[0,400), N :={1,2,...}, No := NU{0} and let w, (-),
r > 0, be the weight function defined on Ry by the formula
(1) wy(z) :=e ",
Similarly as in [1] we denote by C,, r > 0, the space of real-valued

functions f defined on Ry and such that w, f is a uniformly continuous
and bounded function on Ry. The norm in C,. is defined by

[f1lr:= sup wy(x)[f ()]

reRo

For a fixed » > 0 let
C:.={fecC,:f,f"eC,}.

1.2. In [3] were introduced the following operators of the Szasz-Mirak-
jan type for functions f € C,., r > 0,

2 L) =S par) £ (%),
k=0

3) LO(fio)i= 3 purlae) [ f(e) e,
k=0 Ik
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x € Ry, n € N, where

1 M keNO

) Puk(®) = coshnx (2k)!’

sinh z, cosh x, tanh « are the elementary hyperbolic functions and I, j, :=
[2k 2k+2] ke Np.

n’ n

In [4] were introducend the operators

) IO = 1D S ) s (2’“ - 1) ,

1 + sinh nx P n

1 + sinh nz

© )= LY @y [ s
k=0 17w

x € Ry, n € N, where

1 (nx)?k+1

) 4 @) = T ihne @k 1)

and I}, ;= [le, %T+3] for k € Ny.

We observe that the above operators are linear positive operators well-
defined on every space C,., r > 0, and

(8) LO(Lz) =1, 1<i<4,
for all z € Ry and n € N.

In [3] and [4] it was proved that LY, 1 < i < 4, are operators from C,
into C; for every fixed s > r > 0 provided n is large enough. Moreover
in [3], [4] some approximation properties of there operators were given.
In particular in [3], [4] we proved the following

Theorem A. Suppose that r,s,ng are fized numbers such that s >
r >0, ny €N and ng > r(lnf)fl. If f € C}, then there exists a
positive constant My = M (ng,r,s) depending only on ng,r,s such that
forallx € Ry, ng<neN and1<i<4

wy(@) [L9(f12) - f(a)] < 2w (f,cr;\/ﬁl) ,

where w(f; Cr; ) is the modulus of continuity of f, i.e.,

w(f;Crst):= sup [[f(-+h)=FCl,.
0<h<t
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2. Auxiliary results

In this part we shall give some properties of the operators Lg,i ). Let

sinh nx
S =
(n) 1+ sinhna’
(9) coshnzx
T =
(n) 1 + sinh na’

V(nz) := 1 — tanh nax,

for n € N and © € Ry. By elementary calculations from (2)-(8) and (9)
we obtain

Lemma 1. For all x € Ry and n € N we have
LV (t — z;2) = —aV (nx),

n

LD (¢ = w)%5w) = (20% - %) V(nz) + %

3 2
Lo ((t— $)4;$) _ (8x4 12z 4z x

n n?

) V(nz) + 2o

R
(2) . _ 1
Lt —x2) = -2 V(nz) + —,
n
3x T 4
2 2. _ 2
ng) ((t—l‘) ,l‘) = (23: — ?) V(nl‘)-i-ﬁ“r?)ﬁ,

282% 3222 21z 120 16
LY (t—2)z) = (8304 T T F) Vinz) + 25 + 5

LO(t —x;x) = x (T(nx) — 1),
Ln?’) ((t — )% x) =22 (S(nz) — 2T (nz) + 1) + % V(nx),

1223
n

LY ((t =)' 2) = 2t (7 S(na) = 8T(na) +1) + —— (T(nz) - S(nz))

2

+ 2 (TS(na) — AT(na)) + = T (),

LWt —a;2) =z (T(nx) — 1) + %S(nw),

LW ((t —2)* ) = 2° (S(nx) — 2T (nx) + 1)
+ 2 (T(n) = () + 55 S (),
2813

L (1= 2)"2) = a* (25(ne) — 8T (0) + 1) + 22 (T(n) - S(o)

x? 17z
+ 2 (35.5(nz) — 32T (nx)) + gy T(nz).
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Using Lemma 1, we shall prove two lemmas.

Lemma 2. For every fized xg € Ry one has

, 0 ifi=1,3,
(10) lim nLY(t — xo;x0) = f )
n—00 1 ifi=2.4,
and
(11) lim nLO ((t — x0)%20) =0 for 1<i<4.
n—oo

Proof: We shall prove only (10) and (11) for ¢ = 3, because the proof
for i =1, 2,4 is analogous.
By Lemma 1 and (9) we have

nx nx

L (¢ — g g) = -
N Ly, ( .T,Z‘) e2n:r(]_ +Slnhnx) (1 —I—SiIIhTLSU)7

na? 2nx z cosh nz

" 1+sinhnz e"®(1 + sinh nx) + 1+ sinhnz’

2
nL) ((t — z)?%; x)

for every € Ryg and n € N, which immediately yield (10) and (11). ®

Lemma 3. For every fixred xo € Ry there exists a positive constant
M (xg), depending only on xg, such that for alln € N

(12) LW ((t — wo)*;20) < Ma(zo)n™2, 1<i<A4.

Proof: For example we shall prove (12) for LY. By (9) we have for
neN,pe N and x € Ry

P
2z < 21Ppl nP,

Oﬁpr(nx)ZW,

Applying the above inequality to the formula given in Lemma 1, we
obtain

47 3x2 =z _
Ly ((t —2o)*;20) < v + n—zo + n_g < My (zo)n 2,
for every fixed g > 0 and for allm € N. &

The proof of (12) for ¢ = 2, 3,4 is similar.

In the papers [3] (for Lg), i = 1,2) and [4] (for L,(f), i = 3,4) we
proved the following two lemmas.
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Lemma 4. Let s > r > 0 and let ng be a natural number such that
-1
(13) ng >r <ln f) .
r

Then there exists a positive constant Mz = M3(r, s,ng) depending only
onr, s, ng such that for alln > ny and i =1,2,3,4

L <wrl<t> ; )

Lemma 5. Suppose that r,s and ng are a numbers as in Lemma 4.
Then there exists a positive constant My = My(r, s,no) depending only
onr, s, ng such that for allx >0, n>ng andi=1,2,3,4

o[t —x)? x+1
14 o (¢ x| < M. :
(1) w2 (U] <"

Applying the above lemmas, we shall prove

< Ms.

S

Lemma 6. Suppose that xo is a fixzed point on Ry and ¢(-;x¢) is a
function belonging to a give space C., r > 0, such that lim;_,, ©(t; z9) =
0, (lim¢—o, ©(t;0) =0). Then

(15) lim LY (p(t;x0);20) =0 for 1<i<4.
n—oo

Proof: We shall prove (15) for ¢ = 1, because the proof of (15) for
i =2,3,4 is analogous.

Choose ¢ > 0 and M3 as in Lemma 4. Then by the properties of
© (+;x0) there exist positive constants § = § (¢, M3) and My such that

wy(t) | (t; z0)| < 2%3 for |t — zo| < 6,

wy(t) |o(t;x0)| < Ms for t > 0.
Denoting by Qn,1 = {k € Ny : ’% —xo‘ < (5} and Q2 = {k: € Ny :
|2n—k - x0’ >4}, we get for s > r and n > ng by (1)-(4) and Lemma 4

<2k )‘

P —3%o

n

<2k )’

®\| —3%o
n

<2k >

el —5%o
n

w; (o) ‘Lg) (p(t;0); xo)‘ < wg(xo) an,k (x0)
k=0

= wg(xo) Z Pn.k(20)

k€EQn 1

+ws($0) Z pn,k(w())

k€EQn 2

::;Jr;
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and

9

£ sgrie i (o (2)

N ™

5 < o & st (v (%))

k€Qn 2

Since 1 < §~2 (2n—k ) if |28 — x0| > 6§, we have

e X oo () (%)

kEQn,2

< M56~ 2w, (zo) LY (%;m) ,

wich by (14) and (13) yields

1
Z < M5M4x0 + for all n > ng.
nd2

It is obvious that for fixed numbers ¢ > 0, § > 0, M3 > 0, My > 0,
ng € N and xg > 0 there exist a natural number n; > ny depending on
the above parameters such that for all ny <n e N

PP A zo+1 < €
1T T2
Hence we have
Z< for all n > n;.

2

| ™

Consequently,
ws(20)| LY (p(t; x0);20) | < e for n>ny,
which proves that

lim w, (o) LYY ((t; 20); 20) = 0.

n—oo

From this and (1) assertion (15) follows for z¢ and ¢ = 1. Thus the proof
is completed. W
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3. Theorems of the Voronovskaya type

The Voronovskaya theorem for the Bernstein operators is given in [2].

We shall prove a similar theorem for the operators Lgf ),

Theorem 1. Let f € C? with some r > 0. Then
(16) lim 0 {L(f12) ~ f(@)} = 3 (@)
for every x € Ry and i =1,3.

Proof: Let ¢y > 0 be an arbitrary fixed point and ¢ = 1. By the Taylor
formula we have for ¢t > 0

(A7) f(t) = f(ffo)+f/($0)(t—$o)+%f”(xo)(t—xo)Q-f—w(t;wo)(t—$0)27

where ¢(+; zg) is a function belonging to the space C; and lim;_, ) (¢; z) =
0. By (2), (8) and (17) we get

(18) LIV (f(t);wo) = f(wo) + f'(wo) L (t — o5 20)

+ %f”(zo) Lgll) ((t — :1:0)2 : xo) + L%l) (1/1 (t; 20) (t — :1:0)2 ;xo)

for every n € N. Using Lemma 2, we have
lim n LY (t — zo;20) = 0,

lim n LY ((t — 20)*; 20) = 0.

n—oo

(19)

By (2) and the Holder inequality we have for every n € N
(20)  [L) (6 (t:0) (¢ o) 20)|

1 1
S {Lgll) (wz(t7 mo); 330) } : {LS) ((t — .’130)4; 1‘0) } : .

Since for the function o(t;z0) 1= ¥?(t; 1), t > 0, we have ¢(-;2¢) €
Cyp and limy_, ., @(t;20) = 0, we get by Lemma 6
(21) lim LY (2(t;20);20) = lim LY (p(t;20); 20) = 0.

n—oo n—oo

Applying (21) and (12) to (20), we obtain
(22) lim nL{Y (¢(t; 20)(t — 2y)%;20) = 0.

n—oo

Now we immediately obtain (16) for a given z¢ and ¢ = 1 from (18) by
(19) and (22). This proves the desired assertion for i =1. B

Similarly we can prove the following
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Theorem 2. Suppose that f € C% with some r > 0. Then

lim n {LY(f52) = () } = f'(2) + 5£"(@)

n—oo

for every x € Ry and i = 2,4.
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