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CONSEQUENCES OF THE MEROMORPHIC
EQUIVALENCE OF STANDARD MATRIX

DIFFERENTIAL EQUATIONS

H. J. Zwiesler

Abstract
In this article we investigate the question how meromorphic dif-
ferential equations can be simplified by meromorphic equivalence.
In the case of equations of block size 1, which generalizes the
case of distinct eigenvalues, we identify a class of equations which
are simplest possible in the sense that they carry the smallest
number of parameters whithin their equivalence classes. We also
discuss conditions under which individual equations can be sim-
plified. Particular attention is paid to the requirement that the
involved transformations can be explicitly computed.

1. Introduction

Meromorphic equivalence has always been an important tool for the
discussion of systems of linear differential equations in the complex plane.
Among the most prominent examples are the contiguous relations for the
hypergeometric functions. In recent years W. B. Jurkat’s book ([Jur])
stimulated many research efforts for a systematic investigation of mero-
morphic equivalence. A main goal is the identification of representatives
under this equivalence relation which should then be the central ob-
jects of further function —theoretic inquiries. For many purposes it is
important that this treatment is as explicit as possible. In a previous
article ([JZ1]) W. B. Jurkat and the author studied these questions for
differential equations of arbitrary dimension and block size 1 (definitions
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can be found in section 2). They showed that each equation is equiv-
alent to an equation of a particularly simple form, a so-called standard
equation. These standard equations allow a thorough and explicit study
of all possible transformations.

It is a natural question in this context to ask: How can these standard
equations be further simplified by means of meromorphic equivalence?
The main goal of the present article is to show that standard equations
are simplest possible in the sense that they carry the smallest number of
parameters within their equivalence classes. They also allow a natural
parametrization and are therefore particularly well suited for further
function —theoretic studies, e.g. how connection coefficients depend on
the parameters of an equation.

In section 2 we define the standard equations and introduce the con-
cept of direct transformations and equivalence. Direct equivalence is
closely related to meromorphic equivalence but turned out to simplify
the discussion considerably since it avoids the use of constant similari-
ties. These constant similarities would introduce unnecessarily compli-
cated normalizations of the differential equations (compare [JZ2, Propo-
sition 7]).

Section 3 contains the definition of piecewise algebraic functions and a
summary of their central properties. These piecewise algebraic functions
occur naturally in the explicit formulae for the direct transformations and
the transformed differential equations (Proposition 1). They provide the
basic key for section 4 which forms the central part of this paper. It
is devoted to the discussion of the number of parameters of a standard
equation (Lemma 2) and the fact that the totality of standard equations
cannot be obtained from a subclass with fewer parameters (Theorem 1).
We can even discuss whether individual equations allow simplifications
(Theorem 2), e.g. whether an equivalent equation exists for which more
parameters vanish. This discussion reveals new invariants for standard
equations.

All of these results also apply to natural subclasses of our standard
equations, e.g. to the important cases of equations with fixed formal in-
variants (isoformal) resp. with fixed monodromy (isomonodromy). This
transfer is carried out in section 5 (Corollary 1 and Remark 5). In this
context we compute the number of parameters for isoformal equations
in Lemma 3.

Although the formulae for the transformations are in general made up
from several pieces we prove in section 6 that for the vast majority of
equations one system of rational formulae suffices (Theorem 3).

Finally we show in section 7 that the previous results carry over from
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direct to meromorphic equivalence after an additional normalization of
the standard equations (Theorems 1’, 2’, 3’).

The reader is assumed to be familiar with the basic facts of the general
theory of the meromorphic differential equations which can be found in
[Jur]. Besides that we rely on the results of the articles [JZ1] and [JZ2].

2. Standard Equations and Direct Equivalence

This section contains a discussion of the differential equations and their
transformations which are the basis for our investigations. A detailed
treatment can be found in [JZ1].

A meromorphic differential equation is a linear system of the form
X ′(z) = A(z)X(z) where A(z) can be expanded in a convergent Laurent-
series in a neighborhood of infinity with finite singular part and X(z)
denotes a fundamental solution matrix (all matrices have dimensions
n × n with n ≥ 2). For abbreviation we will denote such a differential
equation by A(z) as long as no confusion is possible.

When we replace X(z) by T (z)Y (z) where T is a meromorphic trans-
formation (i.e. T and T−1 are meromorphic at infinity) then Y (z) is a
fundamental solution matrix for the equation B = T−1AT −T−1T ′. We
say that A and B are meromorphically equivalent.

Definition. The differential equation X ′ = AX is called a standard
equation if

(i) A(z) =
r∑

k=0

Akz
k−1 with r ∈ N (Poincaré rank) and Ar �= 0,

(ii) it possesses a formal solutionH(z) of the form F (z)zΛ
′
eQ(z) where

Q(z) = diag(q1(z), . . . , qn(z)) is a polynomial matrix without
constant term, Λ′ = diag(λ′1, . . . , λ

′
n) is a complex matrix

(called formal monodromy) whose diagonal elements satisfy
λ′j �≡ λ′k(mod 1) whenever qj = qk for j �= k (we summarize the
conditions for Q and Λ′ by saying that the equation has block size

one) and the formal series F (z) satisfies F (z) = I +
∞∑

j=1

Fjz
−j ,

(iii) the eigenvalues of A0 which are not equal, are already incongruent
(mod 1).

Remark 1 ([JZ1, Remarks 1 and 2]). The formal solution

(I +
∞∑

j=1

Fjz
−j)zΛ

′
eQ(z) is uniquely associated with A and denoted by
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HA = FAz
Λ′

AeQA (the subscript .A stands for a quantity that is uniquely
determined by A). The special form of F (z) implies that the Poincaré
rank of A is minimal. Such a standard equation also possesses an ac-
tual solution E(z)zM where E(z) is entire with detE(z) �= 0 (∀ z ∈ C)
and M is a lower triangular Jordan canonical form of A0 (called ac-
tual monodromy). It is uniquely determined if we prescribe the ordering
of the Jordan blocks. For that purpose we choose all complex z with
0 ≤ Re(z) < 1 as a system of representatives modulo 1 and require:

(i) the eigenvalues of M are arranged such that the corresponding
representatives are non-increasing (where here and in the sequel
complex numbers are ordered lexicographically with real part
first),

(ii) the sizes of consecutive Jordan blocks for the same eigenvalue do
not increase.

This unique monodromy M will be denoted by MA.

Definition. The standard equations A and B are said to be
directly equivalent, if a meromorphic transformation T exists satisfying
HA = THB . Such a T is called a direct transformation from A to B.

Remark 2 ([JZ1, Remark 6]). Two standard equations A and B are
meromorphically equivalent if and only if a permutation of A is directly
equivalent to some B∗ which is diagonally similar to B. The occuring
permutation is uniquely determined by QA, Λ′

A, QB , Λ′
B . The direct

transformation is the central part of every meromorphic transformation
but has the advantage to avoid the possible constant matrices that can
be applied to HB and create the necessity to normalize A(z) further.
Therefore we will concentrate mainly on direct equivalence.

3. Piecewise Algebraic Functions

The coefficients of a direct transformation depend algebraically on the
coefficients of the differential equation to which it is applied. This be-
havior implies the properties that are essential for the present reduction
theory. Hence we will now introduce the concept of piecewise algebraic
functions, give some of their basic properties and describe how they arise
in the context of direct transformations.

Definition ([JZ2]). Let X be a non-empty subset of CN (N ∈ N). A
set of the form {x ∈ X : g(x) �= 0, gj(x) = 0 for j = 1, . . . ,m} with
m ∈ N0, g, gj ∈ Q[x] is called a P -set in x relative to X. A PA-set
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relative to X consists of the finite union of P -sets relative to X. Its (al-
gebraic) dimension over F (for an arbitrary field F with Q ⊆ F ⊆ C) is
by definition the maximal number of algebraically independent compo-
nents for each of its elements (where the empty set has dimension −1).
For F = Q we simply use the term dimension. In the case of a PA-set
F ⊆ X × CM (M ∈ N) we say that F is a PA-relation relative to X.

A multivalued function f : CN− → CM associates with every x ∈ CN

the finite set f(x) ⊆ CM (which may be empty). Its domain is defined
as Df = {x ∈ CN : f(x) �= ∅} and we also introduce the image of a
set A ⊆ CN as f(A) =

⋃
x∈A
f(x) and the preimage of a set B ⊆ CM

as f−1(B) = {x ∈ CN : f(x) ∩ B �= ∅}. Furthermore we say that
F = {(x, y) : y ∈ f(x)} ⊆ CN × CM is the graph of f . If the graph F
is a PA-relation relative to X then f is called a PA-function relative to
X. Finally, a PR-function relative to X is defined to be a PA-function
relative to X where each set f(x) contains at most one element.

It is important to observe that f is a PR-function relative to X if
and only if there exists a decomposition of X into PA-sets S0, . . . , Sm

(m ∈ N0) relative to X such that f is defined on X¬S0 (difference of
sets) and the components of f allow rational representations on each Sj

for 1 ≤ j ≤ m (decompositions are always disjoint).
A first important property of PA-functions is the fact that the compo-

sition of PA-functions f : X− → CM and g : Y− → CM ′
—defined as

g(f(x)) =
⋃

y∈f(x) g(y)— with ∅ �= Y ⊆ CM and f(x) ⊆ Y for all x ∈ X
is again a PA-function relative to X.

Before we can relate these definitions to our direct transformation we
must explain which parameters we will use to represent our standard
equations. For that purpose we fix the Poincaré rank r of A(z) and com-
bine the entries of the matrices Ar−1, . . . , A0 and of the diagonal of Ar

in some fixed way in order to obtain a parameter vector in Crn2+n. The
totality of parameter vectors corresponding to standard equations forms
the parameter space X. Sometimes it is useful to extend the parameter
vectors by including the eigenvalues λ1, . . . , λn of the monodromy ma-
trix in the same order as they occur on the diagonal of MA. This leads
to the parameter space X ′ ⊆ Crn2+2n, and to every standard equation
there corresponds exactly one parameter vector in X resp. in X ′.

Proposition 1. Let diagonal matrices K and K ′ with integer en-
tries and equal traces be given. To every standard equation A there
exists at most one directly equivalent standard equation B with
MA = MB + K, QA = QB, Λ′

A = Λ′
B + K ′ and the function which
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maps the parameter vector of A onto the parameter vector of B is a PR-
function (Crn2+2n− −→ Crn2+2n) relative to X ′. On the other hand,
every standard equation B which is directly equivalent to A can be ob-
tained by an appropriate choice of K and K ′.

Proof: This is essentially Corollary 2 and a consequence of Proposi-
tion 2 in [JZ1] with the difference that we no longer include the entries
of Q or Λ′ into the parameter vectors. Due to Proposition 6 of [JZ2] we
know that Q and Λ′ can be computed from A by means of PR-functions.
Hence we can compose the two PR-functions to obtain a PR-function in
the parameter vectors of X ′.

Remark 3. In [JZ1, Corollary 2] and [JZ2, Theorem 9] we also gave
an explicit procedure to compute these PR-functions, but this is of minor
importance for our present investigations.

Although the eigenvalues of MA coincide with those of A0 and hence
depend algebraically on the parameters of A, the parameters of B are
not PA-functions relative to X since we had to demand the ordering of
these eigenvalues in connection with the matrix K. But we can say that
the parameter vectors in X ′ are a part of a PA-function in the parameter
vector in X.

The closer study of the implications of Proposition 1 relies on some
properties of PA-functions. For their formulation we need the following

Definition. For a set S ⊆ RN (N ∈ N) we define the p-dimensional

outer Hausdorff measure (p ∈ R, p ≥ 0) as Hp(S) = sup
ε>0

inf
∞∑

j=1

dp(Aj)

where S ⊆
∞⋃

j=1

Aj and the diameters d(Aj) < ε for all j. Moreover S is

called σp-finite if S =
∞⋃

j=1

Sj with Hp(Sj) < ∞ for all j; if in addition

Hp(S) > 0 then we say that S has precise dimension p.
We also use these real concepts for our complex sets by splitting each

variable into its real and imaginary part. Therefore, the dimensions are
doubled when we compare them to what we would expect from counting
the parameters.

Lemma 1. Let f be a PA-function (CN− → CM ) relative to X. For
given A ⊆ X the following hold (F a field with Q ⊆ F ⊆ C, p ∈ R,
p ≥ 0):
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(i) the algebraic dimension over F of f(A) is not greater than the
algebraic dimension over F of A,

(ii) Hp(A) = 0 ⇒ Hp(f(A)) = 0,
(iii) A is σp-finite ⇒ f(A) is σp-finite.

Proof: See [JZ2, Proposition 2].

From this lemma it follows in particular that, if f possesses an inverse
that is a PA-function (relative to f(X)), then f preserves the precise
dimension of a set. The existence of such an inverse is equivalent to the
fact that f−1 ({y}) is a finite set (∀y ∈ CM ) according to [JZ2, end of
section 2].

4. On the Number of Parameters

After we have made the necessary preparations we can now explain
that our standard equations cannot be reduced further by means of direct
equivalence. For that purpose we start by counting the parameters.

Lemma 2. The parameter spaces X and X ′ for the standard equa-
tions with fixed Poincaré rank r have precise dimension 2(rn2 + n).

Proof: The standard equations incorporate in particular those equa-
tions where Ar has distinct eigenvalues and A0 has incongruent eigen-
values. Their parameter vectors in X form an open, non-empty subset
of Crn2+n. Therefore, H2(rn2+n) (X) > 0 holds. Furthermore, Crn2+n is
σ2(rn2+n)-finite which is then also true for every subset.

If we associate with every parameter vector in X the vector itself and
the eigenvalues of A0 in any possible order, then we obtain a PA-function
(Crn2+n− → Crn2+2n) relative to X ([JZ2, Lemma 3]). The image of X
under this function is σ2(rn2+n)-finite due to Lemma 1(iii), and this also
holds for X ′ as a subset of this image. In addition, H2(rn2+n)(X ′) = 0
is impossible since this would imply H2(rn2+n)(X) = 0 by Lemma 1(ii)
as X is the projection of X ′ and projections are PA-functions ([JZ2,
Lemma 4(i)]).

It is worthwhile to notice that Theorem 9 in [JZ2] shows that the set
X is a Borel-set and therefore measurable. Of course, the same holds for
X ′.

Remark 4. Let us consider a collection of standard equations whose
parameter vectors constitute a set S ⊆ X; at the same time they yield a
set S′ ⊆ X ′ when we include the eigenvalues of the monodromy matrix.
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Then the proof of Lemma 2 shows that S is the image of S′ under a PA-
function, that S′ is a subset of the image of S under a PA-function and
that S satisfies Hp(S) = 0 resp. is σp-finite resp. has precise dimension
p if and only if S′ satisfies Hp(S′) = 0 resp. is σp-finite resp. has precise
dimension p. Moreover, both sets have the same algebraic dimension
over any field F with Q ⊆ F ⊆ C.

Now we can formulate precisely what we mean when we say that our
standard equations cannot be reduced further.

Theorem 1. Let S ⊆ X satisfy Hp(S) = 0 (resp. be σp-finite
resp. have precise dimension p for some p ≥ 0) and denote by S∗ ⊆ X
the parameter vectors of all standard equations which are directly equiv-
alent to those whose parameter vectors belong to S. Then Hp(S∗) = 0
(resp. S∗ is also σp-finite resp. has precise dimension p).

Proof: We will prove the theorem in an equivalent version namely
with X replaced by X ′ (see Remark 4). According to Proposition 1 any
standard equation B which is directly equivalent to a given A leads to
two diagonal matrices K = MA −MB and K ′ = Λ′

A − Λ′
B with integer

entries and equal traces. By the σ-subadditivity of Hp it is sufficient
to consider a fixed choice of K and K ′. But then at most one B exists
which is directly equivalent to A. We learn from Proposition 1 that the
parameter vector of B is a PR-function relative to X ′ of the parameter
vector of A, and due to Lemma 1(ii) such a PR-function maps nullsets
onto nullsets. The other parts of the claim follow in exactly the same
way by Lemma 1(iii) and the remark following it.

An immediate consequence of Theorem 1 is that we cannot obtain all
standard equations by means of direct equivalence from a subcollection
whose parameter vectors form a set S with H2(rn2+n)(S) = 0. Therefore
if the totality of all standard equations can be generated from S then S
has precise dimension 2(rn2 + n). It is in this sense that our standard
equations allow no further reduction and are simplest possible.

Of course, Theorem 1 also applies to natural subclasses of our standard
equations and we will devote section 5 to the discussion of such a case.

But it is also interesting to investigate individual equations and ask
whether they can be simplified. For that purpose we must first explain
what the term “simplified” should mean. One natural interpretation is
that we use the transcendency degree of the parameters of the equation
and consider an equation to be simpler than another if its parameters
have a lower transcendency degree.

Theorem 2. If the standard equations A and B are directly equivalent
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then their parameters have equal transcendency degrees over F (where F
is any field with Q ⊆ F ⊆ C).

Proof: Again we can use Remark 4 to find out that it makes absolutely
no difference in the statement whether we use the parameters from X or
those from X ′. Thus we consider the parameters from X ′ and notice that
the parameters of B are PR-functions in those of A. Hence Lemma 1(i)
applies and the transcendency degree over F of the parameters of B
cannot by greater than that of the parameters of A. But since the
situation is symmetric in A and B the two transcendency degrees must
in fact be equal.

This theorem leads to the interesting observation that for every field
F (Q ⊆ F ⊆ C) we obtain an invariant under direct equivalence, namely
the transcendency degree over F of the parameters of the standard equa-
tion.

One consequence of Theorem 2 is the fact that standard equations,
all of whose parameters (from X) are algebraically independent over Q,
can never be directly transformed into standard equations where one or
more parameters vanish.

5. Isoformal Equations

In this section we will apply Theorem 1 to those subclasses of standard
equations which are obtained by fixing the formal invariants.

Every standard equation A is formally and directly transformed by FA

to Q′
A(z) + Λ′

Az
−1. The only direct transformations connecting such di-

agonal standard equations are zK with arbitrary, diagonal K possessing
integer entries. Therefore we should introduce the diagonal matrix Λ∗

A

whose eigenvalues have real parts in [0, 1) such that Λ′
A −Λ∗

A has integer
entries. Then QA(z) and Λ∗

A form a complete system of formal direct
invariants for standard equations. They are easily computable as can be
seen from Theorem 9 in [JZ2]. The fact that they remain unchanged
under direct transformations suggests that we should concentrate our at-
tention to sets of equations for which these invariants agree. Such equa-
tions are called isoformal. This is an equivalence relation which yields
equivalence classes of isoformal equations in the parameter spaces X.
They are the objects of our further studies.

First we aim at counting the parameters of such an equivalence class.
For that purpose we define d(j, k) = max{deg(qj(z)−qk(z)), 0} for 1 ≤ j,
k ≤ n.

Here the degrees are defined as follows: deg(T ∗) is the maximal occur-
ing power of z in the Laurent expansion of T ∗ at infinity and deg0(T ∗)
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the last occuring power of z in the Laurent expansion of T ∗ at 0. These
definitions can be used for any formal or convergent Laurent-series with
finite singular part when we define deg(O) = −∞, deg0(O) = +∞.

Lemma 3. A given equivalence class of isoformal equations has pre-
cise dimension

2 ·
n∑

j,k=1

d(j, k).

Proof: Since Λ′
A can assume only countably many values we may con-

sider Λ′
A to be fixed. Then we will construct a system of

n∑
j,k=1

d(j, k) com-

plex, completely unrestricted parameters for the given isoformal equa-
tions such that these parameters together with the coefficients of the
diagonal entries in QA and Λ′

A are PR-functions in the parameter vec-
tors from X and vice versa. According to Lemma 1 this suffices to prove
Lemma 3.

First we apply a fixed permutation to all isoformal equations in order
to assure thatQA has an iterated block structure ([Jur, p. 92]), i.e. d(j, k)
is increasing with |j − k|. This will simplify the following considerations
which are essentially based on the construction of the formal solution by
a successive block diagonalization as described in [Was, p. 52-54]. For
that purpose we order the distinct values d(j, k) as r ≥ d1 > · · · > dt ≥ 0
(t ∈ N) and define d0 = +∞, dt+1 = 0. The block structure of k-th level
(1 ≤ k ≤ t) is now obtained by combining exactly those indices j, j′

into one diagonal block for which d(j, j′) < dk holds. Then the process
in [Was, p. 52-54] yields the factorization FA(z) = F1(z) · . . . · Ft+1(z)
where each Fj(z) is a formal power series which is diagonal in the block
structure of (j−1)-st level (for 1 < j ≤ t+1) and whose diagonal blocks
in the block structure of j-th level are I (for 1 ≤ j ≤ t). We put Fj(z) =

I+
∞∑

k=1

Fjkz
−k for 1 ≤ j ≤ t+1. In [Was, p. 52-54] Fj is used to transform

a differential equation Aj−1(z) into the equation Aj(z) (take A0(z) = A
and At+1(z) = Q′

A + Λ′
Az

−1) where Aj(z) has the following structure
(Aj−1(z) analogously): it is diagonal in the block structure of j-th level;
each individual diagonal block consists of a formal series of degree at most
−2 plus a standard equation whose formal solution contains exactly one
block of QA with elements qk, qk′ , satisfying d(k, k′) < dj . We write

Aj(z) =
r∑

k=−∞
Ajkz

k−1. With these notations we learn from [Was,

p. 52-54]:
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(i) The entries of Fjk are rational functions with integer coefficients
of the entries of the Aj−1,ν with ν ≥ dj − k (k = 1, 2, . . . ).

(ii) The matrix Ajk is completely determined by the matrices Aj−1,ν

with ν ≥ k and the matrices Fjµ with µ ≤ dj − k (k = 1, 2, . . . ).

Now we can explain what our new parameters shall be, namely
those entries of Fjk which belong to diagonal blocks in the block
structure of level j − 1, but not in the block structure of level j

(1 ≤ j ≤ t, 1 ≤ k ≤ dj). These are
n∑

j,k=1

d(j, k) complex parameters

that depend rationally on the original parameter vectors in X by (i) and
(ii). To show the converse and the fact that these new parameters are

completely unrestricted we define F̃j(z) = I+
dj∑

k=1

Fjkz
−k (1 ≤ j ≤ t+1)

with arbitrary values for our new parameters and all other entries being
zero. Then we see that F̃j · . . . · F̃t+1z

Λ′
AeQA satisfies the differential

equation Bj−1(z) which has the same structure as Aj−1(z) (see above)
for 1 ≤ j ≤ t+1. Now we define the standard equation A(z) by requiring
that the degree of B0(z)−A(z) is at most −2. The entries of the coeffi-
cients of A depend rationally (with integer coefficients) on the entries of
the Fjk, QA and Λ′

A. When we formally solve the equation A we obtain
the equations Aj(z) and the formal series Fj as above. Using (i) and
(ii) we conclude that changing Aj−1(z) by an additive term of degree
not exceeding −2 (i.e. changing only coefficients Aj−1,k with k ≤ −1)
does not change the matrices Ajk with k ≥ 0 nor Fjk with k ≤ dj .
Hence the leading terms of Fj are exactly the initially given matrices Fjk,
i.e. Fj(z) − F̃j(z) has degree at most −dj − 1.

It is not surprising that this dimension agrees with twice the number
of “free” actual invariants given in [Jur, p. 123].

Now we can immediately apply Theorem 1 and find

Corollary 1. An equivalence class of isoformal equations can only
be obtained from a subset by direct equivalence if this subset has precise
dimension

2 ·
n∑

j,k=1

d(j, k).

Remark 5. An analogous result holds for equivalence classes of
isomonodromy equations, viz. equations A,B where MA −MB is a di-
agonal matrix with integer entries. The precise dimension of such an
equivalence class is 2(n + rn2 + k −

∑k
j=1 ajgj) where λ1,... ,λk (k ∈ N)

are the distinct eigenvalues ofMA and aj (resp. gj) denotes the algebraic
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(resp. geometric) multiplicity of the eigenvalue λj (1 ≤ j ≤ k). This can
be seen by discussing how linear combinations of eigenvectors and prin-
cipal vectors corresponding to the eigenvalue λj can be used to enforce
that certain components of these vectors are 0 or 1.

6. Uniform Rational Formulae

From Proposition 1 we learned that we can compute the parameters
of the transformed equation as PR-functions of the parameters of the
original equation (all parameter vectors from X ′) provided that we fix
the integral changes K and K ′ of the actual and formal monodromy.
This gives the impression that we deal with an abundance of cases in
each of which different formulae apply. Fortunately we will now show
that for almost all equations one and the same formula can be used.

Theorem 3. Let diagonal matrices K and K ′ with integer entries
and equal traces be given. Then there exists a subset S of Crn2+n and a
vector f of rn2 +2n rational functions from Q(y1, . . . , yrn2+2n) with the
following properties:

(i) The set S¬ ⊆ Crn2+n is σ2(rn2+n)−2-finite.
(ii) If the parameter vector a ∈ X of the standard equation A belongs

to S then there exists a standard equation B which is directly
equivalent to A with MA = MB +K, QA = QB, Λ′

A = Λ′
B +K ′

and the parameter vectors a′ (resp. b′) ∈ X ′ of A (resp. B) are
related by b′ = f(a′).

Proof: The set S will consist of exactly those vectors in Crn2+n whose
elements are algebraically independent over Q. It has the following three
properties:

(a) Each vector in S is the parameter vector of a standard equation
since the eigenvalues of A0 and the diagonal matrix Ar are alge-
braically independent (for the rest of the proof always over Q), in
particular incongruent modulo 1 and distinct. This leads immedi-
ately to the properties which we required for standard equations.

(b) The complement of S contains exactly the vectors with alge-
braically dependent elements and is therefore the countable union
of sets {x ∈ Crn2+n : p(x) = 0} with p ∈ Z[x]¬{0}. Each of these
sets is σ2(rn2+n)−2-finite ([JZ2, Remark 6 and Proposition 1]),
and then the same holds for their countable union.

(c) Finally we want to prove that all equations with parameter vec-
tors in S can be transformed using one and the same rational
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formula which proves part (ii) of the claim. For that purpose we
construct the formula in finitely many steps. This is done by first
changing MA to MA −K by means of the procedure described in
[JZ1, Proposition 1]. We divide K into individual steps as in the
proof of Proposition 1 in [JZ1] and discuss such a single step. It
requires the computation of E0 = E(0) in the actual solution at
0. Notice that E0 satisfies A0 = E0MAE

−1
0 and therefore is made

up from the eigenvectors of A0. We can always require that the
last component in each eigenvector is either 0 or 1. Thus for each
eigenvalue λ we seek an eigenvector solving the equation

A0

[
-t
α

]
=

[
Ã -a

∗ . . . ∗

] [
-t
α

]
= λ

[
-t
α

]

with α ∈ {0, 1}.

Can λ be an eigenvalue of Ã? Then λ would depend algebraically on
the elements of Ã; furthermore we learn from det(A0 − λI) = 0 that
ann depends algebraically on the other elements of A and on λ which
then would yield an algebraic dependence among the elements of A0 in
contradiction to our choice of the set S. Hence Ã− λI is invertible and
we obtain -t as a rational function of A and λ by applying Cramer’s rule
to Ã-t + -aα = λ-t. Since -t is unique, α = 0 is impossible because in this
case all multiples of -t had to be solutions as well; hence we conclude
α = 1 for all eigenvectors. Once

E0 =
[
-t1 -tn
1 . . . 1

]

is computed we notice that the components of all vectors -t1, . . . , -tn
must be algebraically independent since A0(= E−1

0 MAE0)has n2 alge-
braically independent components. Now we want to factor it as E0 = UL
(diagU = I) which is done by applying the Gauss elimination process to
E0 starting in the (n, n)-position ([JZ2, Proposition 5]). The first step
puts E0 to the form

[
-t1 − -tn . . . -tn−1 − -tn -0

1 . . . 1 1

]
=

[
T -0

1 . . . 1

]

and the elements of T are still algebraically independent. Hence the
Gauss elimination can be carried out without permutation of rows and
yields the elements of U and L as rational functions in the elements
of E0 (notice that for the factorization E0 = LU it is more conve-
nient to choose the first row of E0 to consist of 1′s only). Finally the
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construction in Proposition 1 of [JZ1] requires the computation of the
elements r21, . . . , rn1 of the matrix U−1F1 where we use the notation
(I +

∑∞
k=1 Fkz

−k)zΛ
′
eQ(z) for the formal solution of A(z). Fortunately

r21, . . . , rn1 are determined by U−1 and the elements in the first column
of F1 which are located below the diagonal. Since Ar has distinct eigen-
values we know from the proof of Lemma 3 that these elements in F1

are rational functions of the parameters of A(z). Hence one step in the
proof of Proposition 1 in [JZ1] leads to a new standard equation whose
parameters (in X ′) are obtained as rn2 + 2n rational functions (with
coefficients in Q) from the parameters (in X ′) of the original equation.
Furthermore the parameters (in X) of the new equation are again alge-
braically independent due to Theorem 2. Iterating this process we obtain
a standard equation Ã withMA =MÃ+K, QA = QÃ and Λ′

A = Λ′
Ã

+K
(since no permutations occured).

Hence we are left with the task to change ΛÃ′ to Λ′
B = Λ′

Ã
+ K −

K ′ without altering the actual monodromy. For that purpose we write
K −K ′ as a finite sum of matrices K(µ, ν) (1 ≤ µ, ν ≤ n, µ �= ν) where
K(µ, ν) = diag(k1, . . . , kn) with kµ = 1, kν = −1, kj = 0 (j �= µ, ν).
According to the example in section 6 of [JZ1] a direct transformation
with K = O, K ′ = K(µ, ν) exists if a(r−1)

νµ �= 0; but this is certain due to
the algebraic independence. Hence such a simple change is possible and
yields also rational formulae (with coefficients in Q). We are therefore
in the same situation as before and can iterate this procedure until the
desired equation B is obtained. Composing all these rational functions
we obtain the claimed vector f .

Example. As an example we consider the case r = 1, n = 2, K = O
and K ′ = diag(−1, 1). Then the differential equations under considera-
tion have the form

A(z) = A1 +A0z
−1 =

[
a1 0
0 a2

]
+

[
a3 a4
a5 a6

]
z−1.

As the set S ⊆ C6 in Theorem 3 we take

S = {a1 �= a2, a5 �= 0, A0 has eigenvalues λ1, λ2

which are either equal or incongruent (mod 1)}

whose complement is σ10-finite. The eigenvalues λ1, λ2 are ordered
as in the unique monochromy MA. Equations A, whose parameters
belong to S, are standard equations with Q(z) = diag(a1z, a2z) and
Λ′ = diag(a3, a6). Their parameter vectors a′ ∈ C8 have the form

a′ = (a1, a2, a3, a4, a5, a6, λ1, λ2).
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Using the direct transformation

T (z) =



z +

a3 − a6 − 1
a1 − a2

−a1 − a2
a5

a5
a1 − a2

0




the equation A is transformed into

B(z) =
[
a1 0
0 a2

]
+




a3 − 1 − (a1 − a2)2
a5

a5(a6 − a3 + 1 − a4a5)
(a1 − a2)2

a6 + 1


 z−1.

This is the desired change K = O, K ′ = diag(−1, 1), and the param-
eter vector b′ of the transformed equation B has the form

b′=
(
a1, a2, a3 − 1,− (a1 − a2)2

a5
,
a5(a6 − a3 + 1 − a4a5)

(a1 − a2)2
, a6 + 1, λ1, λ2

)

which gives the unique rational formula f of Theorem 3.

7. Meromorphic Equivalence

In this final section we will transfer our previous results to meromor-
phically equivalent equations.

By Remark 2 we know that a meromorphic transformation consists of
a permutation and a diagonal similarity in addition to a direct transfor-
mation. The diagonal similarity can be used to normalize our standard
equations further. One such normalization is given in Proposition 7 of
[JZ2]. It relies on the determination of those entries of A(z) which
vanish identically and on requiring certain other entries to be monic
(i.e. the highest occuring power of z has coefficient one). The choice of
the terms that should be monic contains a certain degree of freedom,
e.g. if none of the entries a1j(z) of A(z) for 2 ≤ j ≤ n vanishes identi-
cally the normalization can consist of the requirement that exactly these
entries should be monic. We will use this normalization throughout this
section. If a1j(z) vanishes identically for some j (2 ≤ j ≤ n) we use
some other normalization, but its specific choice does not influence our
further considerations.

In this way we obtain normalized standard equations in the sense of
[JZ1, p. 314]. Their parameter vectors form the sets Y ⊆ X ⊆ Crn2+n

resp. Y ′ ⊆ X ′ ⊆ Crn2+2n.
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Lemma 2’. The parameter spaces Y and Y ′ for the normalized
standard equations with fixed Poincaré rank r have precise dimension
2(rn2 + 1).

Proof: Let us first consider those normalized equations for which all
entries a(r−1)

1j in Ar−1 (2 ≤ j ≤ n) are 1. Then the other rn2 +1 param-
eters in A are only restricted by the requirement that A is a standard
equation. This is guaranteed if e.g. Ar has distinct eigenvalues and all
eigenvalues of A−1 are incongruent modulo 1. Hence the parameter vec-
tors of these equations form a set of precise dimension 2(rn2 + 1) in Y
and hence also in Y ′.

In the remaining cases at least one entry a(r−1)
1j (2 ≤ j ≤ n) is zero

and this forces another parameter to be 0 or 1. Therefore the set of the
corresponding parameter vectors is σ2rn2-finite.

Proposition 1’. Let a permutation matrix P and diagonal matrices
K,K ′ with integer entries and equal traces be given. For any normalized
standard equation A there exists at most one meromorphically equivalent
normalized standard equation B with MA = MB +K, PQAP

−1 = QB,
PΛ′

AP
−1 = Λ′

B + K ′ and the function which maps the parameter vec-
tor (from Y ′) of A onto the one of B is a PR-function relative to Y ′.
Furthermore every normalized standard equation B which is meromor-
phically equivalent to A is obtained by an appropriate choice of P , K
and K ′.

Proof: This is a consequence of Proposition 2 and Corollary 2 in [JZ1]
where the permutation can be applied to A in a preliminary step. Again
we use that the entries of the diagonal elements in QA and Λ′

A are
PR-functions relative to Y ′.

With these informations we can now easily transfer Theorem 1, 2, and
3 to this situation.

Theorem 1’. Let S ⊆ Y satisfy Hp(S) > 0 (resp. be σp-finite
resp. have precise dimension p) for some p ≥ 0 and denote by S∗ ⊆ Y
the parameter vectors of all normalized standard equations which are
meromorphically equivalent to those whose parameter vectors belong to
S. Then Hp(S∗) = 0 (resp. S∗ is also σp-finite resp. has precise dimen-
sion p). In particular, if S∗ is the totality of all normalized standard
equations then S has precise dimension 2(rn2 + 1).

Theorem 2’. If the normalized standard equations A and B are mero-
morphically equivalent then their parameters have equal transcendency
degrees over F (where F is any field with Q ⊆ F ⊆ C).
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Theorem 3’. Let P,K and K ′ be given as in Proposition 1’. Then
there exists a set S′ ⊆ Crn2+n and a vector f of rn2 + 2n rational
functions from Q(y1, . . . , yrn2+2n) with the following properties:

(i) The set Y ¬S′ ⊆ Crn2+n is σ2rn2-finite.
(ii) If the parameter vector a ∈ Y of the normalized standard equation

A belongs to S′ then b′ = f(a′) —where a′ is the parameter vector
of A in Y ′— is the parameter vector of the normalized standard
equation B which is meromorphically equivalent to A and satisfies
MA =MB +K, PQAP

−1 = QB, PΛ′
AP

−1 = Λ′
B +K ′.

Proof: Here we take S′ as the set of exactly those vectors from Crn2+n

whose corresponding differential equations have a(r−1)
nj = 1 for 1 ≤ j ≤

n−1 whereas all other rn2 +1 parameters are algebraically independent
over Q. Notice that such a vector is always the parameter vector of a nor-
malized standard equation. Now we proceed along the same lines as in
the proof of Theorem 3. The matrix E0 is constructed in exactly the same
way (notice that the normalizations do not restrict a(0)nn) and for r ≥ 2
the remaining arguments remain valid since the normalization is carried
out rationally and each new normalized equation must still contain
rn2 + 1 algebraically independent parameters which prevents a(r−1)

nj

(1 ≤ j ≤ n− 1) from vanishing and therefore produces uniform rational
formulae when we normalize them to 1. For r = 1 some elements in A0

are normalized which forces us to discuss whether the parts -t1, . . . ,-tn of
the eigenvectors in E0 still have algebraically independent components.
For that purpose we consider the last row of

[
Ã -a

1 . . . 1 ann

] [
-tj
1

]
= λj

[
tj
1

]

which yields
∑n−1

k=1 tjk + ann = λj (1 ≤ j ≤ n).
Hence the eigenvalues depend algebraically on the n2 − n+ 1 param-

eters tjk and ann, and the same is therefore true for the elements of A0

(= E−1
0 MAE0). But since A0 contains n2 − n+ 1 algebraically indepen-

dent elements, the tjk must be algebraically independent, too. All other
arguments carry immediately over to this situation.
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darrera versió rebuda el 2 de Setembre de 1997


