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THERE IS NO ANALOG OF THE
TRANSPOSE MAP FOR INFINITE MATRICES

Juan Jacobo Simón∗

Abstract
In this note we show that there are no ring anti-isomorphism be-
tween row finite matrix rings. As a consequence we show that
row finite and column finite matrix rings cannot be either iso-
morphic or Morita equivalent rings. We also show that anti-
isomorphisms between endomorphism rings of infinitely generated
projective modules may exist.

1. Introduction and notation

The motivation for this note was to find out the extent to which the
transpose for infinite matrices behaves like that for finite matrices.

It is well-known that for any commutative ring, R, the transpose
map t : Mn(R) → Mn(R) is an anti-automorphism. For infinite
matrix rings the analogous transpose map yields an anti-isomorphism
t : RFMA(R) → CFMA(R), where RFMA(R) (resp. CFMA(R)) denotes
the ring of row-finite (resp. column-finite) matrices, indexed by the set
A, having entries in R. Unlike the finite case, this is obviously not an
anti-AUTOmorphism of RFMA(R).

Thus we are led to ask: for a commutative ring, R, does there ex-
ist an anti-automorphism of RFMA(R)? We answer this question in
the negative, with a vengeance. In fact, we show in Theorem 2.2 that
there are no anti-isomorphisms between rings of the form End(RR

(A))
and End(SS

(B)) for any rings R and S (commutative or not), and any
infinite sets A and B. As a corollary we show that for any two rings R
and S the rings RFMA(R) and CFMB(S) cannot be either isomorphic or
Morita equivalent rings. This corollary is well known in the case of com-
mutative domains and A, B countable infinite sets, or division rings. A
particularly clear proof for commutative domains is given in [2] although
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we wish to call to the reader’s attention that Theorem 1.8 (III) does not
hold in the generality stated. We establish in Example 2.4 that (normal-
ized) Morita context is the closest relation that may exist between such
rings.

Finally we show in Example 2.5 that anti isomorphisms (in fact, invo-
lutions) between endomorphism rings of countably generated and locally
free left projective modules may exist, so that there are modules very
close to free that admit anti-isomorphisms.

Throughout this paper ring means associative ring with identity and
for any ring R, Rop denotes the opposite ring of R [3, Definition 0.1.11].
We denote by R-mod (respectively mod-R) the category of all left
(resp. right) unital R-modules. Homomorphisms of modules act opposite
scalars. Thus, when f and g are endomorphisms of a left R-module RM ,
their composition g ◦ f will be denoted by fg; in particular End(RM)
will be the opposite ring of HomR(M,M) and, for a right R-module NR,
End(NR) = HomR(N,N).

For a given family of modules {Mα}α∈A, where A is a set, ⊕AMα

will mean the direct sum, while
∏

A Mα will mean the direct product.
Direct sum and product of copies of a single module M , indexed by A
will be written M (A) or ⊕AM and MA or

∏
A M , respectively, as usual.

For any set A, cardinality will be denoted by |A|, and following most of
literature, when A is finite, say |A| = n ∈ N we will write Mn instead
of ⊕AMα =

∏
A Mα.

For any infinite set A, we denote by RFMA(R) (respectively CFMA(R))
the ring of A × A row-finite matrices (respectively column-finite ma-
trices) over R. It is well-known that there exist ring isomorphisms
End(RR

(A)) ∼= RFMA(R) and End(R(A)
R ) ∼= CFMA(R). Recall that

a ring R has (left) SBN (Single Basis Number) when for every n ∈ N,
Rn ∼= R (as left R-modules). Note that, for every ring R, since
R(N) ∼= (R(N))n as left and right R-modules then both RFM(R)
and CFM(R) have SBN; thus RFM(R) ∼= Mn(RFM(R)) and also
CFM(R) ∼= Mn(CFM(R)).

2. Anti isomorphisms

We shall see that for any two rings R and S, the existence of an anti
isomorphism between RFMA(R) and RFMB(S) for some sets A and B
implies that either A or B must be finite. To do this, we begin with the
following proposition:

Proposition 2.1. Let R be a ring and A an infinite set. Then
(R(A))A cannot be isomorphic to R(A) as left R-modules.
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Proof: It is well-known that there is the first ordinal number α such
that |α| = |A|. Then for every ordinal β, such that β < α, we must have
that |β| < |α|.

Since |α| = |A| then we can endow A with a linear ordering (A,≤),
given by α. By this and properties of α above, we have that for every
a ∈ A, the set Sa = {x ∈ A | x ≤ a} satisfies |Sa| < |A|.

Now suppose there exists an R-isomorphism ϕ : R(A)A → R(A). Let
{ea}a∈(A,≤) be the canonical (well-ordered) basis for R(A) and let
{xa}a∈(A,≤) such that xa = ϕ−1(ea). Then, {xa}a∈(A,≤) is a well-ordered
basis for R(A)A

. Let ρa : R(A)A → R
(A)
a and ηa : R(A) → Ra be the usual

projections. Define, for each a ∈ A, the set Na = ∪b≤a Supp(xbρa),
where Supp(x) = {a ∈ A | xηa �= 0} for x ∈ R(A).

Since Supp(xbρa) is a finite set and |Sa| < |A| then |Na| < |A| and
hence Na ⊂ A (strictly). So, for each a ∈ A we may choose ξ(a) ∈ A\Na;
that is, for each a ∈ A, there exists ξ(a) ∈ A such that xbρaηξ(a) = 0 for
all b ≤ a.

Now define x ∈ R(A)A

such that, for each a ∈ A, xρaηξ(a) = 1 and
xρaηb = 0 if b �= ξ(a). We claim that x cannot be a linear combination
of {xa}a∈(A,≤).

To see this, suppose x =
∑n

i=1 rixai where a1 < · · · < an are elements
of A and r1, . . . , rn are elements of R.

By definition of x we must have

1 = xρanηξ(an) =
n∑

i=1

rixaiρanηξ(an) = 0 (as ai ≤ an). A contradiction.

Therefore, R(A)A

cannot be isomorphic to R(A).

Now we can prove our main result.

Theorem 2.2. Let R and S be rings, A and B sets and δ :
End(RR

(A)) → End(SS
(B)) a ring anti isomorphism. Then A and B

cannot be infinite sets simultaneously.

Proof: Suppose both A and B are infinite sets and suppose
WLOG |A| ≥ |B|. Let E = End(Rop(A)

Rop ) and F = End(SS
(B)). Since

both F and E are anti isomorphic to End(RR
(A)), we have that there is a

ring isomorphism σ : E → F . Since |B| ≤ |A| then (Rop(A)
Rop )(B) ∼= R

op(A)
Rop

and so, there is a natural isomorphism between the functors

HomRop((Rop(A))(B),−) ∼= HomRop(Rop(A),−)
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which on applying these isomorphisms to Rop(A) yields that EE ∼= EE
B .

Using σ−1 to endow left E-modules with left F -module structure we
have that (by properties of change of rings functors), as left F -modules,
FE ∼= FF and FE

B ∼= FE; so that FF
B ∼= FF .

Now, note that since S(B)
F (as right F -module) is finitely presented then

by [3, Exercise 2.11.9’, p. 337] we have S(B)
⊗

F

∏
B F ∼=

∏
B S(B)

⊗
FF .

Now

S(B) ∼= S(B)
⊗

F

F ∼= S(B)
⊗

F

∏

B

F ∼=
∏

B

S(B)
⊗

F

F ∼= S(B)B

.

But this contradicts Proposition 2.1 and hence A and B cannot be
infinite sets simultaneously.

Corollary 2.3. For any two rings R and S, and any infinite sets A
and B, the rings RFMA(R) and CFMB(S) cannot be isomorphic rings.
In fact, RFMA(R) and CFMB(S) cannot be Morita equivalent rings.

Proof: The first statement is a direct consequence of Theorem 2.2. For
the second statement, take E = RFMA(R) and F = CFMB(S). By [4,
Theorem 1] we know that, if E and F are Morita equivalent rings then
there exists n ∈ N such that E ∼= Mn(F ) as rings; but also Mn(F ) ∼= F
as rings, because F has SBN. So that E ∼= F which is impossible by
Theorem 2.2.

At present, we have seen that for any two rings R and S the rings
RFM(R) and CFM(S) cannot be either isomorphic or Morita equivalent.
Another possibly relationship between RFM(R) and CFM(S) would be
the existence of a Morita context. We recall from [2, Definition III.1.4,
(see p. 51)] that a (left) R-module M is (left) slender if for every homo-
morphism θ : RN → M , we have that, θ(en) = 0 for all but finitely many
n ∈ N; where en is the element of RN such that Supp(en) = {n} and
ρn(en) = 1; where ρn : RN → Rn are the usual projections.

Example 2.4. The rings R = RFM(Z), S = CFM(Z) and bimodules
RMS = HomZ(Z(N),ZN), SNR = HomZ(ZN,Z(N)) make 〈M,N〉 a Morita
context.

We shall construct a Morita context as in [1, Exercise 22.11].
To do this, note that by [2, Corollary III.2.3] Z is slender so that
HomZ(ZN,Z) ∼= ⊕N HomZ(Z,Z) as abelian groups, which implies that
HomZ(ZN,ZN) ∼= (HomZ(Z,Z)(N))N. Thus End(ZZ

N) ∼= CFM(Z) as
rings. Now by [1, Exercise 22.11(1)] we have that 〈M,N〉 is a Morita
context.
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Remark. From Example 2.4 it is easy to construct new examples
with noncommutative rings, by using [2, Corollary III.2.11] which, in
particular, states that if R is slender so is RFM(R).

Note also that, for any slender ring R, even if R is commutative,
the ring RFM(R) is left slender but not right slender because of the
isomorphism of right RFM(R)-modules RFM(R) ∼= RFM(R)N.

In view of Theorem 2.2 we ask for modules which are close to infinitely
generated free, but admit endomorphism rings with involution. We will
give examples of such modules.

Example 2.5. There exist a ring R and a left infinitely generated
projective module RP (which satisfies Pn ∼= P for all n ∈ N) such that
the ring End(RP ) has an involution.

Let S be any ring and SQ = SS
(N). Set T = End(SQ) and U = T op.

Setting R = S × U , P = Q × U we have that End(RP ) ∼= T × U as
rings and note that P ∼= Pn for every n ∈ N.

Now let δ : T × U → T × U such that, for every (a, b) ∈ T × U ,
δ(a, b) = (b, a). It is clear that δ is an involution.
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