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THE VORONOVSKAYA THEOREM
FOR SOME LINEAR POSITIVE OPERATORS

IN EXPONENTIAL WEIGHT SPACES

L. Rempulska and M. Skorupka

Abstract
In this note we give the Voronovskaya theorem for some linear
positive operators of the Szasz-Mirakjan type defined in the space
of functions continuous on [0, +∞) and having the exponential
growth at infinity.

Some approximation properties of these operators are given in
[3], [4].

1. Preliminaries

1.1. Let R0 := [0,+∞), N := {1, 2, . . . }, N0 := N∪{0} and let wr (·),
r > 0, be the weight function defined on R0 by the formula

(1) wr(x) := e−rx.

Similarly as in [1] we denote by Cr, r > 0, the space of real-valued
functions f defined on R0 and such that wr f is a uniformly continuous
and bounded function on R0. The norm in Cr is defined by

‖f‖r := sup
x∈R0

wr(x)|f(x)|.

For a fixed r > 0 let

C2
r := {f ∈ Cr : f ′, f ′′ ∈ Cr} .

1.2. In [3] were introduced the following operators of the Szasz-Mirak-
jan type for functions f ∈ Cr, r > 0,

L(1)
n (f ;x) :=

∞∑
k=0

pn,k(x) f
(

2k
n

)
,(2)

L(2)
n (f ;x) :=

∞∑
k=0

pn,k(x)
n

2

∫
In,k

f(t) dt,(3)
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x ∈ R0, n ∈ N , where

(4) pn,k(x) :=
1

coshnx
(nx)2k

(2k)!
, k ∈ N0,

sinhx, coshx, tanhx are the elementary hyperbolic functions and In,k :=[
2k
n ,

2k+2
n

]
, k ∈ N0.

In [4] were introducend the operators

L(3)
n (f ;x) :=

f(0)
1 + sinhnx

+
∞∑

k=0

qn,k(x) f
(

2k + 1
n

)
,(5)

L(4)
n (f ;x) :=

f(0)
1 + sinhnx

+
∞∑

k=0

qn,k(x)
n

2

∫
I∗

n,k

f(t) dt,(6)

x ∈ R0, n ∈ N , where

(7) qn,k(x) :=
1

1 + sinhnx
(nx)2k+1

(2k + 1)!
,

and I∗n,k :=
[
2k+1

n , 2k+3
n

]
for k ∈ N0.

We observe that the above operators are linear positive operators well-
defined on every space Cr, r > 0, and

(8) L(i)
n (1;x) = 1, 1 ≤ i ≤ 4,

for all x ∈ R0 and n ∈ N .

In [3] and [4] it was proved that L(i)
n , 1 ≤ i ≤ 4, are operators from Cr

into Cs for every fixed s > r > 0 provided n is large enough. Moreover
in [3], [4] some approximation properties of there operators were given.
In particular in [3], [4] we proved the following

Theorem A. Suppose that r, s, n0 are fixed numbers such that s >
r > 0, n0 ∈ N and n0 > r

(
ln s

r

)−1. If f ∈ Cr, then there exists a
positive constant M1 ≡ M1(n0, r, s) depending only on n0, r, s such that
for all x ∈ R0, n0 < n ∈ N and 1 ≤ i ≤ 4

ws(x)
∣∣∣L(i)

n (f ;x) − f(x)
∣∣∣ ≤M1 ω

(
f, Cr;

√
x+ 1
n

)
,

where ω(f ;Cr; ·) is the modulus of continuity of f , i.e.,

ω(f ;Cr; t) := sup
0<h≤t

‖f(· + h) − f (·)‖r .
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2. Auxiliary results

In this part we shall give some properties of the operators L(i)
n . Let

(9)

S(nx) :=
sinhnx

1 + sinhnx
,

T (nx) :=
coshnx

1 + sinhnx
,

V (nx) := 1 − tanhnx,
for n ∈ N and x ∈ R0. By elementary calculations from (2)-(8) and (9)
we obtain

Lemma 1. For all x ∈ R0 and n ∈ N we have

L(1)
n (t− x;x) = −xV (nx),

L(1)
n

(
(t− x)2;x

)
=

(
2x2 − x

n

)
V (nx) +

x

n
,

L(1)
n

(
(t− x)4;x

)
=

(
8x4 − 12x3

n
+

4x2

n2
− x

n3

)
V (nx) +

3x2

n2
+
x

n3
,

L(2)
n (t− x;x) = −xV (nx) +

1
n
,

L(2)
n

(
(t− x)2;x

)
=

(
2x2 − 3x

n

)
V (nx) +

x

n
+

4
3n2

,

L(2)
n

(
t− x)4;x

)
=

(
8x4 − 28x3

n
+

32x2

n2
− 21x
n3

)
V (nx) +

12x
n3

+
16
5n4

,

L(3)
n (t− x;x) = x (T (nx) − 1) ,

L(3)
n

(
(t− x)2;x

)
= x2 (S(nx) − 2T (nx) + 1) +

x

n
V (nx),

L(3)
n

(
(t− x)4 ;x

)
= x4 (7S(nx) − 8T (nx) + 1) +

12x3

n
(T (nx) − S(nx))

+
x2

n2
(7S(nx) − 4T (nx)) +

x

n3
T (nx),

L(4)
n (t− x;x) = x (T (nx) − 1) +

1
n
S(nx),

L(4)
n

(
(t− x)2;x

)
= x2 (S(nx) − 2T (nx) + 1)

+
2x
n

(T (nx) − S(nx)) +
4

3n2
S(nx),

L(4)
n

(
(t− x)4;x

)
= x4 (7S(nx) − 8T (nx) + 1) +

28x3

n
(T (nx) − S(nx))

+
x2

n2
(35S(nx) − 32T (nx)) +

17x
n3

T (nx).
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Using Lemma 1, we shall prove two lemmas.

Lemma 2. For every fixed x0 ∈ R0 one has

(10) lim
n→∞

nL(i)
n (t− x0;x0) =

{
0 if i = 1, 3,
1 if i = 2, 4,

and

(11) lim
n→∞

nL(i)
n ((t− x0)2;x0) = x0 for 1 ≤ i ≤ 4.

Proof: We shall prove only (10) and (11) for i = 3, because the proof
for i = 1, 2, 4 is analogous.

By Lemma 1 and (9) we have

nL(3)
n (t− x;x) =

nx

e2nx(1 + sinhnx)
− nx

(1 + sinhnx)
,

nL(3)
n ((t− x)2;x) =

nx2

1 + sinhnx
− 2nx2

enx(1 + sinhnx)
+
x coshnx

1 + sinhnx
,

for every x ∈ R0 and n ∈ N , which immediately yield (10) and (11).

Lemma 3. For every fixed x0 ∈ R0 there exists a positive constant
M2 (x0), depending only on x0, such that for all n ∈ N

(12) L(i)
n

(
(t− x0)4;x0

)
≤M2(x0)n−2, 1 ≤ i ≤ 4.

Proof: For example we shall prove (12) for L(1)
n . By (9) we have for

n ∈ N , p ∈ N and x ∈ R0

0 ≤ xp V (nx) =
2xp

e2nx + 1
≤ 21−p p! n−p.

Applying the above inequality to the formula given in Lemma 1, we
obtain

L(1)
n

(
(t− x0)4;x0

)
≤ 47
n4

+
3x2

0

n2
+
x0

n3
≤M2(x0)n−2,

for every fixed x0 ≥ 0 and for all n ∈ N .

The proof of (12) for i = 2, 3, 4 is similar.

In the papers [3] (for L(i)
n , i = 1, 2) and [4] (for L(i)

n , i = 3, 4) we
proved the following two lemmas.
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Lemma 4. Let s > r > 0 and let n0 be a natural number such that

(13) n0 > r
(
ln
s

r

)−1

.

Then there exists a positive constant M3 ≡M3(r, s, n0) depending only
on r, s, n0 such that for all n > n0 and i = 1, 2, 3, 4∥∥∥∥L(i)

n

(
1

wr(t)
; ·

)∥∥∥∥
s

≤M3.

Lemma 5. Suppose that r, s and n0 are a numbers as in Lemma 4.
Then there exists a positive constant M4 ≡ M4(r, s, n0) depending only
on r, s, n0 such that for all x ≥ 0, n > n0 and i = 1, 2, 3, 4

(14) ws(x)L(i)
n

(
(t− x)2
wr(t)

;x
)

≤M3
x+ 1
n
.

Applying the above lemmas, we shall prove

Lemma 6. Suppose that x0 is a fixed point on R0 and ϕ(·;x0) is a
function belonging to a give space Cr, r > 0, such that limt→∞ ϕ(t;x0) =
0,

(
limt→0+ ϕ(t; 0) = 0

)
. Then

(15) lim
n→∞

L(i)
n (ϕ(t;x0);x0) = 0 for 1 ≤ i ≤ 4.

Proof: We shall prove (15) for i = 1, because the proof of (15) for
i = 2, 3, 4 is analogous.

Choose ε > 0 and M3 as in Lemma 4. Then by the properties of
ϕ (·;x0) there exist positive constants δ ≡ δ (ε,M3) and M5 such that

wr(t) |ϕ(t;x0)| <
ε

2 M3
for |t− x0| < δ,

wr(t) |ϕ(t;x0)| < M5 for t ≥ 0.

Denoting by Qn,1 :=
{
k ∈ N0 :

∣∣ 2k
n − x0

∣∣ < δ} and Qn,2 :=
{
k ∈ N0 :∣∣ 2k

n − x0

∣∣ ≥ δ}, we get for s > r and n > n0 by (1)-(4) and Lemma 4

ws (x0)
∣∣∣L(1)

n (ϕ(t;x0);x0)
∣∣∣ ≤ ws(x0)

∞∑
k=0

pn,k (x0)
∣∣∣∣ϕ

(
2k
n

;x0

)∣∣∣∣
= ws(x0)

∑
k∈Qn,1

pn,k(x0)
∣∣∣∣ϕ

(
2k
n

;x0

)∣∣∣∣
+ ws(x0)

∑
k∈Qn,2

pn,k(x0)
∣∣∣∣ϕ

(
2k
n

;x0

)∣∣∣∣
:=

∑
1

+
∑
2
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and

∑
1

<
ε

2M3
ws(x0)

∞∑
k=0

pn,k(x0)
(
wr

(
2k
n

))−1

<
ε

2
,

∑
2

≤M5ws(x0)
∑

k∈Qn,2

pn,k(x0)
(
wr

(
2k
n

))−1

.

Since 1 ≤ δ−2
(

2k
n − x0

)2
if

∣∣ 2k
n − x0

∣∣ ≥ δ, we have

∑
2

≤M5δ
−2ws(x0)

∑
k∈Qn,2

pn,k(x0)
(
wr

(
2k
n

))−1 (
2k
n

− x0

)2

≤M5δ
−2ws(x0)L(1)

n

(
(t− x0)2

wr(t)
;x0

)
,

wich by (14) and (13) yields

∑
2

≤M5M4
x0 + 1
nδ2

for all n > n0.

It is obvious that for fixed numbers ε > 0, δ > 0, M3 > 0, M4 > 0,
n0 ∈ N and x0 ≥ 0 there exist a natural number n1 > n0 depending on
the above parameters such that for all n1 < n ∈ N

M4M5
x0 + 1
nδ2

<
ε

2
.

Hence we have ∑
2

<
ε

2
for all n > n1.

Consequently,

ws(x0)|L(1)
n (ϕ(t;x0);x0) | < ε for n > n1,

which proves that

lim
n→∞

ws(x0)L(1)
n (ϕ(t;x0);x0) = 0.

From this and (1) assertion (15) follows for x0 and i = 1. Thus the proof
is completed.
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3. Theorems of the Voronovskaya type

The Voronovskaya theorem for the Bernstein operators is given in [2].

We shall prove a similar theorem for the operators L(i)
n .

Theorem 1. Let f ∈ C2
r with some r > 0. Then

(16) lim
n→∞

n
{
L(i)

n (f ;x) − f(x)
}

=
x

2
f ′′(x)

for every x ∈ R0 and i = 1, 3.

Proof: Let x0 ≥ 0 be an arbitrary fixed point and i = 1. By the Taylor
formula we have for t ≥ 0

(17) f(t) = f(x0)+f ′(x0)(t−x0)+
1
2
f ′′(x0)(t−x0)2+ψ(t;x0)(t−x0)2,

where ψ(·;x0) is a function belonging to the space Cr and limt→x0ψ(t;x0)=
0. By (2), (8) and (17) we get

(18) L(1)
n (f(t);x0) = f(x0) + f ′(x0)L(1)

n (t− x0;x0)

+
1
2
f ′′(x0)L(1)

n

(
(t− x0)

2 ;x0

)
+ L(1)

n

(
ψ (t;x0) (t− x0)

2 ;x0

)
for every n ∈ N . Using Lemma 2, we have

(19)
lim

n→∞
nL(1)

n (t− x0;x0) = 0,

lim
n→∞

nL(1)
n

(
(t− x0)2;x0

)
= x0.

By (2) and the Hölder inequality we have for every n ∈ N

(20)
∣∣∣L(1)

n

(
ψ (t;x0) (t− x0)2;x0

)∣∣∣
≤

{
L(1)

n

(
ψ2(t;x0);x0

)} 1
2

{
L(1)

n

(
(t− x0)4;x0

)} 1
2
.

Since for the function ϕ(t;x0) := ψ2(t;x0), t ≥ 0, we have ϕ(·;x0) ∈
C2r and limt→x0 ϕ(t;x0) = 0, we get by Lemma 6

(21) lim
n→∞

L(1)
n

(
ψ2(t;x0);x0

)
≡ lim

n→∞
L(1)

n (ϕ(t;x0);x0) = 0.

Applying (21) and (12) to (20), we obtain

(22) lim
n→∞

nL(1)
n

(
ψ(t;x0)(t− x))2;x0

)
= 0.

Now we immediately obtain (16) for a given x0 and i = 1 from (18) by
(19) and (22). This proves the desired assertion for i = 1.

Similarly we can prove the following
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Theorem 2. Suppose that f ∈ C2
r with some r > 0. Then

lim
n→∞

n
{
L(i)

n (f ;x) − f(x)
}

= f ′(x) +
x

2
f ′′(x)

for every x ∈ R0 and i = 2, 4.
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